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Abstract

Meta-learning offers a promising avenue for few-shot learning (FSL), enabling
models to glean a generalizable feature embedding through episodic training on
synthetic FSL tasks in a source domain. Yet, in practical scenarios where the
target task diverges from that in the source domain, meta-learning based method
is susceptible to over-fitting. To overcome this, we introduce a novel framework,
Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning, which is
crafted to comprehensively exploit the cross-domain transferable image prior that
each image can be decomposed into complementary low-frequency content details
and high-frequency robust structural characteristics. Motivated by this insight, we
propose to decompose each query image into its high-frequency and low-frequency
components, and parallel incorporate them into the feature embedding network to
enhance the final category prediction. More importantly, we introduce a feature
reconstruction prior and a prediction consistency prior to separately encourage
the consistency of the intermediate feature as well as the final category prediction
between the original query image and its decomposed frequency components. This
allows for collectively guiding the network’s meta-learning process with the aim
of learning generalizable image feature embeddings, while not introducing any
extra computational cost in the inference phase. Our framework establishes new
state-of-the-art results on multiple cross-domain few-shot learning benchmarks.

1 Introduction

Meta-learning Finn et al. [2017], Lee et al. [2019], Rusu et al. [2019], Zhmoginov et al. [2022],
Zhang et al. [2023], Baik et al. [2020] represents a potent paradigm within the domain of FSL Vinyals
et al. [2016], Snell et al. [2017], Huang et al. [2022], Zhang and Huang [2022], Chen et al. [2021].
This paradigm harnesses a feature embedding network to capture task-agnostic meta-knowledge,
facilitating generalization to novel tasks. To this end, meta-learning systematically samples a sequence
of FSL episodes in the source domain to supervisedly enforcing learn an effective feature embedding
network that assimilating cross-task transferable essentials and generalize well to novel target tasks.
Due to its exceptional learning-to-learn capabilities, meta-learning has established itself as the de
facto approach for the development of effective few-shot solvers Vinyals et al. [2016], Snell et al.
∗Corresponding author.
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[2017], Huang et al. [2022], Zhang and Huang [2022], Finn et al. [2017], Lee et al. [2019], Rusu et al.
[2019], Zhmoginov et al. [2022], Zhang et al. [2002], Baik et al. [2020].

However, in practical cross-domain scenarios where the target task exhibits a noticeable distribution
discrepancy from that in the source domain, meta-learning based methods are susceptible to over-
fitting. This phenomenon can be attributed to two main reasons. Firstly, tasks randomly sampled in
source domain often come from one or several fixed patterns, and thus the continual switching of
episodes training may cause the model to over-fit on some task-specific priors. For instance, in tasks
involving the discrimination between tigers and giraffes, meta-learning methods may compel the
model to emphasize appearance outlines, while in tasks focused on fine-grained bird identification,
models tend to prioritize local discriminative textures. Yet, these task-specific priors prove challenging
to transfer across different tasks Lyu et al. [2021], Zhou et al. [2023]. Secondly, the iterative episodic
training in the source domain can result in the model over-fitting to semantic prior properties specific
to that domain. For example, source domains comprised of natural scene images often exhibit obvious
semantic priors, whereas specialized target domains like medical image analysis or remote sensing
may lack clear semantic concepts. This overall domain bias also hampers the model’s cross-domain
generalization. For all these challenges, the underlying evil lies in the absence of cross-domain
invariant priors to guide meta-learning in the source domain.

To address this challenge, we introduce a novel framework, Meta-Exploiting Frequency Prior for
Cross-Domain Few-Shot Learning. Inspired by classical image transform theories (Fourier Nuss-
baumer and Nussbaumer [1982] or wavelet Zhang and Zhang [2019]), where each image can be
decomposed into low-frequency content details and high-frequency structural characteristics, despite
which domain it belongs to, we attempt to cast such a cross-domain invariant image property into
appropriate frequency priors and utilize them to guide the meta-learning in source domain. Following
this idea, we decompose each query image into a high-frequency and a low-frequency parts, and
feed each into the feature embedding network for final category prediction, mirroring the process
applied to the original query image. These allows for the independent feature learning in both spatial
and frequency domains. In addition, the low-frequency and high-frequency branch will separately
exploit the complementary image content and structures for feature enhancement, which are often
concealed in the spatial domain of original query image. More importantly, we further develop two
frequency priors, namely a feature reconstruction prior and a prediction consistency prior, which
separately forces the original query image and its decomposed frequency components to produce the
consistent intermediate feature representation as well as the final category prediction. In a specific,
the feature reconstruction prior requires to reconstruct the feature of original image through fusing
the features of both decomposed frequency parts using a deep projection network. The prediction
consistency prior aims to minimize the separate Kullback-Leibler divergence between the prediction
scores produced by the original query image and its each frequency component. By doing these,
meta-learning in the source domain can be appropriately regularized and produce the exceptional
cross-domain generalizable feature embeddings. Moreover, such frequency priors only perform in the
meta-learning phase without introducing any extra computational cost in inference. Through a series
of rigorous experiments, our framework establishes itself as a front-runner, achieving state-of-the-art
results across multiple cross domain FSL benchmarks. Additionally, our method exhibits significant
efficiency advantages.

The primary contributions of this study can be summarized as follows:

• We present a novel insightful meta-learning framework that exploits cross-domain invariant
frequency priors to alleviate the over-fitting problems of classic meta-learning in cross-
domain FSL tasks.

• We propose two frequency prior, namely a prediction consistency prior and a feature
reconstruction prior, to collectively guide the meta-learning procedure.

• We achieve state-of-the-art results on multiple cross-domain FSL benchmarks.

2 Methodology

Problem formulation. Cross-Domain Few-Shot Learning (CD-FSL) aims to transfer the knowl-
edge acquired by a model in the source domain Ds to perform few-shot tasks in the target domain
Dt. It is noteworthy that the categories in Dt differ from those in the source domain. Each task T
involves the random sampling of N categories, with K samples and M samples randomly selected
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Figure 1: Framework of the proposed method. In this work, we present an insightful meta-learning
framework that exploits cross-domain invariant frequency priors to alleviate the over-fitting problems
of classic meta-learning in cross-domain FSL tasks. Our method consists of an Image Decomposition
Module (IDM) and a Prior Regularization Meta-Network (PRM-Net). Among them, IDM aim at
explicitly decomposing every image in few-shot task into low- and high-frequency components. PRM-
Net develops a prediction consistency prior and a feature reconstruction prior to jointly regularize
the feature embedding network during meta-learning, aiming to learn generalizable image feature
embeddings. Once the model is trained, only the main branch is retained for meta-testing on target
domains.

from each category to constitute the support set TS and the query set TQ, respectively. The support
set TS is employed for constructing a task-specific classifier, while the query set TQ is used to assess
the classification accuracy for that specific task. To emulate the meta-testing process, methods based
on meta-learning typically sample a series of few-shot tasks from the source domain for training.

Overview. In this study, we introduce a sophisticated meta-learning framework that leverages
cross-domain invariant frequency priors to mitigate the over-fitting problems of classic meta-learning
in cross-domain FSL tasks. As illustrated in Fig. 1, our method comprises two key components:
the Image Decomposition Module (IDM) and the Prior Regularization Meta-Network (PRM-Net).
The IDM is designed to explicitly decompose each image within a few-shot task into its low- and
high-frequency components using Fast Fourier Transform (FFT) Nussbaumer and Nussbaumer [1982].
PRM-Net is a key component responsible for introducing a prediction consistency prior and a feature
reconstruction prior. PRM-Net is organized into three branches: the main branch, the low-frequency
content branch, and the high-frequency structure branch. In each branch, all images undergo feature
extraction through the embedding network. Subsequently, a task-specific classifier is constructed
based on the support set to predict the query set. Two frequency priors, namely the prediction
consistency prior and the feature reconstruction prior, are proposed to collectively guide the network’s
meta-learning process with the aim of learning generalizable image feature embeddings. The IDM
and PRM-Net work collaboratively to provide a robust meta-learning framework, aiming to enhance
cross-domain generalization by explicitly considering image decomposition and introducing effective
regularization during the meta-learning process. The subsequent sections will provide a detailed
description of each module.

2.1 Image Decomposition Module

In the realm of signal processing, classical image transform theory Nussbaumer and Nussbaumer
[1982], Zhang and Zhang [2019] posits that every image can be decomposed into low-frequency
content and high-frequency structure, irrespective of its domain. Therefore, within the Image Decom-
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position Module, we adhere to this theory and employ Fast Fourier Transform (FFT) Nussbaumer
and Nussbaumer [1982] to explicitly decompose each image from the few-shot task T into a low-
frequency content image and a high-frequency structure image. Specifically, for an image x in T , the
initial step involves decomposing it into the frequency domain:[

fx
low

, fx
high
]
= F (x) , (1)

where F represents FFT, fx
low

and fx
high

represent the low-frequency and high-frequency compo-
nents of x in the frequency domain respectively. Following this decomposition, we transform these
components back into the image space using the inverse FFT:

xlow = F−1
(
fx

low
)
,

xhigh = F−1
(
fx

high
)
,

(2)

where F−1 represents inverse transform of FFT, xlow and xhigh represent the decomposed low-
frequency content image and high-frequency structure image respectively. Similarly, we apply the
same decomposition process to each image in T to obtain the corresponding low-frequency content
task T low and high-frequency structure task T high.

2.2 Prior Regularization Meta-Network

The proposed Prior Regularization Meta-Network is designed to leverage cross-domain invariant
frequency priors, addressing meta-learning over-fitting in the source domain. To achieve this objective,
we introduce a three-branch meta-learning network, dedicated to processing the raw few-shot task
T , the low-frequency task T low, and the high-frequency task T high, respectively. Significantly, we
propose a prediction consistency prior and a feature reconstruction prior to jointly regularize the
feature embedding network during meta-learning. This approach empowers the learning process,
facilitating the acquisition of a cross-domain generalizable feature embedding. Upon completing
the meta-training on the source domain, we discard the high-frequency and low-frequency branches,
retaining only the main branch for cross-domain validation.

The main branch. As depicted in Fig. 1, the main branch includes a feature embedding network
and a task-specific classifier. For a few-shot task T , the main branch first feeds each image into the
feature embedding network to obtain features, and then utilizes the support set TS to build a prototype
classifier Snell et al. [2017]:

cn =
1

K

K∑
k=1

fθ (xn,k), (3)

where cn represents the prototype of the n-th category, xn,k represents the k-th support sample of
the n-th category, fθ represents the feature embedding network. Finally, we utilize the prototype
classifier to make prediction on the query set:

Pxj =
exp (−d (fθ (xj) , cn))∑
n′ exp (−d (fθ (xj) , cn′))

, n ∈ [1, N ] , (4)

where xj ∈ TQ, Pxj
represents the prediction scores of xj , d (·) represents the Euclidean distance.

For the query image xj , the category corresponding to the highest score in Pxj
is used as the predicted

label ŷxj
. Subsequently, we calculate the cross-entropy loss between the predicted label ŷxj

and the
ground truth yxj

as:
Lcexj

= H(ŷxj , yxj ), (5)

where H (·) denotes the cross-entropy loss function.

The high- or low-frequency branch. As illustrated in Fig. 1, both the high-frequency branch and
the low-frequency branch maintain consistency with the architecture of the main branch. In practice,
we input the decomposed high-frequency task T high and low-frequency task T low into these two
branches, respectively, to obtain the corresponding features and prediction scores for the query set.
Mathematically, the prediction scores for the query image xj in the high-frequency branch and the
low-frequency branch are denoted as P lowxj

and Phighxj
, respectively.
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Frequency prior regularization. In this work, we posit that the over-fitting problem is the core
crux that limits the cross-domain generalization of meta-learning model. To this end, we resort
to cross-domain invariant priors to regularize meta-learning in the source domain. Motivated by
this perspective, we propose a prediction consistency prior and a feature reconstruction prior to
jointly regularize the feature embedding network during meta-learning using high-low frequency
information obtained from image decomposition. Specifically, the prediction consistency prior aims
to minimize the separate Kullback-Leibler divergence between the prediction scores produced by the
original query image and its each frequency component. Formally, for a query image xj , we align its
high-frequency prediction distribution Phighxj

and low-frequency prediction distribution P lowxj
with

the original distribution Pxj
respectively:

Lalignxj
= DKL

(
P lowxj

||Pxj

)
+DKL

(
Phighxj

||Pxj

)
, (6)

where DKL (·) is the Kullback-Leibler divergence loss function. The rationale behind this approach
is twofold. Firstly, through explicit decomposition-alignment, we compel the model to attend to both
low-frequency content and high-frequency structure. Despite their distinct nature, these two types
of features synergistically contribute and complement each other in the challenge of cross-domain
generalization. Secondly, establishing prediction consistency between high-low frequency and the
original one is domain-invariant. This consistency aids the model in generalizing effectively across
different domains.

The feature reconstruction prior aims at reconstructing the original features utilizing low-frequency
and high-frequency information in the latent space, which promotes the model to learn comprehensive
representations. Specifically, we first project embedding features into the low-dimensional latent
space, and then utilize the information retained by high- and low-frequency to reconstruct the original
features:

zxi
= gη (fθ (xi)) , (7)

ẑxi = gη
(
fφ
(
xlowi

))
+ gη

(
fϕ

(
xhighi

))
, (8)

where fφ and fϕ are the feature embedding network of the low-frequency branch and the high-
frequency branch respectively, gη is a projector composed of one layer full connected neural network
(512×256), ẑxi

is the reconstructed feature. Then, the reconstruction loss is calculated as:

Lreconxi
=MSE (ẑxi , zxi) , (9)

where MSE (·) represents the mean square error loss function.

Meta-training. Based on the description provided above, for a few-shot task T , the total loss can
be formulated as:

L =
1

|TQ|
∑

xj∈TQ

(
Lcexj

+ Lalignxj

)
+

1

|T |
∑

xi∈T
Lreconxi

. (10)

Following this, we compute the gradient based on the total loss L to update both the main branch
θ and the projector η. While one straightforward approach is to share parameters between the
high-low frequency branches and the main branch, this might lead the feature embedding network to
primarily focus on common features among the three, potentially causing distinctive features in the
high-frequency or low-frequency branches to be overlooked. To address this concern and extract more
distinctive features, we opt for an explicit design where three separate feature embedding networks
are employed without parameter sharing. However, updating the high-frequency and low-frequency
branches through gradient back-propagation can introduce additional computational overhead. As
a solution, we update the high-frequency branch ϕ and low-frequency branch φ as the Exponential
Moving Average (EMA) of the main branch θ during meta-training:

φ← m1φ+ (1−m1) θ,

ϕ← m2ϕ+ (1−m2) θ,
(11)

where m1 and m2 are momentum hyper-parameters. We describe the entire meta-training process in
detail in Algorithm 1.
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Algorithm 1: Meta-training algorithm of the proposed method.
Input: Source domain Ds, main branch fθ, low-frequency branch fφ, high-frequency branch fϕ,

projector gη
while not converged do

1. Sample a few-shot task T = {TS , TQ} from Ds;
for each image xi in T do

2. Decompose xi to obtain high-frequency image xhighi and low-frequency image xlowi ;
3. Utilize fθ, fϕ and fφ to extract feature for xi, x

high
i and xlowi respectively;

4. Calculate the reconstruction loss Lreconxi
according to Eq. 7, Eq. 8 and Eq. 9;

5. Build a prototype classifier for each branch separately based on the TS in each branch;
for each query image xj in TQ do

6. Calculate the prediction scores Pxj
, Phighxj

and P lowxj
according to Eq. 4;

7. Calculate the cross-entropy loss Lcexj
and alignment loss Lalignxj

according to Eq. 5 and
Eq. 6 respectively;

8. Calculate the total loss L according to Eq. 10, and update θ and η via gradient
backpropagation;

9. Update ϕ and φ according to Eq. 11.
Output: The main branch fθ.

Cross-domain evaluation. Once the model is trained, only the main branch fθ is retained for
meta-testing on target domains. The proposed method is designed to enable the model to learn
cross-domain transferable knowledge during the training phase, achieving effective generalization
without relying on task-level feature extractor fine-tuning during meta-testing. Specifically, for each
meta-testing task in the target domain, the main branch is utilized to extract features. Subsequently,
the support set TS is employed to construct a task-specific classifier for inference on the query set
TQ. It’s important to note that the proposed method does not require image decomposition during the
meta-testing phase, thereby avoiding additional computational overhead.

3 Experimental Analysis

In this section, we begin by providing a detailed description of the experimental configuration,
encompassing pre-training, meta-training, and meta-testing. Following that, we analyze the advan-
tages of the proposed method in comparison with state-of-the-art methods. Lastly, we delve into a
comprehensive ablation study to further investigate the effectiveness of our approach. Due to space
limitations, we put more experiments and analyses in the appendix.

3.1 Experimental details

Source domain and target domains. We focus on the most challenging scenario of single-source
domain Cross-Domain Few-Shot Learning (CD-FSL). Following the established setup Guo et al.
[2020], Li et al. [2022], Zhou et al. [2023], we employ the base classes of the mini-ImageNet Vinyals
et al. [2016] as the source domain dataset. Our model is evaluated across multiple target domains,
encompassing natural image domains (CUB, Cars, Places, Plantae), remote sensing domain (Eu-
roSAT), agricultural domain (CropDisease), and medical domains (ChestX, ISIC). These datasets
are widely recognized in the field of cross-domain few-shot learning. Additional details about each
dataset can be found in Guo et al. [2020], Tseng et al. [2019].

Pre-training and meta-training. In the context of CD-FSL, pre-training is a common technique Li
et al. [2022], Zhou et al. [2023], Hu and Ma [2022], Wang and Deng [2021], aiming to provide
feature initialization for meta-training. Specifically, it involves supervised classification on the source
domain through batch training. Following Li et al. [2022], Zhou et al. [2023], Hu and Ma [2022], we
utilize ResNet-10 as the feature embedding network and a one-layer fully connected neural network
as the classifier. The total number of pre-training epochs is set to 400. After pre-training, only
the feature embedding network is retained as the feature extractor for meta-training. During the
meta-training phase, we employ Adam as the optimizer and conduct meta-training for 50 epochs with
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Table 1: Comparison with state-of-the-art methods on 5-way 1-shot cross-domain FSL. Average
classification accuracies (%) are provided. † stands for exploiting the full data of FSL task. ∗ means
that the feature embedding network needs to be fine-tuned (Ft) on each target domain tasks. The best
results are in bold.

Methods Ft CUB Cars Places Plantae Chest ISIC EuroSAT CropDisease Ave.

MatchingNet Vinyals et al. [2016] % 35.89 30.77 49.86 32.70 20.91 29.46 50.67 48.47 37.34
RelationNet Sung et al. [2018] % 41.27 30.09 48.16 31.23 21.95 30.53 49.08 53.58 38.24
GNN Garcia and Bruna [2018] % 44.40 31.72 52.42 33.60 21.94 30.14 54.61 59.19 41.00

FWT Tseng et al. [2019] % 45.50 32.25 53.44 32.56 22.00 30.22 55.53 60.74 41.53
LRP Sun et al. [2021] % 48.29 32.78 54.83 37.49 22.11 30.94 54.99 59.23 42.58

ATA Wang and Deng [2021] % 45.00 33.61 53.57 34.42 22.10 33.21 61.35 67.47 43.84
AFA Hu and Ma [2022] % 46.86 34.25 54.04 36.76 22.92 33.21 63.12 67.61 44.85

LDP-net Zhou et al. [2023] % 49.82 35.51 53.82 39.84 23.01 33.97 65.11 69.64 46.34
Ours % 51.55 37.04 52.06 41.55 22.82 33.98 64.31 71.47 46.85

ATA† Wang and Deng [2021] % 50.26 34.18 57.03 39.83 21.67 34.70 65.94 77.82 47.68
AFA† Hu and Ma [2022] % 50.85 38.43 60.29 40.27 21.69 34.25 66.17 72.44 48.05

RDC† Li et al. [2022] % 47.77 38.74 58.82 41.88 22.66 32.29 67.58 80.88 48.83
GNN+wave-SAN† Fu et al. [2022] % 50.25 33.55 57.75 40.71 22.93 33.35 69.64 70.80 47.37

LDP-net† Zhou et al. [2023] % 55.94 37.44 62.21 41.04 22.21 33.44 73.25 81.24 50.85
StyleAdv† Fu et al. [2023] % 48.49 34.64 58.58 41.13 22.64 33.96 70.94 74.13 48.06

Ours† % 59.48 38.86 62.90 44.06 22.48 34.28 69.56 84.01 51.95

Fine-tuning∗ Guo et al. [2020] " 43.53 35.12 50.57 38.77 22.13 34.60 66.17 73.43 45.54
ATA∗† Wang and Deng [2021] " 51.89 38.07 57.26 40.75 22.45 35.55 70.84 82.47 49.91

RDC∗† Li et al. [2022] " 50.09 39.04 61.17 41.30 22.32 36.28 70.51 85.79 50.81

a learning rate of 0.001. In each epoch, we randomly sample 100 meta-tasks, where each meta-task
consists of 5-way 5-shot 15-query. Data augmentation techniques such as "Resize," "ImageJitter,"
and "RandomHorizontalFlip" are applied during meta-training. We set hyper-parameters m1=0.997
and m2=0.999. All experiments were performed on a 4090 GPU. Our experimental platform is a
4090 GPU. Further details and verification of hyper-parameters can be found in the supplementary
material.

Meta-testing. Upon completion of meta-training, we directly employ the learned model for meta-
testing across all target domains. Specifically, for each target domain, we randomly sample 600
meta-tasks for testing. We consider two challenging meta-tasks: a 5-way 1-shot 15-query task and a
5-way 5-shot 15-query task. In each meta-task, we learn a Logistic Regression classifier using the
support set and then conduct inference on the query set.

3.2 Comparison with state-of-the-art methods

Methods. In the realm of single-source domain CD-FSL, the state-of-the-art methods primarily
include LDP-net Zhou et al. [2023], StyleAdv Fu et al. [2023], GNN+wave-SAN Fu et al. [2022],
RDC Li et al. [2022], AFA Hu and Ma [2022], ATA Wang and Deng [2021], LRP Sun et al. [2021],
FWT Tseng et al. [2019], and Fine-tuning Guo et al. [2020]. These methods can be categorized
into three types: direct inference, using query samples to assist inference (marked with †), and
fine-tuning-based inference (marked with ∗).
Among these methods, direct inference (e.g., LDP-net, MatchingNet, AFA, ATA) is the most straight-
forward manifestation of model generalization. It handles each test task without fine-tuning the
feature embedding network, meeting practical application requirements. Using query samples to
assist inference (e.g., RDC†, LDP-net†, AFA†, ATA†) is also a common experimental setting. It is
noteworthy that GNN+wave-SAN† and StyleAdv† also leverage query samples in an unsupervised
manner. The main reason is that both GNN+wave-SAN and StyleAdv use Graph Neural Network
(GNN)Garcia and Bruna [2018] as a classifier. GNN treats each sample in the few-shot task as a
node of the graph, and the associations between different samples as edges for reasoning, akin to
label propagationLiu et al. [2019]. This approach implicitly leverages unsupervised query samples
when the number of query samples in the few-shot task exceeds one. The original GNN paper Garcia
and Bruna [2018] tested a single query image for each few-shot task, avoiding this issue. For a fair
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Table 2: Comparison with state-of-the-art methods on 5-way 5-shot cross-domain FSL. Average
classification accuracies (%) are provided. † stands for exploiting the full data of FSL task. ∗ means
that the feature embedding network needs to be fine-tuned (Ft) on each target domain tasks. The best
results are in bold.

Methods Ft CUB Cars Places Plantae Chest ISIC EuroSAT CropDisease Ave.

MatchingNet Vinyals et al. [2016] % 51.37 38.99 63.16 46.53 22.40 36.74 64.45 66.39 48.75
MAML Finn et al. [2017] % - - - - 23.48 40.13 71.70 78.05 -

RelationNet Sung et al. [2018] % 56.77 40.46 64.25 42.71 24.07 38.60 65.56 72.86 50.66
MetaOptNet Lee et al. [2019] % - - - - 22.53 36.28 64.44 68.41 -

GNN Garcia and Bruna [2018] % 62.87 43.70 70.91 48.51 23.87 42.54 78.69 83.12 56.77
FWT Tseng et al. [2019] % 64.97 46.19 70.70 49.66 24.28 40.87 78.02 87.07 57.72

LRP Sun et al. [2021] % 64.44 46.20 74.45 54.46 24.53 44.14 77.14 86.15 58.94
ATA Wang and Deng [2021] % 66.22 49.14 75.48 52.69 24.32 44.91 83.75 90.59 60.89

AFA Hu and Ma [2022] % 68.25 49.28 76.21 54.26 25.02 46.01 85.58 88.06 61.58
LDP-net Zhou et al. [2023] % 70.39 52.84 72.90 58.49 26.67 48.06 82.01 89.40 62.60

Ours % 73.61 54.22 73.78 61.39 26.53 48.70 81.24 90.68 63.77

ATA† Wang and Deng [2021] % 65.31 46.95 72.12 55.08 23.60 45.83 79.47 88.15 59.56
AFA† Hu and Ma [2022] % 65.86 47.89 72.81 55.67 23.47 46.29 80.12 85.69 59.73

RDC† Li et al. [2022] % 63.39 52.75 72.83 55.30 25.10 42.10 79.12 88.03 59.83
GNN+wave-SAN† Fu et al. [2022] % 70.31 46.11 76.88 57.72 25.63 44.93 85.22 89.70 62.06

LDP-net† Zhou et al. [2023] % 73.34 53.06 75.47 59.64 26.88 48.44 84.05 91.89 64.10
StyleAdv† Fu et al. [2023] % 68.72 50.13 77.73 61.52 26.07 45.77 86.58 93.65 63.77

Ours† % 76.68 55.44 76.98 63.08 26.45 49.07 83.22 93.09 65.50

Fine-tuning∗ Guo et al. [2020] " 63.76 51.21 70.68 56.45 25.37 49.51 81.59 89.84 61.05
NSAE(CE+CE)∗ Liang et al. [2021] " 68.51 54.91 71.02 59.55 27.10 54.05 83.96 93.14 64.03

ConFeSS∗ Das et al. [2021] " - - - - 27.09 48.85 84.65 88.88 -
ATA∗† Wang and Deng [2021] " 70.14 55.23 73.87 59.02 24.74 49.83 85.47 93.56 63.98

RDC∗† Li et al. [2022] " 67.23 53.49 74.91 57.47 25.07 49.91 84.29 93.30 63.21

comparison, we also implement a variant that uses query samples to assist inference. Specifically,
we train a classifier based on the support set to generate pseudo-labels for the query set, then filter
samples from the query set based on these pseudo-labels to expand the support set, and finally retrain
the classifier based on the expanded support set for the ultimate prediction on the query set.

Results. Tables 1 and 2 present the experimental results under 5-way 1-shot and 5-way 5-shot
settings, respectively. For an easy comparison, the average performance across eight target domains is
calculated as the metric. Our method achieves 46.85% (1-shot) and 63.77% (5-shot) under the direct
inference setting. Compared to the second-highest method LDP-net Zhou et al. [2023], the proposed
method improved by 0.51% and 1.17% on the 1-shot and 5-shot tasks, respectively. In comparison
to other methods like AFA Hu and Ma [2022], ATA Wang and Deng [2021], LRP Sun et al. [2021],
and FWT Tseng et al. [2019], the proposed method demonstrates greater performance advantages.
Moreover, the proposed method achieves the best results on five target domains, showcasing its
robust generalization ability across diverse domains. When the proposed method further utilizes
query samples to assist inference, the performance is further improved. Under the same comparison,
the proposed method (†) improved by 1.10% (1-shot) and 1.40% (5-shot) compared to the second-
best method LDP-net†Zhou et al. [2023]. In contrast to methods based on fine-tuning (e.g., Fine-
tuning∗Guo et al. [2020], RDC∗† Li et al. [2022]), the proposed method still achieves certain
performance advantages without requiring additional fine-tuning. In summary, the proposed method
has demonstrated the best cross-domain few-shot learning performance, indicating its ability to learn
generalizable features in the source domain. Additionally, the method’s independence from task-level
embedding network fine-tuning makes it suitable for potential industrial applications.

3.3 Ablation study

Comparison with baselines. We design two baselines: the "Pre-training baseline" and the "Meta-
baseline." For the "Pre-training baseline", we directly use the pre-trained model for meta-testing.
The proposed method performs meta-training on the basis of pre-training. When all components
are removed from the proposed method, it is equivalent to the "Meta-baseline"Chen et al. [2021].
We take the "Meta-baseline" as the baseline of the proposed method. For a fair comparison, during
the meta-testing stage, these two baselines also use the same classifier as the proposed method. The
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comparison results are shown in Table3. Overall, compared with these two baselines, the proposed
method has achieved greater performance advantages. Specifically, compared with the "Pre-training
baseline", the performance of the proposed method is improved by 2.79% (1-shot) and 3.28% (5-shot)
on average. Compared with the "Meta-baseline", the performance of the proposed method is improved
by 2.26% (1-shot) and 3.10% (5-shot) on average. These results show that the proposed method can
improve the baselines and provide a novel meta-learning framework for CD-FSL.

Table 3: Ablation study. Average classification accuracies (%) are provided. "indicates that this
component is used, vice versa. The best results are in bold.

CUB Places Plantae CropDisease Ave.
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Pretraining baseline 46.90 68.05 50.24 71.43 38.47 57.08 69.89 89.80 51.37 71.59
Meta baseline 47.05 67.99 51.09 71.74 39.26 57.82 70.22 89.54 51.90 71.77

Ours 51.55 73.61 52.06 73.78 41.55 61.39 71.47 90.68 54.16 74.87
Alignment Reconstruction 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

" % 50.79 72.65 51.42 73.22 41.05 60.93 70.80 90.11 53.51 74.22
% " 50.55 71.39 51.96 72.60 41.11 60.22 70.04 89.44 53.41 73.41
" " 51.55 73.61 52.06 73.78 41.55 61.39 71.47 90.68 54.16 74.87

Effectiveness of the proposed frequency prior. In this work, we propose a prediction consistency
prior and a feature reconstruction prior to jointly regularize the embedding network during meta-
learning. Among them, the prediction consistency prior encourages to align the predictions produced
by the original query image and its each frequency component. The feature reconstruction prior aims
at reconstructing the original features utilizing low-frequency and high-frequency information in the
latent space, which promotes the model to learn comprehensive representations. We conduct ablation
studies to illustrate the contribution of these two components. The results are shown in Table 3. As
can be seen, compared to the "Meta-baseline" (meaning not using any components), the proposed
method achieves average gains of 1.61% (1-shot) and 2.45% (5-shot). The above experimental results
show the proposed prediction consistency prior is effective. We can draw similar conclusions for
feature reconstruction prior. In addition, the proposed method improves by nearly 0.65% under both
1-shot and 5-shot tasks when the feature reconstruction module is added. In particular, for the CUB
dataset, the proposed method can achieve nearly 1% improvement on the 5-shot task. This indicates
that the proposed feature reconstruction prior is beneficial to the entire method.

3.4 Visualization

Feature highlight. we adhere to established practices Zhou et al. [2023], utilizing the model trained
on the source domain to extract features from target domain images. Subsequently, these features
serve as attention scores to activate the original images. The results are presented in Fig.2. Overall,
our proposed method exhibits the capability to capture more nuanced representations compared to
the baseline, a critical aspect for effective cross-domain generalization. As an illustrative example,
consider image (d) in Fig.2. The baseline tends to concentrate solely on the neck of the bird, neglecting
the broader characteristics of its entire shape. In contrast, our method not only hones in on local
texture details, such as the head, wings, and claws, but also encapsulates the entirety of the contour
shape. This underscores the capacity of our method to learn comprehensive features, avoiding undue
emphasis on local textures alone.

Domain gap. The t-SNE Van der Maaten and Hinton [2008] visual results are shown in Fig.3 (a-b).
The blue cluster represents the source domain distribution, while the other four colors denote distinct
target domain distributions. Notably, the baseline exhibits a substantial gap between target domains
and the source domain. In contrast, our method effectively mitigates this domain gap. In addition, we
conduct a quantitative assessment of the distribution distance between different target domains and
the source domain. Specifically, we compute the first-order statistics based on the sampled samples in
each domain, treating it as the statistical characteristic of that domain. Subsequently, we measure the
Euclidean distance between the first-order statistics of different target domains and the source domain.
The resulting quantitative metrics, comparing the proposed method and the baseline, are visualized in
Fig.3 (c). Evidently, the proposed method exhibits a smaller distribution distance between the source
domain and the target domains, with particularly notable improvements in the medical domain (ISIC)
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(a) Raw image (b) Baseline (c) Ours (d) Raw image (e) Baseline (f) Ours

(g) Raw image (h) Baseline (i) Ours (j) Raw image (k) Baseline (l) Ours

Figure 2: Feature visualization for Baseline and the proposed method.

(a) Baseline (b) Ours (c) Quantitative comparison

Figure 3: Visual observations in domain gap.

and the remote sensing domain (EuroSAT). This underscores the capability of our method to learn
robust representations in the source domain, effectively mitigating domain shifts.

4 Conclusions
In this work, we propose an insightful meta-learning framework inspired by the cross-domain
invariant frequency priors. Furthermore, we present a prediction consistency prior and a feature
reconstruction prior to jointly regularize meta-learning on source domain, enabling learning cross-
domain transferable features. This simple yet effective work achieves state-of-the-art experimental
results as well as excellent inference efficiency.

Limitations. The limitation of the proposed method lies on its robustness in some extremely
challenging cross-domain tasks. For example, on the Chest dataset, the proposed method fails to
outperforms all competitors. This indicates that the fixed image decomposition (e.g., Fast Fourier
Transform or Wavelet Transform) strategy may be not the optimal solution for all unknown cases
in terms of exploit frequency priors. In the future, we will attempt to exploit the learnable image
decomposition strategy. In addition, the proposed method requires to decompose the query image
before being fed into the network. While the Fast Fourier Transform for signal decomposition is
efficient, this does introduce a certain additional training time overhead. Notably, this work does not
contain negative social impact.
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A Related Work

Few-shot learning. Early investigations into model generalization with limited data primarily
focused on few-shot learning (FSL), giving rise to a series of seminal meta-learning methods Vinyals
et al. [2016], Snell et al. [2017], Huang et al. [2022], Zhang and Huang [2022], Finn et al. [2017], Lee
et al. [2019], Rusu et al. [2019], Zhmoginov et al. [2022], Baik et al. [2020], Zhang et al. [2020] aimed
at addressing FSL challenges. In the realm of architecture, a typical meta-learning model comprises
a task-agnostic meta-learner and a task-specific base-learner. Notably, ProtoNet Snell et al. [2017]
and MatchingNet Vinyals et al. [2016] construct the base-learner using a non-parametric distance
measure, while Meta-opt Lee et al. [2019] and DeepEMD Zhang et al. [2020] employ a differentiable
linear classifier for this purpose. On the optimization front, meta-learning methods Vinyals et al.
[2016], Snell et al. [2017], Huang et al. [2022], Zhang and Huang [2022], Finn et al. [2017], Lee et al.
[2019], Rusu et al. [2019], Zhmoginov et al. [2022], Baik et al. [2020] typically employ a two-stage
optimization strategy. Initially, they optimize the base-learner based on a limited set of labeled data,
followed by optimizing the meta-learner to minimize empirical risk on unlabeled data. Despite the
progress made by these methods, they exhibit limited generalization capabilities when confronted
with cross-domain tasks Guo et al. [2020].

Cross-domain few-shot learning. Several recent advancements Zhou et al. [2023], Fu et al. [2022,
2023], Li et al. [2022], Wang and Deng [2021], Hu and Ma [2022], Guo et al. [2020], Liang et al.
[2021], Das et al. [2021], Li et al. [2021], Fu et al. [2021], Sun et al. [2021] have concentrated on
few-shot learning (FSL) within cross-domain scenarios, where the target and source domains differ
not only in category but also in domain distribution. Cross-domain few-shot learning (CD-FSL)
presents significant challenges and opportunities, given that the distribution of target tasks in practical
applications often deviates from that of the source domain. Moreover, acquiring data for extreme
target domains, such as medical images Tschandl et al. [2018], Wang et al. [2017], or annotating
remote sensing scene images Helber et al. [2019], is frequently arduous.

Zhou et al. Zhou et al. [2023] consider that local features are robust to cross-domain tasks and propose
an improved ProtoNet Snell et al. [2017] to help the model focus on local regions of the image to
avoid the simplicity bias. Fu et al. Fu et al. [2022] employ style augmentation during model training
as a strategy to mitigate the detrimental effects on generalization caused by style variations in the
target domain. Building upon the ideas presented in their earlier work Fu et al. [2022], Fu et al. Fu
et al. [2023] extend their approach by incorporating adversarial training. This additional step aims to
assist the model in adapting to domain shifts, enhancing its robustness across different domains. Li et
al. Li et al. [2022] utilize target task information to perform distance calibration on the embedding
of the source domain model to promote generalization. Wang et al. Wang and Deng [2021] and
Hu et al. Hu and Ma [2022] design adversarial training methods to simulate domain changes from
the task-level and feature-level respectively. In this way, the model can obtain domain-invariant
representations. Guo et al. Guo et al. [2020] propose a cross-domain fine-tuning baseline, which
fine-tunes the feature extraction model for each target domain task. Liang et al. Liang et al. [2021]
further design a self-supervised reconstruction loss to fine-tune the model, which can help the model
learn more comprehensive representations. Although fine-tuning based methods Guo et al. [2020],
Liang et al. [2021] achieve good performance, they require a large number of iterative training for
each target domain task. This paradigm brings additional computational and storage overhead. In
contrast, our proposed method prioritizes enabling the model to learn cross-domain generalization
knowledge during the training phase, allowing for generalization across various target domains
without relying on fine-tuning. Additionally, orthogonal to the aforementioned methods Zhou et al.
[2023], Fu et al. [2023], Li et al. [2022], Wang and Deng [2021], Hu and Ma [2022], Guo et al.
[2020], Liang et al. [2021], Das et al. [2021], Li et al. [2021], Fu et al. [2021], Sun et al. [2021], our
approach centers on utilizing cross-domain invariant frequency priors to alleviate the over-fitting
problems of classic meta-learning, facilitating the acquisition of cross-domain transferable features.

Different image priors. In the realm of classical image processing, researchers historically devised
effective pattern extractors based on diverse image priors such as texture Guo et al. [2010], Pathak
and Barooah [2013] and shape Vincent et al. [2009], Ding and Goshtasby [2001]. However, with the
advent of deep learning, Convolutional Neural Networks (ConvNets) have demonstrated remarkable
proficiency in capturing texture features but have often struggled to encapsulate critical shape
priors Geirhos et al. [2018], Hermann et al. [2020], Ringer et al. [2019], Jain et al. [2022]. To
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address this limitation, recent works Stojanov et al. [2021], Padmanabhan et al. [2023], Heo et al.
[2023] have employed shape priors to mitigate texture bias and enhance model generalization. For
instance, Jain et al.Jain et al. [2022] advocate for incorporating both texture and shape priors to bolster
model generalization and mitigate spurious correlations. In Few-Shot Learning (FSL), Stojanov
et al.Stojanov et al. [2021] employ point clouds to explicitly derive shape priors, subsequently
minimizing the distance between point cloud embeddings and image embeddings to alleviate texture
bias. Similarly, Padmanabhan et al.Padmanabhan et al. [2023] utilize the Sobel operatorVincent
et al. [2009] to extract object shape priors and integrate shape-aware knowledge to enhance model
generalization.

On a different front, certain studies Yin et al. [2019], Fu et al. [2022], Chen and Wang [2021], Zhao
et al. [2022], Cheng et al. [2023] have underscored the positive impact of frequency priors on model
generalization. For instance, Yin et al.Yin et al. [2019] observed distinct robustness levels of high-
frequency and low-frequency components to noise, inspiring researchers to employ frequency domain
data augmentation for enhanced model generalizationZhao et al. [2022], Cheng et al. [2023]. In FSL,
Chen et al.Chen and Wang [2021] concatenate frequency domain features with original image features
to obtain comprehensive representations. Fu et al.Fu et al. [2022] propose exchanging high-frequency
and low-frequency components between different images for image style augmentation. Cheng et
al. Cheng et al. [2023] leverage gradient information to identify areas with higher activation levels in
frequency domain images.

In contrast to methods relying on texture or shape priors, the proposed method starts from the princi-
ples of image transformation theory, focusing on cross-domain invariant frequency priors to enhance
the robustness of model. Additionally, our approach compels the model to simultaneously attend to
both high-frequency structure and low-frequency content. This strategy enables our method to strike a
balance between the contributions of texture and shape to model generalization. Furthermore, unlike
other methods grounded in frequency priors, our work’s primary innovation lies in the seamless
integration of low-frequency and high-frequency features within a meta-learning framework. This
integration provides an elegant solution to the persistent challenges of cross-domain few-shot learning,
allowing for the independent learning of features from these distinct segments, each excelling in
capturing unique aspects of visual information.

Table 4: Ablation on different priors. Average classification accuracies (%) are provided. The best
results are in bold.

CUB Places Plantae CropDisease Ave.
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Texture 48.68 70.31 51.12 72.66 39.41 58.72 70.09 89.80 52.32 72.87
Shape 45.02 67.14 49.95 71.15 36.27 56.97 65.81 87.18 49.26 70.61

Texture+Shape 48.08 70.00 51.27 72.60 38.49 58.66 69.19 89.19 51.75 72.61
Low frequency 50.05 71.58 51.31 72.78 40.72 60.28 70.05 89.90 53.03 73.63
High frequency 49.89 71.61 51.14 72.84 40.65 60.49 70.04 89.95 52.93 73.72

Ours 51.55 73.61 52.06 73.78 41.55 61.39 71.47 90.68 54.16 74.87

B Further analysis

Why exploit frequency prior? As discussed in Sec. A, previous works Stojanov et al. [2021],
Padmanabhan et al. [2023], Heo et al. [2023], Yin et al. [2019], Chen and Wang [2021], Zhao et al.
[2022], Cheng et al. [2023] have explored the integration of various priors, including texture, shape,
and frequency, among others. To highlight the advantages of our proposed method, we conducted
comparative experiments with different variants. To ensure a fair comparison, we replaced different
priors in our framework while maintaining other settings constant. Specifically, we adopted the
approach of Jain et al. [2022] to model the texture prior. For the shape prior, similar to Stojanov
et al. [2021], Padmanabhan et al. [2023], we employed the Canny operator Ding and Goshtasby
[2001] to extract the shape prior. For high-frequency or low-frequency priors, we retained only the
high-frequency branch or the low-frequency branch in our framework. The results are presented
in Table 4. Overall, our method outperforms the variants with different priors. The reasons behind
this superiority are as follows. Firstly, the texture prior compels the model to excessively focus on
local discriminative regions, leading to texture bias and impairing generalization. Secondly, the
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shape prior directs the model’s attention to global shapes, which may cause the model to exhibit
shape bias and overlook semantic information. Thirdly, compared to texture or shape priors, the
frequency prior provides more original information, expanding the model’s search space and enabling
a higher generalization upper bound. Fourthly, our method couples high-frequency and low-frequency
information within a unified framework, presenting an elegant solution to the persistent challenges of
cross-domain few-shot learning. This approach allows for the simultaneous consideration of both
types of information, harnessing their complementary aspects for improved generalization.

Why can our work alleviate overfitting? In this study, we subscribe the limited generalization
capacity of exiting methods in cross-domain few-shot learning (CD-FSL) to their over-fitting onto
source domain. Since during the meta-training procedure, only tasks randomly sampled from source
domain are utilized for model update, when the target domain shows obvious distribution discrepancy
from the source domain, these existing methods are prone to over-fitting, in other words, fail to
generalize well in the new target domain. Why can our work alleviate overfitting? To solve over-
fitting, a direct solution is to introduce appropriate prior (e.g., regularization) during training on source
domain. Inspired by this, we attempt to comprehensively exploit the cross-domain transferable image
frequency prior that each image can be decomposed into complementary low-frequency content
details and high-frequency robust structural characteristics. Following this idea, we first utilizes Fast
Fourier Transform to explicitly decouple the high-frequency and low-frequency components of the
image. Then, we feed each component and the query image into a three-branch feature embedding
network for category prediction. More importantly, we further establish a feature reconstruction prior
and a prediction consistency prior to collectively guiding the network’s meta-learning process. The
feature reconstruction prior requires to reconstruct the feature of original image through fusing the
features of both decomposed frequency parts using a deep projection network, while the prediction
consistency prior aims to minimize the separate Kullback-Leibler divergence between the prediction
scores produced by the original query image and its each frequency component. By doing these,
both priors encourage to exploit a deep feature space where no matter full-frequency band (original
image), high-frequency component or low-frequency component can lead to the unique and correct
classification prediction, i.e., the idea semantic feature space which is transferable cross-domain.
Therefore, the proposed method is able to mitigate the over-fitting problems in CD-FSL. Our state-
of-the-art performance on eight benchmark datasets as well as the ablation study also support this
conclusion.

Whether this work is equivalent to data augmentation or self-supervised learning? In this
work, our core idea is to utilize cross-domain invariant frequency priors to alleviate the over-fitting
problem of classical meta-learning in cross-domain few-shot learning tasks. To this end, we propose
two key components: the Image Decomposition Module (IDM) and the Prior Regularization Meta-
Network (PRM-Net). Among them, IDM aims to use Fast Fourier Transform (FFT) to explicitly
decompose each image from few-shot task into its low- and high-frequency components Nussbaumer
and Nussbaumer [1982]. PRM-Net is a key component responsible for introducing a prediction
consistency prior and a feature reconstruction prior. It is important to note that our method is
fundamentally different from simple data augmentation methods and self-supervised learning methods.
The insight behind our method is divide and conquer, that is, explicit decomposition and implicit
coupling. First of all, the IDM is to explicitly obtain the frequency priors of the image rather than
to simply perform data augmentation. IDM provides frequency prior for the subsequent PRM-Net,
and its role is "divide". In addition, PRM-Net designs regular terms with the help of frequency
priors, rather than simple self-supervised learning, and its role is "conquer". More importantly,
this divide-and-conquer strategy enables IDM and PRM-Net to collaborate to provide a powerful
meta-learning framework, aiming to enhance cross-domain generalization by explicitly considering
image decomposition and introducing effective regularization during the meta-learning process. We
design some experiments to compare the proposed method with other data augmentation methods
and self-supervised learning methods. For the data augmentation method, we use random rotation to
augment the image, and design the angular self-supervised loss as the regularization term Gidaris
et al. [2018]. For self-supervised learning methods, we choose the most representative SimCLR Chen
et al. [2020] and BYOL Grill et al. [2020]. All compared methods keep the same backbone network
and training data as the proposed method. The experimental results are shown in Table 5. Overall,
the proposed method can achieve better results compared to using simple data augmentation and
self-supervised learning methods.
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Table 5: Comparison with other data augmentation methods and self-supervised learning methods.
Average classification accuracies (%) are provided. The best results are in bold.

CUB Places Plantae CropDisease Ave.
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Rotation augmentation 49.04 71.17 50.07 72.79 39.90 59.33 69.52 90.59 52.13 73.47
SimCLR 46.40 69.08 50.78 72.86 39.77 59.65 72.50 91.56 52.36 73.28
BYOL 47.96 70.13 49.48 71.88 40.38 59.73 71.91 91.15 52.43 73.22
Ours 51.55 73.61 52.06 73.78 41.55 61.39 71.47 90.68 54.16 74.87

Whether it is applicable to any image decomposition method? To answer this question, we
conducted comparative experiments using FFT-based Nussbaumer and Nussbaumer [1982] decom-
position and Wavelet-based Zhang and Zhang [2019] decomposition. The results are presented in
Table 6. In comparison to the baseline, our method consistently demonstrates significant performance
advantages regardless of the decomposition method employed. This indicates the scalability and
effectiveness of our method across different decomposition techniques. Additionally, the model
trained with Wavelet decomposition exhibits further performance improvement on the Places dataset.

Table 6: Comparison with different image decomposition methods. Average classification accuracies
(%) are provided. The best results are in bold.

CUB Places
Method 1-shot 5-shot 1-shot 5-shot
Baseline 47.05 67.99 51.09 71.74

Haar-wavelet 49.12 71.12 52.63 73.92
FFT 51.55 73.61 52.06 73.78

Plantae CropDisease
Method 1-shot 5-shot 1-shot 5-shot
Baseline 39.26 57.82 70.22 89.54

Haar-wavelet 40.56 60.46 70.82 90.45
FFT 41.55 61.39 71.47 90.68

Does performance benefit from additional parameters? First of all, we clarify that our method
does not introduce additional learnable parameters and the parameter amount is same as our baseline.
This is because only the parameters in the main branch (e.g., query image branch) are learnable,
and the parameters of the high-frequency branch and low-frequency branch are updated through
the exponential moving average of the main branch parameters. Moreover, after training, we only
keep the main branch for prediction in the test phase, since the prediction consistency prior have
forced these three branches to produce the same prediction results when the training procedure
converged. Therefore, our method does not introduce any additional inference costs compared with
our baseline. We also supplemented experiments to answer whether the performance gain comes
from additional parameters. Specifically, we triple the learnable parameters of the baseline method
and then compare it with our method. As shown in Table 7, our method still outperforms the baseline
when the parameters of the baseline are increased three times.

Efficiency. As mentioned previously, the proposed method focuses on obtaining a generalizable
model through meta-learning without relying on fine-tuning the embedding network on the target
domain. This makes the proposed method very practical and efficient in handling target domain tasks.
To verify the efficiency of the proposed method, we chose a classic fine-tuning based method Guo
et al. [2020] for comparison. For the fine-tuning based method, we follow its original settings for
experiments. We report the average classification accuracy across different target domains as well
as the required inference time for each target domain task. Our experimental platform is a single
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Table 7: Compared three times baseline with ours. Average classification accuracies (%) are provided.
The best results are in bold.

CUB Places Plantae CropDisease Ave.
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Baseline 47.05 67.99 51.09 71.74 39.26 57.82 70.22 89.54 51.90 71.77

Baseline@3x 48.16 69.42 51.51 72.20 39.25 58.14 70.83 90.21 52.43 72.49
Ours 51.55 73.61 52.06 73.78 41.55 61.39 71.47 90.68 54.16 74.87

3090 GPU. The results are shown in Table 8. It can be seen that the proposed method only requires
about 0.06 seconds to effectively handle a few-shot task in the target domain. Compared with the
fine-tuning based method, the proposed method is nearly 100 times faster on the 5-shot task. At the
same time, the proposed method also has great advantages in performance. The above experiments
show that the proposed method is efficient and has the potential for practical applications.

Table 8: Comparison of efficiency between the proposed method and fine-tuning method. The average
inference time on each task is reported. The best results are in bold.

1-shot 5-shot
Method Efficiency ↓ Accuracy ↑ Efficiency ↓ Accuracy ↑

Fine-tuning Guo et al. [2020] 2.21 45.54 7.67 61.05
Ours 0.06 46.85 0.07 63.77

Hyper-parameters validation. The hyper-parameters of the proposed method encompass the
momentum parameters m1 and m2, which are integral to the Exponential Moving Average (EMA)
update strategy. In our approach, we employ the loss for calculating gradients and subsequently
updating the network parameters of the main branch through back-propagation. Conversely, for
the parameters in the low-frequency and high-frequency branches, we update them using EMA. To
validate the advantages of EMA, we conducted a parameter sharing experiment for comparison,
denoted as "none" in Table 9. The results indicate a substantial performance decrease when using
parameter sharing as opposed to EMA, underscoring the necessity of employing EMA. Additionally,
we explored different values for the momentum parameters and observed that the model’s performance
is not highly sensitive to the specific values of m1 and m2. We have set m1 to 0.997 and m2 to 0.999
based on these findings.

Additional visualization. More feature highlight results are provided in Fig.4 and Fig.5. In sum-
mary, the baseline model tends to focus narrowly on specific local regions of the object. Conversely,
our method exhibits a more extensive focus on the object, indicating an ability to capture a more
comprehensive semantic understanding and, consequently, achieve superior generalization.
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(a) Raw image (b) Baseline (c) Ours

(d) Raw image (e) Baseline (f) Ours

(g) Raw image (h) Baseline (i) Ours

(j) Raw image (k) Baseline (l) Ours

(m) Raw image (n) Baseline (o) Ours

(p) Raw image (q) Baseline (r) Ours

Figure 4: Feature visualization for baseline and the proposed method.

20



(a) Raw image (b) Baseline (c) Ours

(d) Raw image (e) Baseline (f) Ours

(g) Raw image (h) Baseline (i) Ours

(j) Raw image (k) Baseline (l) Ours

(m) Raw image (n) Baseline (o) Ours

(p) Raw image (q) Baseline (r) Ours

Figure 5: Feature visualization for baseline and the proposed method.
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Table 9: Classification accuracy w.r.t values of momentum. Average classification accuracies (%) are
provided. The best results are in bold.

CUB Places
Value 1-shot 5-shot 1-shot 5-shot
none 50.76 72.56 51.83 72.76

m1=0.9999, m2=0.9995 51.28 73.33 52.10 73.75
m1=0.9999, m2=0.9997 51.44 73.44 52.14 73.84
m1=0.9997, m2=0.9999 51.55 73.61 52.06 73.78
m1=0.9995, m2=0.9999 51.52 73.54 52.00 73.72

Plantae CropDisease
Value 1-shot 5-shot 1-shot 5-shot
none 40.73 60.46 69.47 89.56

m1=0.9999, m2=0.9995 41.37 61.30 71.11 90.38
m1=0.9999, m2=0.9997 41.44 61.10 71.32 90.45
m1=0.9997, m2=0.9999 41.55 61.39 71.47 90.68
m1=0.9995, m2=0.9999 41.25 61.23 71.23 90.65
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
contribution and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The authors performed discuss the limitations of the work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

27



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data and code will be released.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments are averaged over multiple runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provide sufficient information on the computer resources (type of
compute workers, memory, time of execution) needed to reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work does not contain any negative social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors have cited the original paper that produced the code package or
dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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