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ABSTRACT

Learning unsupervised node embeddings facilitates several downstream tasks such
as node classification and link prediction. A node embedding is universal if it is
designed to be used by and benefit various downstream tasks. This work intro-
duces PanRep, a graph neural network (GNN) model, for unsupervised learning
of universal node representations for heterogenous graphs. PanRep consists of a
GNN encoder that obtains node embeddings and four decoders, each capturing
different topological and node feature properties. Abiding to these properties the
novel unsupervised framework learns universal embeddings applicable to different
downstream tasks. PanRep can be furthered fine-tuned to account for possible lim-
ited labels. In this operational setting PanRep is considered as a pretrained model
for extracting node embeddings of heterogenous graph data. PanRep outperforms
all unsupervised and certain supervised methods in node classification and link
prediction, especially when the labeled data for the supervised methods is small.
PanRep-FT (with fine-tuning) outperforms all other supervised approaches, which
corroborates the merits of pretraining models. Finally, we apply PanRep-FT for
discovering novel drugs for Covid-19. We showcase the advantage of universal
embeddings in drug repurposing and identify several drugs used in clinical trials as
possible drug candidates.

1 INTRODUCTION

Learning node representations from heterogeneous graph data powers the success of many down-
stream machine learning tasks such as node classification (Kipf & Welling}, [2017), and link pre-
diction (Wang et al.l [2017). Graph neural networks (GNNs) learn node embeddings by applying
a sequence of nonlinear operations parametrized by the graph adjacency matrix and achieve state-
of-the-art performance in the aforementioned downstream tasks. The era of big data provides an
opportunity for machine learning methods to harness large datasets (Wu et al., |2013). Nevertheless,
typically the labels in these datasets are scarce due to either lack of information or increased labeling
costs (Bengio et al.,[2012)). The lack of labeled data points hinders the performance of supervised
algorithms, which may not generalize well to unseen data and motivates unsupervised learning.

Unsupervised node embeddings may be used for downstream learning tasks, while the specific tasks
are typically not known a priori. For example, node representations of the Amazon book graph can be
employed for recommending new books as well as classifying a book’s genre. This work aspires to
provide universal node embeddings, which will be applied in multiple downstream tasks and achieve
comparable performance to their supervised counterparts.

Although unsupervised learning has numerous applications, limited labels of the downstream task
may be available. Refining the unsupervised universal representations with these labels could
further increase the representation power of the embeddings. This can be achieved by fine-tuning the
unsupervised model. Natural language processing methods have achieved state-of-the-art performance
by applying such a fine-tuning framework (Devlin et al., |2018)). Fine-tuning pretrained models is
beneficial compared to end-to-end supervised learning since the former typically generalizes better
especially when labeled data are limited and decreases the inference time since typically just a few
fine-tuning iterations typically suffice for the model to converge (Erhan et al., [2010).

This work introduces a framework for unsupervised learning of universal node representations on
heterogenous graphs termed PanRe[ﬂ It consists of a GNN encoder that maps the heterogenous graph
data to node embeddings and four decoders, each capturing different topological and node feature

"Pan: Pangkosmios (Greek for universal) and Rep: Representation
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Figure 1: Illustration of the PanRep (left) and PanRep-FT (right) models. The GNN encoder processes
the node features X to obtain the embeddings H. The decoders facilitate unsupervised learning of H.

properties. The cluster and recover (CR) decoder exploits a clustering prior of the node attributes. The
motif (Mot) decoder captures structural node properties that are encoded in the network motifs. The
meta-path random walk (MRW) decoder promotes embedding similarity among nodes participating
in a MRW and hence captures intermediate neighborhood structure. Finally, the heterogeneous
information maximization (HIM) decoder aims at maximizing the mutual information among node
local and the global representations per node type. These decoders model general properties of the
graph data related to node homophily (Gleich, 2015} |[Kloster & Gleich, |2014) or node structural
similarity (Rossi & Ahmed, 2014; Donnat et al.,[2018)). PanRep is solely supervised by the decoders
and has no knowledge of the labels of the downstream task. The universal embeddings learned
by PanRep are employed as features by models such as SVM (Suykens & Vandewalle] [1999) or
DistMult (Yang et al.| [2014) to be trained for the downstream tasks. To further accommodate the
case where limited labels are available for some downstream tasks we propose fine-tuning PanRep
(PanRep-FT). In this operational setting, PanRep-FT is optimized adhering to a task-specific loss.
PanRep can be considered as a pretrained model for extracting node embeddings of heterogenous
graph data. Figure[l]illustrates the two novel models. The contribution of this work is threefold.

C1. We introduce a novel problem formulation of universal unsupervised learning and design a
tailored learning framework termed PanRep. We identify the following general properties of the
heterogenous graph data: (i) the clustering of local node features, (ii) structural similarity among
nodes, (iii) the local and intermediate neighborhood structure, (iv) and the mutual information among
same-type nodes. We develop four novel decoders to model the aforementioned properties.

C2. We adjust the unsupervised universal learning framework to account for possible limited labels
of the downstream task. PanRep-FT refines the universal embeddings and increases the model
generalization capability.

C3.We compare the proposed models to state-of-the-art supervised and unsupervised methods for
node classification and link prediction. PanRep outperforms all unsupervised and certain supervised
methods in node classification, especially when the labeled data for the supervised methods is small.
PanRep-FT outperforms even supervised approaches in node classification and link prediction, which
corroborates the merits of pretraining models. Finally, we apply our method on the drug-repurposing
knowledge graph (DRKG) for discovering drugs for Covid-19 and identify several drugs used in
clinical trials as possible drug candidates.

2 RELATED WORK

Unsupervised learning. Representation learning amounts to mapping nodes in an embedding space
where the graph topological information and structure is preserved (Hamilton et al.,|2017). Typically,
representation learning methods follow the encoder-decoder framework advocated by PanRep. Never-
theless, the decoder is typically attuned to a single task based on e.g., matrix factorization (Tang et al.|
2015 |Ahmed et al., 2013} |Cao et al., [2015}; |Ou et al., | 2016), random walks (Grover & Leskovec),
2016} |Perozzi et al.l 2014), or kernels on graphs (Smola & Kondor, 2003). Recently, methods relying
on GNNss are increasingly popular for representation learning tasks (Wu et al.||2020). GNNss typically
rely on random walk-based objectives (Grover & Leskovec, [2016; Hamilton et al., 2017) or on
maximizing the mutual information among node representations (Velickovié et al.,2018b)). Relational
GNNs methods extend representation learning to heterogeneous graphs (Dong et al.,[2017} [Shi et al.|
2018;[Shang et al.,2016)). Relative to these contemporary works PanRep introduces multiple decoders
to learn universal embeddings for heterogeneous graph data capturing the clustering of local node
features, structural similarity among nodes, the local and intermediate neighborhood structure, and
the mutual information among same-type nodes.
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Supervised learning. Node classification is typically formulated as a semi-supervised learning (SSL)
task over graphs, where the labels for a subset of nodes are available for training (Belkin et al., [2004).
GNNSs achieve state-of-the-art performance in SSL by utilizing regular graph convolution (Kipf &
Welling| [2017) or graph attention (Velickovi€ et al.|[2018a), while these models have been extended
in heterogeneous graphs (Schlichtkrull et al., [2018; [Fu et al.| 2020j [Wang et al., |2019b)). Similarly,
another prominent supervised downstream learning task is link prediction with numerous applications
in recommendation systems (Wang et al., 2017) and drug discovery (Zhou et al., [2020} [Toannidis
et al.} 2020). Knowledge-graph (KG) embedding models rely on mapping the nodes and edges of the
KG to a vector space by maximizing a score function for existing KG edges (Wang et al., 2017; |Yang
et al.| 2014} [Zheng et al.| 2020). RGCN models (Schlichtkrull et al., 2018)) have been successful in
link prediction and contrary to KG embedding models can further utilize node features. The universal
embeddings extracted from PanRep without labeled supervision offer a strong competitive to these
supervised approaches for both node classification and link prediction tasks.

Pretraining. Pretraining models provides a significant performance boost compared to traditional
approaches in natural language processing (Devlin et al., | 2018; Radford et al.,|2019) and computer
vision (Donahue et al., 2014; |Girshick et al.| [2014)) . Pretraining offers increased generalization
capability especially when the labeled data is scarce and increased inference speed relative to end-to-
end training (Devlin et al., 2018)). Parallel to our work (Hu et al.l 2020;|Qiu et al., |2020) proposed
pretraining models for GNNs. These contemporary works supervise the models only using attribute
or edge generation schemes without accounting for higher order structural similarity or maximizing
the mutual information of the embeddings. Recently, (Hu et al.,2019) introduced a framework for
pretraining GNNs for graph classification. Different than (Hu et al. [2019)) that focuses on graph
representations, PanRep aims at node prediction tasks and obtains node representations via capturing
properties related to node homophily (Gleichl 2015)) or node structural similarity (Rossi & Ahmed,
2014). PanRep is a novel pretrained model for node classification and link prediction that requires
significantly less labeled points to reach the performance of its fully supervised counterparts.

3 DEFINITIONS AND PROBLEM FORMULATION

A heterogeneous graph with T node types and R relation types is defined as G :=
{{V:}E {&- 1.1}, The node types represent the different entities and the relation types rep-
resent how these entities are semantically associated to each other. For example, in the IMDB
network, the node types correspond to actors, directors, movies, etc., whereas the relation types
correspond to directed-by and played-in relations. The number of nodes of type ¢ is denoted by IV,
and its associated nodal set by V; := {n;}2* . The total number of nodes in G is N := Z;Zl Ny.
The rth relation type, &, := {(n¢, n},) € Vi x Vy }, holds all interactions of a certain type among V;
and Vyp and may represent that a movie is directed-by a director. Heterogenous graphs are typically
used to represent KGs (Wang et al.| 2017). Each node n; is also associated with an F' x 1 feature
vector X,,. This feature may be a natural language embedding of the title of a movie. The nodal
features are collected in a N x F' matrix X. Note that certain node types may not have features and
for these we use an embedding layer to represent their features.

Unsupervised learning. Given G and X, the goal of representation learning is to estimate a function
g such that H := ¢(X, G), where H € RV*P represents the node embeddings and D is the size of
the embedding space.Note that in estimating g, no labeled information is available.

Universal representation learning. The universal representations H should perform well on differ-
ent downstream tasks. Different node classification and link prediction tasks may arise by considering
different number of training nodes and links and different label types, e.g., occupation label or
education level label. Consider I downstream task, for the universal representations H it holds that

LOGOMH), Ty <e, i=1,...,1, (1)

where £, f (@), and 7 represent the loss function, learned classifier, and training set (node labels
or links) for task i, respectively and e is the largest error for all tasks. The goal of unsupervised
universal representation learning is to learn H such that € is small. While learning H, PanRep does not
have knowledge of {£(), f() T()}, Nevertheless, by utilizing the novel decoder scheme PanRep
achieves superior performance even compared to supervised approaches across tasks.

4 PANREP

Our universal representation learning framework aims at embedding nodes in a low-dimensional
space such that the representations are discriminative for node classification and link prediction.



Under review as a conference paper at ICLR 2021

Methods for learning over graphs typically rely on modeling homophily of nodes that postulates
neighboring vertices to have similar attributes (Smola & Kondor, |2003};|Yuan et al.,[2014) or structural
similarity among nodes (Rossi & Ahmed| 2014)), where vertices involved in similar graph structural
patterns possess related attributes (Donnat et al.l [2018). Motivated by these methods we identify
related properties encoded in the graph data. Clustering nodes based on their attributes provides a
strong signal for node homophily (Koren et al., 2009). Network motifs reveal the local structure
information for nodes in the graph (Ahmed et al.,|2017). Metapaths encode the heterogeneous graph
neighborhood and indicate the local connectivity (Dong et al.,[2017). Finally, maximizing the mutual
information among embeddings declusters node representations and provides further discriminative
information (Velickovic et al., [2018b).

4.1 UNIVERSAL SUPERVISION SIGNALS

In order to capture the aforementioned properties we develop four novel universal decoders.

Cluster and recover supervision. Node attributes may reveal interesting properties of nodes, such
as clusters of customers based on their buying power and age. This is important in recommendation
systems, where traditional matrix factorization approaches (Koren et al.| [2009) rely on revealing
clusters of similar buyers. To capitalize such information we propose to supervise the universal
embeddings by such cluster representations. Specifically, we cluster the node attributes via K-
means (Kanungo et al., 2002) and then design a model that decodes H to recover the original clusters.
The CR-decoder is modeled as a two layer MLP and is supervised by

N K )
Leg = — Z Z Cni In Chy, 2

n=1k=1

where the cluster assignment C,,, is 1 if node n belongs in class £ and the predicted cluster assignment
Ch 1s the output of the CR-decoder. We showcase in the appendix that this signal is superior to
the attribute generation scheme used in (Hu et al., 2020). Such a supervision signal will enrich the

universal embeddings H with information based on the clustering of local node features.

Motif supervision. Network motifs are sub-graphs where the nodes have specific connectivity
patterns. Typical size-3 motifs for example, are the triangle and the star motifs. Each of these
sub-graphs is identified by a particular pattern of interactions among nodes, and reveals important
properties for the participating nodes. In gene regulatory networks for example, motifs are associated
with certain biological properties (Babu et al., [2004). The work in (Ahmed et al., [2017)) develops
efficient parallel implementations for extracting network motifs. We aspire to capture structural
similarity among nodes by predicting their motif information. The motivation is that nodes which
might be distant in the graph may have similar structural properties as described by their motifs.

Using the method in (Ahmed et al.,|2017) we extract a frequency vector p,, per node that shows how
many times n participates to graph motifs up to size 4. This information reveals the structural role of
nodes such as star-center, star-edge nodes, or bridge nodes. The motif decoder predicts this vector for
all nodes using the universal representation H. This allows for information sharing among nodes
which are far away in the graph but have similar motif frequency vectors. The novel motif decoder is
modeled as a two-layer MLP and is supervised by the following loss function

N

Lyior := Z lpen — ﬂnH% )
n=1

where f1,, is the output of the Mot-decoder for the nth node. Using the Mot-decoder PanRep enhances

the universal embeddings by structural information encoded in the node motifs.

Metapath RW supervision. Metapaths are sequences of edges of possibly different type that

connect nodes in a KG. A metapath random walk (MRW) is a specialized RW that follows different

edge-types (Dong et al., 2017).

We aspire to capture local connectivity patterns by promoting nodes participating in a MRW to

have similar embeddings. Consider all node pairs for nodes (n:,n') participating in a MRW, the

following criterion maximizes the similarity among these nodes as follows

Lugw := log(1 + exp(—y x hy, diag(ree)hy,)), @

where h,,, and h,,, are the universal embeddings for nodes n; and n'y, respectively, r; 4 is an
embedding parametrized on the pair of node-types and y is 1 if n; and n’y+ co-occur in the MRW and
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-1 otherwise. Negative examples are generated by randomly selecting tail nodes for a fixed head node
with ratio 5 negatives per positive example. Link prediction is indeed a special case of the MRW
supervision that considers MRWs of length 1. However, metapaths convey more information than
regular links since the former can be defined to promote certain prior knowledge. For example, in
predicting the movie genre in IMDB the metapath configured by the edge types (played by, played
in) among node types (movie, actor, movie) will potentially connect movies with same genre and
hence it is desirable. The embedding per node-type pair r; ;- allows the MRW-decoder to weight the
similarity among node embeddings from different node types accordingly. The length of the MRW
controls the radius of the graph neighborhood considered in equation dand it can vary from local to
intermediate.

Heterogenous information maximization. The aforementioned supervision signals capture cluster-
ing affinity, structural similarity and local and intermediate neighborhood of the nodes. Nevertheless,
further information can be extracted by the representations by maximizing the mutual information
among node representations. Such an approach for homogeneous graphs is detailed in (Velickovic
et al.l [2018b), where the mutual information between node representations and the global graph

summaries is maximized (Hjelm et al.| 2018)).

Towards further refining the universal embeddings, we propose a generalization of (Velickovi¢ et al.}
2018b) for heterogeneous graphs. We consider a global summary vector per ¢ as s; := T]:/’_l
that captures the average tth node representation. We aspire to maximize the mutual informatlon
among s; and the corresponding nodes in V;. The proposed HIM decoder is supervised by the
following contrastive loss function

Ly i= Z ( Z log (h, Wst)) + log (1 — J(fl,lWSQ)) (5)

t=1 ny=1

where the bilinear scoring function a(fl,TLtht) captures how close is h,,, to the global summary, W

is a learnable matrix and h,,, represents the negative example used to facilitate training. Designing
negative examples is a cornerstone property for training contrastive models (Velickovic et al., 2018b).
We generate the negative examples in [5| by shuffling node attributes among nodes of the same type.
The HIM decoder maximizes the mutual information across nodes and complements the former
decoders.

Putting everything together. PanRep’s final loss function is the linear combination of and can
be considered in the framework of deep multitask learning (Zhang et al.l 2014)), since the GNN
encoder is shared across the multiple supervision tasks and PanRep makes multiple inferences in one
forward pass. Such networks are not only scalable, but the shared features within these networks can
induce more robust regularization and possibly boost performance (Chen et al.l 2017). Introducing
adaptive weights per decoder to control its learning rate is a future direction of PanRep.

4.2 PANREP ENCODER

Although the PanRep framework can utilize any GNN model as an encoder (Wu et al., 2020), in
this paper PanRep uses a relational (R)GCN encoder (Schlichtkrull et al.,[2018). RGCNs extend the
graph convolution operation (Kipf & Welling, [2017) to heterogenous graphs. The /th RGCN layer

computes the nth node representation h(lH) as follows

h(tY = Z ST nlwo |, 6)

r=1n'eN]

where N is the neighborhood of node n under relation r, o the rectified linear unit non linear

function, and Wg.l) is a learnable matrix associated with the rth relation. Essentially, the output of
the RGCN layer for node n is a nonlinear combination of the hidden representations of neighboring
nodes weighted based on the relation type.

Alternative encoders. Several works consider designing possibly more general GNN encoders that
utilize attention mechanism (Wang et al., 2019b; [Velickovi€ et al.| |2018a) or graph isomorphism
networks (Xu et al.,[2019). This paper proposes novel supervision signals for unsupervised learning
that capture general properties of the graph data. Designing a universal encoder based on these
contemporary GNN models is an interesting future direction of PanRep.



Under review as a conference paper at ICLR 2021

Table 1: Node classification results.

Train % Unsupervised Semi-supervised
node2vec | meta2vec | HIM | PanRep | HAN | MAGNN | RGCN | PanRep-FT
40% 50.63 47.57 55.21 56.04 | 56.15 60.27 58.48 59.49
Mac-F1 | 60% 51.65 48.17 57.66 | 5851 | 57.29 60.66 58.42 59.86
IMDB 80% 51.49 49.99 5789 | 60.23 | 5851 61.44 58.76 61.49
40% S1.77 48.17 55.11 55.92 | 57.32 60.50 58.64 59.67
Mic-FI | 60% 52779 49.87 56.57 | 58.41 58.42 60.88 58.55 59.75
80% 52.72 50.50 5779 1 60.14 | 59.24 61.53 58.89 61.59
40% 56.37 65.75 50.54 | 57.76 | 63.99 63.31 64.68 64.72
Mac-F1 | 60% 57.01 66.09 5198 | 59.72 | 64.25 63.42 65.96 66.99
0AG 80% 58.05 65.75 53251 63.03 | 64.37 63.89 67.67 67.90
40% 70.17 74.54 71.91 7550 | 73.95 72774 81.92 80.36
Mic-F1 | 60% 70.95 74.96 73.89 | 7739 | 7532 72.75 81.39 81.78
80% 72.24 74.73 75.31 79.76 | 75.24 73.43 82.38 83.17

4.3 PANREP-FT

In certain cases a very small subset of labels may be known a priori for the downstream task. In
such cases it is beneficial to fine-tune PanRep’s model to obtain refined node representations. In this
context, PanRep can be considered as pretrained model and a downstream task specific loss may be
applied to supervise PanRep. BERT models in natural language processing have reported state of the
art results by considering such a pretrain and fine-tune framework (Devlin et al.| 2018). PanRep-FT
can be considered a counterpart of BERT for extracting information from heterogenous graph data.
PanRep-FT combines the benefit of universal unsupervised learning and task specific information and
achieves greater generalization capacity especially when labeled data are scarce (Erhan et al.,[2010).

5 EXPERIMENTS

The proposed universal represention learning techniques are compared with state-of-the-art methods.
For node classification the following contemporary methods are considered RGCN (Schlichtkrull
et al.,[2018)), HAN (Wang et al.| 2019b), MAGNN (Fu et al., |2020), node2vec (Grover & Leskovec,
2016), meta2vec (Dong et al.,|2017) and an adaptations of the work in (Velickovic et al.,|2018b) for
heterogenous graphs termed HIM. For link prediction the baseline models is RGCN (Schlichtkrull
et al.,2018) with DistMult supervision (Yang et al.,2014)) that uses the same encoder as PanRep. The
Mot-decoder and RC-decoder employ a 2-layer MLP. For the MRW-decoder we use length-2 MRWs.
The parameters for all methods considered are optimized using the performance on the validation set.

Datasets. We consider a subset of IMDB dataset (IMDI 2020) containing 11,616 nodes with 3 node-
types and 17,106 edges from 6 edge-types. Each movie is associated with a label representing its
genre and with a feature vector capturing its keywords. We also use a subset of the OAG dataset (OAG|
2020) with 23,696 with 4 node types (authors, affiliations, papers, venues) and 90,183 edges from 14
edge-types. In OAG we did not use MOT supervision since (Ahmed et al., 2017)) is not applicable.
Each paper is associated with a label denoting the scientific area and with an embedding of the
papers’ text. Finally, we utilize the DRKG constructed in (Ioannidis et al.,|2020). DRKG contains
5,874,261 biological interactions belonging to 107 edge-types among 97,238 biological entities from
13 entity-types. For further details on the datasets and configuration of methods see the appendix.

Scalability. PanRep is implemented using Deep Graph Library (DGL)’s mini-batch training, which
is scalable w.r.t. time and space. During mini-batch training a subset of seed nodes is sampled along
with the K'-hop neighbors of the seed nodes, where K is the depth of the GNN. Furthermore, the
number of edges at each level is bounded by using neighbor sampling. This allows training on graphs
with billions of nodes/edges since only a fraction of the nodes/edges will be loaded on the GPU per
mini-batch. PanRep’s complexity is controlled by the RGCN encoder whose computation complexity
of a mini-batch is O(BFX) for sparse graphs, where B is the batch size, K is the number of layers
and F' is the maximum number of neighbors per node. By using neighbor sampling, F' is usually less
than 10-20 and in our experiments we found that K=2 often works well. The decoders’ complexity is
significantly lower and do not add but a constant factor to the overal complexity and hence the overall
per-epoch runtime is similar to that of RGCN.

5.1 NODE CLASSIFICATION

In this experiment we compare supervised and unsupervised methods for classification. First, the
labeled nodes are split in 10% training, 5% validation, and 85% testing sets. The supervised methods
utilize the training labels whereas the unsupervised methods do not use them in calculating the node
embeddings. Then the embeddings corresponding to the 85% testing nodes are further split to training
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Figure 2: MRR and Hit-10 for link prediction across different percentages of testing links.

Table 2: Node classification results for different labeled supervision splits.

Datasets Metrics Train embeddings % 5% 10% 20%
o ) Train% PanRep RGCN | PanRep-FT | RGCN | PanRep-FT | RGCN | PanRep-FT

40% 56.04 55.12 56.85 58.48 59.49 61.30 63.14

Macro-F1 60% 58.51 55.20 59.39 58.42 59.86 60.98 62.91

IMDB 80% 60.23 55.55 61.27 58.76 61.49 61.10 62.72
40% 55.92 55.27 56.92 58.64 59.67 61.49 63.17

Micro-F1 60% 58.41 55.39 59.45 58.55 59.75 61.17 62.89

80% 60.14 55.62 61.32 58.89 61.39 61.30 62.75

40% 57.76 55.51 64.99 64.68 64.72 67.07 65.31

Macro-F1 60% 59.72 55.99 66.62 65.96 66.99 67.58 66.25

0AG 80% 63.03 56.36 68.94 66.10 68.60 67.67 67.90
40% 75.50 78.00 80.19 81.92 80.36 82.57 81.17

Micro-F1 60% 77.39 78.07 81.36 81.39 81.78 81.74 81.34

80% 79.76 78.44 82.52 82.38 83.17 82.20 82.31

and testing sets and a linear SVM is trained. This evaluation setting allows us to directly compare the
different supervised and unsupervised approaches.

We report the Macro and Micro F1 accuracy for different training percentages of the 85% nodes fed to
the SVM classifier in Table[T] It is observed that PanRep outperforms significantly other unsupervised
approaches as well as some supervised approaches. In certain splits, PanRep outperforms its
supervised counterpart RGCN that uses node labels for supervision. Metapath2vec (Dong et al.,
2017) reports competitive performance for OAG in Macro-F1 score but underperformed in Micro-F1.
Nevertheless, in this experiment Metapath2vec only uses the best performing metapath that is paper-
venue-paper, which is considerably better than that of most other metapaths. This way of selecting the
metapath, gives Meta2vec an (unfair) advantage over PanRep, which uses all metapaths of length 2
as it computes a universal representation (along with the other supervision signals). PanRep-FT
outperforms significantly RGCN that uses the same encoder, which is a testament to the power of
pretraining models. Finally, PanRep-FT matches and outperforms in certain splits the state-of-the-art
MAGNN that uses a more expressive encoder. PanRep’s universal decoders enhance the embeddings
with additional discriminative power that results to improved performance in the downstream tasks.

Table[2]reports the accuracy of the PanRep-FT and the encoder RGCN, which is trained directly for the
semi-supervised learning task to obtain the embeddings. PanRep-FT consistently outperforms RGCN
across most SVM splits, whereas PanRep-FT’s advantage over RGCN decreases as more training data
are available, which is justifiable since more labels diminish the advantage of pretraining. Moreover,
PanRep-FT performs only 100 finetuning epochs with labeled supervision, which is significantly less
to the 800 epochs of labeled supervision by RGCN. Nevertheless, PanRep outperforms the supervised
RGCN embeddings for 5% training labels. This demonstrates the importance of using PanRep as
a pretraining method. RGCN reports similar performance across SVM splits, whereas PanRep-FT
increases with more supervision. These results suggest that PanRep-FT’s embeddings have higher
generalization capacity.

Table [3] reports an ablation study by using different decoder subsets. PanRep that uses all signals
obtains the best performance. The decoders HIM and MRW and the their combination exhibit
the second best performance. Nevertheless, the full supervision in PanRep leads to the superior
performance. Section [B]in the appendix includes additional experiments.

5.2 LINK PREDICTION

Our universal embedding framework is further evaluated for link prediction using the IMDB and
OAG datasets. The MRW decoder is used to evaluate the performance of PanRep in link prediction.
Figure [2] reports the MRR, and Hit-10 scores of the baseline methods along with the PanRep and
PanRep-FT methods. We report the performance of the methods for different percentages of links
used for training. Observe that PanRep-FT consistently outperforms the competing methods and



Under review as a conference paper at ICLR 2021

Table 3: Ablation study for different supervision signals.

Datasets Metrics Train % | HIM MRW | HIM+MRW | MOT CR PanRep

40% 5521 | 54.54 5532 4228 | 3221 56.04

Macro-F1 60% 57.66 | 56.12 57.24 4341 | 35.16 | 5851

IMDB 80% 57.89 | 56.64 57.74 4431 | 35.66 | 60.23
40% 55.11 | 5436 55.53 43.66 | 39.13 | 55.92

Micro-F1 60% 56.57 | 5591 56.25 44.39 | 40.03 | 5841

80% 57.79 | 56.49 58.42 45.65 | 40.66 | 60.14

40% 50.54 | 55.92 56.11 - 1546 | 57.76

Macro-F1 60% 51.98 | 58.40 5891 - 1548 | 59.72

0AG 80% 53.25 | 60.61 61.74 - 1554 | 63.03
40% 7191 | 7439 74.65 - 63.06 | 75.50

Micro-F1 60% 73.89 | 76.76 76.33 - 63.14 | 7139

80% 75.31 | 78.90 7871 6359 | 79.76

Table 4: Drug inhibits gene scores for Covid-19.

PanRep-FT RGCN
Drug name # hits Drug name # hits ‘ ‘ Drug name # hits Drug name # hits
Losartan 232 Thalidomide 41 Chloroquine 69 Tofacitinib 33
Chloroquine 198 Hydroxychloroquine 19 Colchicine 41 Ribavirin 32
Deferoxamine 104 Tetrandrine 13 Tetrandrine 40 Methylprednisolone 30
Ribavirin 101 Eculizumab 10 Oseltamivir 37 Deferoxamine 30
Methylprednisolone 44 Tocilizumab 9 Azithromycin 36 Thalidomide 25

We retain the top-10 drugs based on their number of hits for each method. Note that a random classifier will result to approximately 5.3 per drug. This suggests
that the reported predictions are significantly better than random.

the performance gain increases as the percentage of training links decreases. This corroborates the
advantage of pretraining GNNs for link prediction. Note that PanRep reports similar performance
with RGCN that is trained solely in link prediction. This result confirms the success of the universal
embeddings in link prediction.

5.3 DRUG REPURPOSING

Drug-repurposing aims at discovering the most effective existing drugs to treat a certain disease.
Using the Drug Repurposing Knowledge Graph (DRKG) (loannidis et al.,|2020), we compare the
drug repurposing results in Covid-19 among PanRep-FT that is finetuned in link prediction and
the baseline RGCN. We employ L = 1 hidden layer with D = 600 and train for 800 epochs both
networks. Drug-repurposing can be formulated as predicting direct links in the DRKG. Here, we
attempt to predict whether a drug inhibits a certain gene, which is related to the target disease. We
identify 442 genes that are related with the Covid-19 disease. We select 8,104 FDA-approved drugs
in the DRKG as candidates; see also the appendix for further information in this experiment. To
validate our predictions we use 32 Covid-19 clinical trial drugs. For each gene node we calculate
with RGCN and PanRep-FT an inhibit link score associated with every drug. Next, we score all
‘drug-inhibits-gene’ triples and rank them per target gene. We obtain in this way 442 ranked lists of
drugs, one per gene node. Finally, to assess whether our prediction is in par with the drugs used for
treatment, we check the overlap among the top 100 predicted drugs and the drugs used in clinical
trials per gene. Table [4|lists the clinical drugs included in the top-100 predicted drugs across all the
genes with their corresponding number of hits for the RGCN and PanRep-FT. It can be observed,
that several of the widely used drugs in clinical trials appear high on the predicted list in both
prediction. Furthermore, PanRep-FT reports a higher hit rate than RGCN, which corroborates the
benefit of using the universal pretraining decoders. The universal representation endows PanRep with
increased generalization power that allows for accurate link prediction performance when training
data are extremely scarce as is the case of Covid-19. While this study, does not recommend specific
drugs, it demonstrates a powerful deep learning methodology to prioritize existing drugs for further
investigation, which holds the potential of accelerating therapeutic development for Covid-19.

6 CONCLUSION

This paper develops a novel framework for unsupervised learning of universal node representations
on heterogenous graphs termed. PanRep supervises the GNN encoder by decoders attuned to model
the clustering of local node features, structural similarity among nodes, the local and intermediate
neighborhood structure, and the mutual information among same-type nodes. To further facilitate
cases where limited labels are available we implement PanRep-FT. Experiments in node classification
and link prediction corroborate the competitive performance of the learned universal node representa-
tions compared to unsupervised and supervised methods. Experiments on the DRKG showcase the
advantage of the universal embeddings in drug repurposing.
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Table 5: Attribute generation supervision against clustering and recover supervision for different
number of clusters K in the node classification task.

Datasets Metrics Train % | ATTRIBUTE GENERATION | CRK =2 | C(RK =4 | CRK =5 | CRK =10
40% 17.52 29.52 31.94 32.21 31.22
Macro-F1 60% 17.53 30.75 34.50 35.16 34.19
IMDB 80% 17.30 3145 35.02 35.66 34.82
40% 35.66 38.51 39.40 39.13 38.38
Micro-F1 60% 35.70 38.83 41.02 41.13 40.03
80% 35.07 39.54 41.16 41.39 40.66

A IMPLEMENTATION FRAMEWORK

The methods presented in this paper are implemented in the efficient deep graph learning (DGLf]
library [Wang et al.| (2019a)). PanRep is implemented using the mini-batch training framework that
facilitates training for very large graphs even with limited computational resources |’} The competing
methods RGCN, MAGNN and HAN are also implemented using the DGL. PanRep experiments are
executed on an AWS P3.8x1argef_f] instances with 8 GPUs each having 16GB of memory.

B CLUSTER AND RECOVER COMPARED TO NODE ATTRIBUTE GENERATION

In this section we compare the cluster and recover supervsion signal to the attribute generation
supervision that is employed by several GNN pretraining methods. In this experiment we employ the
setting of Section[5.1]for node classification. The attribute generation supervision employs a 2-layer
MLP network that attempts to reconstruct the original nodal attributes given the node embeddings. In
Table [5| we report the node classification accuracy for different number of clusters /X considered in
the CR supervision. It can be observed that the CR methods significantly outperform the attribute
generation method. One reason for this is that the attributes are already considered by the GNN
encoder in calculating the embeddings, and this supervision does not increase the predictive capacity
of the model. On the other hand the clustering supervision allows the GNN to discover clusters of
nodes with similar attributes and hence refines the learned embeddings.

C METHODS

Different competing methods include RGCN |Schlichtkrull et al.|(2018)), HAN Wang et al.| (2019b)),
MAGNN [Fu et al.|(2020), node2vec |Grover & Leskovec (2016), meta2vec |Dong et al.|(2017) and an
adaptation of the work in [Velickovic et al.| (2018b) for heterogenous graphs termed HIM. For link
prediction the baseline model is RGCN Schlichtkrull et al.| (2018) with DistMult supervision [Yang
et al.| (2014) that uses the same encoder as PanRep. The Mot-decoder and RC-decoder employ
a 2-layer MLP. For the MRW-decoder we use length-2 MRWs. The parameters for all methods
considered are optimized using the performance on the validation set. For the majority of the
experiments PanRep uses a hidden dimension of 300, 1 hidden layer, 800 epochs of model training,
100 epochs for finetuning, and an ADAM optimzer Kingma & Ba|(2015) with a learning rate of 0.001.
For link prediction finetuning PanRep uses a DistMult model [Yang et al.|(2014) whereas for node
classification it uses a logistic loss.

D DRUG REPURPOSING EVALUATION

Our work focused entirely on evaluating the ranked list of candidate drugs against a set of 32 drugs
that, at the time of submission, were in Covid-19 clinical trials (Gordon et al., [2020; |Zhou et al.,
2020). Specifically, given a gene whose associated protein is a potential drug target, we used the
approach described in section 5.3 to rank the 8104 FDA approved drugs and select the 100 highest
ranked drugs. We evaluated the performance of a method by looking at the intersection between these
100 highest ranked drugs and the 32 drugs in Covid-19 trials. In our experiments, we used 442 genes
that researchers have identified as potential targets for Covid-19 and computed 442 ranked lists and
associated intersections. We aggregated the results by counting the number of times each one of the
32 drugs were in these intersections, and the drugs with the highest counts are shown in Table 4.

Zhttps://www.dgl.ai/
3https ://github.com/dmlc/dgl/blob/master/examples/pytorch/rgcn-hetero
*https://aws.amazon.com/ec2/instance-types/p3/
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Table 6: Statistics of datasets.

Dataset || Node \ Edge
# movie (M): 4,278 # M-directed by-D: 4,278 , D-directed-M: 4,278
IMDb | # director (D): 2,081 # M-played by-A: 12,828, A-played-M: 12,828
# actor (A): 5,257 played by=A. 12,826, A-played-M. 12,
# P-in journal-V: 3941, V-journal has-P: 3941
. # P-conference-V: 3368, V-conference has-P: 3368
# ;“;h‘gr((‘;;j ;33’%0 # P-cites-P: 3327, P-cited by-P: 3327
OAG # afﬁqi zﬁion ( A.f)i 2290 # A-writes as last-P: 4522, P-written by last-A: 4522
# venue (V): 78’2 # A-writes as other-P: 7769, P-written by other-A: 7769
) # A-writes as first-P: 4795, P-written by first-A: 4795
# A-affiliated with-Af: 17035, Af-affiliated with-A: 17035
Table 7: Number of nodes per node type in the DRKG and the data sources.

Entity type Drugbank GNBR Hetionet STRING IntAct DGIdb Bibliography Total Entities
Anatomy - 400 400
Atc 4,048 - 4,048
Biological Process - 11,381 11,381
Cellular Component - 1,391 - - - 1,391
Compound 9,708 11,961 1,538 153 6,348 6,250 24,313
Disease 1,182 4,746 257 - - - 33 5,103
Gene 4,973 27,111 19,145 18,316 16,321 2,551 3,181 39,220
Molecular Function - 2,884 - - - - 2,884
Pathway 1,822 1,822
Pharmacologic Class 345 345
Side Effect 5,701 5,701
Symptom 415 415
Tax 215 - 215
Total 19,911 44,033 45,279 18,316 16,474 8,899 9, 464 97,238

E DATASETS
E.1 DRKG

The Drug Repurposing Knowledge Graph (DRKG) contains 97055 entities belonging to 13 entity-
types loannidis et al.|(2020). The type-wise distribution of the entities is shown in Table[7/} DRKG
contains a total of 5869294 triplets belonging to 107 edge-types. Table[§|shows the number of triplets
between different entity-type pairs for DRKG and various data sources. The DRKG is publicly
available ]

E.2 IMDB AND OAG

IDMB [IMD) (2020) is a movie database including information about the cast, production crew, and
plot summaries. A subset of IMDDb is used after data preprocessing in Table[6] Movies are labeled as
one of three classes (Action, Comedy, and Drama) based on their genre information. Each movie is
also described by a bag-of-words representation of its plot keywords.

OAG|OAG](2020) is bibliography website. We preprocess the data and retain the subgraph in Table|[6]
The papers are divided into 6 research areas. Each paper is described by a BERT embedding of the
paper’s title.

Shttps://github.com/gnnddr/DRKG/
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Table 8: Number of interactions in the DRKG and the data sources.

Entity-type pair Drugbank  GNBR Hetionet  STRING IntAct DGIdb Bibliography Total interactions
(’Gene’, "Gene’) - 667,22 474,526 1,496,708 254,346 - 58,629 2,350,931
("Compound’, *Gene’) 24,801 80,803 51,429 - 1,805 26,290 25, 666 210,794
('Disease’, *Gene’) - 95,399 27,977 - - - 461 123,837
(CAtc’, ’Compound’) 15,750 - - - - - - 15,750
(’Compound’, *’Compound’) 1,379,271 - 6,486 - - - - 1,385,757
(’Compound’, ’Disease’) 4,968 77,782 1,145 - - - - 83,895
(’Gene’, "Tax’) - 14,663 - - - - - 14,663
(’Biological Process’, *Gene’) - - 559, 504 - - - - 559, 504
("Disease’, ’Symptom”) - - 3,357 - - - - 3,357
(’Anatomy’, ’Disease’) - - 3,602 - - - - 3,602
(’Disease’, "Disease’) - - 543 - - - - 543
(’Anatomy’, *Gene’) - - 726,495 - - - - 726,495
(’Gene’, ’Molecular Function’) - - 97,222 - - - - 97,222
(’Compound’, ’Pharmacologic Class’) - - 1,029 - - - - 1,029
(’Cellular Component’, *Gene’) - - 73,566 - - - - 73,566
(’Gene’, "Pathway’) - - 84,372 - - - - 84,372
("Compound’, ’Side Effect’) - - 138,944 - - - - 138,944
Total 1,424,790 335,369 2,250,197 1,496,708 256,151 26,290 84,756 5,874,261

14



	Introduction
	Related work
	Definitions and Problem formulation
	PanRep
	Universal supervision signals
	PanRep Encoder
	PanRep-FT

	Experiments
	Node classification
	Link prediction
	Drug repurposing

	Conclusion
	Implementation framework
	Cluster and recover compared to node attribute generation
	Methods
	Drug repurposing evaluation
	Datasets
	DRKG
	IMDB and OAG


