
Alleviating Confounding Effects with
Contrastive Learning in Recommendation

Di You1 and Kyumin Lee1

Worcester Polytechnic Institute, Worcester MA, USA
{dyou,kmlee}@wpi.edu

Abstract. Recently, there has been a growing interest in mitigating the
bias effects in recommendations using causal inference. However, Ru-
bin’s potential outcome framework may produce inaccurate estimates in
real-world scenarios due to the presence of hidden confounders. In ad-
dition, existing works adopting the Pearl causal graph framework tend
to focus on specific types of bias (e.g., selection bias, popularity bias,
exposure bias) instead of directly mitigating the impact of hidden con-
founders. Motivated by the aforementioned limitations, in this paper,
we formulate the recommendation task as a causal graph with unob-
served/unmeasurable confounders. We present a novel causality-based
architecture called Multi-behavior Debiased Contrastive Collaborative
Filtering (MDCCL) and apply the front-door adjustment for interven-
tion. We leverage a pre-like behavior such as clicking an item (i.e., a
behavior occurred before the target behavior such as purchasing) to mit-
igate the bias effects. Additionally, we design a contrastive loss that also
provides a debiasing effect benefiting the recommendation. An empirical
study on three real-world datasets validates that our proposed method
successfully outperforms nine state-of-the-art baselines. Code and the
datasets will be available at https://github.com/queenjocey/MDCCL.

Keywords: Recommender system, causal inference, debiased recom-
mendation, contrastive learning

1 Introduction
While we have witnessed the success of recommender systems in various do-
mains (e.g., social platform [41], music sites [29], e-commerce platforms [30]),
most recommendation models focus on fitting observed user-item historical in-
teractions [10, 11, 15, 24]. However, user-item interaction data, which forms the
basis for training recommendation models, are observational rather than exper-
imental [3]. A common practice in training conventional recommender systems
is to consider the unobserved interactions as negative feedback, assuming the
observed data are missing-at-random. However, user interaction data are always
missing-not-at-random [19, 27, 40] in reality. While the matching-based method
models the correlation between a user and candidate items, it does not inherently
reflect the true causal relationship between user-item interaction. The presence
of confounders, such as item quality, can lead to misleading recommendation re-
sults. To demonstrate the impact of these confounders, we present a toy example



2 D. You, K. Lee

Fig. 1: A toy example where confounders mislead the recommendation result.

in Fig. 1. The user’s historical interactions on the left suggest a preference for
comedy based on genre features. However, in this specific case, the user’s choice
of next movie is influenced by the director rather than the genre. Although there
exists a strong correlation between the genre feature and user preference, genre
serves as a confounder here, and the next consumed movie of the target user is
actually driven by causation. Meanwhile, confounders induce bias, which leads
to the bias effects in the correlations estimated from the observations.

There has been a surge of study exploring bias elimination in recent years [32,
33,37,39,43,45]. For example, the inverse propensity score (IPS)-based approach
has long been popular in the recommendation community [27,42], however, this
line of work heavily relies on the estimation of the IPS score and suffers high
variance issues. Another line of work formulates their research with a causal
graph to describe causal relationships and conducts reasoning over the graph
to estimate causal effect [33, 37]. Existing works [33, 37, 43, 49] adopting the
Pearl causal graph framework mostly follow the following pattern: (1) identify a
specific confounder first, and (2) propose a confounder-aware model to address
the specific confounder. However, in real-world scenarios, it is unrealistic to
identify specific confounders. Moreover, not all confounders are observable and
measurable, which limits the efficacy of the existing tools. Fortunately, there is
another tool named front-door adjustment [23], which allows us to deal with any
types of confounders, including unobservable/unmeasurable confounders.

Motivated by the aforementioned analysis, we design a new causal graph
as shown in Fig. 3 where unobserved/unmeasurable confounders exist with a
mediator node. Then, we propose a novel Multi-behavior Debiased Contrastive
Collaborative Filtering (MDCCL) framework that leverages the front-door ad-
justment to eliminate the bias effect induced by confounders. As for the choice
of mediator, we utilize prior user feedback about items (i.e., click an item) to fa-
cilitate unbiased recommendation, which formulates our task as multi-behavior
recommendation. Further, we design a debiased contrastive loss component to
mitigate bias effect and improve recommendation accuracy. In the experiments,
we compare our model with nine state-of-the-art baselines. Empirical experi-
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Fig. 2: X, Y, M and Z represent treatment variable, outcome variable, mediator
variable and confounder variable, respectively. Figure (a) shows Z as observed
and measurable, while in Figure (b), Z is unobserved or unmeasurable.

ments and in-depth analysis validate the effectiveness of MDCCL algorithm on
both accurate recommendation and deconfounding.

2 Preliminaries
2.1 Task Formulation

U={u1, u2, ..., uk} as a set of all users where k = |U | is the total number of users,
and P={p1, p2, ..., pn} as a set of all items where n = |P | is the total number of
items. Without loss of generality, we assume that the number of behaviors is T ,
and we use Y1, Y2, ..., YT denotes behavior matrices if the user interacted with
an item under behavior t, where Y1, Y2, ..., YT−1are auxiliary behaviors, and YT

is the target behavior. We consider interaction matrices in the binary form, in
which each entry has value 1 if user u and item p interacted under behavior t,
otherwise value 0. To simplify our analysis, in our work, we mainly discuss the
target behavior, denoting as y and click behavior, serves as mediator, denoting
as m. Bold versions of those variables, which we will introduce in the following
sections, indicate their respective latent representations/embeddings.

2.2 Preliminaries on Causal Inference

In this section, we will briefly introduce some basic concepts and theorems in
causal inference.

Definition 1: Causal Graph. Causal graph is a directed acyclic graph(DAG),
where G = (N , E), describing the causal relationship. N represents a set of
nodes, containing variables in U and P in recommendation; and E represents a
set of edges, also known as the causal relations.

Definition 2: Backdoor adjustment [23].Given an ordered pair of variables (X,Y )
in a causal graph G, a set of variables Z satisfies the back-door criterion with
respect to (X,Y ) if Z satisfies the following conditions:

• No node in Z is a descendant of X;

• Z blocks every path between X and Y that contains an arrow into X.

With the help of a set of variables that satisfy the back-door criterion, we can
adjust the effect of measured confounders. We take the causal graph in Fig. 2(a)
as an example. Considering the treatment variable X and the outcome variable
Y , we want to estimate the effect of X on Y , denoted as P (Y = y|do(X = x)).
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Fig. 3: Causal Graph of (a) the proposed model and (b) front-door intervention.

Due to the existence of confounder Z (i.e., Z is a parent node of X), we cannot
conclude that P (Y = y|do(X = x)) = P (Y = y|X = x). However, since variable
Z satisfies the back-door criterion, we use it to adjust the effect, in other words,
we are accounting for and measuring all confounders [23]. Therefore, we compute

P (Y = y|do(X = x)) =
∑
z

P (Y = y|X = x, Z = z)P (Z = z) (1)

However, a serious limitation is that the above equation assumes that the
confounder variables are all measurable and satisfy the backdoor criterion. How-
ever, unobservable and hidden confounders always exist in recommender sys-
tems [4, 47]. Given this setting, we introduce the front-door criterion.

Definition 3: Frontdoor criterion and adjustment. Given an ordered pair of vari-
ables (X,Y ) in a causal graph G, a set of variables M satisfies the front-door
criterion with respect to (X,Y ) if (X,Y ) satisfies the following conditions:

• M intercepts all directed paths from X to Y ;

• There is no unblocked path from X to M ;

• X blocks all back-door paths from M to Y

If a set of variables M satisfies the front-door criterion related to an ordered
pair of variables (X,Y ), and if P (x, z) > 0, then the causal effect of X on Y is
identifiable and is given by

P (y|do(x)) =
∑
m

P (m|x)
∑
x′

P (y|x′,m)P (x′) (2)

We take Fig. 2(b) as an example. In this case, the variable Z here is not
measurable so that back-door adjustment cannot be directly applied. However, it
satisfies the front-door criterion, allowing us to utilize the front-door adjustment
to handle the unmeasurable confounder Z. Intuitively, the desired effect can be
expressed as follows

P (y|do(x)) =
∑
m

P (m|do(x))P (y|do(m)) (3)

3 Methodology
3.1 Causal view of Deconfounding Recommendation
Fig. 3 shows our proposed causal graph for interaction generation when the con-
founding feature exists. Next, we explain the semantics of the causal graph.
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• Node U and P denote the user and item ID embeddings, respectively. In this
work we only use ID feature.

• Node Z denotes the hidden confounder, which can be generated for various
reasons (e.g., the producer’s motivation, and the item’s quality). Notice that
the hidden confounder in our discussion is either unobservable or unmeasur-
able, thus the backdoor adjustment is not applicable.

• Node M denotes the mediator, which is pre-like/pre-purchase behavior (i.e.,
click an item) in this work. Node Y denotes the target interaction label (i.e.,
purchase or like);

• Edge P ← Z → Y denotes that hidden confounder Z affect both item fea-
tures and happening of interaction, while it does not necessarily reflect users’
real preference;

• Edge {P,U} → M → Y denotes that user preference and item features
jointly determine the level of user-item matching. And based on the front-
door criterion, we can also observe that the prior feedback functions as a
mediator in our task formulation (e.g., click→ like on micro-video platforms.)

Most of conventional recommendation algorithms directly estimate the corre-
lation P (Y |U,P ) using historical interaction data, which leads to biased estima-
tion for recommended results. While previous causal models estimate the causal
effect P (Y |U, do(P )), they overlook the effect of hidden confounder Z, thus bias
issue still exists. In our work, we propose to simultaneously cut off the direct
effect of Z → P and backdoor path P ← Z → Y to eliminate the confounding
effect in our estimation.

3.2 Multi-behavior Debiased Contrastive CF

In this section, we discuss how to mitigate the confounding effect without mea-
suring the confounder Z. We introduce prior feedback (i.e., click) as mediator
as shown in Fig. 4.
Intervention with do-calculus. Considering that the hidden confounder Z is
unobservable or unmeasurable, we apply the front-door adjustment tool for user’s
preference estimation towards items. Specifically, we estimate the distribution
as follows:

P (y|u, do(p)) =
∑
m

P (m|u, do(p))
∑
z

P (z)P (y|u, z,m)

=
∑
m

P (m|u, do(p))P (y|u, do(m))
(4)

In Eq. 4, the first term denotes the probability of mediator M being a set as
m given certain item features, which reflects the causal effect of P on M . On
the other hand, the second term denotes the probability of y when m happens,
which is the causal effect of M on Y . The equation holds because of the backdoor
criterion. Fortunately, both terms are measurable in our formulation.

Estimating P (m|u, do(p)). P (m|u, do(p)) = P (m|u, p) since the backdoor path
P ← Z → Y ←M is d−separated by collider Y , which means given Y , Z is inde-
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(a) MDCCL’s overall architecture (b) Contrastive Learning Structure

Fig. 4: Our proposed architecture where in Fig. 4a blue arrows indicate the train-
ing stage and the red arrows represent the inference stage.

pendent of another set M . Estimating P (y|u, do(m)) According to [23], blocking
Z is equivalent to blocking P in the backdoor path M ← P ← Z → Y . Also,
according to our causal graph, M is independent of Z given P , and P is inde-
pendent of Y given Z and M . Therefore, following prior causal recommendation
work [43,47], we can apply backdoor adjustment as follows:

P (y|u, do(m)) =
∑
z

P (z)P (y|z,m, u)

(a)
=

∑
z

∑
p

P (z|p)P (p)P (y|z,m, u)

(b)
=

∑
p

∑
z

P (z|p)P (p)P (y|z,m, u, p)

(c)
=

∑
p

(
∑
z

P (y|m, z, u, p)P (z|p,m))P (p)

(d)
=

∑
p

P (y|u, p,m)P (p)

(5)

We illustrate the derivation steps as follows:

– (a) holds due to P (z) = P (z|p)P (p)
– (b) holds since P is independent of Y given Z andM , thus we have P (y|z,m, u) =

P (y|z,m, u, p)
– (c) is induced by P (z|p) = P (z|p,m), since M is independent of Z given P
– (d) holds because of marginal distribution properties

Therefore, we derived the following equation to replace Eq. 4:

P (y|u, do(p)) =
∑
m

P (m|u, p)
∑
p′

P (y|u, p′,m)P (p′) (6)
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where we can get rid of P (p′) safely. Based on the above analysis, we present
our deconfounding architecture in two stages: training and inference.

Deconfounded Training. In the training stage, as it showed in Fig. 4a, we
shall estimate probability P (m|u, p) and P (y|u, p,m).

Since modeling P (m|u, p) is equivalent to the well-known CTR prediction
task, we parameterized it as f1(u, p), where f1(·) can be any backbone model. On
the other hand, P (y|u, p,m) estimation is our main recommendation task, and
can be decomposed into a late-fusion manner [31,33] without loss of generality,

f2(u, p,m) = f ′
2(u,m) ∗ σ(f ′′

2 (u, p)) (7)

, where f ′
2 and f ′′

2 are both backbone encoders, σ(·) is sigmoid function
that introduces non-linearity for sufficient representation capacity of the fusion
strategy. As it showed in Fig. 4a, we can use any existing model as backbone
encoders to model in our framework. For simplicity, we adopt LightGCN for all
components and take only the ID features of users and items as inputs.

The backbone model has different target values so that we estimate P (m|u, p)
and P (y|u, p,m) as following:

LCTR(D|Φ) = −
∑

(i,j+,j−)

logσ(sij+ − sij−) + λΦ∥Φ∥2 (8)

LRec(D|Θ) = −
∑

(i,j+,j−)

logσ(oij+ − oij−) + λΘ∥Θ∥2 (9)

, where (i, j+, j−) is a triplet of a target user, a positive item, and a negative
item that is randomly sampled from the items set P . D denotes all the training
instances. sij+ and sij− are the respective positive and negative preference scores
in CTR task. oij+ and oij− are the respective positive and negative preference
scores in the recommendation task. Φ and Θ are trainable parameters, and λΦ

and λΘ are hyperparameters for regularization terms.

Contrastive Learning. We enhance robustness in learned representations by
employing contrastive learning and data augmentation. A challenging procedure
to apply contrastive learning in recommendation is to compose positive and neg-
ative pairs. We create a user-item bipartite graph and generate correlated views
for each node, whether a user or an item, with its neighbor nodes under different
behavior types by incorporating adaptive data augmentation techniques such
as node drop. This approach intentionally reduces the impact of popular nodes
while preserving isolated node information, mitigating popularity bias. These
generated views are then input into the backbone model, treating views from
the same node as positive pairs and views from different nodes as negative pairs.
Furthermore, building upon recent work [36] on adaptive edge and node drop-
ping, we adopt the idea of principle. This principle encourages representations
to capture only the necessary information for the downstream task, minimiz-
ing mutual information between the original graph and generated views while
maintaining recommendation performance.
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To estimate mutual information between augmentation views, which encom-
passes both user and item perspectives, we utilize negative InfoNCE, as sug-
gested by [8, 21], which is equivalent to maximizing the lower bound of mutual
information. We formally define our contrastive loss for representations as:

LCLu = − log
exp (s(u′

i, u
′′
i )/τ)∑k

i′ exp (s(u
′
i, u

′′
i′)/τ)

,LCLp
= − log

exp (s(p′j , p
′′
j )/τ)∑n

j′ exp (s(p
′
j , p

′′
j′)/τ)

(10)

where LCLu
and LCLp

are contrastive loss for user and item,respectively. s(·)
denotes the cosine similarity function, and τ is the tunable temperature hyper-
parameter to adjust the scale for softmax. (u′

i, u
′′
i ) and (u′

i, u
′′
i′) are positive and

negative user pairs, respectively. Similarly, (p′j , p
′′
j ) and (p′j , p

′′
j′) are positive and

negative item pairs, respectively.
Formally, we incorporate the contrastive loss into our training schema as:

LTotal = LRec + α ∗ LCTR + β ∗ (LCLu + LCLp) (11)

, where α and β are hyperparameters controlling the effect of auxiliary tasks.

Inference. At the inference stage, we estimate the causal effect of the user-item
pair with Eq. 6 and adopt a fusion strategy:

P (y|u, do(p)) =
∑
m

P (m|u, p)
′∑
p

P (p′)P (y|u, p′,m)

=
∑
m

f1(u, p) ∗
∑
p′

f2(u, p
′,m)P (p′)

=
∑
m

f1(u, p)f
′
2(u,m)

∑
p′

f ′′
2 (u, p

′)P (p′)

∝
∑
m

f1(u, p)f
′
2(u,m)

∑
p′

f ′′
2 (u, p

′)

(12)

Notice that
∑

p′ f ′′
2 (u, p

′) is a constant value given u that can be omitted,
thus Eq. 12 reduces to P (y|u, do(p)) =

∑
m f1(u, p)f

′
2(u,m)

3.3 Two Assumptions in Our Framework

In our proposed framework, we make two assumptions: Firstly, we focus on
confounders positioned between users’ click and like/purchase behaviors, such
as item quality in the KuaiRec dataset(one of three datasets that we used), which
encompasses various aspects, including resolution, content, and interestingness.
Essentially, our introduced mediator remains independent of the influence of
these confounders. Second, we acknowledge that confounders may affect auxiliary
behaviors to varying degrees, but we simplify this assumption in our initial
attempt to address confounder effects in multi-behavior recommendation, as
articulated above. In future research, we will explore the impact of different
confounders on various behaviors, which is beyond our current scope.
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Table 1: Statistics of datasets.

Dataset |Users| |Items| |Clicks| | Likes/Purchases| Overall
Density(%)

Duration

Fliggy 2,730,201 104,342 32,444,647 1,160,723 0.01% 6 month
KuaiRec 7,176 10,729 12,530,806 1,124,378 17% 2 month
Adressa 31,123 4,895 1,437,540 998,612 1.59% 1 week

4 Empirical Study

4.1 Experimental Setup

Datasets. We evaluate all models on three public benchmark datasets collected
from three real-world systems:

• Fliggy Dataset [28] is extracted from users’ behavior logs at Fliggy in 2021,
a prominent Chinese online travel portal Among various user behaviors, we
only use click and buy to keep consistency with the other datasets.

• KuaiRec Dataset [5] is a dataset collected from the logs of the Kuaishou
video-sharing mobile app. It features a “fully observed” user-item interaction
matrix, minimizing missing values as each user has interacted with every
video and provided feedback. Given the absence of explicit “like” behavior,
we adopt the approach outlined in [5], considering a click with a watch-ratio
= play-duration/video-duration > 2 as “like” behavior.

• Adressa Dataset [6] is a news dataset. Following the prior study [13], we treat
a click with dwell time > 30 seconds as “like” behavior.

The detailed information about the datasets is presented in Table 1.

Evaluation Protocol and Metrics. For data preprocessing, we adopted a
popular k-core preprocessing step [9] (with k=5), filtering out users and items
with less than 5 interactions.

Following the prior works [17, 30], each dataset is sorted by timestamp, and
split to train/valid/test sets with corresponding 70%/10%/20% proportions. We
used the same split for our model and baselines for a fair comparison. For eval-
uation, we followed [34,38] to sample 1,000 unobserved items, with which a user
did not interact before a specific target behavior, considering them as negative
items. Finally, we used them along with all positive items in the test set. We
adopted Recall and NDCG as evaluation metrics.

Compared baselines. We compared our proposed model with nine state-of-
the-art recommendation models as follows:

• MF-BPR [24]: MF-BPR is a widely-used collaborative filtering baseline
optimized by Bayesian personalized ranking (BPR) loss.

• LightGCN [10]: It is a graph neural network model that simplifies the orig-
inal design of GCN so that it can fit better to recommendation applications.

• IPW [27]: It adds the standard Inverse Propensity Weight to reweight sam-
ples to alleviate item popularity bias.
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• Multi-DR [42]: It uses Multi-task Inverse Propensity Weighting (Multi-
IPW) estimator and Multi-task Doubly Robust (Multi-DR) estimator to
mitigate selection bias and data sparsity in multi-behavior recommendation.

• MACR [37]: It is model-agnostic using a counterfactual reasoning method
for eliminating popularity bias.

• CR [33]: It is a counterfactual inference-based method that addresses the
clickbait issue. CR aims to capture unbiased user preferences without using
like feedback. We use code released by the authors for implementation, using
MMGCN as backbone. We use code released by the authors to reimplement
experiments, where CR is also implemented based on MMGCN and takes
exposure features as input.

• PDA [43]: It is a state-of-the-art method that performs de-confounded train-
ing while intervening the popularity bias during model inference. The authors
provide two versions, where PD directly uses matching score for recommenda-
tion and PDA leverages predicted item popularity score in recommendation.
We adopt the popularity-adjusted version in our work.

• RD-DR [4] accounts for the effect of unmeasured confounders on propensi-
ties, under the mild assumption that the effect is bounded.

• HCR [47] propose to leverages front-door adjustment to decompose the
causal effect into two partial effects, which are independent from the hid-
den confounder and identifiable.

4.2 Implementation Details

We thoroughly tuned the baselines’ hyperparameters to achieve optimal perfor-
mance on the validation set. Early-stop training strategy was applied based on
Recall@20 and NDCG@20 on the validation set with a patience of 20 epochs. We
performed a grid search of the latent dimension size in the range of {16, 32, 64, 128},
the regularization weights (λΦ and λΘ) in the range of {0.00001, 0.0001, 0.001, 0.01},
and the learning rate in the range of {0.01, 0.005, 0.001, 0.0005, 0.0001}. We train
all models with Adam optimizer [14]. After performing hyperparameter search,
the learning rate was set to 0.0005, the batch size was set to 1024, and the size
of the latent factor was set to 128. We tune the hyperparameters α and β in the
range of {0.2, 0.4, 0.6,0.8} and ensures that α+β = 1. The optimal combination
of loss weight achieved with the combination of (CTR loss, CL loss) = (0.6, 0.4),
indicating the importance of both auxiliary tasks.

4.3 Overall Performance and Ablation Study

The recommendation performance of baselines and our model is shown in Table
2. Among all baselines, bias-aware baselines perform better than conventional
baselines in general. Remarkably, our MDCCL consistently outperformed all
baselines in all three datasets. We underlined the best baseline. On average,
our proposed model improved 9.72% at Recall@10 and 6.72% at NDCG@10
compared with the best baseline. A similar trend also appears at Top-20.
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Table 2: Overall performance at top-10 on three real-world datasets. The best
performance is in bold, the best baseline result is underlined. The last column
shows relative improvement of our MDCCL over the best baseline.

MF LightGCN IPW Multi-DR MACR CR PDA RD-DR HCR MDCCL Imp. %

KuaiRec
Recall@10 0.0054 0.0142 0.0108 0.0145 0.0239 0.0298 0.0264 0.0279 0.0312 0.0332 6.41%

NDCG@10 0.0041 0.0113 0.0077 0.0127 0.0142 0.0279 0.0231 0.0261 0.0301 0.0320 6.31%

Adressa
Recall@10 0.0642 0.1034 0.0804 0.0919 0.124 0.1452 0.1021 0.1399 0.1573 0.1771 12.58%

NDCG@10 0.0453 0.0794 0.0663 0.0817 0.1074 0.1078 0.0997 0.1126 0.1176 0.1246 5.95%

Fliggy
Recall@10 0.3712 0.3951 0.3862 0.4011 0.4295 0.4077 0.4023 0.4277 0.4261 0.4732 10.17%

NDCG@10 0.1807 0.2077 0.1974 0.2115 0.2459 0.243 0.2015 0.2391 0.2442 0.2653 7.89%

Table 3: Ablation analysis.

KuaiRec Adressa Fliggy

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

MDCCL 0.0332 0.032 0.1771 0.1246 0.4732 0.2653

MDCCL w/o MB 0.0242 0.0217 0.1154 0.0832 0.4153 0.2273

MDCCL w/o CL 0.0295 0.0274 0.1477 0.0944 0.4425 0.2346

MDCCL w/o DA 0.0301 0.0293 0.1582 0.1021 0.4593 0.2395

LightGCN(Backbone model) 0.0142 0.0113 0.1034 0.0794 0.3951 0.2077

We observe that both IPW-based methods (IPW, Multi-DR) perform worse
than other causal recommender models (MACR, CR, PDA, RD-DR, HCR). We
postulate that this line of methods heavily relies on estimating a proper propen-
sity score, which is non-trivial and typically suffers from high variance.Multi-DR,
which augmented its architecture with an additional imputation model for ro-
bustness achieves better results. The counterfactual world constructed byMACR
directly removes all natural direct effect from both the user-side and item-side
regardless of whether it is harmful or not, which leads to its compromised ac-
curacy. PDA models users’ interest drift across time for bias adjustment, and
turns to be effective for debiasing. CR achieves a competitive performance in
most cases indicating that the clickbait issue has been a serious obstacle to
produce accurate recommendation. RD-DR and HCR achieve impressive results
indicating that hidden confounders impact on the recommendation quality.

To verify the effectiveness of each design in our framework, we developed
three variants and summarize results in Table 3:

• MDCCL w/o contrastive learning (CL): We remove the contrastive
learning while keeping deconfounded recommendation framework intact.

• MDCCL w/o data augmentation (DA): We use original subgraphs in
contrastive learning without applying any data augmentation.

• MDCCL w/o multi-behavior modeling (MB): We set the α to 0, which
disables auxiliary behavior modeling f1(u, p) – CTR – branch while keeping
contrastive learning as an auxiliary task.
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Fig. 5: Recall@10 at Adressa dataset grouped by popularity.

We can observe that the aforementioned designs all contribute positively
to our proposed MDCCL, however, the importance varies greatly. Data aug-
mentation (DA) contributes the least and degrades performance in one case. It
makes sense because DA neither removes confounding features nor changes the
modeling process, so inappropriate data augmentation may introduce noise and
thus negatively affects the model prediction. Contrastive learning helps to fur-
ther differentiate between similar items and learn more robust representations.
Multi-behavior modeling makes the most contribution as it is the key component
of the debiasing strategy in our proposed framework. The performance in Table
3 further proves the effectiveness of our proposed MDCCL.

4.4 Debiasing Effect

We analyze the effectiveness of our model against biases via mitigating the im-
pact of hidden confounders. In particular, as exemplars/case studies, we mainly
show effectiveness of our model against popularity bias and exposure bias. How-
ever, the effectiveness is not limited to these two biases because our work focused
on the hidden confounders.

Popularity bias. We gauge popularity of each item using Di/Dtotal, where
Di denotes the number of interactions an item involved, and Dtotal is the to-
tal interactions in each training set. Sorting items by popularity, we split the
dataset into three subsets: unpopular, mid-pop, and popular, ensuring equal
total popularity across subsets (Fig. 5). We evaluate Recall@10 by item popu-
larity, expecting similar performance since the sum of popularity in each subset
is equal. Remarkably, MDCCL consistently outperforms or competes well across
all datasets, mitigating popularity bias effectively. Due to space constraints, we
visualize the Adressa dataset only. In summary, all models excel on the popu-
lar subset, but conventional recommender LightGCN performs much worse on
the unpopular subset compared to our model, which excels consistently in all
subsets, indicating effective popularity bias mitigation.

Exposure bias. In this experiment, we assess pretrained models under a test
set without exposure bias. Fortunately, [5] provides a fully observed KuaiRec



ALLEV. CONFOUNDING W/ CONTRASTIVE LEARNING 13

Table 4: Performance of models on a test set without exposure bias.
LightGCN IPW Multi-DR MACR CR PDA RD-DR HCR MDCCL Imp. %

KuaiRec
(no exposure bias)

Recall@10 0.0119 0.0105 0.0145 0.0272 0.031 0.0262 0.0316 0.0311 0.0335 6.01%

NDCG@10 0.0092 0.0072 0.0121 0.0154 0.0291 0.0225 0.029 0.0294 0.0312 6.12%

small matrix for testing, ensuring over a 99% exposure rate. It’s important to
note that there is no interaction overlap between the KuaiRec training and vali-
dation sets, and this test set. The experiment results in Table 4 demonstrate our
model’s continued superiority over baselines. This indicates the model’s capac-
ity to mitigate exposure bias influence and bolster recommendation robustness,
although our model was training on data with various biases beyond exposure
bias and did not exclusively focus on exposure bias.

5 Related Work
Researchers have addressed bias through methods like debiasing techniques. To
name a few, [3] categorized common biases into seven types, with selection
bias [12, 27], exposure bias [18, 20, 22, 48] , and popularity bias [37, 43, 44, 46]
being the most discussed. Existing approaches have either relied on heuristic
rules [1,16,26] or have been sensitive to pseudo-labels for data imputation [25,35].
To mitigate bias in recommendation, IPS-based approaches [7, 27, 35], often
combined with data imputation, were proposed and became popular. However,
improper propensity scores can lead to inaccuracies and high variance. More
recently, causality-based methods have been introduced to provide more accu-
rate and explainable solutions. [39, 43] involved causal intervention to remove
bias factors from inference via do− calculus. Knowledge distillation methods [2]
train a teacher model on the uniform dataset and then use it to guide the base
model trained on biased dataset. Counterfactual-based methods [33, 37] esti-
mated causal effects by comparing the factual world with the counterfactual
world, targeting different confounding features. Unlike the prior works, we have
proposed leveraging a pre-like behavior such as click an item as the mediator to
mitigate the bias effects caused by confounders in recommendation systems.

6 Conclusion
In this paper, we analyze confounding effect in recommender systems from the
perspective of causal graph. Considering confounders in real-world scenarios are
much more complex than assumptions in existing work. Therefore, we propose
to utilize users’ prior feedback as mediator and apply the front-door adjustment
to free the influence of unobserved confounders from inference. Further, we de-
velop an auxiliary contrastive learning task to ensure the robustness of learned
representation. Extensive experiments prove the effectiveness of our model in
both accuracy and estimating confounding effects.
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