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ABSTRACT

Neural audio codecs have recently emerged as powerful tools for high-quality and
low-bitrate audio compression, leveraging deep generative models to learn latent
representations of audio signals. However, existing approaches either rely on a
single quantizer that only processes speech tasks, or on multiple quantizers that
are not well suited for downstream tasks. To address this issue, we propose Mel-
Cap, a high-fidelity neural codec with a single codebook. By decomposing audio
reconstruction into two stages, our method preserves more acoustic details than
previous single-codebook approaches, while achieving performance comparable
to mainstream multi-codebook methods. In the first stage, audio is transformed
into mel-spectrograms, which are compressed in the image domain and quantized
into compact single tokens using a 2D tokenizer. A perceptual loss is further ap-
plied to mitigate the over-smoothing artifacts observed in spectrogram reconstruc-
tion. In the second stage, a Vocoder recovers waveforms from the mel discrete
tokens in a single forward pass, enabling real-time decoding. Both objective and
subjective evaluations demonstrate that MelCap achieves quality on comparable
to state-of-the-art multi-codebook codecs, while retaining the computational sim-
plicity of a single-codebook design, thereby providing an effective representation
for downstream tasks. Demos are available at here1.

1 INTRODUCTION

Discrete audio tokens generated by neural audio codecs compress continuous audio signals into a
compact discrete space while preserving perceptual quality and semantic content Mousavi et al.
(2025), enabling reduced storage requirements and faster transmission than continuous embed-
dings Theis et al. (2017). These tokens serve as an efficient and flexible interface for downstream
tasks such as Automatic Speech Recognition (ASR) Radford et al. (2022) Hsu et al. (2021), Text-
To-Speech generation (TTS) Peng et al. (2024) Du et al. (2024), music generation Yang et al.
(2024), and so on. Audio codecs typically consists of an encoder-quantizer-decoder structure to en-
code, where the encoder transforms the input waveform into a continuous representation Langman
et al. (2025), The quantizer then maps this continuous representation to a discrete code from a code-
book. Finally, the decoder reconstructs the original waveform from the selected code Agustsson
et al. (2017). Compression is achieved when the number of bits used to represent the code is smaller
than that required for the original audio signal Yang et al. (2020).

Based on the number of quantizers used, quantization method of codecs can be broadly catego-
rized into two types: multiple stage vector quantization Juang & Gray (1982) and single vector
quantization (SVQ). Audio codecs, such as SoundStream Zeghidour et al. (2021), most commonly
use residual vector quantizer (RVQ) for quantization. With iterative residual refinement, the mul-
tiple stage vector quantizer can decrease loss of information. Multi-codebook codecs depend on
multi-sequence prediction, which reduces efficiency and robustness Li et al. (2024). Single vec-
tor quantization is simpler and particularly useful for downstream generation tasks such as acoustic
language models Ye et al. (2025). Recent work such as WavTokenizer Ye et al. (2024) investigates
speech compression using a single codebook. However, existing single quantizer approaches do not
take into account more complicated audio signals such as music and environmental sounds.

1https://anonymous.4open.science/r/Mel_cap_demo-49EF
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Figure 1: Loss of high-frequency (above 20k Hz) detail in a waveform-based codec. Left: spec-
trogram of result from a waveform-based codec using 4 quantizers. Right: ground truth (GT).
Noticeable differences exist in the high-frequency Mel spectra, resulting in poor reconstruction of
high-frequency components, the bright ringing sound in the original sound.

Neural audio codecs can also be categorized into two types based on the representation they
compress: waveform-based and spectral-based approaches. In waveform-based neural codecs,
waveforms are directly passed to the encoder. Waveform tokens are typically learned using en-
coder–decoder architecture trained to reconstruct the waveform Mousavi et al. (2025). EnCodec
Défossez et al. (2022) extends this architecture with a multi-scale STFT discriminator, which help
reduce artifacts and produces high-quality samples. DAC Kumar et al. (2023) improves this frame-
work by introducing multiscale mel reconstruction loss, which better captures details and thus im-
proves audio quality. SNAC Siuzdak et al. (2024) extends Residual Vector Quantization (RVQ) to
multiple temporal resolutions, resulting in more efficient compression.

However, waveform-based approaches still require large model capacity and a greater number of
quantizers to capture fine frequency detail accurately seen in Figure 1, which is incompatible with
our single-codebook objective. Spectral-based approaches solve this problem by transforming the
waveform into the spectral domain, which provides a more effecient representation and allows the
model to better capture fine-grained frequency details. Recent works such as APCodec Ai et al.
(2024) jointly models amplitude and phase spectra with residual vector quantization and GAN-based
training, enabling high-quality 48 kHz audio reconstruction. However, the instability of Generative
Adversarial Network (GAN) training hinder the model’s capacity to faithfully reconstruct the input
audio, particularly subtle frequency details and original phase Wu et al. (2024).

To address the aforementioned challenge, this paper proposed a novel audio codec based on mel-
spectrogram, which is a compact representation that can compresses complex audio signals into a
single codebook. There are three main contributions of our method. First, this codec incorporates
perceptual loss into mel-spectrogram reconstruction to alleviate the over-smoothing problem, and
further relates it to the feature matching loss used in traditional GAN-based codecs. Second, we
use a two-stage training framework to train Vector Quantized-Variational AutoEncoder (VQ-VAE)
and GAN-based Vocoder separately, which leads to better GAN training stability and audio quality.
Third, this codec aims to encode high-sampling-rate audio (e.g., 44 kHz) using a single quantizer
layer, thus meeting the requirements of downstream generation tasks.

2 RELATED WORK

2.1 2D TRANSFORMER TOKENIZER

Discrete audio tokenizers often compress audio into a latent one-dimensional representation, which
is then quantized into a sequence of discrete tokens. This process is accomplished by compressing
the audio along the temporal dimension, so it is defined as a 1D tokenizer. A 2D tokenizer com-
presses audio in both time and frequency dimensions (typically operating on spectrograms), and
then transforms the compressed representation into a sequence of discrete tokens. Many works on
2D tokenizers have been explored in the image domain Yu et al. (2024). VQ-VAE Yang et al.
(2020) first introduced vector quantization in the latent space of VAEs to map images, audio, and
video into discrete values. Vector Quantized Generative Adversarial Network (VQGAN) Esser et al.
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Figure 2: Comparison of reconstructed log-mel spectrograms trained with different loss. The bottom
row shows a zoomed-in view, highlighting the differences in smoothness and spectral sharpness.

(2021) extended this by adding perceptual and adversarial losses to better capture detail infermation.
ViT-GAN further replaced convolutions with ViT Transformers Dosovitskiy et al. (2021). In this
paper, we assume that the latent space of audio should preserve a 2D structure, maintaining an ex-
plicit alignment between time and frequency. Building on the structure of powerful 2D Transformer
tokenizers NVIDIA et al. (2025), we fully explore compact 2D representations for audio.

2.2 VOCODER

Neural vocoders are neural network models that converts intermediate representations, such as mel-
spectrograms, into high-fidelity audio Jiao et al. (2021). Autoregressive models had long been
the best-performing vocoders. WaveNet van den Oord et al. (2016), for instance, uses the mel-
spectrogram as a local condition. However, its requirement for sequential (sample-by-sample) gen-
eration limits streaming efficiency. GAN-based models are capable of generating speech from mel-
spectrogram efficiently Kong et al. (2020). Since low latency is a key property for a good codec, we
build our model on Vocos Siuzdak (2024). Vocos is a fast neural GAN-based vocoder designed to
reconstruct audio from mel-spectrogram through inverse Fourier transform.

3 METHODS

GAN-based end-to-end codecs require dedicated discriminators and multiple codenooks to improve
the waveform details, high-frequency components, and phase synchronization, but training these
discriminators is time-consuming and convergence is often slow Wu et al. (2023). Consequently,
we propose a two-stage codec, where the first stage focuses on mel-spectrogram reconstruction with
metric losses, and the second stage incorporates a discriminator to recover high-fidelity waveform
from mel discrete tokens. This architecture significantly improves training efficiency, enabling our
second-stage model to converge within only 50 epochs.

3.1 LOG-MEL SPECTROGRAM

One efficient way to extract spectral features from an audio signal is through the Short-Time Fourier
Transform (STFT). Given an input signal x[n] with length T, Xt[k], the STFT coefficient for the k-th
frequency bin and the t-th time frame, denoted as xt[k]. To better connect with the human sound
perception, the frequency axis of the spectrogram can be mapped onto the Mel scale using a filter
bank. This result is known as Mel spectrogram. Finally, the logarithm of the Mel spectrogram is
taken to limit the range of values. The log-Mel spectrogram coefficient for the k-th frequency bin
and the t-th time frame is given by:

LMSt[m]
0≤m≤M−1

= log

N−1∑
k=0

Hm[k] ·

∣∣∣∣∣
N−1∑
n=0

x[n]w[n− tH] e−j2πkn/N

∣∣∣∣∣
2
 . (1)

where Hm[k] is the kth coefficient for the mth filter bank 200 (2001), w[n] is the window function
(e.g., Hamming window), H is the hop size, and N is the total number of frequency bins.
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Figure 3: Training paradigm of MelCap.

The total number of filter banks, denoted as M, determines the frequency resolution of the resulting
Mel spectrogram. To preserve high-frequency details, the number of Mel filter banks M should be
chosen sufficiently large, i.e., not less than 96.

3.2 FIRST STAGE: MEL-SPECTRALGRAM RECONSTRUCTION

In the first stage, we compress audio into discrete tokens and then reconstruct the mel-spectrogram
from these tokens. For convenience, we adopt the log-mel representation mentioned in equation 1,
which helps constrain the value range. Our method builds on the Cosmos tokenizer NVIDIA et al.
(2025) as the foundational encoder–decoder. We optimize with the L1 loss applied on the log Mel-
spectrograms, which minimizes the element-wise difference between the input and reconstructed
spectrograms:

LMel =
1

T ·M

T−1∑
t=0

M−1∑
m=0

∥∥∥St,m − Ŝt,m

∥∥∥
1
, (2)

where St,m and Ŝt,m denote the value of the input and reconstructed Mel-spectrogram, respectively,
at the t-th time frame and the m-th Mel frequency bin. Using only a reconstruction loss can lead to
overly smooth reconstructed Mel-spectrograms, as shown in Figure 2. This oversmoothness nega-
tively affects downstream generation tasks such as TTS, causing the synthesized waveform to sound
muffled and unnatural Sheng & Pavlovskiy (2018). In order to obtain a more detailed Mel spectro-
gram, we employ perceptual loss based on the VGG-19 features, given by Simonyan & Zisserman
(2015). We provide a theoretical justification for the perceptual loss on mel-spectrograms and the
feature matching loss used when training generator of the vocoder in the appendix A.5.
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LPerceptual =
1

L

L∑
l=1

∑
t

αl

∥∥∥VGGl(Ŝ)−VGGl(S)
∥∥∥
1
, (3)

where VGGl(·) ∈ RT×M×C denotes the feature maps extracted from the l-th layer of a pre-trained
VGG-19 network, L is the number of layers considered, and αl is the weight assigned to the l-th
layer. To further enhance fine details, we fine-tune the tokenizer using a Gram-matrix loss Gatys
et al. (2016), which emphasizes sharper structures.

LGram =
1

L

L∑
l=1

∑
t

αl

∥∥∥GMl(Ŝ)−GMl(S)
∥∥∥
1
, (4)

3.3 SECOND STAGE: FROM MEL-SPECTROGRAM TOKENS TO WAVEFORM

Neural vocoders are primarily designed to recover audio waveforms from mel-spectrogram rep-
resentations Siuzdak (2024). In contrast, our goal is to reconstruct audio waveforms from the
mel-spectrogram discrete tokens obtained in the first stage, rather than from the ground-truth mel-
spectrograms. Usage of these codes as input to the vocoder has advantage: it help stabilize GAN
training in the second stage. Given that the first stage employs a VQ-VAE, the resulting mel-
spectrograms contain reconstruction errors. As we have theoretically shown, the mapping from
a continuous high-dimensional mel-spectrogram to a finite discrete codebook introduces a upper
bound on the propagated error. Because the codes are discrete and belong to a finite codebook,
the propagated errors are strictly bounded, preventing extreme deviations and ensuring more robust
waveform recovery. By contrast, mel-spectrograms live in a continuous space, where errors cannot
be strictly bounded, making the waveform recovery more sensitive to small perturbations.

3.3.1 ANALYSIS: BOUNDED ERROR OF DISCRETE CODES

Assumption 3.1 (Discrete Code Quantization). Let s denote the original mel-spectrogram and c ∈ C
be the discrete token obtained from a VQ-VAE encoder E, where C is a finite codebook. We assume
that the quantization error due to mapping s to any code c in codebook is bounded:

∥cn − s∥ ≤ ∥c− s∥ ≤ ∥cf − s∥ = ∆,

where cf denotes the farthest code, and cn denotes the nearest code, ∆ depends on the size and
codebook dimension.

Let w denote the waveform reconstructed in the second stage via a neural vocoder f . Then the
reconstruction is

w = f(c).

Lemma 3.2 (Lipschitz Bound). If f is locally Lipschitz continuous with constant L, then

∥f(c1)− f(c2)∥ ≤ L∥c1 − c2∥,

Theorem 3.3 (Bounded Waveform Error). Combining Lemma 3.1 and Lemma 3.2, the error in the
reconstructed waveform due to discrete code quantization is bounded:

∥w − f(s)∥ = ∥f(c)− f(s)∥ ≤ L∥c− s∥ ≤ L∆.

Thus, the propagated error from the first-stage discrete token to the final waveform reconstruction
is strictly bounded.

Assuming that the neural vocoder f is L-Lipschitz continuous, the error propagated to the wave-
form w can be bounded by L∆. (The vocoder is a composition of convolution network, activation
function and ISTFT; a proof that ISTFT is Lipschitz is given in Appendix A.6.)

3.3.2 MODEL ARCHITECTURE

The theoretical analyse provides guidance for vocoder architecture design. For example, in the gen-
erator we choose to use the Snake activation function instead of Leaky ReLU. The Snake activation

5
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helps maintain Lipschitz continuity of the vocoder network, as its derivative is bounded by a con-
stant of 1 Ng et al. (2025). Consequently, using Snake can help control the Lipschitz constant L
of the vocoder network, limiting the impact of errors from the first-stage mel-spectrogram. Also,
in the discriminator we choose to use spectral normalization Miyato et al. (2018) instead of batch
normalization, which is designed to guarantee Lipschitz continuity in discriminator.

3.3.3 TRAINING OBJECTIVES

Following the Vocos framework, our second-stage training objective consists of two key compo-
nents: (i) fine-tuning the decoder from the first stage to better align the latent codes with acoustic
features, and (ii) training a vocoder that translates mel-spectral codes into time-domain waveforms.
To achieve this objective, we employ a combination of loss functions.

Reconstruction Loss. Reconstruction loss refers to the L1 distance between the mel-scaled magni-
tude spectrograms of the ground-truth waveform and the generated waveform Kong et al. (2020).
Unlike Yang et al. (2023) that uses 80 mel-spectrogram bins, our setup constrains the number of
bins to be no smaller than the mel-spectrogram resolution defined in the first stage, which is 96
mel-spectrogram bins for music and environment sound. This ensures consistency between the first
stage and second stage, preventing the loss of high-frequency details when training second stage.

Feature Matching Loss. Feature matching loss measures the learned similarity between a real and
generated sample via discriminator features Larsen et al. (2016), Kumar et al. (2019) Hifi-GAN
Kong et al. (2020) first used it as an additional loss to train the generator of vocoder. In our case,
feature matching is used to reduce over-smoothing, serving a similar role as the VGG loss applied
in the first stage. Unlike the original setting in Hifi-GAN, where the feature matching loss weight is
2, we increase it to 5.

Adversarial Loss. We employ two discriminators—a multi-resolution discriminator (MRD) Kumar
et al. (2023) and a multi-period discriminator (MPD)—to enhance perceptual quality via adversarial
learning Zeghidour et al. (2021).

4 RESULTS

Reconstruct waveform from discrete tokens has become a fundamental task for audio codecs. In this
section, we assess the performance of method relative to established baseline codecs.

DataSets. The first-version model is trained on the AudioSet dataset, using the entire training subset
(bal train). The AudioSet covers a wide range of sounds, including human and animal vocalizations,
musical instruments and genres, as well as common everyday environmental noises. We train a
second version adding speech dataset hq-conversations. All audio files are kept at their original
sampling rate of 44 kHz. For each audio sample, mel-scaled spectrograms are computed with the
following parameters: FFT size nfft=1024, hop size hopn =256, and 96 Mel bins.

Training Details. In the first stage, we train the mel-spectrogram tokenizer using a combination
of L1 reconstruction loss, quantization loss, and perceptual loss until convergence. Afterward, we
replace the perceptual loss with a Gram-matrix loss to fine-tune the model, continuing training until
convergence. During training, samples are randomly cropped to 24,320 samples, yielding a mel-
spectrogram resolution of 96 × 96. We also train a vocoder using ground-truth mel-spectrograms as
reference to evaluate the effect of different loss terms. In the second stage, the encoder and quantizer
parameters are frozen. We jointly train the tokenizer decoder, vocoder, and discriminator.

Baseline Methods. Our proposed model is compared against DAC Kumar et al. (2023),
SNAC Siuzdak et al. (2024), Mel Codec Langman et al. (2025), NVIDIA NeMo Audio Codec
and WavTokenizer Ji et al. (2025). For all baselines, we use the officially released pretrained check-
points— the 24kHz version for wavTokenizer and 44 kHz versions for other methods, which are
publicly available online.

4.1 EVALUATION

We evaluate our models using four primary objective metrics, VISQOL, LSD, Mel Distance, STFT
Distance, and two additional reference metrics, UTMOS and V/UV F1. The primary metrics assess
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spectral and perceptual fidelity, while the reference metrics are included for informational purposes,
as they are designed for speech and may be less reliable in general audio tests.

VISQOL. ViSQOL is an objective perceptual audio quality metric that compares reference and
degraded audio signals to produce scores correlated with human listening judgments. In this work,
we use audio mode, which operates on fullband audio at 48 kHz.

LSD. Log-Spectral Distance (LSD) is a widely used objective metric that measures the difference
between the log-magnitude spectra of reference and synthesized audio, providing an indication of
spectral distortion and overall reconstruction fidelity.

Mel Distance. L1 distance between the mel-scaled magnitude spectrograms of the ground truth and
the generated sample.

STFT Distance. L1 distance between time-frequency representations of the ground truth and the
prediction, computed using multiscale Short-Time Fourier Transform (STFT).

UTMOS. UTMOS is an automatic mean opinion score (MOS) prediction system that estimates
perceptual audio quality and correlates highly with human judgments at sampling rate 16k. However,
since we focus on high-frequency details, this 16kHz sampling rate makes UTMOS less suitable for
our evaluation.

V/UV F1. F1 measures the classification accuracy of voiced and unvoiced segments. Since AudioSet
contains diverse sound categories beyond speech, this metric—originally designed for speech—is
only indicative in our setting.

4.2 ABLATION EXPERIMENT RESULT FOR MEL-SPECTROGRAM RECONSTRUCTION

To investigate the impact of different loss functions used in first stage on the perceptual quality of
the generated audio, we conduct an ablation study using a fixed pretrained vocoder. Specifically,
we compare three training settings: (1) using only the reconstruction loss, (2) using reconstruction
loss combined with VGG loss, and (3) using reconstruction loss, VGG loss, and an additional Gram
matrix (GM) loss. This study allows us to analyze how each component contributes to perceptual
fidelity.

Table 1: Comparison of different loss terms used in the first stage. MAE denotes the element-wise
L1 difference between the input and output mel-spectrograms after the first stage.

Loss terms MAE↓ VISQOL↑ LSD↓ STFT
Dis ↓ Mel

Dis↓ F1↑ UTMOS↑

Reconstruction Loss 0.26 4.36 0.67 1.68 0.48 0.58 1.31
+ VGG loss 0.31 4.26 0.64 1.68 0.50 0.63 1.31
+ GM loss 0.41 4.24 0.67 1.73 0.58 0.61 1.31

Table 1 compares different loss terms used in the first stage. While adding GM loss reduces the
over-smoothing of the reconstructed spectrogram, it introduces artifacts, leading to worse overall
metrics. Therefore, we choose not to use GM loss in our final model.

4.3 AUDIO RECONSTRUCTION

In the second stage, we use the mel-spectrogram tokens obtained from the first stage as input. Af-
ter training the second stage, our final results are obtained from the jointly optimized decoder and
vocoder. Our evaluation, conducted on the AudioSet test set and detailed in 2. The result shows
that Mel Cap with VGG loss achieves competitive perceptual quality (VISQOL 4.29) while using
only a single codebook. It also obtains the best fidelity metrics (lowest LSD and Mel Distance),
outperforming its non-VGG variant, single-codebook baseline and multi-codebook baselines. This
demonstrates that incorporating VGG loss effectively mitigates over-smoothing and enhances spec-
tral reconstruction , which is beneficial for training in second stage.

Subject Evaluation. We conducted a MUSHRA-style listening test to evaluate the perceptual
quality of the generated audio. A total of 15 participants were recruited for the experiment. Each

7
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Table 2: Objective evaluation metrics for different codecs.

Codec Codebook
Number

Token
Rate Visqol↑ LSD↓ STFT

Dis ↓ Mel
Dis↓ F1↑ UTMOS↑

DAC 9 774 4.46 0.67 1.77 0.65 0.87 1.31
Mel Codec 9 672 4.04 0.90 2.77 0.96 0.64 1.30
Nvidia Codec 9 672 4.05 0.89 2.81 0.96 0.82 1.30
SNAC 4 240 4.35 0.68 1.69 0.68 0.76 1.31
DAC(s) 4 344 4.15 0.80 2.54 0.95 0.78 1.31
WaveTokenizer 1 75 4.20 0.71 2.30 0.76 0.65 1.31
Mel Cap w/o vgg 1 260 4.18 0.76 1.87 0.57 0.52 1.31
Mel Cap w/ vgg 1 260 4.29 0.66 1.90 0.56 0.63 1.31

Figure 4: Subjective evaluation metrics calculated for different codecs. Points closer to the top-left
indicate that better perceptual quality is achieved using fewer tokens, corresponding to better codec
performance.

participant was presented with 30 randomly selected audio samples drawn from a diverse set of test
cases including music, speech, and general sounds. For each trial, participants were asked to rate
the audio samples on a continuous quality scale, following the MUSHRA protocol. After the test,
we aggregated the ratings across all participants and samples to obtain the final statistical results.
The subjective evaluation indicates that Mel Cap achieves perceptual quality comparable to other
multi-codec approaches.

Table 3: Objective quality on the Music dataset. Best/second-best are marked in bold/underlined.

Codec Codebook
Num.

Token
Rate VISQOL↑ LSD↓ STFT

Dis ↓ Mel
Dis↓ F1↑ UTMOS↑

DAC 9 774 4.20 0.96 2.29 0.41 0.89 1.31
Mel Codec 9 672 4.31 1.14 2.80 0.55 0.82 1.31
Nvidia Codec 9 672 3.94 1.14 2.83 0.50 0.83 1.30
SNAC 4 240 4.06 1.15 3.09 0.64 0.71 1.30
DAC(s) 4 240 3.78 1.32 3.08 0.64 0.83 1.31
WaveTokenizer 1 75 2.94 1.49 3.74 0.85 0.68 1.32
Mel Cap 1 260 3.97 1.01 2.70 0.40 0.61 1.32

A key property of a codec is its ability to compress and reconstruct unseen data. After augmenting
the training set with hq-conversations Magic Data (2024), we tested the model on unseen music data.
The results, as reported in Table 3, demonstrate that our codec generalizes well beyond AudioSet
and maintains competitive perceptual and spectral quality in out-of-distribution data.
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Figure 5: Mel-spectrogram comparison of original and reconstructed waveforms produced by differ-
ent codecs. (a) Ground-truth; (b) DAC; (c) Mel Codec; (d) Nvidia Codec; (e) SNAC; (f) DAC(small);
(g) WaveTokenizer; (h) Mel Cap. MelCap accurately reconstructs the high-frequency details.

Table 4: Downstream sound event classification performance. ”Reference” refers to results obtained
using the ground-truth waveform, while the other columns show the performance using audio recon-
structed by different models.

Reference SNAC DAC Our Method
F1↑ 0.3899 0.3223 0.3363 0.3398
mAP↑ 0.1626 0.1278 0.1251 0.1345

4.4 DOWNSTREAM TASK EVALUATION

Unlike speech-only datasets, which can be evaluated using reconstructed waveform quality by ASR
models, AudioSet contains multiple sound categories and is designed for audio classification tasks.
We further evaluate our codec on the downstream classification task. Specifically, we employ pre-
trained models from Dinkel et al. (2023) and compute the top-3 predicted labels using the recon-
structed waveforms. To assess the codec’s ability to preserve semantic information, we report F1
and mAP scores in 4, which measure the accuracy of sound event classification. The performance
demonstrates the codec’s effectiveness in retaining discriminative detail beyond perceptual quality,
achieving better downstream classification results compared to other codec baselines.

5 FUTURE WORK

Currently, available open-source high-fidelity audio datasets remain scarce. Even 44kHz or 48kHz
corpora often contain upconverted 16kHz content. This limited data quality hinders current com-
pression efforts. In future work, we will collect more high-resolution recordings and continue to
improve our model to achieve superior perceptual quality. Given the potential relationship between
frequency distribution and model capacity, analyzing how different frequency ranges are encoded
may help improve codec efficiency and perceptual quality. More efficient architectures that better
preserve frequency details may be achieved by separating signal to multibands. Existing evaluation
metrics largely focus on the quality of speech, which may not fully capture the perceptual fidelity of
other types of sounds. Therefore, we will focus on identifying or developing suitable benchmarks
for evaluating codecs targeted at non-music and non-speech sounds.

6 CONCLUSION

To compress complex sounds in natural environments into a single codebook, we conducted a series
of explorations. We compressed mel-spectrograms into a single codebook and reconstructed high-
quality audio from the discrete mel tokens using a vocoder. During this process, we encountered
over-smoothing issues, which we mitigated through careful loss design, and stabilized the training
via network architecture improvements. These findings provide new insights for future research in
audio codec development.
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A APPENDIX

A.1 USE OF LLMS

We only used large language models (LLMs) as a tool for language refinement and editing. They
were not involved in the design of the methodology, experimental setup, data analysis, or any other
core aspect of this research.

A.2 ETHICS STATEMENT

This study has been approved by the relevant ethics committee or institutional review board and
was conducted in strict accordance with ethical guidelines. The rights, privacy, and welfare of
participants were fully respected and protected, and all personal information was kept confidential.

Informed Consent: All participants were informed of the study’s objectives, procedures, potential
risks, and benefits, either verbally or in writing, and provided their informed consent.

Data Confidentiality and Privacy Protection: Measures were implemented to safeguard participants’
personal information and ensure privacy.

A.3 REPRODUCIBILITY STATEMENT

Use of Research Data: All research data were collected, stored, and used in accordance with legal
and ethical standards, ensuring transparency and proper interpretation.

We ensure that our method is fully reproducible. Upon acceptance of this paper, we will publicly
release all code, model weights, and training data necessary to replicate our results.
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A.4 EQUIVALENCE OF SPECTROGRAM VGG LOSS AND VOCODER FEATURE MATCHING
LOSS

Let x̂ denote the waveform generated by a vocoder, and x the corresponding ground-truth waveform.
Define the Short-Time Fourier Transform (STFT) of the waveform as:

Ŝ = STFT(x̂), S = STFT(x) (5)

A.4.1 SPECTROGRAM VGG LOSS

A spectrogram-based VGG loss is defined as the L1 distance between feature maps extracted from
a convolutional network ϕ (e.g., VGG) applied to the spectrograms:

LVGG(Ŝ, S) =

L∑
l=1

wl ∥ϕl(Ŝ)− ϕl(S)∥1 (6)

where ϕl(·) is the feature map at the l-th layer, wl is a weighting coefficient, and L is the total
number of layers considered.

A.4.2 VOCODER FEATURE MATCHING LOSS

In vocoder GANs, the feature matching loss is defined using the discriminator D:

LFM(x̂, x) =
∑
d∈M

Ld∑
l=1

∥D(d)
l (x̂)−D

(d)
l (x)∥1 (7)

where D
(d)
l (·) denotes the feature map of the l-th layer of the d-th discriminator, and D is the set of

discriminators (e.g., multi-resolution discriminators).

Each discriminator first computes a spectrogram of the waveform:

X = STFT(·) (8)

and then applies a sequence of convolutional layers with non-linearities:

D
(d)
l (x̂) = σ(W

(d)
l ∗X + b

(d)
l ), (9)

where W
(d)
l , b

(d)
l are the convolutional weights and biases, and σ(·) is the activation function.

A.4.3 EQUIVALENCE

Substituting X = STFT(x̂) and X = STFT(x) into the feature matching loss, we obtain:

LFM(x̂, x) =
∑
d,l

∥∥∥σ(W (d)
l ∗ STFT(x̂) + b

(d)
l )− σ(W

(d)
l ∗ STFT(x) + b

(d)
l )

∥∥∥
1

(10)

Comparing with the spectrogram VGG loss in Eq. (2), we see that the two losses share the same
mathematical form: ∑

l

∥Fl(STFT(x̂))− Fl(STFT(x))∥1 (11)

where Fl denotes a convolutional feature extractor. The only difference lies in the choice of network
parameters (pretrained VGG weights vs. learned discriminator weights).

A.5 EQUIVALENCE OF VGG LOSS AND FEATURE-MATCHING LOSS

Both the spectrogram-based VGG loss and the vocoder feature matching loss are equivalent in the
sense that they compute an L1 distance in the convolutional feature space of a spectrogram. For-
mally,

LVGG(Ŝ, S) ≈ LFM(x̂, x), (12)
up to the network weights. This shows that the vocoder feature matching loss can be interpreted as
a generalized, learnable spectrogram-based perceptual loss.
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A.6 PROOF OF ISTFT LIPSCHITZ CONTINUITY

We prove that the inverse short-time Fourier transform (ISTFT) operator is Lipschitz continuous
with respect to the spectrogram input.
Lemma A.1 (ISTFT Lipschitz Continuity). Let S ∈ CF×T be a complex spectrogram obtained by
short-time Fourier transform (STFT) with analysis window g ∈ RN and hop size H . Define the
ISTFT operator ISTFT : CF×T → RM with synthesis window h. Then, for any two spectrograms
S1,S2,

∥ISTFT(S1)− ISTFT(S2)∥2 ≤ LISTFT ∥S1 − S2∥2,
where the Lipschitz constant LISTFT depends only on the window functions and hop size.

Proof. Recall that ISTFT reconstructs the waveform by overlap-add (OLA) of inverse FFTs of each
frame:

x̂[n] =
∑
t

h[n− tH] · IFFT(S[:, t])[n− tH].

Let ∆S = S1 − S2. Then the waveform difference is

∆x[n] =
∑
t

h[n− tH] · IFFT(∆S[:, t])[n− tH].

By Parseval’s theorem, the ℓ2 norm of the IFFT is equal to ℓ2 norm of the spectrum:

∥IFFT(∆S[:, t])∥2 =
√
N ∥∆S[:, t]∥2,

where N is the FFT length.

Applying Minkowski’s inequality to the OLA sum:

∥∆x∥2 ≤
∑
t

∥h(· − tH)∥∞ · ∥IFFT(∆S[:, t])∥2.

Since the shifted window has the same maximum magnitude as h,

∥∆x∥2 ≤ ∥h∥∞ ·
√
N

∑
t

∥∆S[:, t]∥2.

Finally, by Cauchy–Schwarz, ∑
t

∥∆S[:, t]∥2 ≤
√
T ∥∆S∥2.

Combining the inequalities, we obtain

∥ISTFT(S1)− ISTFT(S2)∥2 ≤ ∥h∥∞ ·
√
NT ∥S1 − S2∥2.

Thus ISTFT is Lipschitz continuous with constant

LISTFT ≤ ∥h∥∞ ·
√
NT.

Remark A.2. In practice, when h is chosen as the canonical synthesis window satisfying the perfect-
reconstruction condition (e.g., Hann window with 50% overlap), ∥h∥∞ ≤ 1. Hence the ISTFT
operator has a moderate Lipschitz constant that scales with the FFT length N and number of frames
T , ensuring stability against spectrogram perturbations.
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