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ABSTRACT

Time series modeling faces persistent challenges: fixed-window tokenization mis-
aligns with natural event boundaries, uniform computation wastes capacity on
simple patterns, and static architectures cannot adapt to diverse temporal depen-
dencies. We propose PeCo-TS, a cognitive-inspired framework that instantiates
the principle of “perceive fast, think slow” through three key innovations: (1)
event-driven dynamic-length tokenization that aligns tokens with semantic bound-
aries and reduces redundancy, (2) a Slow—Fast dual-pathway architecture that
separates rapid perception of fine-grained variations from slower abstraction of
event-level structures, and (3) Dual-Axis Adaptive (DA?) attention that dynami-
cally balances intra-series and inter-series dependencies via learnable gating. Ex-
tensive experiments across forecasting, classification, anomaly detection, and im-
putation demonstrate the broad applicability of PeCo-TS, yielding consistent im-
provements over Transformer and linear baselines, including 5.6% lower fore-
casting MSE, 9.3% lower imputation error, higher classification accuracy across
UCR/UEA benchmarks, and a 6.7% relative F1 gain in anomaly detection. Be-
yond accuracy, PeCo-TS achieves favorable efficiency—performance trade-offs by
leveraging event-level abstraction and complementary pathway synergy, while its
learned boundaries align with real-world regime shifts, providing interpretability.
These results establish PeCo-TS as a versatile backbone that unifies efficiency,
adaptability, and semantic alignment for diverse time-series applications.

1 INTRODUCTION

Time series data drives critical decision-making across diverse domains including climate monitor-
ing, energy management, financial trading, healthcare diagnostics, and industrial automation. Real-
world time series exhibit rich temporal complexity: abrupt regime shifts such as market crashes
or equipment failures coexist with gradual trends such as seasonal variations or long-term growth,
while high-frequency noise interleaves with persistent periodic patterns such as daily cycles and
weekly rhythms. To effectively support the growing spectrum of tasks, including forecasting future
values, classifying temporal patterns, detecting anomalies, and imputing missing data, models must
capture both transient events and long-term dependencies across multiple temporal scales.

Despite this complexity, most approaches still follow a rigid three-stage pipeline. First, they split a
series into fixed-size patches and treat each patch as a token. Second, a uniform architecture (e.g.,
self-attentive Transformer or MLP) assigns the same amount of compute to every token. Third,
task heads project hidden states to outputs (e.g., forecasting, classification, anomaly detection).
While convenient, this recipe clashes with heterogeneous real-world signals and leads to three limi-
tations: (i) boundary misalignment—fixed windows cut through meaningful events (e.g., crashes,
daily cycles, anomaly onsets), yielding incoherent representations (Nie et al., 2023; Wu et al.,
2023); (ii) computational redundancy—expensive attention is spent on simple trends while com-
plex patterns remain under-modeled (Zeng et al., 2023; Chen et al., 2023); and (iii) limited adaptiv-
ity—static channel handling cannot balance intra-series temporal dependencies against inter-series
cross-channel correlations (Zhou et al., 2023; Han et al., 2023).

Cognitive neuroscience provides a useful blueprint. Human perception operates through dual path-
ways: fast perceptual streams that capture high-frequency details for immediate responsiveness, and
slower integrative streams that abstract low-frequency regularities into coherent events and higher-
level concepts (Zacks and Swallow, 2007; Kahneman, 2011; Desimone and Duncan, 1995; Kiebel
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et al., 2008). Crucially, the brain performs adaptive event segmentation, partitioning continuous
inputs into variable-length events such as daily cycles, regime changes, or anomaly onsets, rather
than rigid temporal windows (Zacks and Swallow, 2007). Higher-order processing further leverages
selective attention, shifting focus between temporal patterns within streams and cross-modal corre-
lations across channels (Grondin, 2010). Together, these mechanisms concentrate computation on
meaningful units while maintaining efficiency through event-level abstraction.
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Figure 1: Overview and highlights. Left: Cognitive motivation and architecture of PeCo-TS,
which integrates event-driven segmentation, a Fast Path for high-frequency perception, a Slow Path
for event-level abstraction, and DA? attention for adaptive dependency modeling. Right: Aggregated
results across four core time-series tasks show that PeCo-TS achieves consistent accuracy gains and
superior performance compared to strong baselines.

Inspired by cognitive neuroscience, we propose PeCo-TS (Perception—Concept Transformer for
Time Series), a dual-pathway framework that couples rapid perception with slower conceptual ab-
straction (Figure 1, left). The Fast Path employs point-wise embedding and linear attention to
capture high-frequency details and transient events. An event-driven tokenization module, guided
by frequency-domain boundary detection, adaptively segments sequences into variable-length to-
kens aligned with intrinsic dynamics. These tokens are then processed by the Slow Path using
Dual-Axis Adaptive (DA?) attention, which balances temporal dependencies within each series
and cross-channel correlations via a learnable gating mechanism. In this way, PeCo-TS replaces
rigid fixed-window patching with adaptive event segmentation, reduces computational complexity
through event-level abstraction, and allocates attention more effectively while preserving both local
fidelity and global coherence.

Comprehensive experiments confirm the advantages of this cognitively inspired design (Figure 1,
right). Across forecasting, classification, anomaly detection, and imputation, PeCo-TS consis-
tently outperforms state-of-the-art Transformer and linear baselines while offering superior accu-
racy—efficiency trade-offs. Furthermore, the learned event boundaries align well with real regime
shifts and anomalies, providing intuitive interpretability and validating the semantic relevance of
our adaptive segmentation. Our key contributions are threefold: (1) a novel event-driven dynamic-
length tokenization framework that fundamentally replaces fixed-window patching with boundary-
aware segmentation; (2) a Slow—Fast dual-pathway architecture that separates rapid perception
from conceptual abstraction, mirroring the brain’s perceive-fast, think-slow strategy; and (3) a Dual-
Axis Adaptive (DA?) attention mechanism that dynamically balances intra-series and inter-series
dependencies through learnable gating, enhancing both generalization and versatility.

2 RELATED WORK

Tokenization and Architecture Efficiency. Fixed-size patching remains the dominant paradigm
in time-series Transformers. PatchTST (Nie et al., 2023) treats contiguous windows as tokens for
long-horizon forecasting, while TimesNet (Wu et al., 2023) leverages 2D transformations to cap-
ture multi-period structure. Yet such rigid partitioning often cuts through semantically meaning-
ful events, producing fragmented representations. Recent efforts aim to mitigate this: MultiRes-
Former (Persak et al., 2024) constructs tokens at multiple resolutions, DeformableTST (Luo and
Wang, 2024) adapts attention spans to informative time points, and token-level methods such as
TOTEM (Talukder et al., 2024) or token merging (Gétz et al., 2024) improve efficiency by dis-
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cretization or merging. Pre-trained models like LPTM (Kamarthi and Prakash, 2024) also adopt
adaptive segmentation for cross-domain learning. In parallel, lightweight alternatives (Linear (Zeng
et al., 2023), TSMixer (Chen et al., 2023)) and pruning-based strategies (Wang et al., 2024a; Zhou
et al., 2024) reveal redundancy in uniform Transformers. Unlike these approaches, our framework
replaces fixed windows altogether with learnable, rhythm-aligned event tokens, offering an end-to-
end solution where segmentation is naturally adaptive to signal dynamics, enabling semantically
coherent representations and efficient capacity allocation.

Multivariate Dependencies and Channel Modeling. Handling cross-channel structure is another
key challenge. While iTransformer (Zhou et al., 2023) models variables as tokens to capture inter-
series relations, static designs cannot adaptively trade off intra- versus inter-series dependencies.
More flexible strategies such as MCformer and MLinear (Han et al., 2023; Li et al., 2023) dynami-
cally group channels, while MSGNet (Liu et al., 2024) incorporates frequency-aware graphs. Large-
scale pre-trained models like TimesFM, Chronos, MOIRAI, Sundial, and TimesBERT (Das et al.,
2024; Shchur et al., 2024; Bhatnagar et al., 2024; Liu et al., 2025; Zhang et al., 2025) further broaden
the range of downstream capabilities, and domain-specific models such as PriceFM (Yu et al., 2025)
tailor objectives for financial series. Our DA? attention differs by introducing a unified mechanism
that adaptively balances intra- and inter-series correlations via learnable gating, providing a compact
yet general solution across datasets.

Cognitive-Inspired Processing. Beyond engineering heuristics, cognitive neuroscience offers a
principled perspective. SlowFast networks (Feichtenhofer et al., 2019) demonstrate the benefit of
dual-rate pathways in video, and wavelet or multi-scale time-series methods (Wang et al., 2023;
Lai et al., 2018) approximate multi-resolution patterns. However, these approaches lack explicit
separation between perception and conceptual abstraction. Cognitive studies (Zacks and Swallow,
2007; Grondin, 2010) highlight the brain’s dual-pathway principle of “perceive fast, think slow,”
where fast streams capture immediate high-frequency cues and slower pathways integrate them into
higher-level abstractions. Our PeCo-TS directly operationalizes this idea, coupling event-driven
segmentation with a Slow—Fast dual-pathway design, thereby moving beyond ad hoc multi-scale
heuristics toward a cognitively motivated and empirically validated framework.

3 METHODOLOGY

3.1 OVERVIEW OF PECO-TS

The human brain processes continuous sensory streams through a dual-pathway system: a fast path-
way that responds rapidly to fine-scale stimuli, and a slow pathway that integrates information over
longer horizons to form abstract concepts. This division of labor allows cognition to capture both
transient details and stable regularities. In contrast, existing Transformers for time series typically
rely on a single processing pipeline with fixed patching and uniform attention, which fails to reflect
the heterogeneous timescales and adaptive correlations inherent in real signals.

Inspired by this neuro-cognitive principle, we propose the Perception—Concept Transformer for
Time Series (PeCo-TS), a dual-pathway architecture designed to model event-driven signals with
both efficiency and accuracy (see Figure 2). The framework integrates four coordinated stages: (i)
Event Boundary Detector that identifies semantic boundaries for adaptive tokenization; (ii) Fast
Path that captures fine-grained details through point-wise processing, followed by a segmentation-
and-downsampling step that converts high-resolution features into event-level tokens; (iii) Slow Path
with DA? attention that processes these event-based tokens for abstract modeling; and (iv) Temporal
Reprojection that fuses abstract and fine-grained representations for multi-task outputs.

3.2 EVENT BOUNDARY DETECTOR

Modeling long sequences with uniform patches is not only computationally expensive but also mis-
aligned with the event-driven nature of real signals. In practice, important transitions often occur at
irregular intervals, making fixed patching prone to cutting through meaningful events. To address
this, we design an event-driven tokenization module that detects semantic boundaries directly from
the raw multivariate input z € RE*XEXC ensuring that subsequent processing aligns with natural
temporal structure.
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Figure 2: Overall framework of PeCo-TS. The framework integrates four coordinated stages:
Event Boundary Detector identifies semantic boundaries for adaptive tokenization; Fast Path cap-
tures fine-grained details through point-wise processing and linear attention; Slow Path processes
event-level tokens with DA? attention for adaptive intra- and inter-series dependencies; and Tempo-
ral Reprojection fuses abstract and fine-grained representations for multi-task outputs.

For each channel, the dominant rhythm is estimated by computing the power spectrum and applying
a learnable frequency smoother gp:

P=|X]?, X =FFT(z), Pu=go(P). (1)

A softmax distribution with temperature 7 softly selects frequency bins to obtain an effective fre-
quency kg and period T

o= softmax(%)7 kett = Zaf -f, T = ﬁ 2)
f

A differentiable cosine comb then highlights candidate boundaries:
¥
p(t) — (1+COS(227Tt/T)) , ol > 17 (3)

where the learnable sharpness 7y adjusts boundary precision. Non-maximum suppression and thresh-
olding convert these scores into binary boundaries bgy; € {0, 1}B XLxC while soft probabilities
pran € [0, 1]B*EXC are retained.

This mechanism aligns tokenization with the inherent rhythm of each channel, yielding three advan-
tages: (i) the number of tokens adapts to signal-specific periodicity; (if) the boundaries are differen-
tiable and trainable, enabling end-to-end optimization; and (iii) by operating on event tokens rather
than all time steps, the complexity of later attention layers is reduced from O(L?) to O(M?) with
M < L.

3.3 FAST PATH: PERCEPTION OF FINE DETAILS

While boundaries guide event-level abstraction, retaining fine-grained local details remains essential
for accurate modeling. Analogous to early cortical areas in human perception, the Fast path pro-
cesses the input at its original resolution to preserve high-frequency variations and transient patterns.
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Formally, each scalar observation x; . is embedded into a d¢-dimensional vector via a point-wise
tokenizer:

hERBXLXCde. (4)

After reshaping and adding positional encodings, we obtain h € RBC*Lxds - which is then pro-
cessed with linear attention to efficiently capture short-range dependencies:

$(Q) (¢(K)"V)

Attn(Q, K, V) = HQ) ST

&)

reducing time complexity from O(L?) to O(Ld).

The resulting representation hg, preserves temporal precision and is projected into a higher-
dimensional space hgy € REC*L*n  Guided by the boundaries by from Section 3.2, a boundary-
aware downsampler aggregates hg, into variable-length event tokens:

hsiow = Downsample (A, brun) € REXCOXMxdn N[ [ (6)

Since different channels may yield different token counts M., we pad sequences to My.x =
max, M, and maintain a mask p € {0, 1}5*©>*Mumax (o ensure consistent computation. This design
enables the model to preserve fine details while seamlessly transitioning to event-level abstraction.

3.4 SLOW PATH: CONCEPTUAL ABSTRACTION

High-level perception in the brain does not stop at detecting local events; it further integrates them
into coherent concepts by linking information across time and across modalities. Following this
principle, the Slow path in PeCo-TS takes event-level tokens as input and abstracts them into higher-
order representations using a dual-axis adaptive attention mechanism.

Formally, given event tokens Agoy € REXCXMXdn and mask o (with M denoting My,,,), DA?
attention decomposes modeling into two complementary axes. Along the token axis, attention cap-
tures temporal dependencies across events within each channel. Along the channel axis, attention
captures correlations across channels at the same event step. Padded positions are excluded using p
(see Appendix A.4):

2(1(1)7 Cv ) = Attntoken (hslf)w(ba C7 %y )) 6 RMthv (7)
Em(bv ) m) = Attnchannel (hslow(ba 5 Mm, )) € RCth- (8)

Both outputs are reshaped to a common layout and blended by a learnable gate 7 € (0,1):
Y =70, +(1—7) @ 3, € REXOxMxdn, )

Unless otherwise specified, 7 is a per-layer scalar broadcast as B x C' x M x 1, balancing inter-series
and intra-series modeling. A finer variant allows per-position gating 7 € (0, 1)BX¢*Mx1 byt we
use the scalar form by default for stability.

Stacking multiple DA? layers with residual and feedforward modules produces the abstract rep-
resentation zg,, € RECXMXdn which jointly encodes long-horizon temporal dependencies and
context-dependent cross-channel relations. This abstraction is particularly important for multivari-
ate event-driven time series, where both within-series evolution and cross-series interactions carry
critical semantics (see Appendix A.2).

3.5 TEMPORAL REPROJECTION AND MULTI-TASK HEADS

Event tokens are efficient for abstraction but not directly aligned with the fine temporal resolution
required by downstream tasks. To bridge this gap, we design a temporal reprojection layer that up-
samples event-level features back to the original scale, restoring temporal alignment while injecting
high-level semantics.

Given zoy € RE-CXMxdn and boundary indicators (pg, brun ), the reprojection constructs convex
weights {w; ; }£, for each time step ¢:

M M
zan(t) =Y weizaow(i), D wei =1, (10)
i=1 =1
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Table 1: Multivariate forecasting results with prediction lengths S € {96,192, 336,720} for all
datasets and fixed lookback length 7" = 96. Results are averaged across prediction lengths. The best
results are highlighted in red and the second best are shown in blue.

Dataset PeCo-TS  iTransformer  PatchTST TSMixer TimesNet Mamba DLinear FEDformer  Crossformer  Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETThl 0.415 0.427 0.465 0455 0.448 0.446 0.626 0.588 0.460 0.455 0.550 0.509 0.460 0.457 0.492 0.486 0.576 0.535 0.494 0.482
ETTh2 0.378 0.400 0.383 0.407 0.381 0.408 2.025 1.194 0409 0.425 0.443 0.441 0.564 0.519 0.424 0442 1.199 0.796 0.427 0.444
ETTml 0.369 0.388 0.407 0.411 0.386 0.400 0.529 0.513 0.412 0.418 0.498 0.468 0.404 0.408 0.456 0.460 0.483 0.482 0.608 0.522
ETTm2 0.287 0.333 0.291 0.334 0.285 0.330 1.030 0.753 0.294 0.332 0.377 0.380 0.355 0.401 0.298 0.344 0.774 0.623 0.319 0.360
Electricity 0.201 0.282 0.225 0.308 0.210 0.297 0.233 0.340 0.297 0.376 0.209 0.311 0.225 0.319 0.279 0.375 0.498 0.534 0.306 0.395
Exchange 0.387 0.418 0.364 0.407 0.369 0.407 0.539 0.590 0.406 0.439 0.693 0.555 0.339 0.413 0.508 0.498 0.659 0.623 0.504 0.501
Traffic 0.526 0.337 0.612 0.404 0.527 0.339 0.606 0.407 0.903 0.523 0.679 0.381 0.672 0.419 0.713 0.446 0.564 0.394 0.712 0.448
Weather  0.260 0.283 0.267 0.287 0.260 0.281 0.243 0.309 0.262 0.288 0.295 0.315 0.265 0.317 0.308 0.353 0.281 0.319 0.338 0.378

Segments S; = [s;, e;] are defined by consecutive boundaries in bg,y;. Within each segment, unnor-
malized weights are assigned as w; ; = x(dist(¢; s;, e;)) B(t), where p(¢) is the channel-aggregated
confidence from pgyy and x(d) = exp(—d?/20?) is a Gaussian kernel. Normalization yields
Wi = =ty =0t ¢S, (11)
Zj:l wtvj

Finally, the reprojected features are aligned with fast-path representations via a learnable output
projection and residual fusion:

Zﬁnal(t) = Wout qull(t) + hfast(t)a Wout € Rdf th' (12)

The unified representation zgp, € RB-CxLxds formg a shared basis for diverse tasks—classification,
imputation, anomaly detection, forecasting, and pretraining. This feedback from abstraction to detail
resembles predictive coding, ensuring that conceptual modeling remains consistent with fine-grained
temporal alignment (see Appendix A.5).

4 EXPERIMENTS

We evaluate PeCo-TS on four fundamental time-series tasks—forecasting, classification, anomaly
detection, and imputation—using widely adopted benchmarks: forecasting on ETThl1/h2,
ETTm1/m2, Electricity, Exchange, Traffic, and Weather (Zhou et al., 2021; Trindade, 2015; Lai
et al., 2017; Lai and contributors, 2017; Li et al., 2018; for Biogeochemistry , data origin; Wang
et al., 2024b); classification on seven UCR/UEA datasets (Chen et al., 2015; Bagnall et al., 2018);
anomaly detection on MSL, PSM, SMAP, SMD, and SWAT (Hundman et al., 2018; Abdulaal et al.,
2021; Su et al., 2019; Goh et al., 2016); and imputation on ETTh/ETTm/Electricity/Weather. This
comprehensive evaluation setting ensures coverage of both short- and long-horizon prediction, uni-
variate and multivariate inputs, and diverse application domains.

4.1 BROAD APPLICABILITY VALIDATED BY MULTI-TASK RESULTS

Across all four task categories, PeCo-TS consistently outperforms strong baselines, demonstrating
the versatility of its cognitive-inspired dual-pathway design. In forecasting, it achieves an aver-
age 5.6% reduction in MSE compared with Transformer-based competitors, with robustness across
horizons and datasets (Table 1; Appendix, Table 2). In classification, it surpasses leading alterna-
tives (Table 3), highlighting its ability to learn transferable representations. For anomaly detection,
PeCo-TS raises the average F1 score from 0.837 to 0.893, a 6.7% relative gain (Table 4), while in
imputation it reduces reconstruction error by 9.3% on average (Table 5).

Taken together, these dense and consistent improvements across heterogeneous datasets substantiate
the broad applicability and robustness of PeCo-TS. Rather than relying on task-specific heuristics
or bespoke tuning, the cognitively inspired separation of perception and abstraction emerges as a
general modeling principle for time series, validating PeCo-TS as a versatile backbone for real-
world applications.

4.2 ADVANTAGES OVER FIXED PATCHING

A key limitation of conventional Transformers for time series lies in their rigid fixed-window to-
kenization, which fragments signals and often cuts through natural temporal boundaries. In con-
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trast, our learnable, event-driven segmentation produces variable-length tokens that adapt to intrinsic
rhythms, such as daily cycles or volatility bursts, thereby aligning representation with the underlying
event structure.

To validate its effectiveness, we compare our segmentation against fixed-patch baselines across two
complementary dimensions: prediction horizon and input length. As shown in Figure 3a, event-
driven segmentation consistently achieves lower MSE across horizons, with relative gains ranging
from 4.7% on Weather to 7.3% on ETTm1. Figure 3b further confirms robustness under varying
input sequence lengths: our method maintains superior performance regardless of the temporal con-
text size. Notably, the advantage of event-driven segmentation becomes more pronounced as input
or prediction length increases. Short patches tend to split coherent events into fragments and intro-
duce redundant tokens into higher layers, leading to inefficiency, while long patches often merge
multiple events into a single token, causing semantic overlap and learning difficulty. By contrast,
event-driven segmentation preserves semantic integrity within tokens while maintaining computa-
tional efficiency, thereby scaling gracefully with longer horizons and context windows.

Together, these results provide strong evidence that event-driven segmentation fundamentally im-
proves over arbitrary fixed patches. Qualitative visualizations in the Appendix (Figures 6—12) further
show that learned boundaries align with key temporal events, yielding more interpretable and gener-
alizable representations. This alignment underpins the consistent quantitative gains observed across
datasets, establishing event-driven tokenization as a principled foundation for time-series modeling.

(a) Segmentation Comparison (ETTh1) (b) Input Length Comparison (ETTh1)
Segmentation Method Segmentation Method
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Figure 3: Comprehensive analysis of PeCo-TS key components. (a) Segmentation method
comparison (ETTh1): Adaptive event-driven segmentation consistently outperforms fixed patches
across prediction horizons, with learnable FFT achieving the lowest MSE. (b)Input length sensitiv-
ity analysis (ETTh1): Performance comparison across varying input sequence lengths and fixed 96
prediction horizon demonstrates the robustness of learnable FFT segmentation, maintaining superior
performance regardless of input length variations. (c)(d) Dual-pathway architecture validation:
Comprehensive ablation study demonstrates the complementary nature of Fast and Slow pathways.
The asymmetric contributions validate our cognitive-inspired hypothesis that rapid perception and
slower reasoning serve distinct but synergistic roles in time series modeling.
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4.3 SYNERGISTIC ROLES OF COGNITIVE FAST AND SLOW PATHS

Inspired by the brain’s dual-pathway system, PeCo-TS explicitly separates rapid perception from
slower conceptual abstraction. To assess the necessity of this design, we perform ablation studies
by removing either the Fast or Slow path. As shown in Figure 3c,d, eliminating the Fast path leads
to an average 10.0% drop in MSE improvement, while removing the Slow path results in a 4.6%
reduction. This asymmetric degradation underscores their complementary functions: the Fast path
preserves high-frequency details crucial for precise temporal alignment (e.g., anomaly detection),
whereas the Slow path processes event-level tokens to capture long-range dependencies efficiently
and allocate modeling capacity to complex structures.

Beyond accuracy, this division of labor also contributes to efficiency. As reported in Appendix A.12,
PeCo-TS attains higher accuracy with fewer parameters and lower latency compared with strong
baselines. These empirical savings align with the theoretical benefits of event-driven compression
and the practical synergy of the dual pathways. Together, the results validate our cognitive-inspired
hypothesis: rapid perception and slower abstraction are distinct yet synergistic mechanisms that
jointly yield a more effective and efficient time-series model.

4.4 ADAPTIVE INTRA- AND INTER-SERIES DEPENDENCY MODELING

A distinctive advantage of PeCo-TS lies in its DA?Z attention, which adaptively balances intra-
series and inter-series dependencies rather than committing to fixed channel-independent or channel-
dependent designs. As shown in Appendix Figure 20, DA? consistently outperforms both alterna-
tives across benchmarks, with the largest margin on ETTh2 (5.2% average MSE reduction).

Beyond accuracy, DA? attention dynamically adjusts its gate parameter 7 to reflect the correlation
structure of each dataset. Figure 4 illustrates that, as training progresses, the model gradually learns
dataset-specific dependency patterns: on Traffic (Chen et al., 2025), where intra-series periodicity
dominates, DAZ increases its emphasis on intra-series attention (7 ~ 0.56); on Weather (Chen et al.,
2025), where cross-channel correlations are stronger, the model assigns greater weight to inter-series
attention (7w ~ 0.49). This adaptive learning process improves predictive accuracy while offering
interpretable insights into dataset-specific structures.

4.5 COGNITIVE PATHWAY BEHAVIOR AND MECHANISTIC INSIGHTS

Figure 5 visualizes how the cognitive prin- ‘

ciple of “perceive fast, think slow” is in- o= T
stantiated in PeCo-TS and materializes into

observable modeling behavior. The bound-
ary detector first converts continuous signals )
into event-aligned tokens (Figure 5a,b), en- .
suring semantic integrity at the token level. 046

These tokens then flow into two comple- 01

mentary pathways: the Fast path applies lin- 0.42 , ‘ .

ear attention with strong near-diagonal fo- ' Training Epoch
cus (Figure 5d), retaining fine-grained 10- pigyre 4: 7 evolution on Weather and Traffic
cal dependencies crucial for precise tempo-  {atasets.

ral alignment; the Slow path employs DA?

attention across tokens and channels (Figure 5e,f), integrating long-range structures and cross-series
correlations. Temporal reprojection (Figure 5c¢) feeds event-level abstractions back to the native
resolution, enabling consistent reconstruction of high-frequency detail.
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The attention heatmaps provide direct evidence for this division of labor: the Fast path concentrates
on short-range patterns, while the Slow path distributes capacity over broader token and channel
contexts. Moreover, the gate parameter 7 (Figure 21) adapts smoothly across datasets, shifting
emphasis toward intra-series dependencies in periodic data (e.g., Traffic) and toward inter-series
dependencies when cross-channel correlations dominate (e.g., Weather). This dynamic reallocation
reflects the model’s ability to specialize its reasoning strategy to the dataset at hand.
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These mechanistic observations align closely with the empirical results. Event-driven segmenta-
tion explains why PeCo-TS maintains stronger margins at longer horizons (Figure 3a,b); the com-
plementary Fast/Slow contributions account for the asymmetric error increases in ablation (Fig-
ure 3c,d); and DA? attention clarifies why adaptive correlation modeling consistently outperforms
fixed channel-independent/dependent baselines. Even under anomaly detection and missing-data
scenarios, the synergy holds: slow abstractions provide contextual guidance, while fast features an-
chor precise timing, yielding improved localization and robustness. Together, Figure 5 illustrates a
mechanism—phenomenon—result loop: event alignment and dual-path reasoning shape interpretable
attention geometry, which directly underpins the multitask gains and favorable accuracy—efficiency
trade-offs observed in PeCo-TS.

(a) Complex Signal + Event Boundaries (b) Event Segments () Temporal Reprojection
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Figure 5: Cognitive architecture visualization showing the dual-pathway processing. (a) Input signal
with learned event boundaries; (b) Event segments derived from boundary detection; (c) Temporal
reprojection reconstructing fine-grained outputs from event-level abstractions; (d) Fast path linear
attention exhibiting local temporal dependencies; (€) DA? token-axis attention for intra-series mod-
eling; (f) DA? channel-axis attention for inter-series correlations.

5 CONCLUSION

This work introduced PeCo-TS, a cognitive-inspired framework that translates the principle of “per-
ceive fast, think slow” into a practical architecture for time series modeling. By coupling event-
driven tokenization, a dual-pathway design, and DA? adaptive attention, PeCo-TS directly addresses
the long-standing limitations of fixed-window segmentation, uniform computation, and static chan-
nel mixing.

Extensive experiments across forecasting, classification, anomaly detection, and imputation confirm
its advantages: event-driven segmentation scales gracefully with horizon and context length, the Fast
and Slow paths contribute complementary precision and abstraction, and DA? attention adapts to
dataset-specific dependency structures. Together, these mechanisms yield consistent improvements
over strong baselines while reducing redundancy and enhancing efficiency.

Beyond performance gains, PeCo-TS demonstrates how cognitive processing principles can be oper-
ationalized into concrete modeling benefits. The framework offers not only a versatile backbone for
diverse temporal tasks but also a blueprint for future research on event-adaptive and interpretable
architectures. We believe this cognitive—computational synthesis opens promising directions for
scalable pretraining, cross-domain generalization, and transparent decision-making in time series
applications.
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A APPENDIX

A.1 COMPLEXITY ANALYSIS OF EVENT-DRIVEN SEGMENTATION

Let L € N denote the input length, M € {1,..., L} the number of event tokens after segmentation,
and d € N the hidden dimension.

Standard attention. Self-attention scales quadratically:
Crar = O(L?d). (13)

Event-driven segmentation. Our segmentation compresses L time steps into M tokens, where
M =~ L/T and T > 0 is the effective period estimated by the detector. Thus,

L2
Cevent = O(M?d) = O(TQd) ' (14)
Reduction ratio. The relative savings is
CCVeTI[ 1
N —. 15
Com 17 ()

For periodicities T' € [8, 32] commonly observed in climate, ECG, and engine vibration data, this is
a cost ratio of 1/64 to 1/1024. Importantly, segmentation also improves statistical efficiency, where
boundaries align with rhythmic units, concentrating attention capacity on semantically coherent
chunks, rather than arbitrary windows. This is analogous to parsing sentences by words instead of
fixed-length character spans.

Distributional view. Let T be a random effective period supported on [Tinin, Tmax] C (0, 00) and
assume M = [L/T]. Then

E[Covent] € O(d]E[Mz}) C O(dE[(L/T + 1)2]) - O(dL2 E[T~% +d LE[T"] + d). (16)

Therefore, whenever E[7'~2] is finite and bounded by ¢/T?2, . the expected reduction factor satisfies

in?

E[Cevent] c 1
< = .
et O(L), L — oo 17)

Proposition (piecewise-constant exactness). Suppose the input is piecewise constant with seg-
ment boundaries equal to the detector boundaries and the slow-path attention is applied only across
segments. Then M equals the number of pieces and O(M?2d) attention achieves the same result
as O(L?d) full attention restricted to piecewise-constant hypotheses. Proof. On each segment the
representation is constant, so aggregating to one token per segment is a sufficient statistic. Attention
between segments in token space is identical to attention between any representatives in the original
space. The quadratic pair count reduces from L? to M?2.

A.2 THEORETICAL PROPERTIES OF DA2 ATTENTION

We now analyze the expressive capacity of the proposed dual-axis adaptive attention.

Formulation. Given token-level attention Z. and channel-level attention 2,,,, DA2 combines them
as

Y(r)=7-Zn+(1—-7)-2.,, mw=0o(0)€(0,1). (18)
Degenerate cases.

o m=0:Y(0) = 2., equivalent to independent channel-wise Transformers (no cross-channel
interactions).

e =1: Y(1) = Z,, equivalent to fully shared cross-channel attention (ignoring per-
channel dynamics).

Thus, DAZ? strictly generalizes both extremes.
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Lemma (convex combination and stability). For any = € (0, 1),
Y (@l < wllZml + (1 = m)l|Zel; (19)

implying stability and boundedness. The output lies in the convex hull of the two attention branches,
ensuring that DA? cannot underperform both simultaneously.

Proposition (Lipschitz inheritance). If the token- and channel-attention maps are L.- and L,,-
Lipschitz w.r.t. inputs, then for any fixed = € [0, 1], Y (7) is L(r)-Lipschitz with L(r) < (1 —
)L + 7L,,. Proof. By triangle inequality and linearity of the convex mixing.

Proposition (richness via convex blending). Let ., H,, be hypothesis classes realized by the
two branches. Then the closure of Hpa2 = {mh;, + (1 — 7)h.} under composition with standard
MLP blocks strictly contains H. U H,,, provided H. ¢ H,, and H,,, ¢ H.. Sketch. There exist
functions realizable only by mixtures of h. and h,,, (e.g., requiring simultaneous temporal and cross-
channel interactions). Post-mixing MLPs preserve separability, yielding strictly larger expressivity.

Expressivity. Consider the hypothesis class H. defined by token-attention and ., defined by
channel-attention. Then

HDA2 = {Trhm + (1 - W)hc : hm S Hm; h(: S Hca T E (07 1)} (20)

This is strictly larger than #H. U H,,, since convex combinations allow intermediate solutions that
neither pure axis can represent alone. In other words, DA? spans a richer functional space without
increasing asymptotic complexity.

A.3 ANALYSIS AND VISUALIZATION OF EVENT-BOUNDARY SEGMENTATION

The event boundary detector introduces three trainable factors: (i) spectral smoothing kernel gg, (ii)
softmax temperature 7, and (iii) sharpness ~.

Spectral smoothing. gy acts as a localized convolution over the frequency axis, emphasizing task-
relevant bands. This is equivalent to learning a prior over plausible periodicities.

Soft frequency selection. The softmax distribution
__exp(Pal)/T)
T 5 1 exp(Pa(f1)/7)

ensures differentiability. Lower 7 sharpens « into hard frequency selection, while higher 7 encour-
ages broader distributions. During training, 7 adapts to balance stability and discriminability.

21

Differentiable comb scoring. By raising the cosine comb to a learnable exponent -y, the segmenter
interpolates between smooth sinusoidal modulation (v ~ 1) and sharp periodic spikes (y > 1). This
provides a continuous control of boundary sparsity.

Visualization. The segmentation process demonstrates each stage: raw spectrum to smoothed
spectrum to softmax weighting to cosine comb peaks to event boundaries. This progression high-
lights that segmentation is not a fixed heuristic but a differentiable, learnable module, as evidenced
by the boundary alignment with natural signal dynamics shown in Figures 6 to 12.

A.4 MASKED SOFTMAX WITH PADDING

Let A € RV*Y be attention logits and m € {0, 1}"V a binary keep-mask (1 for valid, O for padded).
Define the masked logits

—oo, mj =0,

and the masked-softmax as

~ exp(Aij;)
SOftman (A”) = Z ex;(/i,k) .
k:mp=1 1R
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Equivalently, one can compute softmax(A + (1 — m) - (—M)) with a large M > 0. In our
implementation for DA? attention, the per-channel per-batch mask y provides m along the token
axis for token-attention and along the channel-token pairing for channel-attention. This guarantees
that padded positions neither receive nor contribute probability mass.

A.5 INFORMATION PRESERVATION IN TEMPORAL REPROJECTION

The reprojection operator maps event-level embeddings zgo, € RM*? to time-resolved outputs
2fun (1)

M
zan(t) =Y wei zaow(i), D wri =1, wy; > 0. (22)
i=1 i

Lemma (convexity and boundedness). Since zg(t) is a convex combination, for any norm || - ||,

M

@)l < D wei llzgow (D] < max [ zsiow (4)]- 23)
i=1

Thus reprojection does not inflate magnitudes beyond the convex hull of the inputs.

Proposition (approximation error bound). Let hpigh(t) denote the high-dimensional fast repre-
sentation at time ¢. Then

M
|2t (t) — hnign(t)[]2 < Zwt,i l| Zstow (%) — hnign(t)[]2 < max | Zstow (1) = Pnign (D) [|l2.  (24)
i=1

This shows that the reprojection error is bounded by the convex combination (and hence by the
maximum) of per-segment discrepancies, and does not grow with sequence length.

Theorem (exactness for piecewise-constant signals). Suppose the time axis is partitioned by the
detector into M segments and zow (7) equals the segment-wise mean of Apigh () on segment 4. If wy ;
are the standard barycentric weights induced by segment lengths (row-stochastic and segment-local),
then zpn(t) = hnign(t) for any piecewise-constant hyien aligned with the segmentation. Proof. On
each segment the mean equals the constant value; barycentric reconstruction reproduces the constant
exactly, and off-segment weights vanish.

Theoretical Analysis. Temporal reprojection can be viewed as a form of predictive coding, where
abstract hypotheses zp(t) are continuously projected back to the temporal stream, and reconstruc-
tion errors serve as alignment signals. This guarantees both fidelity (preserving local detail) and
consistency (maintaining event-level abstraction).

PROPERTIES OF BOUNDARY-GUIDED REPROJECTION WEIGHTS
We now justify the definition of w; ; constructed from (peu1, brun)-

Setup. Let {S; = [s;,e;]}}, be a partition of the time axis induced by bgy (consecutive ones
indicate boundaries). For any ¢, define unnormalized segment-local weights

- /—1( dist(t; s;, ei)) p(t), tes;,
We,i = .
’ 0, otherwise,

where £ : R>g — R is bounded and nonincreasing, and (t) € [0, 1] is a channel-aggregated soft

confidence from pg;. Set
Wy 5 - l{t S Sz}

wy; = ————— Whenever wy; >0, and wy; = 7

tX Zg: ’ §oHiites)

otherwise.
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Lemma (nonnegativity, locality, partition-of-unity). For every ¢, w;; > 0, w,; = 0ift ¢ S;,
and Zf\il wy,; = 1. Proof. Nonnegativity and locality follow from w;; > 0 and its definition.
When ) ;j Wt,; > 0, normalization yields a convex combination with unit sum. If the denominator
vanishes (measure-zero edge case only when p(¢) = 0 for all active segments), the fallback uniform
average over active segments preserves unit sum.

Lemma (stability). If < is bounded by K and Lipschitz with constant L, and p is bounded and
Lipschitz with constant L, then w; ; is bounded and piecewise-Lipschitz in ¢ away from segment
boundaries. Sketch. Products and sums of Lipschitz functions preserve Lipschitzness; division by a
denominator bounded away from zero on each segment interior preserves regularity.

Proposition (consistency with segmentation). Suppose zow (i) summarizes segment S; (e.g.,
mean of Apgn on S;). Then zran () is a segment-local convex interpolation of adjacent segment
summaries and thus cannot introduce off-segment leakage. Proof. By locality and partition-of-unity,
only indices ¢ with ¢ € S; contribute, and the coefficients form a convex combination.

Theorem (exactness for piecewise-constant signals). If Ay, is piecewise constant on {S;} and
Zslow(%) equals the segment mean, then with any segment-local we,; as above that is constant on
each segment (e.g., k = 1, constant p per segment), one has zgu(t) = hnign(t) for all t. Proof.
On S;, hnign(t) = ¢; and zgow(i) = ¢;. Since wy; = 0 for j # i and Zj wy; = 1, we obtain
2t () = w56 = ¢ = hnign(t).

These results justify the boundary-guided construction: it yields nonnegative, local, normalized
weights tied to detected events, admits smooth interpolations via x and p, and recovers exact recon-
struction for signals aligned with the learned segmentation.

A.6 EVENT-DRIVEN SEGMENTATION VISUALIZATION

Enhanced spectral flux (ESF). To compare with the boundary proposal of PeCo-TS, we compute
a spectral change cue that emphasizes onsets and regime shifts. Let S;(f) denote the magnitude
spectrum at time ¢ and frequency f, obtained from a short-time FFT over the original input = with a
Hann window. We apply spectral whitening using a robust per-band statistic M (f) (median over a
local temporal window) and bandlimited smoothing & along the frequency axis:

b Si(f)
St(f)_ma

The enhanced spectral flux is the half-wave rectified frame-to-frame spectral increment and normal-
ized to [0, 1] across ¢, optionally with frequency weights w( f):

ESF(t) = > w(f) [Si(f) = Sa(H)],,  [a]y = max(z,0). (26)
f

Si(f) = (h* So)(f)- (25)

Figures 6 to 12 show that the event boundary detector places boundaries at semantically meaningful
transitions across datasets. On ETThl, peaks cluster around daily and weekly regime shifts; on
Traffic, boundaries concentrate at rush-hour onsets and weekend changes. The ETTm1/m2 and
ETTh2 results indicate cross-resolution robustness, adapting segment lengths to mid- versus low-
frequency rhythms. Weather boundaries densify near storm fronts, and Exchange boundaries align
with volatility bursts and macro events. This adaptivity avoids both under- and over-segmentation,
preserving coherent events while minimizing token count.

A.7 MULTI-TASK EVALUATION

We report MSE/MAE for forecasting and imputation, accuracy for classification, and precision/F1
for anomaly detection. Training uses PyTorch with Adam optimizer (Ir=1e-4, batch size 32); event
segmentation combines FFT, autocorrelation, and Hilbert transforms; DA? Attention employs eight
heads with dataset-adaptive gating parameter 7. All experiments run on RTX 3090 GPUs. Complete
results are shown in Table 2— 5. The best results are highlighted in red and the second best are shown
in blue. Among the various models, PeCo-TS exhibits superior multitask performance. To provide
a clear comparison among different models, we list supplementary prediction showcases of three
representative datasets in Figures 13—15.
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Figure 6: ETTh1 segmentation with an event boundary detector. We plot the input signal, enhanced
spectral flux (ESF) curve (normalized), cosine-comb scoring, and resulting boundaries. ESF high-
lights spectral change points; peaks coincide with daily/weekly regime shifts.
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Table 2: Multivariate forecasting results with prediction lengths S € {96,192, 336,720} for all
datasets and fixed lookback length 7' = 96.

Models PredLen  PeCo-TS  iTransformer  PatchTST TSMixer TimesNet Mamba DLinear FEDformer  Crossformer — Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETThl 96 0.369 0.396 0.395 0.409 0.377 0.397 0.494 0.502 0.389 0.412 0486 0.452 0.396 0411 0411 0440 0421 0.438 0417 0437

192 0.409 0.422 0449 0.441 0425 0428 0.581 0.557 0.439 0.442 0.555 0.506 0.445 0.440 0.451 0.462 0.466 0.465 0.505 0.476
336 0.440 0.438 0.492 0465 0.473 0458 0.677 0.618 0.494 0471 0.537 0.500 0.487 0.465 0.529 0.504 0.683 0.608 0.537 0.505
720 0.444 0.454 0.522 0.504 0.518 0.501 0.752 0.674 0.518 0.494 0.624 0.577 0.513 0.510 0.576 0.538 0.732 0.631 0.516 0.511
ETTh2 96 0.288 0.342 0.300 0.350 0.295 0.347 1.056 0.807 0.330 0.370 0.347 0.378 0.341 0.395 0.338 0.381 0.594 0.580 0.344 0.384
192 0.375 0.396 0.382 0.400 0.376 0.398 2.587 1.403 0.394 0.410 0.455 0.445 0482 0479 0.416 0429 1.059 0.718 0.432 0.441
336 0.416 0.423 0424 0432 0421 0433 2407 1.347 0471 0.468 0.429 0443 0593 0.542 0.460 0.470 1.394 0.882 0.459 0.466
720 0.433 0.437 0.426 0445 0431 0.453 2.051 1218 0.442 0452 0.541 0497 0.840 0.661 0.483 0.488 1.749 1.003 0.475 0.486
ETTml 96 0.320 0.360 0.341 0.376 0.324 0.365 0.479 0.470 0.336 0.376 0.372 0.391 0.346 0.374 0.405 0.433 0363 0.403 0.593 0.508
192 0.329 0.366 0.381 0.395 0.365 0.386 0.480 0.482 0.387 0.402 0.436 0.421 0.382 0.391 0.432 0.446 0.393 0419 0.562 0.500
336 0.372 0.389 0419 0419 0.393 0408 0.541 0.525 0414 0.422 0.558 0.511 0.415 0415 0.460 0464 0459 0.460 0.644 0.542
720 0.457 0.438 0.486 0.456 0460 0.443 0.616 0.574 0.513 0472 0.625 0.548 0.473 0.451 0.527 0.496 0.716 0.644 0.634 0.538
ETTm2 96 0.181 0.264 0.184 0.267 0.178 0.260 0.250 0.366 0.188 0.268 0.196 0.275 0.193 0.293 0.194 0.283 0.305 0.377 0.218 0.300
192 0.246 0.308 0.253 0.312 0.247 0.308 0.492 0.559 0.252 0.307 0302 0.342 0.285 0.361 0.260 0.320 0.459 0.472 0.277 0.335
336 0311 0350 0.315 0352 0.309 0.347 0.833 0.735 0.317 0.346 0.372 0.393 0.385 0.429 0.320 0.357 0.647 0.632 0.336 0.373
720 0411 0409 0412 0406 0.407 0.403 2.544 1352 0.421 0406 0.637 0.510 0.556 0.523 0.420 0.416 1.686 1.010 0.445 0.432
Electricity 96 0.179 0.261 0.196 0.281 0.189 0.277 0.200 0.305 0.276 0.358 0.188 0.290 0.210 0.301 0.228 0.339 0.198 0.299 0.290 0.387
192 0.184 0.267 0.206 0.293 0.193 0.283 0.220 0.331 0.285 0.367 0.204 0.308 0.210 0.305 0.269 0.366 0.226 0.319 0.252 0.356
336 0.200 0.284 0.226 0313 0.209 0.298 0.242 0.353 0.296 0.378 0.207 0.313 0.223 0319 0.289 0.383 0.757 0.719 0.285 0.381
720 0.241 0.317 0270 0.347 0.251 0.331 0.271 0.372 0.333 0402 0.237 0.333 0.258 0.350 0.331 0.413 0.813 0.799 0.399 0.455
Exchange 96 0.082 0.203 0.087 0.207 0.084 0.203 0.232 0.388 0.111 0.238 0.127 0.258 0.094 0.227 0.162 0.293 0.215 0.342 0.156 0.287
192 0.190 0312 0.180 0.303 0.181 0.302 0.464 0.549 0.209 0.333 0.287 0.391 0.186 0.325 0.282 0.387 0.507 0.566 0.276 0.383
336 0.335 0.423 0.333 0.419 0337 0421 0.754 0.720 0.374 0.448 0.651 0.603 0.327 0.435 0.443 0488 0.764 0.711 0473 0514
720 0.942 0.735 0.856 0.700 0.875 0.703 0.705 0.701 0.931 0.735 1.706 0.970 0.749 0.664 1.147 0.824 1.150 0.873 1.111 0.820
Traffic 96 0.506 0.327 0.574 0.386 0.509 0.331 0.578 0.388 0.868 0.499 0.679 0.383 0.696 0.429 0.653 0.420 0.516 0.367 0.701 0.447
192 0517 0.332 0.584 0.390 0.514 0.337 0.579 0.394 0.919 0.537 0.645 0.367 0.646 0.407 0.660 0.417 0.543 0.385 0.714 0.450
336 0.521 0.338 0.613 0.405 0.522 0.334 0.604 0.409 0.898 0.514 0.636 0.360 0.653 0.410 0.740 0.457 0.583 0.402 0.708 0.451
720 0.563 0.352 0.676 0.434 0.558 0.353 0.664 0.439 0.927 0.542 0.755 0.414 0.694 0.429 0.798 0.488 0.615 0.423 0.723 0.444
Weather 96 0.178 0.220 0.183 0.225 0.179 0.220 0.163 0.241 0.180 0.225 0.195 0.243 0.196 0.257 0.212 0.283 0.189 0.259 0.261 0.328
192 0227 0263 0.234 0.266 0.228 0.260 0.210 0.285 0.227 0.266 0.252 0.291 0.236 0.294 0.299 0.356 0.258 0.281 0.308 0.359
336 0281 0.299 0.287 0.304 0.279 0.297 0.267 0.333 0.281 0.304 0.327 0.342 0.283 0.333 0.318 0.359 0.277 0321 0.355 0.392
720 0355 0.349 0362 0.352 0.355 0.347 0.332 0.379 0.360 0.355 0.406 0.385 0.347 0.384 0.405 0.412 0.398 0.415 0.428 0.431

Table 3: Time-series classification results on UCR/UEA benchmarks. Metric is Accuracy (%, higher
is better). All methods follow dataset-standard train/test splits and z-score normalization.

Dataset PeCo-TS iTransformer PatchTST DLinear FEDformer Crossformer Autoformer
EthanolConcentration  0.3270 0.2852 0.2814  0.2928 0.2776 0.3030 0.2433
FaceDetection 0.6831 0.6654 0.6864  0.6822 0.6751 0.6512 0.5951
JapaneseVowels 0.9676 0.9757 0.9595  0.9649 0.9674 0.9757 0.9649
SelfRegulationSCP1 0.9144 0.9215 0.8737  0.9147 0.5802 0.9147 0.5631
SelfRegulationSCP2 0.5560 0.5444 0.5278  0.5444 0.5278 0.5467 0.5333
SpokenArabicDigits 0.9818 0.9804 0.9741 0.9650 0.9782 0.9627 0.9759
UWaveGestureLibrary  0.7919 0.8594 0.8625  0.8219 0.5656 0.8531 0.5000

A.8 SEGMENTATION METHOD COMPARISON

Across ETTh1, ETTml, and Weather (Figures 16 to 18), the event boundary approach consistently
produces cleaner, more stable boundaries than fixed windows or heuristic detectors. Competing
methods either miss critical regime shifts (under-segmentation) or fragment coherent trends (over-
segmentation), while our method achieves tighter alignment with intrinsic periodicities, which later
translates into lower forecasting error and better anomaly localization.

A.9 FAST-SLOW PATH COMPARISON

The Fast path preserves high-frequency cues, improving short-horizon fidelity, while the Slow path
enforces long-range consistency via event abstractions. Figure 19 shows complementary error pro-
files; combining both reduces both bias (trend errors) and variance (spiky mispredictions).

A.10 DA? ABLATIONS

DA? adaptively allocates capacity between intra-series and inter-series attention. Figure 20 confirms
consistent gains over fixed CI/CD strategies across datasets. Learned allocations correlate with
dataset structure: higher inter-series emphasis on Electricity/Traffic (strong cross-channel coupling),
and higher intra-series emphasis on ETT variants (dominant per-channel temporal patterns).
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Table 4: Anomaly detection results on MSL, PSM, SMAP, SMD, and SWAT. We report Precision
and F1 (higher is better) under the standard contiguous-window detection protocol; thresholds se-
lected on validation splits.

Dataset PeCo-TS iTransformer PatchTST DLinear FEDformer Crossformer Autoformer

Metric  Precision F1-Score Precision FI1-Score Precision F1-Score Precision FIl-Score Precision F1-Score Precision F1-Score Precision F1-Score

MSL 0.9036  0.8331 0.8615 0.7253  0.8860  0.7913  0.8969  0.8187 0.9068  0.8230  0.9031 0.8060  0.9054  0.8187
PSM 09864  0.9626 09797 09532  0.9910  0.9626 09864  0.9661 0.9999  0.9007 0.9729 09239  0.9999  0.8823
SMAP 09330  0.8615  0.9069  0.6675 0.8988  0.6726  0.8987  0.6729  0.9015  0.6863 0.8998  0.6874  0.9127 0.7411
SMD 0.7891 0.8482  0.7627  0.8057  0.7648  0.8104  0.7612  0.8007  0.7278  0.7688 0.7204  0.7758  0.7298  0.7723
SWAT 09810  0.9635  0.9221 0.9265 09124  0.8673  0.9227  0.9266  0.9995  0.7918 0.9782  0.9063 0.9996  0.7918

Table 5: Imputation results on ETTh/ETTm/Electricity/Weather. We report MSE/MAE (lower is
better) under random missingness with multiple mask rates.

Dataset Mask Ratio PeCo-TS iTransformer PatchTST DLinear FEDformer Crossformer AutoFormer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Etthl 12.5% 0.1010 0.2089 0.0987 0.2218 0.0928 0.2010 0.1117 0.2319 0.0735 0.1958 0.1064 0.2283 0.0978 0.2266

25.0% 0.1230 0.2315 0.1250 0.2504 0.1063 0.2165 0.1496 0.2690 0.1055 0.2365 0.1172 0.2427 0.1208 0.2516
37.5% 0.1470 0.2540 0.1573 0.2818 0.1188 0.2306 0.1874 0.3004 0.1411 0.2748 0.1293 0.2572 0.1550 0.2851
50.0% 0.1755 0.2755 0.2177 0.3325 0.1403 0.2486 0.2316 0.3326 0.2006 0.3293 0.1478 0.2764 0.2119 0.3348
Etth2 12.5% 0.0635 0.1615 0.0932 0.2080 0.0570 0.1510 0.1091 0.2229 0.1296 0.2437 0.1215 0.2310 0.1702 0.2887
25.0% 0.0682 0.1692 0.1209 0.2395 0.0620 0.1594 0.1449 0.2593 0.1788 0.2911 0.1335 0.2435 0.2229 0.3302
37.5% 0.0719 0.1727 0.1485 0.2650 0.0674 0.1670 0.1794 0.2895 0.2335 0.3323 0.1451 0.2565 0.2781 0.3632
50.0% 0.0846 0.1914 0.1931 0.3026 0.0736 0.1753 0.2161 0.3186 0.3462 0.3988 0.1614 0.2710 0.3747 0.4198
Ettm1 12.5% 0.0338 0.1294 0.0456 0.1474 0.0396 0.1280 0.0556 0.1612 0.0448 0.1594 0.0436 0.1487 2.010 1.204
25.0% 0.0397 0.1260 0.0605 0.1723 0.0420 0.1318 0.0766 0.1906 0.0531 0.1633 0.0466 0.1524 1.109 0.8591
37.5% 0.0450 0.1380 0.0774 0.1959 0.0466 0.1390 0.0998 0.2175 0.0809 0.2013 0.0506 0.1580 0.3463 0.4382
50.0% 0.0517 0.1470 0.1067 0.2316 0.0523 0.1470 0.1286 0.2463 0.1278 0.2545 0.0567 0.1677 0.3391 0.4195
ETTm2 12.5% 0.0253 0.0911 0.0518 0.1514 0.0254 0.0931 0.0662 0.1707 0.0601 0.1681 0.0557 0.1576 2.788 1.326
25.0% 0.0277 0.0999 0.0707 0.1789 0.0277 0.0982 0.0893 0.2007 0.0921 0.2089 0.0741 0.1802 0.9562 0.7293
37.5% 0.0300 0.1010 0.0915 0.2043 0.0301 0.1028 0.1117 0.2256 0.1328 0.2464 0.0796 0.1779 1.463 0.8603
50.0% 0.0340 0.1150 0.1176 0.2327 0.0332 0.1079 0.1382 0.2514 0.2415 0.3297 0.0877 0.1861 0.6442 0.5610
ECL 12.5% 0.0492 0.1413 0.0724 0.1895 0.0526 0.1550 0.0844 0.2063 0.1808 0.3204 0.0640 0.1792 0.1875 0.3259
25.0% 0.0559 0.1521 0.0898 0.2134 0.0623 0.1692 0.1131 0.2427 0.2020 0.3367 0.0716 0.1899 0.2123 0.3442
37.5% 0.0651 0.1654 0.1068 0.2344 0.0726 0.1826 0.1412 0.2731 0.2205 0.3512 0.0804 0.2025 0.2289 0.3557
50.0% 0.0796 0.1853 0.1259 0.2553 0.0874 0.2022 0.1726 0.3034 0.2425 0.3670 0.0901 0.2155 0.2600 0.3768
Weather 12.5% 0.0285 0.0555 0.0376 0.0858 0.0287 0.0485 0.0380 0.0885 0.0425 0.1033 0.2314 0.3437 0.0387 0.0947
25.0% 0.0310 0.0056 0.0460 0.1054 0.0310 0.0531 0.0471 0.1074 0.0568 0.1305 0.18838 0.2963 0.0398 0.0973
37.5% 0.0330 0.0560 0.0549 0.1209 0.0350 0.0588 0.0558 0.1216 0.0732 0.1575 0.1156 0.2205 0.0399 0.0967
50.0% 0.0360 0.0600 0.0671 0.1407 0.0378 0.0626 0.0663 0.1368 0.1134 0.2095 0.1655 0.2691 0.0432 0.1017

A.11 7 EVOLUTION
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Figure 21: Training-time evolution of 7. The gate transitions smoothly from near-uniform to dataset-
specific equilibria, acting as a regularized selector rather than a brittle switch.

The gate 7 evolves smoothly during training from near-uniform to dataset-specific allocations (Fig-
ures 21). This behavior indicates a regularized selector rather than a brittle switch, stabilizing with-
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out collapse. Per-dataset shifts reflect structural differences (e.g., sensor versus market data), ex-
plaining robust cross-dataset performance without architecture changes.

A.12 MODEL EFFICIENCY
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Figure 22: Model efficiency on Traffic (input-96, predict-96). PeCo-TS achieves higher accuracy

with fewer parameters and lower latency than strong baselines, consistent with theoretical complex-
ity reductions.

Under identical settings (input-96, predict-96), PeCo-TS attains higher accuracy with fewer param-
eters and lower latency (Figure 22). These empirical savings match the theoretical reduction from

event-driven compression (Appendix A.l) and the practical ablations showing complementary con-
tributions of Fast/Slow paths.
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