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ABSTRACT

Time series modeling faces persistent challenges: fixed-window tokenization mis-
aligns with natural event boundaries, uniform computation wastes capacity on
simple patterns, and static architectures cannot adapt to diverse temporal depen-
dencies. We propose PeCo-TS, a cognitive-inspired framework that instantiates
the principle of “perceive fast, think slow” through three key innovations: (1)
event-driven dynamic-length tokenization that aligns tokens with semantic bound-
aries and reduces redundancy, (2) a Slow–Fast dual-pathway architecture that sep-
arates rapid perception of fine-grained variations from slower abstraction of event-
level structures, and (3) Dual-Axis Adaptive (DA2) attention that dynamically bal-
ances intra-series and inter-series dependencies via learnable gating. Extensive
experiments across four diverse tasks—forecasting, classification, anomaly detec-
tion, and imputation—demonstrate the broad applicability of PeCo-TS, yielding
consistent improvements over Transformer and linear baselines, including 5.6%
lower forecasting MSE, 9.3% lower imputation error, higher classification accu-
racy across UCR/UEA benchmarks, and a 6.7% relative F1 gain in anomaly de-
tection. Beyond accuracy, PeCo-TS achieves favorable efficiency–performance
trade-offs by leveraging event-level abstraction and complementary pathway syn-
ergy, while its learned boundaries align with real-world regime shifts, providing
interpretability. These results establish PeCo-TS as a strong supervised architec-
ture with excellent per-task performance for scenarios where task-specific training
data is available, offering a cognitively principled and efficient alternative to both
fixed-patching Transformers and computationally heavier multi-scale approaches.

1 INTRODUCTION

Time series data drives critical decision-making across diverse domains including climate monitor-
ing, energy management, financial trading, healthcare diagnostics, and industrial automation. Real-
world time series exhibit rich temporal complexity: abrupt regime shifts such as market crashes
or equipment failures coexist with gradual trends such as seasonal variations or long-term growth,
while high-frequency noise interleaves with persistent periodic patterns such as daily cycles and
weekly rhythms. To effectively support the growing spectrum of tasks, including forecasting future
values, classifying temporal patterns, detecting anomalies, and imputing missing data, models must
capture both transient events and long-term dependencies across multiple temporal scales.
Despite this complexity, most approaches still follow a rigid three-stage pipeline. First, they split a
series into fixed-size patches and treat each patch as a token. Second, a uniform architecture (e.g.,
self-attentive Transformer or MLP) assigns the same amount of compute to every token. Third,
task heads project hidden states to outputs (e.g., forecasting, classification, anomaly detection).
While convenient, this recipe clashes with heterogeneous real-world signals and leads to three limi-
tations: (i) boundary misalignment—fixed windows cut through meaningful events (e.g., crashes,
daily cycles, anomaly onsets), yielding incoherent representations (Nie et al., 2023; Wu et al.,
2023); (ii) computational redundancy—expensive attention is spent on simple trends while com-
plex patterns remain under-modeled (Zeng et al., 2023; Chen et al., 2023); and (iii) limited adaptiv-
ity—static channel handling cannot balance intra-series temporal dependencies against inter-series
cross-channel correlations (Zhou et al., 2023; Han et al., 2023).
Cognitive neuroscience provides a useful blueprint. Human perception operates through dual path-
ways: fast perceptual streams that capture high-frequency details for immediate responsiveness, and
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slower integrative streams that abstract low-frequency regularities into coherent events and higher-
level concepts (Zacks and Swallow, 2007; Kahneman, 2011; Desimone and Duncan, 1995; Kiebel
et al., 2008). Crucially, the brain performs adaptive event segmentation, partitioning continuous
inputs into variable-length events such as daily cycles, regime changes, or anomaly onsets, rather
than rigid temporal windows (Zacks and Swallow, 2007). Higher-order processing further leverages
selective attention, shifting focus between temporal patterns within streams and cross-modal corre-
lations across channels (Grondin, 2010). Together, these mechanisms concentrate computation on
meaningful units while maintaining efficiency through event-level abstraction.

Figure 1: Overview and highlights. Left: Cognitive motivation and architecture of PeCo-TS,
which integrates event-driven segmentation, a Fast Path for high-frequency perception, a Slow Path
for event-level abstraction, and DA2 attention for adaptive dependency modeling. Right: Aggregated
results across four core time-series tasks show that PeCo-TS achieves consistent accuracy gains and
superior performance compared to strong baselines.

Inspired by cognitive neuroscience, we propose PeCo-TS (Perception–Concept Transformer for
Time Series), a dual-pathway framework that couples rapid perception with slower conceptual ab-
straction (Figure 1, left). The Fast Path employs point-wise embedding and linear attention to
capture high-frequency details and transient events. An event-driven tokenization module, guided
by frequency-domain boundary detection, adaptively segments sequences into variable-length to-
kens aligned with intrinsic dynamics. These tokens are then processed by the Slow Path using
Dual-Axis Adaptive (DA2) attention, which balances temporal dependencies within each series
and cross-channel correlations via a learnable gating mechanism. In this way, PeCo-TS replaces
rigid fixed-window patching with adaptive event segmentation, reduces computational complexity
through event-level abstraction, and allocates attention more effectively while preserving both local
fidelity and global coherence.
Comprehensive experiments confirm the advantages of this cognitively inspired design (Figure 1,
right). Across four core time-series tasks (forecasting, classification, anomaly detection, and im-
putation), PeCo-TS consistently outperforms state-of-the-art Transformer and linear baselines while
offering superior accuracy–efficiency trade-offs. Furthermore, the learned event boundaries align
well with real regime shifts and anomalies, providing intuitive insights into temporal dynamics and
validating the semantic relevance of our adaptive segmentation. Positioning PeCo-TS as a strong su-
pervised architecture optimized for per-task performance (rather than a foundation model requiring
large-scale pretraining), our key contributions are threefold: (1) a novel event-driven dynamic-
length tokenization framework that fundamentally replaces fixed-window patching with boundary-
aware segmentation, achieving 4.8× token compression while preserving semantic coherence; (2)
a Slow–Fast dual-pathway architecture that separates rapid perception from conceptual abstrac-
tion, mirroring the brain’s perceive-fast, think-slow strategy with 1.85× faster inference and 28%
lower memory; and (3) a Dual-Axis Adaptive (DA2) attention mechanism that dynamically bal-
ances intra-series and inter-series dependencies through learnable gating, demonstrating consistent
state-of-the-art performance across four diverse time-series tasks.

2 RELATED WORK

Adaptive Tokenization and Multi-Resolution Modeling. While fixed-size patching
(PatchTST (Nie et al., 2023), TimesNet (Wu et al., 2023)) remains dominant, recent work
explores adaptive alternatives. MultiResFormer (Peršak et al., 2024) uses multiple fixed resolutions,
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DeformableTST (Luo and Wang, 2024) adapts attention spans, and token merging (Götz et al.,
2024) post-hoc merges existing tokens. Lightweight alternatives (Linear (Zeng et al., 2023),
TSMixer (Chen et al., 2023)) reveal redundancy in uniform Transformers. Crucially, these differ
from our approach: MultiResFormer requires predetermined scales; token merging operates
post-hoc rather than learning boundaries from signal structure; deformable attention adjusts spans
but not tokenization itself. Our learnable event-driven segmentation replaces fixed windows with
frequency-guided boundaries that adapt end-to-end, providing semantically coherent tokenization
with reduced cost. Section 4 provides controlled ablations against fixed patching and token merging
baselines.

Foundation Models and Multi-Task Learning. Large-scale pre-trained models (TimesFM,
Chronos, MOIRAI (Das et al., 2024; Shchur et al., 2024; Bhatnagar et al., 2024)) leverage diverse
data for zero-shot generalization, few-shot learning, and cross-task transfer. Notably, UniTS (Gao
et al., 2024) unifies predictive and generative tasks through task tokenization, achieving strong per-
formance across 38 datasets—demonstrating the value of unified multi-task architectures. These
foundation models excel at data efficiency and representational reuse but require extensive pretrain-
ing on large-scale corpora. iTransformer (Zhou et al., 2023) models variables as tokens, while
MCformer (Han et al., 2023) dynamically groups channels. PeCo-TS addresses a complementary
direction: rather than competing with foundation models on transfer learning, we focus on per-
task supervised learning where task-specific data is available, achieving superior accuracy through
cognitively inspired architecture design without requiring large-scale pretraining. Our DA2 attention
adaptively balances intra- and inter-series correlations, outperforming both channel-independent and
channel-dependent baselines.

State-Space Models and Hybrid Architectures. State-space models (SSMs) like Mamba have
gained prominence for linear-time complexity in long sequences. TimeMachine (Ahamed and
Cheng, 2024) applies Mamba to time series with superior scalability and memory efficiency, while
SST (Xu et al., 2025) (CIKM 2025) introduces a hybrid Mamba-Transformer architecture with ex-
pert modules that separate long-range patterns (Mamba) from short-term dynamics (Transformer).
Diffusion models (DyDiff (Guo et al., 2025)) model temporal transitions for spatiotemporal pre-
diction. Cognitive dual-pathway processing (Zacks and Swallow, 2007; Feichtenhofer et al., 2019)
motivates ”perceive fast, think slow” designs. PeCo-TS differs fundamentally: unlike SSMs oper-
ating uniformly across timesteps or fixed-rate dual pathways, we integrate learnable event-driven
segmentation with adaptive Fast-Slow processing where boundaries are end-to-end trainable and
adapt to signal-specific rhythms, explicitly separating perception from abstraction with event-level
efficiency.

3 METHODOLOGY

3.1 OVERVIEW OF PECO-TS

The human brain processes continuous sensory streams through a dual-pathway system: a fast path-
way that responds rapidly to fine-scale stimuli, and a slow pathway that integrates information over
longer horizons to form abstract concepts. This division of labor allows cognition to capture both
transient details and stable regularities. In contrast, existing Transformers for time series typically
rely on a single processing pipeline with fixed patching and uniform attention, which fails to reflect
the heterogeneous timescales and adaptive correlations inherent in real signals.
Inspired by this neuro-cognitive principle, we propose the Perception–Concept Transformer for
Time Series (PeCo-TS), a dual-pathway architecture designed to model event-driven signals with
both efficiency and accuracy (see Figure 2). The framework integrates four coordinated stages: (i)
Event Boundary Detector that identifies semantic boundaries for adaptive tokenization; (ii) Fast
Path that captures fine-grained details through point-wise processing, followed by a segmentation-
and-downsampling step that converts high-resolution features into event-level tokens; (iii) Slow Path
with DA2 attention that processes these event-based tokens for abstract modeling; and (iv) Temporal
Reprojection that fuses abstract and fine-grained representations for multi-task outputs.
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Figure 2: Overall framework of PeCo-TS. The framework integrates four coordinated stages:
Event Boundary Detector identifies semantic boundaries for adaptive tokenization; Fast Path cap-
tures fine-grained details through point-wise processing and linear attention; Slow Path processes
event-level tokens with DA2 attention for adaptive intra- and inter-series dependencies; and Tempo-
ral Reprojection fuses abstract and fine-grained representations for multi-task outputs.

3.2 EVENT BOUNDARY DETECTOR

Modeling long sequences with uniform patches is not only computationally expensive but also mis-
aligned with the event-driven nature of real signals. In practice, important transitions often occur at
irregular intervals, making fixed patching prone to cutting through meaningful events. To address
this, we design an event-driven tokenization module that detects semantic boundaries directly from
the raw multivariate input x ∈ RB×L×C , ensuring that subsequent processing aligns with natural
temporal structure.
For each channel, the dominant rhythm is estimated by computing the power spectrum and applying
a learnable frequency smoother gθ:

P = |X|2, X = FFT(x), Psm = gθ(P ). (1)

A softmax distribution with temperature τ softly selects frequency bins to obtain an effective fre-
quency keff and period T :

α = softmax
(

Psm
τ

)
, keff =

∑
f

αf · f, T = L
keff

. (2)

A differentiable cosine comb then highlights candidate boundaries:

p(t) =
(

1+cos(2πt/T )
2

)γ

, γ > 1, (3)

where the learnable sharpness γ adjusts boundary precision. Non-maximum suppression and thresh-
olding convert these scores into binary boundaries bfull ∈ {0, 1}B×L×C , while soft probabilities
pfull ∈ [0, 1]B×L×C are retained.
This mechanism aligns tokenization with the inherent rhythm of each channel, yielding three advan-
tages: (i) the number of tokens adapts to signal-specific periodicity; (ii) the boundaries are differen-
tiable and trainable, enabling end-to-end optimization; and (iii) by operating on event tokens rather
than all time steps, the complexity of later attention layers is reduced from O(L2) to O(M2) with
M ≪ L.
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3.3 FAST PATH: PERCEPTION OF FINE DETAILS

While boundaries guide event-level abstraction, retaining fine-grained local details remains essential
for accurate modeling. Analogous to early cortical areas in human perception, the Fast path pro-
cesses the input at its original resolution to preserve high-frequency variations and transient patterns.
Formally, each scalar observation xt,c is embedded into a df -dimensional vector via a point-wise
tokenizer:

h ∈ RB×L×C×df . (4)
After reshaping and adding positional encodings, we obtain h ∈ RBC×L×df , which is then pro-
cessed with linear attention to efficiently capture short-range dependencies:

Attn(Q,K, V ) ≈
ϕ(Q)

(
ϕ(K)⊤V

)
ϕ(Q)ϕ(K)⊤

, (5)

reducing time complexity from O(L2) to O(Ld).
The resulting representation hfast preserves temporal precision and is projected into a higher-
dimensional space hfast ∈ RBC×L×dh . Guided by the boundaries bfull from Section 3.2, a boundary-
aware downsampler aggregates hfast into variable-length event tokens:

hslow = Downsample(hfast, bfull) ∈ RB×C×M×dh , M ≪ L. (6)

Since different channels may yield different token counts Mc, we pad sequences to Mmax =
maxc Mc and maintain a mask µ ∈ {0, 1}B×C×Mmax to ensure consistent computation. This design
enables the model to preserve fine details while seamlessly transitioning to event-level abstraction.

3.4 SLOW PATH: CONCEPTUAL ABSTRACTION

High-level perception in the brain does not stop at detecting local events; it further integrates them
into coherent concepts by linking information across time and across modalities. Following this
principle, the Slow path in PeCo-TS takes event-level tokens as input and abstracts them into higher-
order representations using a dual-axis adaptive attention mechanism.
Formally, given event tokens hslow ∈ RB×C×M×dh and mask µ (with M denoting Mmax), DA2

attention decomposes modeling into two complementary axes. Along the token axis, attention cap-
tures temporal dependencies across events within each channel. Along the channel axis, attention
captures correlations across channels at the same event step. Padded positions are excluded using µ
(see Appendix A.5):

z̃c(b, c, ·) = Attntoken
(
hslow(b, c, ·, ·)

)
∈ RM×dh , (7)

z̃m(b, ·,m) = Attnchannel
(
hslow(b, ·,m, ·)

)
∈ RC×dh . (8)

Both outputs are reshaped to a common layout and blended by a learnable gate π ∈ (0, 1):

Y = π ⊙ z̃m + (1− π)⊙ z̃c ∈ RB×C×M×dh . (9)

Unless otherwise specified, π is a per-layer scalar broadcast as B×C×M×1, balancing inter-series
and intra-series modeling. A finer variant allows per-position gating π ∈ (0, 1)B×C×M×1, but we
use the scalar form by default for stability.
Stacking multiple DA2 layers with residual and feedforward modules produces the abstract rep-
resentation zslow ∈ RB·C×M×dh , which jointly encodes long-horizon temporal dependencies and
context-dependent cross-channel relations. This abstraction is particularly important for multivari-
ate event-driven time series, where both within-series evolution and cross-series interactions carry
critical semantics (see Appendix A.3).

3.5 TEMPORAL REPROJECTION AND MULTI-TASK HEADS

Event tokens are efficient for abstraction but not directly aligned with the fine temporal resolution
required by downstream tasks. To bridge this gap, we design a temporal reprojection layer that up-
samples event-level features back to the original scale, restoring temporal alignment while injecting
high-level semantics.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Given zslow ∈ RB·C×M×dh and boundary indicators (pfull, bfull), the reprojection constructs convex
weights {wt,i}Mi=1 for each time step t:

zfull(t) =

M∑
i=1

wt,i zslow(i),

M∑
i=1

wt,i = 1. (10)

Segments Si = [si, ei] are defined by consecutive boundaries in bfull. Within each segment, unnor-
malized weights are assigned as w̃t,i = κ(dist(t; si, ei)) p̄(t), where p̄(t) is the channel-aggregated
confidence from pfull and κ(d) = exp(−d2/2σ2) is a Gaussian kernel. Normalization yields

wt,i =
w̃t,i∑M
j=1 w̃t,j

, wt,i = 0 if t /∈ Si. (11)

Finally, the reprojected features are aligned with fast-path representations via a learnable output
projection and residual fusion:

zfinal(t) = Wout zfull(t) + hfast(t), Wout ∈ Rdf×dh . (12)

The unified representation zfinal ∈ RB·C×L×df forms a shared basis for diverse tasks—classification,
imputation, anomaly detection, forecasting, and pretraining. This feedback from abstraction to detail
resembles predictive coding, ensuring that conceptual modeling remains consistent with fine-grained
temporal alignment (see Appendix A.6).

4 EXPERIMENTS

We evaluate PeCo-TS on four fundamental time-series tasks—forecasting, classification, anomaly
detection, and imputation—using widely adopted benchmarks: forecasting on ETTh1/h2,
ETTm1/m2, Electricity, Exchange, Traffic, and Weather (Zhou et al., 2021; Trindade, 2015; Lai
et al., 2017; Lai and contributors, 2017; Li et al., 2018; for Biogeochemistry , data origin; Wang
et al., 2024); classification on seven UCR/UEA datasets (Chen et al., 2015; Bagnall et al., 2018);
anomaly detection on MSL, PSM, SMAP, SMD, and SWAT (Hundman et al., 2018; Abdulaal et al.,
2021; Su et al., 2019; Goh et al., 2016); and imputation on ETTh/ETTm/Electricity/Weather. This
comprehensive evaluation setting ensures coverage of both short- and long-horizon prediction, uni-
variate and multivariate inputs, and diverse application domains.

4.1 BROAD APPLICABILITY VALIDATED BY MULTI-TASK RESULTS

We compare against diverse baselines: recent Transformers (AMD (Hu et al., 2025), Path-
Former (Chen et al., 2024), CARD (Xue et al., 2024)), unified multi-task models (UniTS (Gao
et al., 2024)), established baselines (iTransformer (Zhou et al., 2023), PatchTST (Nie et al., 2023),
TimesNet (Wu et al., 2023)), and efficient alternatives (TSMixer (Chen et al., 2023), DLinear (Zeng
et al., 2023), Mamba (Gu and Dao, 2023)).
Across all four tasks, PeCo-TS consistently outperforms strong baselines. In forecasting, it achieves
5.6% lower MSE on average (Table 1; Appendix, Table 3). PeCo-TS outperforms AMD on 6/8
datasets and matches or exceeds PathFormer, CARD, and UniTS. In classification, it surpasses lead-
ing alternatives (Table 4). For anomaly detection, F1 improves from 0.837 to 0.893 (6.7% gain,
Table 5); imputation error drops 9.3% (Table 6). These consistent improvements validate PeCo-TS
as a versatile backbone for time-series applications.

4.2 ADVANTAGES OVER FIXED PATCHING

A key limitation of conventional Transformers for time series lies in their rigid fixed-window to-
kenization, which fragments signals and often cuts through natural temporal boundaries. In con-
trast, our learnable, event-driven segmentation produces variable-length tokens that adapt to intrinsic
rhythms, such as daily cycles or volatility bursts, thereby aligning representation with the underlying
event structure.
To validate its effectiveness, we compare our segmentation against fixed-patch baselines across two
complementary dimensions: prediction horizon and input length. As shown in Figure 3a, event-
driven segmentation consistently achieves lower MSE across horizons, with relative gains ranging
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Table 1: Multivariate forecasting results with prediction lengths S ∈ {96, 192, 336, 720} for all
datasets and fixed lookback length T = 96. Results are averaged across prediction lengths. The best
results are highlighted in red and the second best are shown in blue.

Dataset PeCo-TS AMD PathFormer CARD UniTS iTransformer PatchTST TSMixer TimesNet Mamba DLinear
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.415 0.427 0.435 0.428 0.445 0.426 0.442 0.428 0.454 0.459 0.465 0.455 0.448 0.446 0.626 0.588 0.460 0.455 0.550 0.509 0.460 0.457
ETTh2 0.378 0.400 0.383 0.402 0.389 0.419 0.396 0.427 0.415 0.422 0.383 0.407 0.381 0.408 2.025 1.194 0.409 0.425 0.443 0.441 0.564 0.519
ETTm1 0.369 0.388 0.390 0.400 0.400 0.403 0.401 0.413 0.407 0.413 0.407 0.411 0.386 0.400 0.529 0.513 0.412 0.418 0.498 0.468 0.404 0.408
ETTm2 0.287 0.333 0.295 0.348 0.303 0.349 0.293 0.343 0.443 0.407 0.291 0.334 0.285 0.330 1.030 0.753 0.294 0.332 0.377 0.380 0.355 0.401
Electricity 0.201 0.282 0.225 0.310 0.218 0.315 0.216 0.300 0.217 0.317 0.225 0.308 0.210 0.297 0.233 0.340 0.297 0.376 0.209 0.311 0.225 0.319
Exchange 0.387 0.418 0.408 0.428 0.557 0.477 0.367 0.414 0.567 0.491 0.364 0.407 0.369 0.407 0.539 0.590 0.406 0.439 0.693 0.555 0.339 0.413
Traffic 0.527 0.337 0.586 0.371 0.544 0.351 0.535 0.347 0.543 0.352 0.612 0.404 0.526 0.339 0.606 0.407 0.903 0.523 0.679 0.381 0.672 0.419
Weather 0.260 0.283 0.249 0.279 0.297 0.310 0.300 0.311 0.288 0.302 0.267 0.287 0.260 0.281 0.243 0.309 0.262 0.288 0.295 0.315 0.265 0.317

Table 2: Hardware efficiency metrics across sequence lengths on ETTh1 (batch size 32, RTX 3090).
Event-driven segmentation achieves effective compression with M/L < 0.07 across all settings.

Seq Length (L) Latency (ms) Memory (MB) Tokens (M) M/L Ratio
96 31.30 139 5.57 0.058

192 62.59 215 12.43 0.065
384 70.80 406 19.29 0.050
768 76.80 640 33.00 0.043

1536 85.75 1539 74.14 0.048

from 4.7% on Weather to 7.3% on ETTm1. Figure 3b further confirms robustness under varying
input sequence lengths: our method maintains superior performance regardless of the temporal con-
text size. Notably, the advantage of event-driven segmentation becomes more pronounced as input
or prediction length increases. Short patches tend to split coherent events into fragments and intro-
duce redundant tokens into higher layers, leading to inefficiency, while long patches often merge
multiple events into a single token, causing semantic overlap and learning difficulty. By contrast,
event-driven segmentation preserves semantic integrity within tokens while maintaining computa-
tional efficiency, thereby scaling gracefully with longer horizons and context windows.
Together, these results provide strong evidence that event-driven segmentation fundamentally im-
proves over arbitrary fixed patches. Qualitative visualizations in the Appendix (Figures 9–15) fur-
ther show that learned boundaries align with key temporal events, yielding semantically coherent and
generalizable representations. This alignment underpins the consistent quantitative gains observed
across datasets, establishing event-driven tokenization as a principled foundation for time-series
modeling.

4.3 SYNERGISTIC ROLES OF COGNITIVE FAST AND SLOW PATHS

Inspired by the brain’s dual-pathway system, PeCo-TS explicitly separates rapid perception from
slower conceptual abstraction. To assess the necessity of this design, we perform ablation studies
by removing either the Fast or Slow path. As shown in Figure 3c,d, eliminating the Fast path leads
to an average 10.0% drop in MSE improvement, while removing the Slow path results in a 4.6%
reduction. This asymmetric degradation underscores their complementary functions: the Fast path
preserves high-frequency details crucial for precise temporal alignment (e.g., anomaly detection),
whereas the Slow path processes event-level tokens to capture long-range dependencies efficiently
and allocate modeling capacity to complex structures.
Beyond accuracy, this division of labor also contributes to efficiency. Table 2 quantifies the hardware
efficiency across varying sequence lengths on ETTh1. The M/L ratio remains consistently low
(0.04–0.07), confirming that event-driven segmentation effectively compresses sequences: the Slow
path processes only 5–7% of the original timesteps, directly reducing computational complexity.
Despite longer sequences requiring more memory and computation, the inference latency scales
gracefully, and the efficient compression combined with lightweight FFT-based boundary detection
enables PeCo-TS to attain competitive efficiency compared with strong baselines (Appendix A.14).
To further understand the computational distribution, Figure 4 presents a component-level profil-
ing of inference time. The Fast path dominates computation (46–65%) when processing the full
sequence, while the Slow DA² attention contributes 29–42% depending on token count M. Crit-
ically, the FFT-based segmentation accounts for merely 5–9% of total time, validating our design
choice of operating attention on compressed event tokens rather than raw sequences. Together, these
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Figure 3: Comprehensive analysis of PeCo-TS key components. (a) Segmentation method
comparison (ETTh1): Adaptive event-driven segmentation consistently outperforms fixed patches
across prediction horizons, with learnable FFT achieving the lowest MSE. (b)Input length sensitiv-
ity analysis (ETTh1): Performance comparison across varying input sequence lengths and fixed 96
prediction horizon demonstrates the robustness of learnable FFT segmentation, maintaining superior
performance regardless of input length variations. (c)(d) Dual-pathway architecture validation:
Comprehensive ablation study demonstrates the complementary nature of Fast and Slow pathways.
The asymmetric contributions validate our cognitive-inspired hypothesis that rapid perception and
slower reasoning serve distinct but synergistic roles in time series modeling.

Figure 4: Component-level inference time breakdown across sequence lengths. Profiling on
ETTh1 reveals that the Fast path dominates computation for shorter sequences, while the Slow
DA² attention and segmentation maintain controlled overhead. The FFT-based boundary detection
consistently accounts for only 5–9% of total time, demonstrating its efficiency.

empirical savings align with the theoretical benefits of event-driven compression and the practical
synergy of the dual pathways, validating our cognitive-inspired hypothesis: rapid perception and
slower abstraction are distinct yet synergistic mechanisms that jointly yield a more effective and
efficient time-series model.

4.4 ADAPTIVE INTRA- AND INTER-SERIES DEPENDENCY MODELING

A distinctive advantage of PeCo-TS lies in its DA2 attention, which adaptively balances intra-
series and inter-series dependencies rather than committing to fixed channel-independent or channel-
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dependent designs. As shown in Appendix Figure 23, DA2 consistently outperforms both alterna-
tives across benchmarks, with the largest margin on ETTh2 (5.2% average MSE reduction).

Figure 5: Evolution of gating parameter π across datasets. The learnable gate parameter π in
DA2 attention adapts to dataset characteristics: shifting toward intra-series modeling (lower π) for
periodic data like Traffic, and toward inter-series modeling (higher π) when cross-channel correla-
tions dominate as in Weather. This demonstrates the model’s ability to dynamically balance the two
attention axes based on signal properties.

Beyond accuracy, DA2 attention dynamically adjusts its gate parameter π to reflect the correlation
structure of each dataset. Figure 5 illustrates that, as training progresses, the model gradually learns
dataset-specific dependency patterns: on Traffic (Chen et al., 2025), where intra-series periodicity
dominates, DA2 increases its emphasis on intra-series attention (π ≈ 0.56); on Weather (Chen et al.,
2025), where cross-channel correlations are stronger, the model assigns greater weight to inter-series
attention (π ≈ 0.49). This adaptive learning process improves predictive accuracy while offering
transparent insights into dataset-specific structures.

Figure 6: Cognitive architecture visualization showing the dual-pathway processing. (a) Input
signal with learned event boundaries; (b) Event segments derived from boundary detection; (c)
Temporal reprojection reconstructing fine-grained outputs from event-level abstractions; (d) Fast
path linear attention exhibiting local temporal dependencies; (e) DA2 token-axis attention for intra-
series modeling; (f) DA2 channel-axis attention for inter-series correlations.

9
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4.5 COGNITIVE PATHWAY BEHAVIOR AND MECHANISTIC INSIGHTS

The cognitive principle of “perceive fast, think slow” is instantiated in PeCo-TS through observable
modeling behavior (detailed visualizations in Appendix A.1). The boundary detector first converts
continuous signals into event-aligned tokens, ensuring semantic integrity at the token level. These
tokens then flow into two complementary pathways: the Fast path applies linear attention with
strong near-diagonal focus, retaining fine-grained local dependencies crucial for precise temporal
alignment; the Slow path employs DA2 attention across tokens and channels, integrating long-range
structures and cross-series correlations. Temporal reprojection feeds event-level abstractions back
to the native resolution, enabling consistent reconstruction of high-frequency detail.

The attention patterns provide direct evidence for this division of labor: the Fast path concentrates
on short-range patterns, while the Slow path distributes capacity over broader token and channel
contexts. Moreover, the gate parameter π adapts smoothly across datasets (see Appendix Figure 5),
shifting emphasis toward intra-series dependencies in periodic data (e.g., Traffic) and toward inter-
series dependencies when cross-channel correlations dominate (e.g., Weather). This dynamic real-
location reflects the model’s ability to specialize its reasoning strategy to the dataset at hand. Be-
yond dataset-level trends, layer-wise analysis reveals balanced pathway utilization: across all lay-
ers and datasets, Mean(π) ≈ 0.50 with standard deviation < 0.003, and gating entropy reaches
H(π) = 0.693 ≈ ln(2) (maximum uncertainty), indicating the model actively leverages both
branches rather than collapsing to a single pathway. Forced ablation experiments (setting π = 0
or π = 1) result in 1.1–5.8% performance degradation across datasets, validating that both Fast and
Slow pathways provide non-redundant contributions essential for optimal performance.

These mechanistic observations align closely with the empirical results. Event-driven segmentation
explains why PeCo-TS maintains stronger margins at longer horizons (Figure 3a,b); the complemen-
tary Fast/Slow contributions account for the asymmetric error increases in ablation (Figure 3c,d); and
DA2 attention clarifies why adaptive correlation modeling consistently outperforms fixed channel-
independent/dependent baselines. Even under anomaly detection and missing-data scenarios, the
synergy holds: slow abstractions provide contextual guidance, while fast features anchor precise tim-
ing, yielding improved localization and robustness. Together, this mechanism–phenomenon–result
loop demonstrates how event alignment and dual-path reasoning shape transparent attention ge-
ometry, which directly underpins the multitask gains and favorable accuracy–efficiency trade-offs
observed in PeCo-TS.

5 CONCLUSION

This work introduced PeCo-TS, a cognitive-inspired framework that translates the principle of “per-
ceive fast, think slow” into a practical architecture for time series modeling. By coupling event-
driven tokenization, a dual-pathway design, and DA2 adaptive attention, PeCo-TS directly addresses
the long-standing limitations of fixed-window segmentation, uniform computation, and static chan-
nel mixing. Extensive experiments across forecasting, classification, anomaly detection, and impu-
tation confirm its advantages: event-driven segmentation scales gracefully with horizon and context
length, the Fast and Slow paths contribute complementary precision and abstraction, and DA2 atten-
tion adapts to dataset-specific dependency structures.

We note that PeCo-TS is currently designed as a supervised architecture for per-task performance
when sufficient training data is available, rather than a foundation model supporting few-shot learn-
ing or zero-shot generalization. This positions PeCo-TS as complementary to pretrained models like
UniTS and TimesFM, excelling in scenarios where task-specific data is abundant.

Looking forward, we aim to extend the cognitive dual-pathway architecture toward foundation
model capabilities—exploring large-scale pretraining strategies that leverage event-driven represen-
tations for cross-domain transfer, few-shot adaptation, and unified multi-task learning. We believe
this cognitive–computational synthesis provides a promising pathway toward scalable, transparent,
and generalizable time-series foundation models.
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Egon Peršak, Miguel F. Anjos, Sebastian Lautz, and Aleksandar Kolev. Multiple-resolution
tokenization for time series forecasting with an application to pricing. arXiv preprint
arXiv:2407.03185, 2024. URL https://arxiv.org/abs/2407.03185.

Donghao Luo and Xue Wang. Deformabletst: Transformer for time series forecasting without
over-reliance on patching. In Advances in Neural Information Processing Systems (NeurIPS),
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/a0b1082fc7823c4c68abcab4fa850e9c-Paper-Conference.pdf.
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A APPENDIX

A.1 COGNITIVE ARCHITECTURE VISUALIZATION

This section provides detailed visualizations of the cognitive dual-pathway processing in PeCo-TS,
complementing the main text discussion.

A.2 COMPLEXITY ANALYSIS OF EVENT-DRIVEN SEGMENTATION

Let L ∈ N denote the input length, M ∈ {1, . . . , L} the number of event tokens after segmentation,
and d ∈ N the hidden dimension.

Standard attention. Self-attention scales quadratically:

Cfull = O(L2d). (13)

Event-driven segmentation. Our segmentation compresses L time steps into M tokens, where
M ≈ L/T and T > 0 is the effective period estimated by the detector. Thus,

Cevent = O(M2d) = O

(
L2

T 2
d

)
. (14)

Reduction ratio. The relative savings is

Cevent

Cfull
≈ 1

T 2
. (15)

For periodicities T ∈ [8, 32] commonly observed in climate, ECG, and engine vibration data, this is
a cost ratio of 1/64 to 1/1024. Importantly, segmentation also improves statistical efficiency, where
boundaries align with rhythmic units, concentrating attention capacity on semantically coherent
chunks, rather than arbitrary windows. This is analogous to parsing sentences by words instead of
fixed-length character spans.

Distributional view. Let T be a random effective period supported on [Tmin, Tmax] ⊂ (0,∞) and
assume M = ⌈L/T ⌉. Then

E
[
Cevent

]
∈ O

(
dE[M2]

)
⊆ O

(
dE[(L/T + 1)2]

)
= O

(
dL2 E[T−2] + dLE[T−1] + d

)
. (16)

Therefore, whenever E[T−2] is finite and bounded by c/T 2
min, the expected reduction factor satisfies

E[Cevent]

Cfull
≤ c

T 2
min

+O
(

1
L

)
, L → ∞. (17)

Proposition (piecewise-constant exactness). Suppose the input is piecewise constant with seg-
ment boundaries equal to the detector boundaries and the slow-path attention is applied only across
segments. Then M equals the number of pieces and O(M2d) attention achieves the same result
as O(L2d) full attention restricted to piecewise-constant hypotheses. Proof. On each segment the
representation is constant, so aggregating to one token per segment is a sufficient statistic. Attention
between segments in token space is identical to attention between any representatives in the original
space. The quadratic pair count reduces from L2 to M2.

A.3 THEORETICAL PROPERTIES OF DA2 ATTENTION

We now analyze the expressive capacity of the proposed dual-axis adaptive attention.

Formulation. Given token-level attention z̃c and channel-level attention z̃m, DA2 combines them
as

Y (π) = π · z̃m + (1− π) · z̃c, π = σ(θ) ∈ (0, 1). (18)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Degenerate cases.

• π = 0: Y (0) = z̃c, equivalent to independent channel-wise Transformers (no cross-channel
interactions).

• π = 1: Y (1) = z̃m, equivalent to fully shared cross-channel attention (ignoring per-
channel dynamics).

Thus, DA2 strictly generalizes both extremes.

Lemma (convex combination and stability). For any π ∈ (0, 1),

∥Y (π)∥ ≤ π∥z̃m∥+ (1− π)∥z̃c∥, (19)

implying stability and boundedness. The output lies in the convex hull of the two attention branches,
ensuring that DA2 cannot underperform both simultaneously.

Proposition (Lipschitz inheritance). If the token- and channel-attention maps are Lc- and Lm-
Lipschitz w.r.t. inputs, then for any fixed π ∈ [0, 1], Y (π) is L(π)-Lipschitz with L(π) ≤ (1 −
π)Lc + πLm. Proof. By triangle inequality and linearity of the convex mixing.

Proposition (richness via convex blending). Let Hc,Hm be hypothesis classes realized by the
two branches. Then the closure of HDA2 = {πhm + (1 − π)hc} under composition with standard
MLP blocks strictly contains Hc ∪ Hm provided Hc ̸⊂ Hm and Hm ̸⊂ Hc. Sketch. There exist
functions realizable only by mixtures of hc and hm (e.g., requiring simultaneous temporal and cross-
channel interactions). Post-mixing MLPs preserve separability, yielding strictly larger expressivity.

Expressivity. Consider the hypothesis class Hc defined by token-attention and Hm defined by
channel-attention. Then

HDA2 = {πhm + (1− π)hc : hm ∈ Hm, hc ∈ Hc, π ∈ (0, 1)}. (20)

This is strictly larger than Hc ∪ Hm, since convex combinations allow intermediate solutions that
neither pure axis can represent alone. In other words, DA2 spans a richer functional space without
increasing asymptotic complexity.

A.4 ANALYSIS AND VISUALIZATION OF EVENT-BOUNDARY SEGMENTATION

The event boundary detector introduces three trainable factors: (i) spectral smoothing kernel gθ, (ii)
softmax temperature τ , and (iii) sharpness γ.

Spectral smoothing. gθ acts as a localized convolution over the frequency axis, emphasizing task-
relevant bands. This is equivalent to learning a prior over plausible periodicities.

Soft frequency selection. The softmax distribution

αf =
exp(Psm(f)/τ)∑
f ′ exp(Psm(f ′)/τ)

(21)

ensures differentiability. Lower τ sharpens α into hard frequency selection, while higher τ encour-
ages broader distributions. During training, τ adapts to balance stability and discriminability.

Differentiable comb scoring. By raising the cosine comb to a learnable exponent γ, the segmenter
interpolates between smooth sinusoidal modulation (γ ≈ 1) and sharp periodic spikes (γ ≫ 1). This
provides a continuous control of boundary sparsity.

Visualization. The segmentation process demonstrates each stage: raw spectrum to smoothed
spectrum to softmax weighting to cosine comb peaks to event boundaries. This progression high-
lights that segmentation is not a fixed heuristic but a differentiable, learnable module, as evidenced
by the boundary alignment with natural signal dynamics shown in Figures 9 to 15.
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A.5 MASKED SOFTMAX WITH PADDING

Let A ∈ RN×N be attention logits and m ∈ {0, 1}N a binary keep-mask (1 for valid, 0 for padded).
Define the masked logits

Ãij =

{
Aij , mj = 1,

−∞, mj = 0,

and the masked-softmax as

softmaxj(Ãij) =
exp(Ãij)∑

k:mk=1 exp(Ãik)
.

Equivalently, one can compute softmax(A + (1 − m) · (−M)) with a large M ≫ 0. In our
implementation for DA2 attention, the per-channel per-batch mask µ provides m along the token
axis for token-attention and along the channel-token pairing for channel-attention. This guarantees
that padded positions neither receive nor contribute probability mass.

A.6 INFORMATION PRESERVATION IN TEMPORAL REPROJECTION

The reprojection operator maps event-level embeddings zslow ∈ RM×d to time-resolved outputs
zfull(t):

zfull(t) =

M∑
i=1

wt,i zslow(i),
∑
i

wt,i = 1, wt,i ≥ 0. (22)

Lemma (convexity and boundedness). Since zfull(t) is a convex combination, for any norm ∥ · ∥,

∥zfull(t)∥ ≤
M∑
i=1

wt,i ∥zslow(i)∥ ≤ max
i

∥zslow(i)∥. (23)

Thus reprojection does not inflate magnitudes beyond the convex hull of the inputs.

Proposition (approximation error bound). Let hhigh(t) denote the high-dimensional fast repre-
sentation at time t. Then

∥zfull(t)− hhigh(t)∥2 ≤
M∑
i=1

wt,i ∥zslow(i)− hhigh(t)∥2 ≤ max
i

∥zslow(i)− hhigh(t)∥2. (24)

This shows that the reprojection error is bounded by the convex combination (and hence by the
maximum) of per-segment discrepancies, and does not grow with sequence length.

Theorem (exactness for piecewise-constant signals). Suppose the time axis is partitioned by the
detector into M segments and zslow(i) equals the segment-wise mean of hhigh(t) on segment i. If wt,i

are the standard barycentric weights induced by segment lengths (row-stochastic and segment-local),
then zfull(t) = hhigh(t) for any piecewise-constant hhigh aligned with the segmentation. Proof. On
each segment the mean equals the constant value; barycentric reconstruction reproduces the constant
exactly, and off-segment weights vanish.

Theoretical Analysis. Temporal reprojection can be viewed as a form of predictive coding, where
abstract hypotheses zfull(t) are continuously projected back to the temporal stream, and reconstruc-
tion errors serve as alignment signals. This guarantees both fidelity (preserving local detail) and
consistency (maintaining event-level abstraction).

PROPERTIES OF BOUNDARY-GUIDED REPROJECTION WEIGHTS

We now justify the definition of wt,i constructed from (pfull, bfull).
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Setup. Let {Si = [si, ei]}Mi=1 be a partition of the time axis induced by bfull (consecutive ones
indicate boundaries). For any t, define unnormalized segment-local weights

w̃t,i =

{
κ
(
dist(t; si, ei)

)
p̄(t), t ∈ Si,

0, otherwise,

where κ : R≥0 → R≥0 is bounded and nonincreasing, and p̄(t) ∈ [0, 1] is a channel-aggregated soft
confidence from pfull. Set

wt,i =
w̃t,i∑M
j=1 w̃t,j

whenever
∑
j

w̃t,j > 0, and wt,i =
1{t ∈ Si}

#{j : t ∈ Sj}
otherwise.

Lemma (nonnegativity, locality, partition-of-unity). For every t, wt,i ≥ 0, wt,i = 0 if t /∈ Si,
and

∑M
i=1 wt,i = 1. Proof. Nonnegativity and locality follow from w̃t,i ≥ 0 and its definition.

When
∑

j w̃t,j > 0, normalization yields a convex combination with unit sum. If the denominator
vanishes (measure-zero edge case only when p̄(t) = 0 for all active segments), the fallback uniform
average over active segments preserves unit sum.

Lemma (stability). If κ is bounded by K and Lipschitz with constant Lκ, and p̄ is bounded and
Lipschitz with constant Lp, then wt,i is bounded and piecewise-Lipschitz in t away from segment
boundaries. Sketch. Products and sums of Lipschitz functions preserve Lipschitzness; division by a
denominator bounded away from zero on each segment interior preserves regularity.

Proposition (consistency with segmentation). Suppose zslow(i) summarizes segment Si (e.g.,
mean of hhigh on Si). Then zfull(t) is a segment-local convex interpolation of adjacent segment
summaries and thus cannot introduce off-segment leakage. Proof. By locality and partition-of-unity,
only indices i with t ∈ Si contribute, and the coefficients form a convex combination.

Theorem (exactness for piecewise-constant signals). If hhigh is piecewise constant on {Si} and
zslow(i) equals the segment mean, then with any segment-local wt,i as above that is constant on
each segment (e.g., κ ≡ 1, constant p̄ per segment), one has zfull(t) = hhigh(t) for all t. Proof.
On Si, hhigh(t) ≡ ci and zslow(i) = ci. Since wt,j = 0 for j ̸= i and

∑
j wt,j = 1, we obtain

zfull(t) = wt,ici = ci = hhigh(t).
These results justify the boundary-guided construction: it yields nonnegative, local, normalized
weights tied to detected events, admits smooth interpolations via κ and p̄, and recovers exact recon-
struction for signals aligned with the learned segmentation.

A.7 ROBUSTNESS OF BOUNDARY DETECTION

To validate the stability and reliability of our boundary detection mechanism, we conducted com-
prehensive robustness evaluations under two critical scenarios: (1) boundary perturbation and (2)
hyperparameter sensitivity.

Boundary Perturbation Analysis. We systematically perturbed ground-truth boundaries by in-
troducing random noise in the range [−δ,+δ] where δ ∈ {5%, 10%, 20%, 30%} of the average
segment length. As shown in Figure 8(a), PeCoTS maintains stable forecasting accuracy (MSE)
even under 30% boundary perturbation, with performance degradation less than 8% across ETTh1,
Exchange, and Weather datasets. This demonstrates that our model is not overly sensitive to precise
boundary locations, but rather learns meaningful periodic patterns that are robust to minor segmen-
tation errors.

Hyperparameter Sensitivity Analysis. We evaluated the impact of two key hyperparameters: the
boundary detection threshold τ and the minimum segment length Lmin. Figure 8(b) shows that
PeCoTS achieves consistently low MSE across a wide range of τ ∈ [0.3, 0.7] and Lmin ∈ [4, 16].
The model exhibits graceful degradation outside the optimal range, rather than catastrophic failure,
indicating that the learned representations are fundamentally stable.
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Figure 7: Token count analysis across hyperparameter configurations. The heatmap shows how
threshold τ and smoothing factor γ affect the number of event tokens M. Darker regions indicate
fewer tokens (stronger compression). The optimal performance zone (M/L ≈ 0.04–0.07) balances
semantic alignment with efficiency.

(a) Boundary Perturbation Analysis (b) Hyperparameter Sensitivity Analysis

Figure 8: Robustness Analysis of Boundary Detection. (a) Performance under boundary perturba-
tion shows graceful degradation with MSE increase < 8% even at 30% noise. (b) Hyperparameter
sensitivity analysis demonstrates stable performance across wide ranges of threshold τ and smooth-
ing factor γ.

Implications. These results confirm that our boundary detection is not merely a fragile preprocess-
ing trick, but a robust component that adapts to various data characteristics. The model’s resilience
to boundary noise and hyperparameter variations validates its applicability to diverse real-world
scenarios where perfect segmentation is unattainable.

Token Count Analysis. Beyond performance stability, we analyze how hyperparameters affect
the compression efficiency measured by token count M. Figure 7 shows the relationship between
threshold τ , smoothing factor γ, and the resulting number of event tokens across different datasets.
Higher thresholds lead to sparser boundaries and fewer tokens (stronger compression), while lower
thresholds produce denser segmentation. Notably, the optimal performance range (highlighted in
the heatmap) corresponds to M/L ratios of 0.04–0.07, confirming that moderate compression bal-
ances semantic coherence with computational efficiency. This analysis provides practical guidance
for tuning: users can adjust τ to control the compression-accuracy trade-off based on deployment
constraints.

A.8 EVENT-DRIVEN SEGMENTATION VISUALIZATION

Enhanced spectral flux (ESF). To compare with the boundary proposal of PeCo-TS, we compute
a spectral change cue that emphasizes onsets and regime shifts. Let St(f) denote the magnitude
spectrum at time t and frequency f , obtained from a short-time FFT over the original input x with a
Hann window. We apply spectral whitening using a robust per-band statistic M(f) (median over a
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local temporal window) and bandlimited smoothing h along the frequency axis:

Ŝt(f) =
St(f)

M(f) + ε
, S̃t(f) = (h ∗ Ŝt)(f). (25)

The enhanced spectral flux is the half-wave rectified frame-to-frame spectral increment and normal-
ized to [0, 1] across t, optionally with frequency weights w(f):

ESF(t) =
∑
f

w(f)
[
S̃t(f)− S̃t−1(f)

]
+
, [x]+ = max(x, 0). (26)

Figure 9: ETTh1 segmentation with an event boundary detector. We plot the input signal, enhanced
spectral flux (ESF) curve (normalized), cosine-comb scoring, and resulting boundaries. ESF high-
lights spectral change points; peaks coincide with daily/weekly regime shifts.

Figures 9 to 15 show that the event boundary detector places boundaries at semantically meaningful
transitions across datasets. On ETTh1, peaks cluster around daily and weekly regime shifts; on
Traffic, boundaries concentrate at rush-hour onsets and weekend changes. The ETTm1/m2 and
ETTh2 results indicate cross-resolution robustness, adapting segment lengths to mid- versus low-
frequency rhythms. Weather boundaries densify near storm fronts, and Exchange boundaries align
with volatility bursts and macro events. This adaptivity avoids both under- and over-segmentation,
preserving coherent events while minimizing token count.

A.9 MULTI-TASK EVALUATION

We report MSE/MAE for forecasting and imputation, accuracy for classification, and precision/F1
for anomaly detection. Training uses PyTorch with Adam optimizer (lr=1e-4, batch size 32); event
segmentation combines FFT, autocorrelation, and Hilbert transforms; DA2 Attention employs eight
heads with dataset-adaptive gating parameter π. All experiments run on RTX 3090 GPUs. Complete
results are shown in Table 3– 6. The best results are highlighted in red and the second best are shown
in blue. Among the various models, PeCo-TS exhibits superior multitask performance. To provide
a clear comparison among different models, we list supplementary prediction showcases of three
representative datasets in Figures 16–18.

A.10 SEGMENTATION METHOD COMPARISON

Across ETTh1, ETTm1, and Weather (Figures 19 to 21), the event boundary approach consistently
produces cleaner, more stable boundaries than fixed windows or heuristic detectors. Competing
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Figure 10: Traffic segmentation with an event boundary detector. ESF captures rush-hour transitions
and weekend effects; boundaries adaptively densify in volatile intervals and sparsify in low-variance
night periods.

Figure 11: ETTh2 segmentation analysis. ESF and comb scoring align with lower-frequency
rhythms relative to ETTh1; boundary spacing reflects coarser periodicities.
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Figure 12: ETTm1 segmentation analysis. Minute-level series exhibits mid-frequency rhythms; ESF
peaks are more frequent than hourly datasets, yielding finer-grained event tokens.

Figure 13: ETTm2 segmentation analysis. Similar to ETTm1 with dataset-specific periodicities;
learnable smoothing adapts to suppress spurious high-frequency flux.
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Figure 14: Weather segmentation analysis. ESF peaks densify near synoptic events (fronts/storms),
indicating sensitivity to transient meteorological regimes beyond simple diurnal periodicity.

Figure 15: Exchange segmentation analysis. ESF highlights volatility bursts; boundaries concentrate
around macroeconomic announcements and major market moves, while remaining sparse during
stable phases.
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Figure 16: Visualization of input-96-predict-96 results on the ETTh1 dataset.

Figure 17: Visualization of input-96-predict-96 results on the Weather dataset.

Figure 18: Visualization of input-96-predict-96 results on the ECL dataset.
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Figure 19: Segmentation method comparison on ETTh1. We compare fixed windows, heuristic de-
tectors, and an event boundary detector. The boundary detector reduces spurious cuts and improves
alignment with regime shifts, enabling efficient event-level modeling.

Figure 20: Segmentation method comparison on ETTm1. Minute-level rhythms amplify differ-
ences: fixed windows over/under-segment across horizons, while the event boundary detector adapts
boundary density to intrinsic periodicities.

Figure 21: Segmentation method comparison on Weather. Heuristics miss transient synoptic
changes; the event boundary detector better tracks varying periodicities and transitions, support-
ing downstream accuracy.
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Table 3: Multivariate forecasting results with prediction lengths S ∈ {96, 192, 336, 720} for all
datasets and fixed lookback length T = 96.

Models PeCo-TS AMD PathFormer CARD UniTS iTransformer PatchTST TSMixer TimesNet Mamba DLinear
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 96 0.369 0.396 0.375 0.398 0.385 0.391 0.383 0.391 0.393 0.417 0.395 0.409 0.377 0.397 0.494 0.502 0.389 0.412 0.486 0.452 0.396 0.411
192 0.409 0.422 0.430 0.427 0.443 0.421 0.435 0.420 0.440 0.448 0.449 0.441 0.425 0.428 0.581 0.557 0.439 0.442 0.555 0.506 0.445 0.440
336 0.440 0.438 0.462 0.424 0.459 0.430 0.480 0.443 0.471 0.465 0.492 0.465 0.473 0.458 0.677 0.618 0.494 0.471 0.537 0.500 0.487 0.465
720 0.444 0.454 0.473 0.462 0.493 0.463 0.469 0.460 0.510 0.504 0.522 0.504 0.518 0.501 0.752 0.674 0.518 0.494 0.624 0.577 0.513 0.510

ETTh2 96 0.288 0.342 0.304 0.366 0.313 0.364 0.310 0.362 0.321 0.362 0.300 0.350 0.295 0.347 1.056 0.807 0.330 0.370 0.347 0.378 0.341 0.395
192 0.375 0.396 0.382 0.383 0.383 0.417 0.392 0.411 0.422 0.423 0.382 0.400 0.376 0.398 2.587 1.403 0.394 0.410 0.455 0.445 0.482 0.479
336 0.416 0.423 0.405 0.411 0.422 0.437 0.438 0.455 0.460 0.444 0.424 0.432 0.421 0.433 2.407 1.347 0.471 0.468 0.429 0.443 0.593 0.542
720 0.433 0.437 0.442 0.448 0.439 0.459 0.442 0.480 0.457 0.458 0.426 0.445 0.431 0.453 2.051 1.218 0.442 0.452 0.541 0.497 0.840 0.661

ETTm1 96 0.320 0.360 0.334 0.379 0.348 0.377 0.337 0.377 0.351 0.379 0.341 0.376 0.324 0.365 0.479 0.470 0.336 0.376 0.372 0.391 0.346 0.374
192 0.329 0.366 0.352 0.382 0.367 0.390 0.395 0.400 0.394 0.403 0.381 0.395 0.365 0.386 0.480 0.482 0.387 0.402 0.436 0.421 0.382 0.391
336 0.372 0.389 0.410 0.405 0.417 0.409 0.415 0.420 0.413 0.419 0.419 0.419 0.393 0.408 0.541 0.525 0.414 0.422 0.558 0.511 0.415 0.415
720 0.457 0.438 0.462 0.434 0.469 0.438 0.458 0.455 0.471 0.451 0.486 0.456 0.460 0.443 0.616 0.574 0.513 0.472 0.625 0.548 0.473 0.451

ETTm2 96 0.181 0.264 0.197 0.279 0.200 0.289 0.188 0.277 0.279 0.315 0.184 0.267 0.178 0.260 0.250 0.366 0.188 0.268 0.196 0.275 0.193 0.293
192 0.246 0.308 0.251 0.312 0.263 0.321 0.263 0.321 0.405 0.381 0.253 0.312 0.247 0.308 0.492 0.559 0.252 0.307 0.302 0.342 0.285 0.361
336 0.311 0.350 0.315 0.377 0.335 0.361 0.310 0.358 0.480 0.429 0.315 0.352 0.309 0.347 0.833 0.735 0.317 0.346 0.372 0.393 0.385 0.429
720 0.411 0.409 0.416 0.422 0.415 0.426 0.410 0.416 0.606 0.504 0.412 0.406 0.407 0.403 2.544 1.352 0.421 0.406 0.637 0.510 0.556 0.523

Electricity 96 0.179 0.261 0.195 0.282 0.189 0.279 0.184 0.272 0.176 0.285 0.196 0.281 0.189 0.277 0.200 0.305 0.276 0.358 0.188 0.290 0.210 0.301
192 0.184 0.267 0.207 0.295 0.204 0.282 0.194 0.280 0.197 0.304 0.206 0.293 0.193 0.283 0.220 0.331 0.285 0.367 0.204 0.308 0.210 0.305
336 0.200 0.284 0.232 0.321 0.216 0.339 0.211 0.301 0.219 0.325 0.226 0.313 0.209 0.298 0.242 0.353 0.296 0.378 0.207 0.313 0.223 0.319
720 0.241 0.317 0.265 0.343 0.263 0.360 0.275 0.348 0.277 0.353 0.270 0.347 0.251 0.331 0.271 0.372 0.333 0.402 0.237 0.333 0.258 0.350

Exchange 96 0.082 0.203 0.083 0.204 0.115 0.237 0.087 0.207 0.112 0.233 0.087 0.207 0.084 0.203 0.232 0.388 0.111 0.238 0.127 0.258 0.094 0.227
192 0.190 0.312 0.201 0.323 0.247 0.352 0.182 0.306 0.249 0.357 0.180 0.303 0.181 0.302 0.464 0.549 0.209 0.333 0.287 0.391 0.186 0.325
336 0.335 0.423 0.342 0.432 0.469 0.489 0.333 0.432 0.474 0.495 0.333 0.419 0.337 0.421 0.754 0.720 0.374 0.448 0.651 0.603 0.327 0.435
720 0.942 0.735 1.005 0.752 1.396 0.832 0.866 0.710 1.434 0.878 0.856 0.700 0.875 0.703 0.705 0.701 0.931 0.735 1.706 0.970 0.749 0.664

Traffic 96 0.506 0.327 0.536 0.359 0.521 0.343 0.512 0.334 0.508 0.333 0.574 0.386 0.509 0.331 0.578 0.388 0.868 0.499 0.679 0.383 0.696 0.429
192 0.517 0.332 0.582 0.365 0.534 0.342 0.520 0.342 0.531 0.348 0.584 0.390 0.514 0.337 0.579 0.394 0.919 0.537 0.645 0.367 0.646 0.407
336 0.521 0.338 0.596 0.369 0.547 0.352 0.540 0.352 0.550 0.354 0.613 0.405 0.522 0.334 0.604 0.409 0.898 0.514 0.636 0.360 0.653 0.410
720 0.563 0.352 0.629 0.392 0.574 0.368 0.567 0.360 0.584 0.373 0.676 0.434 0.558 0.353 0.664 0.439 0.927 0.542 0.755 0.414 0.694 0.429

Weather 96 0.178 0.220 0.167 0.214 0.203 0.239 0.204 0.241 0.193 0.239 0.183 0.225 0.179 0.220 0.163 0.241 0.180 0.225 0.195 0.243 0.196 0.257
192 0.227 0.263 0.216 0.260 0.261 0.285 0.264 0.285 0.252 0.279 0.234 0.266 0.228 0.260 0.210 0.285 0.227 0.266 0.252 0.291 0.236 0.294
336 0.281 0.299 0.271 0.299 0.340 0.337 0.342 0.337 0.333 0.330 0.287 0.304 0.279 0.297 0.267 0.333 0.281 0.304 0.327 0.342 0.283 0.333
720 0.355 0.349 0.343 0.344 0.383 0.379 0.392 0.381 0.373 0.359 0.362 0.352 0.355 0.347 0.332 0.379 0.360 0.355 0.406 0.385 0.347 0.384

Table 4: Time-series classification results on UCR/UEA benchmarks. Metric is Accuracy (%, higher
is better). All methods follow dataset-standard train/test splits and z-score normalization.

Dataset PeCo-TS iTransformer PatchTST DLinear FEDformer Crossformer Autoformer

EthanolConcentration 0.3270 0.2852 0.2814 0.2928 0.2776 0.3030 0.2433
FaceDetection 0.6831 0.6654 0.6864 0.6822 0.6751 0.6512 0.5951
JapaneseVowels 0.9676 0.9757 0.9595 0.9649 0.9674 0.9757 0.9649
SelfRegulationSCP1 0.9144 0.9215 0.8737 0.9147 0.5802 0.9147 0.5631
SelfRegulationSCP2 0.5560 0.5444 0.5278 0.5444 0.5278 0.5467 0.5333
SpokenArabicDigits 0.9818 0.9804 0.9741 0.9650 0.9782 0.9627 0.9759
UWaveGestureLibrary 0.7919 0.8594 0.8625 0.8219 0.5656 0.8531 0.5000

methods either miss critical regime shifts (under-segmentation) or fragment coherent trends (over-
segmentation), while our method achieves tighter alignment with intrinsic periodicities, which later
translates into lower forecasting error and better anomaly localization.

A.11 FAST-SLOW PATH COMPARISON

The Fast path preserves high-frequency cues, improving short-horizon fidelity, while the Slow path
enforces long-range consistency via event abstractions. Figure 22 shows complementary error pro-
files; combining both reduces both bias (trend errors) and variance (spiky mispredictions).

A.12 DA2 ABLATIONS

DA2 adaptively allocates capacity between intra-series and inter-series attention. Figure 23 confirms
consistent gains over fixed CI/CD strategies across datasets. Learned allocations correlate with
dataset structure: higher inter-series emphasis on Electricity/Traffic (strong cross-channel coupling),
and higher intra-series emphasis on ETT variants (dominant per-channel temporal patterns).

A.13 π EVOLUTION

The gate π evolves smoothly during training from near-uniform to dataset-specific allocations (Fig-
ures 24). This behavior indicates a regularized selector rather than a brittle switch, stabilizing with-
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Figure 22: Fast vs. Slow path comparison. Fast preserves high-frequency cues for short-horizon
fidelity; Slow enforces long-range consistency via event abstraction. Fusion reduces both bias and
variance across datasets.

Figure 23: DA2 vs. fixed CI/CD channel strategies. Adaptive gating π learns dataset-specific allo-
cations, outperforming fixed extremes across multivariate benchmarks.
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Table 5: Anomaly detection results on MSL, PSM, SMAP, SMD, and SWAT. We report Precision
and F1 (higher is better) under the standard contiguous-window detection protocol; thresholds se-
lected on validation splits.

Dataset PeCo-TS iTransformer PatchTST DLinear FEDformer Crossformer Autoformer

Metric Precision F1-Score Precision F1-Score Precision F1-Score Precision F1-Score Precision F1-Score Precision F1-Score Precision F1-Score

MSL 0.9036 0.8331 0.8615 0.7253 0.8860 0.7913 0.8969 0.8187 0.9068 0.8230 0.9031 0.8060 0.9054 0.8187
PSM 0.9864 0.9626 0.9797 0.9532 0.9910 0.9626 0.9864 0.9661 0.9999 0.9007 0.9729 0.9239 0.9999 0.8823
SMAP 0.9330 0.8615 0.9069 0.6675 0.8988 0.6726 0.8987 0.6729 0.9015 0.6863 0.8998 0.6874 0.9127 0.7411
SMD 0.7891 0.8482 0.7627 0.8057 0.7648 0.8104 0.7612 0.8007 0.7278 0.7688 0.7204 0.7758 0.7298 0.7723
SWAT 0.9810 0.9635 0.9221 0.9265 0.9124 0.8673 0.9227 0.9266 0.9995 0.7918 0.9782 0.9063 0.9996 0.7918

Table 6: Imputation results on ETTh/ETTm/Electricity/Weather. We report MSE/MAE (lower is
better) under random missingness with multiple mask rates.

Dataset Mask Ratio PeCo-TS iTransformer PatchTST DLinear FEDformer Crossformer AutoFormer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Etth1 12.5% 0.1010 0.2089 0.0987 0.2218 0.0928 0.2010 0.1117 0.2319 0.0735 0.1958 0.1064 0.2283 0.0978 0.2266
25.0% 0.1230 0.2315 0.1250 0.2504 0.1063 0.2165 0.1496 0.2690 0.1055 0.2365 0.1172 0.2427 0.1208 0.2516
37.5% 0.1470 0.2540 0.1573 0.2818 0.1188 0.2306 0.1874 0.3004 0.1411 0.2748 0.1293 0.2572 0.1550 0.2851
50.0% 0.1755 0.2755 0.2177 0.3325 0.1403 0.2486 0.2316 0.3326 0.2006 0.3293 0.1478 0.2764 0.2119 0.3348

Etth2 12.5% 0.0635 0.1615 0.0932 0.2080 0.0570 0.1510 0.1091 0.2229 0.1296 0.2437 0.1215 0.2310 0.1702 0.2887
25.0% 0.0682 0.1692 0.1209 0.2395 0.0620 0.1594 0.1449 0.2593 0.1788 0.2911 0.1335 0.2435 0.2229 0.3302
37.5% 0.0719 0.1727 0.1485 0.2650 0.0674 0.1670 0.1794 0.2895 0.2335 0.3323 0.1451 0.2565 0.2781 0.3632
50.0% 0.0846 0.1914 0.1931 0.3026 0.0736 0.1753 0.2161 0.3186 0.3462 0.3988 0.1614 0.2710 0.3747 0.4198

Ettm1 12.5% 0.0338 0.1294 0.0456 0.1474 0.0396 0.1280 0.0556 0.1612 0.0448 0.1594 0.0436 0.1487 2.010 1.204
25.0% 0.0397 0.1260 0.0605 0.1723 0.0420 0.1318 0.0766 0.1906 0.0531 0.1633 0.0466 0.1524 1.109 0.8591
37.5% 0.0450 0.1380 0.0774 0.1959 0.0466 0.1390 0.0998 0.2175 0.0809 0.2013 0.0506 0.1580 0.3463 0.4382
50.0% 0.0517 0.1470 0.1067 0.2316 0.0523 0.1470 0.1286 0.2463 0.1278 0.2545 0.0567 0.1677 0.3391 0.4195

ETTm2 12.5% 0.0253 0.0911 0.0518 0.1514 0.0254 0.0931 0.0662 0.1707 0.0601 0.1681 0.0557 0.1576 2.788 1.326
25.0% 0.0277 0.0999 0.0707 0.1789 0.0277 0.0982 0.0893 0.2007 0.0921 0.2089 0.0741 0.1802 0.9562 0.7293
37.5% 0.0300 0.1010 0.0915 0.2043 0.0301 0.1028 0.1117 0.2256 0.1328 0.2464 0.0796 0.1779 1.463 0.8603
50.0% 0.0340 0.1150 0.1176 0.2327 0.0332 0.1079 0.1382 0.2514 0.2415 0.3297 0.0877 0.1861 0.6442 0.5610

ECL 12.5% 0.0492 0.1413 0.0724 0.1895 0.0526 0.1550 0.0844 0.2063 0.1808 0.3204 0.0640 0.1792 0.1875 0.3259
25.0% 0.0559 0.1521 0.0898 0.2134 0.0623 0.1692 0.1131 0.2427 0.2020 0.3367 0.0716 0.1899 0.2123 0.3442
37.5% 0.0651 0.1654 0.1068 0.2344 0.0726 0.1826 0.1412 0.2731 0.2205 0.3512 0.0804 0.2025 0.2289 0.3557
50.0% 0.0796 0.1853 0.1259 0.2553 0.0874 0.2022 0.1726 0.3034 0.2425 0.3670 0.0901 0.2155 0.2600 0.3768

Weather 12.5% 0.0285 0.0555 0.0376 0.0858 0.0287 0.0485 0.0380 0.0885 0.0425 0.1033 0.2314 0.3437 0.0387 0.0947
25.0% 0.0310 0.0056 0.0460 0.1054 0.0310 0.0531 0.0471 0.1074 0.0568 0.1305 0.1888 0.2963 0.0398 0.0973
37.5% 0.0330 0.0560 0.0549 0.1209 0.0350 0.0588 0.0558 0.1216 0.0732 0.1575 0.1156 0.2205 0.0399 0.0967
50.0% 0.0360 0.0600 0.0671 0.1407 0.0378 0.0626 0.0663 0.1368 0.1134 0.2095 0.1655 0.2691 0.0432 0.1017

out collapse. Per-dataset shifts reflect structural differences (e.g., sensor versus market data), ex-
plaining robust cross-dataset performance without architecture changes.

A.14 MODEL EFFICIENCY

Under identical settings (input-96, predict-96), PeCo-TS attains higher accuracy with lower latency
(Figure 25). These empirical savings match the theoretical reduction from event-driven compres-
sion (Appendix A.2) and the practical ablations showing complementary contributions of Fast/Slow
paths.

A.15 IRREGULAR SAMPLING: LIMITATIONS AND FUTURE DIRECTIONS

Current approach and limitations. While PeCo-TS achieves strong performance on regularly-
sampled time series, the current FFT-based boundary detector assumes uniform sampling intervals.
For irregularly-sampled time series (e.g., medical records with sporadic observations, event logs
with variable arrival rates), this assumption is violated. In the current implementation, we handle
missing observations through linear interpolation before applying the FFT-based segmenter, which
provides a pragmatic solution for moderate irregularity but is not theoretically principled for truly
non-uniform sampling.

Empirical robustness evaluation. To assess the practical limits of this approach, we conducted
controlled experiments on ETTh1 by randomly removing observations at various missing ratios
(10%, 20%, 30%, 50%) and comparing three irregular-sampling strategies: (1) linear interpolation
(filling missing values before FFT), (2) time-delta encoding (appending time gaps as auxiliary fea-
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Figure 24: Training-time evolution of π. The gate transitions smoothly from near-uniform to dataset-
specific equilibria, acting as a regularized selector rather than a brittle switch.

Figure 25: Model efficiency on Traffic (input-96, predict-96). PeCo-TS achieves higher accuracy
with lower latency than strong baselines, consistent with theoretical complexity reductions.
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tures), and (3) continuous-time embedding (using learnable time-continuous positional encodings).
Table 7 summarizes the forecasting performance (MSE) across different prediction horizons.

Table 7: Forecasting MSE on ETTh1 under irregular sampling with varying missing ratios. Linear
interpolation maintains reasonable performance under moderate missingness (< 30%), with degra-
dation < 6% compared to regular sampling.

PredLen Regular 10% Miss 20% Miss 30% Miss 50% Miss
96 0.3695 0.3750 (+1.5%) 0.3787 (+2.5%) 0.3822 (+3.4%) 0.3976 (+7.6%)
192 0.4095 0.4129 (+0.8%) 0.4170 (+1.8%) 0.4212 (+2.9%) 0.4390 (+7.2%)
336 0.4402 0.4443 (+0.9%) 0.4461 (+1.3%) 0.4547 (+3.3%) 0.4608 (+4.7%)
720 0.4448 0.4513 (+1.5%) 0.4532 (+1.9%) 0.4607 (+3.6%) 0.4692 (+5.5%)

As shown, performance degrades gracefully under moderate missingness (≤ 30%), with MSE in-
creases of 2–4%. At higher missing ratios (50%), the degradation becomes more pronounced (5–
8%), indicating that simple interpolation is insufficient when irregularity is severe. Notably, time-
delta encoding and continuous-time embeddings do not provide consistent advantages in this setting,
suggesting that the primary bottleneck is the FFT segmenter’s reliance on regular spacing rather than
the encoding mechanism.

Principled extensions for irregular sampling. To natively support irregular sampling, two
promising directions emerge:

• Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982): This generalization of Fourier
analysis to non-uniformly sampled data can directly estimate dominant periodicities with-
out interpolation. We conducted preliminary experiments comparing the learnable FFT
segmenter with a Lomb-Scargle variant on irregularly-sampled ETTh1. Table 8 shows
that while Lomb-Scargle achieves comparable MSE under 10% and 30% missing ratios,
it incurs significantly higher computational cost (inference time ∼ 5–6× slower) due to
iterative least-squares fitting.

• Continuous-time neural ODEs (Rubanova et al., 2019; Chen et al., 2018): Modeling
time series as solutions to latent ordinary differential equations enables native handling of
irregular observations by evaluating the ODE solution at arbitrary timestamps. Integrat-
ing ODE-based representations with event-driven segmentation remains an open research
direction.

Table 8: Comparison of FFT-based vs. Lomb-Scargle boundary detection under irregular sampling
on ETTh1. Lomb-Scargle achieves similar accuracy but at significantly higher computational cost.

PredLen Missing Ratio Segmenter MSE Inference Time (ms/sample)
96 10% Learnable FFT 0.3781 2.09
96 10% Lomb-Scargle 0.3814 11.81
96 30% Learnable FFT 0.3753 2.31
96 30% Lomb-Scargle 0.3820 11.96

192 10% Learnable FFT 0.4143 2.92
192 10% Lomb-Scargle 0.4119 13.06
192 30% Learnable FFT 0.4137 4.62
192 30% Lomb-Scargle 0.4118 12.35

336 10% Learnable FFT 0.4445 5.80
336 10% Lomb-Scargle 0.4427 11.59
336 30% Learnable FFT 0.4455 2.12
336 30% Lomb-Scargle 0.4414 12.50

Implications and future work. Our experiments confirm that PeCo-TS exhibits reasonable ro-
bustness to moderate irregular sampling via interpolation (< 6% degradation at 30% missingness),
validating its applicability to real-world scenarios with sporadic observations. However, for appli-
cations with inherently irregular timestamps (e.g., electronic health records, astronomical surveys),
principled integration of Lomb-Scargle periodograms or neural ODEs represents an important future
direction. The key challenge is maintaining end-to-end differentiability and computational efficiency
while extending boundary detection to non-uniform grids.
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