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Abstract. One inevitable barrier to deep learning-based medical image
segmentation algorithms is that for such tasks requiring high accuracy,
all models must be trained using large datasets annotated by experts,
and this process is exceptionally time-consuming and laborious. For ab-
dominal organ segmentation, this problem becomes more prominent as
the image size becomes larger. To address this problem, we design a clas-
sical UNet model using the Mean-Teacher strategy to obtain relatively
satisfactory segmentation (58.93% DSC and 59.54% NSD)results on a
semi-supervised abdominal segmentation dataset. The core idea is to
use labeled data to improve the segmentation performance of the model
itself, while introducing noise on unlabeled data to improve the gener-
alization of the model. Inspired by nnUNet, we use as simple a model
structure as possible, thus ensuring the efficiency during training and
inference phases (< 2GB VRAM consumption and ~10s inference time).
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1 Introduction

In recent years, Convolutional Neural Networks (CNNs) and Transformers-based
approaches have achieved state-of-the-art results in the field of medical image
segmentation, e.g. [19,1]. However, with the development of such methods, the
structure of the model becomes more and more complex, the parameters of the
model increase dramatically, and the size of the annotated data required to train
such complex models becomes larger and larger [3]. For medical image segmen-
tation tasks, the annotation of the dataset implies expert labeling at pixel or
voxel level, a process that is often extremely time-consuming and laborious [18].
For abdominal organ segmentation, this problem becomes more serious because
the organs or diseases contained in this region are more complex, and the size
and resolution of the images become larger [10].

In this context, semi-supervised segmentation methods become more practi-
cal due to their properties of requiring only a small amount of fine annotation
and more unlabeled data instead. In the last three years, a large number of semi-
supervised segmentation methods have achieved satisfactory results in their re-
spective domains. One of the most widely used methods is the Mean-Teacher
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model [15] and its many variants [12,18,17]. Other commonly used strategies in-
clude pseudo labeling [16], adversarial learning [(], contrastive learning [11] and
etc.

Despite advances in semi-supervised learning benchmarks, previous methods
still face several major challenges: Domain variation: Most of these methods
are based on 2D natural images and require additional learning costs if mi-
grated to medical images. Generalization: Considering the limited amount of
training data, training deep models is usually deficient due to over-fitting and
co-adapting [17].

In this work, we propose a simple and effective semi-supervised scheme that
is also based on the Mean Teacher [15] idea. This framework takes labeled and
unlabeled images as input and introduces random noise for contamination, re-
spectively. The uncontaminated original input images will predict the results by
a Student model composed of an ordinary UNet [13], while the contaminated
data will predict the other set of results by a Teacher model with exactly the
same structure. For the labeled data, the Student model is supervised by ground
truth on the one hand and by the consistency constraint of the predicted re-
sults of the contaminated data on the other hand, while for the unlabeled data,
only their consistency loss is used for supervision. The parameters of the Teacher
model are then periodically updated from the Mg by exponential moving average
(EMA).

The main contribution of this work are two-fold: 1) Inspired by nnUnet [7],
our approach uses only the classical UNet model for segmentation, making the
training and prediction process cheap (<5GB RAM and <2GB VRAM) and
efficient (6s/image). 2) Still inspired by nnUnet [7], we use proper preprocess-
ing methods (and multiple augmentation methods during training phase), which
enables our model to achieve stable results even on data with inconsistent dis-
tribution.

2 Method

2.1 Preprocessing

Thanks to the rich transformation API provided by MONALI framework [3], we
applied many pre-processing methods that can increase the reusability of the
model.

General preprocessing: General preprocessing represents transforms that
are applied in the training, validation and prediction phases.

— Orientation matching: Based on the orientation of training data, all input
images are uniformly adjusted to the "LPI" orientation.

— Resampling method for anisotropic data: After orientation matching we re-
sample the image to the spacing of (4, 4, 10) to reduce the size of the input
data.

— Intensity normalization method: For the intensity of the data, we only re-
serve the voxels whose intensity is inside the interval [-1000, 500], and then
adjusted the value range to [0.0, 1.0].
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2.2 Proposed Method

For general semi-supervised learning, the training set always consists of two
parts. The labeled dataset D; with N annotated images and the unlabeled
dataset D,,, where there are M raw images (M >> N). The whole training
set is Dy4ar = Dy U D,,. For an image z; € Dy, its ground truth is available.
Conversely, if z; € D,, its ground truth is not provided [9]. Our Mean Teacher
UNet model is shown in Figure 1. For both D; and D,,, they will be used for the
calculation of consistency loss, corresponding to L.; and L.y in the figure. For
Dy, it is additionally used to compute the common supervised segmentation loss
L, to update the model parameters.
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Fig.1: Network architecture: Student and Teacher model are both randomly
initialized, which receive uncontaminated and contaminated data respectively.
Teacher model’s parameter will be gradually updated from Student model by
EMA.

In fact, we followed the exact same strategy as Mean Teacher. The overall
architecture of the network consists of two parts, Student model Mg and Teacher
model My. In our design, these two models are composed of two identical ini-
tialized UNet models.

0 = afp + (1 — a)fs (1)

The update of Mp’s parameters is obtained by exponentially moving average
from Mg’s parameters, depicted in equation 1. At the beginning of training
phase, since model comes from random initialization, the parameters of Mg are
definitely incorrect. My should be based on what Mg learns, so « should start



4 7. Zhao et al.

from zero. As the network is being trained, after Mg reaches a certain accuracy,
the ensemble can eventually be used, which means o can come to the value of
0.99 in the end. The network parameters of the Mg are updated by the gradient
descent of the loss function. The loss function includes two categories: first the
supervised Dice loss, which ensures the model has the basic segmentation ability,
the second part is the unsupervised loss function, or consistency loss, and here
we use MSE loss, which mainly ensures that the prediction of Mg is as similar as
possible to the one of M7 between the contaminated and uncontaminated data
(the contamination applied here is the additive Gaussian white noise). Because
the parameters of My are the moving average of Mg, the prediction should not
have too much jitters for any fluctuations. If the model is correct, the predicted
labels of the two models Student and Teacher should be close. Then tuning the
model in the direction that makes the prediction of the two models close is equal
to move the model towards predicting the correct labels.

2.3 Post-processing

Due to the nature of the dataset, we did not use specfic post-processing methods.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [14], KiTS [4,5], AbdomenCT-1K [10],
and TCIA [2|. The training set includes 50 labelled CT scans with pancreas
disease and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas
diseases. The validation set includes 50 CT scans with liver, kidney, spleen, or
pancreas diseases. The testing set includes 200 CT scans where 100 cases has
liver, kidney, spleen, or pancreas diseases and the other 100 cases has uterine
corpus endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases.
All the CT scans only have image information and the center information is not
available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.
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Table 1: Development environments and requirements.
Windows/Ubuntu version Ubuntu 18.04.4 LTS

CPU Intel(R) Xeon(R) Gold 6226 CPU @ 2.70GHz
RAM 12x32GB; 2.67TMT/s

GPU (number and type) 8x NVIDIA GeForce RTX 2080Ti

CUDA version 11.1

Programming language  Python 3.6.10

Deep learning framework Pytorch (Torch 1.7.0, torchvision 0.8.0)

Specific dependencies monai 0.8.0

(Optional) Link to code https://github.com/SeanCho1996/MeanTeacher3dUNet

Training protocols A refined training parameters are shown in Table 2.

In the training phase we perform a series of augmentation on the input data
to improve the robustness of the model.

— Random Affine: In this stage we add random rotation and scale transforma-
tion.

— Cropping strategy: The cropping strategy is different for labeled and unla-
beled training data: for labeled data, the foreground patches are randomly
cropped according to the value of the labels, and conversely for unlabeled
data, a completely random cropping is used. Patch size is fixed to (128, 128,
16)

— Other augmentation methods: random Gaussian noise as well as random flip
in the three axes.

Table 2: Training protocols.

Network initialization "he" normal initialization
Batch size 8 * 3 samples per image
Patch size 128x128x% 16

Total epochs 1000

Optimizer Adam

Initial learning rate (Ir) le-4

Lr decay schedule /

Training time 15 hours

Number of model parameters 3.5M"

Number of flops 30.27G?

COa2eq 1 Kg’
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4 Results and discussion

4.1 Quantitative results on validation set

The overall quantitative results are shown in Table 3.

Table 4 illustrates the results of either using the unlabeled data or not. It
can be easily seen that the semi-supervised model outperforms the fully super-
vised model using only labeled data on all other classes except Pancreas and
Duodenum with a subtle advantage of ~0.6%. The generalization of the model
is greatly enhanced due to the use of unlabeled data, coupled with a wide variety
of data augmentations.

Table 3: Quantitative results on validation set.

Organ DSC(%) NSD (%)
Liver 81.56+17.07 72.484+19.02
Right Kidney 69.034+24.96 61.02424.81
Spleen 76.03+19.49 67.034+20.68
Pancreas 54.874+14.79 65.90+14.47
Aorta 79.94+12.27 76.32+14.21
Inferior Vena Cava 68.104+14.09 58.75+14.45
Right Adrenal Gland 38.55+17.90 51.25419.69
Left Adrenal Gland 35.97+£20.06 47.41+£23.77
Gallbladder 32.814+27.87 24.31£21.31
Esophagus 54.054+15.88 65.11+16.99
Stomach 57.32+19.91 53.76+19.39
Duodenum 46.20£15.99 66.54+17.25
Left Kidney 71.784+22.57 64.17424.43
Mean 58.93+18.68 59.54+19.27

Qualitative results on validation set

At the image level, we find that our model performs well in processing test images
that are isotropic with labeled data, as shown in Figures 3 and 2. The dimensions
of these two images are (512, 512, 96) and (512, 512, 89), respectively, while the
average size of the labeled data is approximately (512, 512, 100). Conversely, for
images anisotropic with labeled data, as shown in Figures 4 and 5, our model
performs relatively poorly in this case. The dimensions of these two images are
(512, 512, 203) and (512, 512, 171), respectively, and the scale in the coronal
direction is almost twice of the labeled data. The reason for this situation is that
in order to reduce the resource consumption of the model, we set the spacing
of preprocessing relatively large, and in the process of downsampling, too much
information is lost from these large scale images, resulting in their features not
being easily computed.
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Table 4: DSC(%) comparison on validation set.

Organ with unlabeled data without unlabeled data
Liver 85.58 80.81
Right Kidney 71.69 67.66
Spleen 76.07 72.87
Pancreas 53.93 54.30
Aorta 79.62 77.67
Inferior Vena Cava 68.40 66.84
Right Adrenal Gland 38.06 37.05
Left Adrenal Gland 37.91 33.03
Gallbladder 34.22 29.86
Esophagus 57.83 53.67
Stomach 61.89 50.18
Duodenum 45.41 46.04
Left Kidney 72.22 63.82
Mean 60.22 56.44

At the organ level, for targets with fixed shapes and large volumes, such as
the right and left kidneys, the liver, and the spleen, it can be seen that our
model performs well. In addition our model performs well for targets with fixed
positions, such as the aorta and inferior vena cava. By observing the images we
found that our model does not perform well when dealing with smaller scale
targets, especially for (left and right) adrenal glands and gallbladder. This is
fully explainable because as we set a large spacing, the feature representation
would inevitably be weakened of small-scale targets.

4.3 Quantitative results on test set

The overall quantitative results on test set are shown in Table 5.

4.4 Segmentation efficiency results

For the efficiency of segmentation, our model predicted 50 validation images
using about 5 minutes, which we think is a relatively acceptable time. For the
majority of validated images, the time used to predict individual results was
within 11 seconds (the mean inference time on the validation set of our method
is 11.56 seconds), but for images with large scales, our method used up to 45.45
seconds Although we increased the spacing of the input data to make the image
array size smaller, we had to sacrifice the patch size to reduce the GPU memory
usage (with a mean of 2036.04 MB and a max of 2067 MB), resulting in a larger
number of patches, so our final prediction time is similar to the performance of
nnUnet.
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4.5 Limitations and future work

As mentioned in Section 4.2 and Section 4.4, our model had to compromise the
spacing after resampling and the size of the patches entering the neural network
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Table 5: Quantitative results on test set.

Organ DSC(%) NSD (%)
Liver 80.124+10.56 68.61+14.39
Right Kidney 64.59424.25 55.27424.22
Spleen 73.44422.86 65.14422.52
Pancreas 50.61+16.43 63.114+17.45
Aorta 78.00+14.41 74.464+16.35
Inferior Vena Cava 67.084+15.68 59.61+£16.41
Right Adrenal Gland 41.914+15.82 56.39+19.22
Left Adrenal Gland 38.444+19.45 51.00£23.74
Gallbladder 35.144-26.80 25.82+19.69
Esophagus 52.70£15.39 64.44+16.50
Stomach 52.734+19.33 48.11+18.38
Duodenum 41.874+15.75 62.04416.08
Left Kidney 68.61+14.39 60.38+23.44
Mean 58.14+£18.47 58.03£19.11

in order to improve the computational speed and reduce the computational con-
sumption, which resulted in our model’s ability to handle small-scale targets
becoming extremely poor.

To solve this problem, our subsequent work has two general directions: one is
to reduce the spacing appropriately to find the optimal parameter settings to bal-
ance the computational consumption and accuracy (we have tried smaller spac-
ing, which will undoubtedly improve the segmentation accuracy significantly),
and the other is to use a cascade model following nnUNet’s practice to add an
additional neural network structure for small-size targets.

In addition to optimization in terms of network structure, we can also do more
experiments in data augmentation methods. At this stage, we have only used
conventional and simple data augmentation methods. Due to time constraints,
we did not have time to implement more complex enhancement methods such
as CutOut or CutMix.

5 Conclusion

In conclusion, this work uses the classical Unet model and the Mean Teacher
strategy to implement a semi-supervised abdominal organ segmentation task.
We do not use complex model structures or difficult-to-deploy usage methods
for unlabeled data because we adhere to the idea that for medical images, which
usually have relatively fixed structures, good results should be obtained even
using simple designs. This idea is also in line with the core idea of the nnUnet
model [7], which has been most widely used in recent years. In addition, we
slightly sacrifice the accuracy of small target segmentation to obtain a smaller
model size and less computational resources.
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