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Abstract

The personalization of Stable Diffusion for generating pro-001
fessional portraits from amateur photographs is a bur-002
geoning area, with applications in various downstream003
contexts. This paper investigates the impact of augmen-004
tations on improving facial resemblance when using two005
prominent personalization techniques: DreamBooth and006
InstantID. Through a series of experiments with diverse007
subject datasets, we assessed the effectiveness of various008
augmentation strategies on the generated headshots’ fi-009
delity to the original subject. We introduce FaceDistance, a010
wrapper around FaceNet, to rank the generations based on011
facial similarity, which aided in our assessment. Ultimately,012
this research provides insights into the role of augmenta-013
tions in enhancing facial resemblance in SDXL-generated014
portraits, informing strategies for their effective deployment015
in downstream applications.016

1. Introduction017

Personalized text-to-image generation has gained traction018
with the rise of models like Stable Diffusion (SD). How-019
ever, training SD on small, user-specific datasets presents020
challenges, such as identity retention, overfitting, and arti-021
fact generation. Augmentation techniques are widely used022
in deep learning to improve generalization, but their role in023
personalized text-to-image generation is underexplored.024

In this work, we analyze the effect of augmentations on025
personalized SD models trained with few-shot and zero-026
shot methods, particularly DreamBooth and InstantID. We027
investigate how different augmentations impact model per-028
formance and whether they enhance the realism and consis-029
tency of generated images.030

In particular, we analyze both classical and generative031
augmentation strategies to bridge the gap between lim-032
ited real data and high-fidelity synthetic outputs. By re-033
fining facial features and preserving identity through tar-034
geted GenAI-based augmentations, such as InstantID, we035

Figure 1. Pipeline for creating personalized images based on
synthetically generated images through classical and GenAI-
based augmentations for better downstream resemblance in
DreamBooth-generated images.

aim to improve the applicability of personalized genera- 036
tion in scenarios where synthetic data must closely mirror 037
real-world characteristics. We analyze under which condi- 038
tions we can ensure that ”GenAI outputs improve GenAI 039
outputs”, avoiding a data quality collapse, providing best 040
practices and heuristics. 041

Our contributions include: 042
• Analysis of classical augmentation techniques such as 043

flipping, cropping, color enhancement, and background 044
modifications. 045

• Using InstantID as a fast way of enhancing the user- 046
specific dataset using the diffusion model itself. 047

• We conduct a survey to evaluate how white-collar work- 048
ers perceive personalized generations from DreamBooth 049
and InstantID under various augmentation strategies. 050
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2. Background and Related Work051

In this section, we present the foundational concepts and052
prior research relevant to our work on augmentation tech-053
niques for few-shot personalization in diffusion models.054

2.1. Text-to-Image Diffusion Models055

Text-to-image diffusion models generate high-quality im-056
ages from natural language descriptions by gradually de-057
noising random Gaussian noise guided by text embeddings058
[12, 15]. Stable Diffusion [15] employs a latent diffu-059
sion approach that operates in a compressed latent space060
rather than pixel space, reducing computational require-061
ments while maintaining generative quality.062

2.2. Subject-Driven Image Generation063

Subject-driven image generation creates images featuring064
specific subjects with high fidelity while maintaining their065
identity across contexts [16]. Key approaches include:066

DreamBooth [16] fine-tunes the U-Net of Stable Diffu-067
sion using 3-5 images of a specific subject. It preserves the068
semantic prior through class-specific prior preservation loss069
and uses a rare token with weak prior to refer to the subject070
with the prompt format “a [V ] [class noun]”.071

InstantID [20] is a zero-shot method that combines fa-072
cial feature extraction with text conditioning. It extracts five073
key facial landmarks to condition the position and orienta-074
tion of the generated face, providing greater control over the075
output.076

We standardize our experiments using the same SDXL077
model for both techniques to ensure fair methodological078
comparison.079

2.3. Image Augmentation Techniques080

2.3.1. Classical Image Augmentations081

Classical image augmentation techniques include geomet-082
ric transformations (flipping, rotation, scaling, cropping),083
photometric adjustments (brightness, contrast, saturation,084
hue), and noise injections (Gaussian, salt-and-pepper).085
These predefined transformations maintain semantic in-086
tegrity while introducing controlled diversity to expand lim-087
ited training datasets.088

2.3.2. Augmentations in Diffusion Models089

Data augmentation enhances diffusion model performance090
while reducing computational demands [19]. Key ap-091
proaches include mixing-based augmentations that interpo-092
late between existing samples [9] and consistency regular-093
ization techniques that enforce invariance to specific trans-094
formations [8, 11]. Our work investigates these techniques095
specifically for few-shot personalization applications.096

2.4. Face Processing Approaches 097

FaceNet [17] maps facial images to a 128-dimensional em- 098
bedding space where similar faces are positioned closely 099
together. The standard pipeline uses MTCNN [22] for face 100
detection before embedding generation, with cosine dis- 101
tance metrics for similarity assessment [18]. 102

Alternative approaches include faceswapping methods 103
[6, 10] and augmented reality techniques for virtual try-on 104
applications [7]. While these provide real-time capabilities, 105
they often lack the flexibility and integration capabilities of 106
diffusion-based approaches. 107

Our research builds on these foundations to investi- 108
gate how strategic data augmentation can improve few-shot 109
personalization in diffusion models, focusing on identity 110
preservation and recontextualization. 111

3. Methodology 112

We use augmentations across various Subject Datasets to 113
see if there is an overall improvement in generated pictures. 114

3.1. Subject Datasets. 115

Our dataset consists of 3 to 15 images per participant, with 116
n = 10 participants. To maintain a naturalistic data col- 117
lection process, we instructed them: “Can you send me 118
portrait/selfie-style photos of your face in different places? 119
The more different places, the better.” By avoiding rigid 120
guidelines, we ensured that the collected images reflect real- 121
istic user behavior. As a result, our findings are well-aligned 122
with real-world data distributions, enhancing the transfer- 123
ability and applicability of our results. 124

Our dataset exhibits a diverse range of environmental 125
conditions, facial orientations, and image qualities, ensur- 126
ing variability that mirrors real-world scenarios. The im- 127
ages encompass different backgrounds, lighting conditions, 128
and subject behaviors, contributing to a dataset that is both 129
representative and robust. For instance, some images fea- 130
ture cluttered or irregular backgrounds (e.g., Baker-Zoe, 131
Bottle-Hugo), while others are captured in controlled en- 132
vironments (Biometric-Kora). Variation in gaze direction 133
is also present, with Doctor-Nina not looking at the cam- 134
era, while 3D-Gary includes dynamic head movements ex- 135
tracted from a video. Additionally, differences in personal 136
appearance and accessories are observed, such as Farmer- 137
Lisa wearing a helmet and Staircase-Judy wearing makeup. 138
Lighting conditions range from well-lit (Vacation-Anna) to 139
suboptimal (2024-Kora), further enhancing the dataset’s re- 140
alism. These characteristics make our dataset a valuable 141
resource for evaluating model performance under uncon- 142
strained, real-world conditions. 143
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Figure 2. Pipeline for creating Gen-AI augmented personalized data via InstantID. Based on one or more input images of a person, we run
it through the InstantID pipeline but with augmented landmarks and prompts. The landmarks are taken from the input image and slightly
perturbed for good resemblance. The collected synthetic dataset is then further used for downstream DreamBooth training. Figure modified
from [20].

3.2. Dataset Augmentations144

We apply augmentations individually to evaluate each tech-145
nique’s performance improvement independently.146

Classical Augmentations Standard techniques in-147
clude: (i) Random Horizontal Flip with p ∈ {0, 1

2 , 1},148
and (ii) Color Jitter varying brightness, contrast, saturation149
(±5,±15) and hue (±5◦).150

Background Augmentation We use U2-Net [14] for151
subject isolation, testing both base and human segmenta-152
tion models. Backgrounds include flat colors, patterns from153
Wikimedia [5], and Flickr Places.154

Blending Techniques We separately evaluate Alpha155
Blending and Poison Blending through both automated and156
manual techniques.157

Resizing Methods We compare: (i) downsampling158
then upsampling, (ii) upsampling only, and (iii) original di-159
mensions. Methods include ESRGAN [21], Lanczos, and160
Bilinear.161

Cropping Strategies Five approaches: (i) SDXL di-162
mensions [13], (ii) automated center cropping to 1MP, (iii)163
downsample-then-crop to 1MP at various aspect ratios, (iv)164

manual eight-variation cropping, and (v) MTCNN face- 165
based cropping. 166

Color Adjustment Adobe Lightroom auto- 167
adjustment enhances visual quality. 168

Generative Augmentation Using InstantID, we gen- 169
erate new subject images with prompts from dolphin 170
2.2.1 - Mistral 7B [3] and varied facial landmarks 171
(Figure 2). 172

3.3. Hardware, Software, and Hyperparamters 173

All experiments were conducted on a single 174
NVIDIA GeForce RTX 3090 with 24GB VRAM. 175
We use sd-scripts[4] for DreamBooth and 176
ComfyUI InstantID[1] for InstantID experiments, 177
inheriting all bias in their pipeline, if any. 178

Results of DreamBooth finetuning a diffusion model 179
(DM) greatly depends on the DMs ability of generating im- 180
ages. We use RealVisXL V4.0 [2], which is a commu- 181
nity finetune of SDXL for realistic image generation. 182
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Default prompt we use “A professional headshot of a183
subject wearing a suit standing in a well-lit studio, DSLR”184
as the default prompt. Empirical evidence suggests includ-185
ing the gender as man and woman gives generated images186
gender characteristics based on western culture, which we187
preferred.188

For DreamBooth, we use “a [V ] [man|woman]” where189
[V ] denotes the rare token. InstantID doesn’t have a special190
prompt and work with any text. LLM generated prompts191
are useful in both.192

3.4. FaceDistance Metric193

For a subject image dataset, we calculate their embedding194
using FaceNet [17], which maps similar faces to similar lo-195
cations on a hypersphere. Then, we calculate the mean face196
vector vreal. For a given generated face, we measure its197
embedding vectors cosine distance to vreal.198

FaceDistance is a useful technique for distinguishing be-199
tween ”good” and ”bad” generations. This can be used to200
rank generated images based on their similarity (lower is201
better). It can be used to discard the largest n% of distances202
to improve personalization pipelines.203

For our subject datasets, the mean cosine distance of204
vreal to real images is v̄within real ≈ 0.13. We notice205
max(vwithin real) = 0.22 and min(vwithin real) = 0.05.206

4. Experiment Results207

We try to achieve higher facial similarity via DreamBooth208
and InstantID using highlighted augmentations.209

Despite selecting a realistic image generation model,210
achieving photorealistic generation of an individual’s face211
remains challenging without imposing strict constraints on212
the subject images. We have relaxed many of these con-213
straints to enhance usability, as expecting an average user214
to compile a dataset of themselves without understanding215
the underlying image generation techniques presents a sig-216
nificant challenge. Ensuring high subject fidelity is crucial217
for these methods to be effective in downstream applica-218
tions, as humans are highly sensitive to variations in facial219
features compared to textures.220

One major issue with datasets without great constraints221
is that the images is not a good representation of the per-222
son. It can be compared to having difficulty recognizing a223
person in real life whom you only saw in photographs. We224
observe this phenomenon for small datasets with size ≤ 3.225
In these cases, the generated images is a good reflection of226
the dataset (if someone doesn’t know them in real life, they227
are likely to claim that these pictures are good. Otherwise228
the generated images are not a good representation of the229
real person).230

4.1. DreamBooth 231

We configure our hyperparameters such that recontextual- 232
ization capabilities can be sacrificed for high facial fidelity. 233
Identity preservation is hard in DreamBooth. so we rather 234
overfit to achieve high subject fidelity and have limited free- 235
dom in generations. 236

The common theme in augmentations is that if the aug- 237
mented image has any kind of artifact/anomaly, then the 238
rare token will be associated with it. The supporting ob- 239
servations are (i) When background is replaced with a ge- 240
ometric pattern (from wikimedia patterns), the model will 241
focus on learning the pattern than the subject (ii) When im- 242
age is upscaled with ESRGAN, the texture ESRGAN in- 243
troduces say present in generations (iii) the masks gener- 244
ated with U2-Net is not pixel-perfect. and results in a mix 245
around hair/air boundary. This mix becomes associated 246
with the subject. The human segmentation models train- 247
ing data was not highly accurate around hairs but was better 248
in identifying body parts. The base model is performs bet- 249
ter around hair and was overall better. The robustness of 250
human segmentation model is not needed. (iii) any kind 251
of color jitter is visible in generated images. For exam- 252
ple the saturation change of 0.1 is clearly present in gen- 253
erations. (iv) using Adobe Lightroom as a preprocessing 254
step resulted in better color graded generations compared 255
to non-preprocessed datasets. (v) datasets with low contrast 256
(e.g. exclusively Polaroid pictures) resulted in copying the 257
photography style/lighting from the pictures — though this 258
can be attributed to our hyperparameter configuration. 259

Because of the low recontextualization capabilities, 260
backgrounds becomes highly associated with the rare token. 261
Replacing the background with Pastel Colors and Rain- 262
bow Colors led to eccentric and often unrealistic images, 263
with the latter occasionally generating pictures without sub- 264
jects. Gray offered the highest resemblance to the subject, 265
while Dark Gray caused the model to disassociate the sub- 266
ject from its context. Because of problems with U2-Net, 267
Light Gray background outperformed Dark Gray, espe- 268
cially in bright environments.Wikimedia Patterns slowed 269
down learning and degraded the image quality across all 270
generations. Lastly, Studio Backdrops introduced irreg- 271
ularities that reduced the quality of the generated images 272
which can be thought as similar to Wikimedia Patterns be- 273
cause backdrops has patterns. 274

Random Horizontal Flip slowed learning due to face 275
asymmetry, which confused facial features. Random Rota- 276
tion caused distorted images and introduced black padding 277
bars, which also can be seen in augmented subject images. 278
Color Jitter led to undesirable results, as brightness, con- 279
trast, saturation, and hue changes were linked to rare tokens, 280
causing erratic generations. 281

Both Alpha Blending and Poison Blending are discour- 282
aged, as they require careful manual processing to achieve 283
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(a) Real Images (b) DreamBooth results with classical augmentations
(crop, resize, and color)

(c) DreamBooth results with GenAI augmentations &
without classical augmentations

Figure 3. Example improvement of including Instantid generated images in the subject dataset Vacation-Anna. The model is prompted with
default prompt with batchsize 4. The results are not cherry-picked to resemble the downstream application use. Although (b) is visually
more interesting, the method in (c) is more consistent across many subject datasets.

good results. These techniques are not straightforward to284
apply and can lead to undesirable artifacts if not handled285
properly.286

Images around 1 Megapixel performed best, providing287
a balanced resolution for high-quality generation. Upscal-288
ing with ESRGAN introduced visible artifacts, especially289
around facial features. Upscaling with Lanczos was effec-290
tive, particularly when starting from larger images. How-291
ever, if the initial dataset contained low-resolution images,292
the generated images exhibited facial blurring due to the na-293
ture of the Lanczos algorithm. The difference between bicu-294
bic and Lanczos was negligible. Downscaling resulted in295
lower-quality generations compared to using original-sized296
images. It should be noted that our testing output resolution297
was 1024× 1024.298

InstantID Augmentation Datasets augmented with In-299
stantID yield clearly superior performance. The added im-300
ages need to be diverse (i.e., generated with various text301
conditioning and different keypoint images). Since we trade302
recontextualization abilities for increased facial similarity,303
generating the same person in similar contexts is beneficial.304
DreamBooth achieves similar facial similarity compared to305
InstantID but allows for greater control. The rigidity caused306
by the keypoint images is eliminated. However, this method307
is more computationally expensive than raw InstantID. Ad-308
ditionally, achieving proper prompt diversity can be chal-309
lenging. I prefer InstantID over DreamBooth.310

The ratio of real to InstantID-generated images depends311
entirely on the diversity of the generated images. One rule312

of thumb is that no single concept should comprise more 313
than 25% of the dataset. For example, if images labeled as 314
”a [V] man in a library” exceed 25%, DreamBooth training 315
will associate the rare token with the concept. This results 316
in a final DreamBooth model that is unusable due to a com- 317
plete loss of recontextualization ability caused by overfit- 318
ting. 319

Since InstantID generations are highly realistic, one can 320
generate additional images with it to better represent the 321
subject during DreamBooth training. We use the same dif- 322
fusion model for both InstantID and DreamBooth to inte- 323
grate the subject more effectively into the model without 324
altering the subject’s context. This ensures that the dataset 325
distribution remains closer to the diffusion model’s genera- 326
tion space. 327

4.1.1. FaceDistance 328

We tried to select the “best” DreamBooth checkpoint by 329
generating images of “a [V] man” in different contexts for 330
all checkpoints and ranking them using FaceDistance. This 331
method was able to discard obviously bad checkpoints (e.g. 332
anomalies in generations, unable to generate the subject, di- 333
vergence) but is not able to rank “good enough” checkpoints 334
within themselves. (Figure 4 The FaceNet manifold isn’t 335
sensitive to very similar looking people. For a given hyper- 336
parameter configuration, a few tests show when the model 337
will be converged to its best state (usually between 3k and 338
6k steps) and since FaceDistance isn’t able to differentiate 339
betweent them, FaceDistance isn’t a useful tool for this pur- 340
pose. 341

Despite these challenges, FaceDistance appears to be 342
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Figure 4. FaceDistance Distributions of 2000 Samples from Dif-
ferent Saved Dreambooth finetunes of SDXL Real. Closeup-Kora
is used. The KDE for each looks like a normal distribution.

functioning for loosely ranking generated images. This im-343
proves the user experience.344

4.2. InstantID345

The effectiveness of InstantID is highly dependent on the346
quality and characteristics of the provided reference images.347

4.2.1. Face Embedding348

We conducted experiments to determine the optimal num-349
ber of reference images that balances usability and facial350
similarity. Our findings confirm those of [20], demonstrat-351
ing that using multiple reference images results in increased352
facial similarity. When only one reference image is pro-353
vided, the generated face is heavily influenced by the spe-354
cific appearance captured in that single image. We attribute355
this limitation to insufficient information being extracted by356
the Face Encoder from a single perspective. Our analysis357
indicates that four reference images provide satisfactory re-358
sults in most cases, with diminishing returns observed be-359
yond this number. Since reference images are cropped and360
aligned before being processed by the face encoder, users361
have considerable flexibility in selecting images without362
compromising model performance.363

4.2.2. Landmarks Image364

We observe that facial landmarks exert strong conditioning365
influence, often rendering text prompts ineffective for con-366
trolling the subject’s position. The generated image con-367
sistently replicates the face placement, orientation, and size368
specified by the provided keypoints, due to the five-point369
landmark system employed.370

For practical applications, users frequently struggle to371
understand how face positioning in the landmark image372
transfers to the generated output. This communication chal-373
lenge often results in user dissatisfaction with generated im-374
ages, despite the issue stemming from suboptimal condi-375
tioning input.376

To address this limitation, we propose two solutions: 2- 377
shot generation and face replacement. 378

In 2-shot generation, we collect subject reference im- 379
ages (s1, . . . , sn) and a separate image representing the de- 380
sired pose and composition skpts. These are used as refer- 381
ence images and the keypoints image, respectively. While 382
the resulting output sout is generally satisfactory, using fa- 383
cial landmarks from one person to generate another reduces 384
facial similarity due to structural differences in the five key- 385
points (eyes, nose, mouth). We hypothesize this stems from 386
imbalanced conditioning weights. Performance improves 387
when replacing skpts with a previously generated image of 388
the subject, yielding better facial similarity while maintain- 389
ing compositional control. 390

In face replacement, users interact with a simple tool 391
to manipulate (move/rotate/resize) their cropped face on a 392
canvas matching the diffusion model’s output dimensions. 393
This approach eliminates the similarity issues caused by us- 394
ing another person’s facial landmarks. However, the method 395
performs poorly when none of the reference images show 396
the subject facing the camera (deviations > 30 degrees). 397
User satisfaction was higher with this approach compared 398
to 2-shot generation, which we attribute to increased inter- 399
activity and faster generation times. 400

4.2.3. Augmentations 401

Due to InstantID’s architectural design, rotational and 402
shape-altering augmentations proved ineffective. Back- 403
ground replacement and similar context-modifying aug- 404
mentations degraded similarity because the resulting arti- 405
facts fall outside the distribution of images encountered dur- 406
ing training by the model provided in [20]. The trained 407
model demonstrates robustness to meaningful color ad- 408
justments, rendering color modifications unnecessary for 409
well-lit scenes. For low-resolution images, traditional up- 410
scaling methods (Lanczos/bicubic) performed adequately, 411
while neural network-based upscaling introduced novel ar- 412
tifacts unseen during training, resulting in reduced quality. 413

5. Survey 414

We conducted the survey to evaluate the viability of AI- 415
generated portraits for professional use and to compare the 416
performance of DreamBooth and InstantID in generating 417
realistic headshots. 97 white-collar workers from diverse 418
professional backgrounds participated in the online survey. 419
Numerical data can be found in Suppl. 11 and questionary 420
can be found in Suppl. 12. 421

Overall Performance of Generated Portraits Portraits 422
generated by DreamBooth and InstantID performed simi- 423
larly across multiple aspects, including overall quality, fa- 424
cial detail clarity, identity preservation, perceived level of 425
editing, and background quality. Using high-quality subject 426
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datasets led to slightly better results in most categories, ex-427
cept for ”Editing,” where participants indicated familiarity428
and acceptance of traditional Photoshop-enhanced portraits.429

Method Preferences A slightly higher percentage of par-430
ticipants ( 4%) preferred the standardized portraits from431
InstantID over the more flexible outputs of DreamBooth.432
InstantID was often perceived as more professional, likely433
due to its consistent ”Photoshopped look,” which resonated434
with a broader audience. Open-ended responses highlighted435
diverse preferences, with participants emphasizing factors436
such as lighting, pose, angle, expression, detail, color, and437
background.438

Facial Similarity DreamBooth demonstrated superior fa-439
cial similarity between real images individuals and their440
generated portraits compared to InstantID. More partici-441
pants identified InstantID images as depicting a different442
person than the reference. DreamBooth consistently main-443
tained a higher level of facial similarity across both high-444
and low-quality subject datasets.445

Noticing AI Generations Most white-collar workers446
struggled to identify AI-generated headshots when not ex-447
plicitly prompted, often focusing on well-known but absent448
flaws commonly associated with AI generation. Among449
a subset of participants (n = 77) who regularly notice450
AI-generated images in daily life, the generated portraits451
blended well with conventional studio photographs. How-452
ever, participants who actively use AI for image creation453
(n = 29) demonstrated better identification skills. This454
group was more likely to recognize DreamBooth images455
as AI-generated, possibly due to DreamBooth’s popularity,456
while InstantID generations, being more niche, had a near457
50/50 chance of being identified as AI.458

6. Discussion459

Our experiments offer insights into augmentation strategies460
for improving facial resemblance in personalized text-to-461
image generation using DreamBooth and InstantID. While462
classical augmentations are common in deep learning, ap-463
plying them to few-shot personalization can yield undesir-464
able results. Geometric transformations like flipping and465
rotation disrupted learning due to face asymmetry and ar-466
tifacts. Color jittering caused erratic generations by asso-467
ciating color shifts with DreamBooth’s rare token. Back-468
ground augmentations with U2-Net introduced segmenta-469
tion imperfections, especially around hair, which the model470
learned. Replacing backgrounds with patterns or studio471
backdrops also degraded image quality. However, auto472
color adjustment with Adobe Lightroom improved color473
grading.474

Generative augmentation via InstantID proved more ef- 475
fective for enhancing facial similarity in DreamBooth train- 476
ing. By generating diverse synthetic images with varied 477
prompts and facial landmarks, we enriched the dataset with 478
realistic examples, aligning it with the diffusion model’s 479
space. However, maintaining a balance between real and 480
InstantID-generated images is crucial to avoid overfitting 481
and loss of recontextualization. 482

FaceDistance provided a quantitative measure of facial 483
similarity but became less useful for hyperparameter tun- 484
ing once a certain fidelity level was reached. A user survey 485
among white-collar workers showed that both DreamBooth 486
and InstantID performed similarly in quality, clarity, iden- 487
tity preservation, editing, and background. A slight pref- 488
erence emerged for the ”Photoshopped look” of InstantID 489
portraits. While DreamBooth achieved better facial similar- 490
ity, many participants struggled to distinguish AI-generated 491
images from real ones, particularly those unfamiliar with 492
AI tools. Users actively engaged in AI image creation were 493
more likely to identify DreamBooth images as synthetic, 494
possibly due to its higher popularity. 495

InstantID’s effectiveness depends on reference image 496
quality and diversity. Using multiple references (around 497
four) improved similarity by enriching information for the 498
Face Encoder. Facial landmarks strongly influenced pose 499
and composition, sometimes overriding text prompts. We 500
explored 2-shot generation and interactive face replace- 501
ment to enhance control, with the latter showing higher 502
user satisfaction. Rotational and shape-altering augmen- 503
tations were ineffective, and background modifications re- 504
duced similarity. Traditional upscaling worked well for 505
low-resolution images, whereas neural network-based up- 506
scaling introduced artifacts. 507

7. Limitations 508

A key limitation is that InstantID-based augmentation 509
reduces realism in generated images. While Dream- 510
Booth remains more flexible for personalized generation, 511
InstantID-enhanced datasets still outperform unaugmented 512
ones. Given the baseline model’s photorealism constraints, 513
using generative augmentation to refine its training data is a 514
practical approach. 515

8. Conclusion 516

This study examined augmentation strategies for improv- 517
ing facial resemblance in personalized image generation 518
using DreamBooth and InstantID. Classical augmentations 519
can introduce artifacts that degrade facial fidelity, requiring 520
careful application. 521

We found generative augmentation with InstantID to be 522
highly effective for improving DreamBooth training. Cre- 523
ating diverse, realistic synthetic images while maintaining a 524
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balanced ratio with real data prevents overfitting.525
User surveys confirmed that both DreamBooth and In-526

stantID produce high-quality, professional-looking head-527
shots, often indistinguishable from real photos. While528
DreamBooth excels in facial similarity, InstantID’s consis-529
tent output appears more polished.530

For practical use, employing multiple reference images531
enhances facial information capture. Improving control532
over pose and composition through landmarks is crucial,533
with interactive face replacement showing promise.534

Overall, our findings provide insights into augmenta-535
tion strategies for personalized image generation, guiding536
their application in tasks requiring high facial fidelity. Fu-537
ture work should explore advanced generative augmentation538
techniques and better user control over InstantID outputs.539
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