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Abstract
Multi-model fitting aims to robustly estimate the parameters of
various model instances in data contaminated by noise and outliers.
Most previous works employ only a single type of consensus or im-
plicit fusion model to represent the correlation between data points
and model hypotheses. This approach often results in unrealistic
and incorrect model fitting in the presence of noise and uncertainty.
In this paper, we propose a novel method of diverse Consensuses
paired with Motion estimation-based multi-Model Fitting (CMMF),
which leverages three types of diverse consensuses along with inter-
model collaboration to enhance the effectiveness of multi-model
fusion. We design a Tangent Consensus Residual Reconstruction
(TCRR) module to capture motion structure information of two
points at the pixel level. Additionally, we introduce a Cross Con-
sensus Affinity (CCA) framework to strengthen the correlation be-
tween data points and model hypotheses. To address the challenge
of multi-body motion estimation, we propose a Nested Consensus
Clustering (NCC) strategy, which formulates multi-model fitting
as a motion estimation problem. It explicitly establishes motion
collaboration between models and ensures that multiple models are
well-fitted. Extensive quantitative and qualitative experiments are
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conducted on four public datasets (i.e., AdelaideRMF-F, Hopkins155,
KITTI, MTPV62), and the results demonstrate that our proposed
method outperforms several state-of-the-art methods.
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tion and understanding.
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1 Introduction
Multi-model fitting is a fundamental but challenging computer vi-
sion task with many potential applications, including image match-
ing [9, 22], motion segmentation [1, 19], image stitching [21, 24],
point cloud registration [15, 18], and geometric entity detection
[14, 17]. In essence, multi-model fitting is the process of estimating
the parameters of various models from a set of input data con-
taining noise and outliers. Typically, this input data consists of
feature points on object surfaces tracked across image pairs and
video sequences. Therefore, the multi-model fitting problem can be
reformulated as estimating moving objects across various image
pairs or video sequences. In the state-of-the-art algorithms, the
task of finding an unknown number of model instances is achieved
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Figure 1: Left: Differences among our CMMF method, ALC
[46], and Subset [61]. ALC and Subset, which are some of the
fastest SOTA methods, consider only one type of consensus,
while our method achieves a more accurate clustering per-
formance in multi-model fitting. Right: Qualitative results
of CMMF on the AdelaideRMF dataset [58].

by classifying data points into moving objects, each representing
a particular model instance. Thus, the primary challenge lies in
devising methodologies that can effectively estimate the parame-
ters of multiple models and concurrently segment input data, all
in the absence of prior knowledge regarding the accurate number
of structures. Additionally, this task becomes more complex when
input data is contaminated with both gross and pseudo outliers.

Over the past decades, the requirement to explore moving object
trajectories in motion estimation has ceaselessly inspired research
into robust multi-model fitting methods. Among such, subspace-
based [57], optimization-based [2], and affinity-based [13] methods
are three representatives. Subspace-based methods [31, 36] treat
the point constraint as a labeling problem. In a subspace, each point
is described as a linear combination of its corresponding points.
However, these methods cannot be extended to non-linear corre-
spondence combinations to define models. Typically, optimization-
based methods [3, 4] employ a hypothesis-and-validation strategy.
The hypothesis stage generates a set of candidate model hypotheses
using a random or guided sampling technique. The validation stage
selects model hypotheses and applies graph notation techniques
to minimize an energy function. To cover all the required model
instances, these methods often necessitate generating numerous
model hypotheses to account for potential models. Nonetheless,
it is still difficult to guarantee obtaining a model and decreases
computational costs. In contrast, affinity-based methods [44, 49]
can be formulated as a clustering problem. This problem is solved
by projecting high-order affinity between data points onto a graph
and then applying spectral clustering techniques. However, these
methods are sensitive to outliers and noise. They become expensive
when calculating all potential high-order affinities.

In view of these problems, we propose a novel motion estimation-
based multi-model fitting method that integrates three types of
diverse consensuses. The proposed method comprehensively ex-
plores the intricate relationships among data points, hypotheses,
and their mutual interactions across multiple models. By redefin-
ing the problem in terms of motion estimation, we can achieve
more accurate and reliable results, even in the presence of noisy

or incomplete data. Specifically, the tangent consensus residual
reconstruction module rebuilds the shape and structure informa-
tion at the pixel level. It applies the tangent consensus technique
to identify valuable model hypotheses from residual information.
This module ensures that only the relevant and accurate hypothe-
ses are considered for further analysis. Additionally, we establish
cross consensus relationships between points and hypotheses by
generating a consensus affinity matrix. This matrix strengthens
the correlations among inliers and reduces the sensitivity of the
model to outliers. This step significantly improves the robustness
of our method against noisy or incomplete data. Finally, we intro-
duce a nested consensus clustering strategy to analyze the potential
connections between multiple parameter models from a motion
perspective. This strategy ensures the consistency and coherence
of multiple model matrices, resulting in more accurate and reliable
multi-model fitting.

The key contributions of this paper can be summarized as fol-
lows:
• We propose a novel multi-model fitting method based on motion
estimation that explores three types of diverse consensuses and
the potential motion interactions among multiple models. This
method effectively reduces the sensitivity to noise and outlier
data, improves the accuracy of model selection, and enhances
the multi-model fusion capability.
• We propose a tangent consensus residual reconstruction mod-
ule to optimize the correspondence between data points, which
goes beyond the traditional Sampson metric by leveraging the
properties of tangent consensus.
• Wepropose a nested consensus clustering strategy that guides the
motion estimation of underlying models. This strategy combines
the interaction of motion through nested consensus, which in
turn improves the accuracy of parameter estimation.
• We evaluate the proposed method on four publicly available
datasets. Both qualitative and quantitative results validate the
applicability and superiority of our method over several state-
of-the-art methods in terms of clustering accuracy and fitting
performance.

2 Related Work
2.1 Analysis-Based Methods
Analysis-based model fitting methods have been proposed to ex-
amine the relationship between data points and model hypotheses.
These methods can be categorized into consensus analysis-based
methods [50, 65] and preference analysis-based methods [59, 67].
Consensus analysis-based methods calculate the number of inliers
to match the model hypotheses and select the significant hypothe-
ses as the model instance for estimation. The conventional method
RANSAC [12] iteratively performs two processes: model hypothesis
generation andmodel validation. In thismethod, themodel hypothe-
ses with the maximum consensus set are chosen as the estimated
model instance, which is primarily used to process single-structure
data. To address multi-structure data, sequential RANSAC [25],
MultiRANSAC [68], AKSWH [56], RansaCov [41], and other repre-
sentative model fitting methods are proposed to improve RANSAC.
Preference analysis-based methods derive preference information
to compute the residuals between data points and a set of model
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hypotheses, such as RHA [66], J-Linkage [52], T-Linkage [40], RPA
[42] and KF [7]. More specifically, preference information is typi-
cally utilized for data representation, which enhances the similarity
matrix for data. The data are separated by combining the similar-
ity matrix of the data with clustering methods. Subsequently, the
inliers obtained from the segmentation are used to estimate the
model instance. However, analysis-based model fitting methods are
highly sensitive to the inlier threshold, and the accuracy of data
characterization also needs to be improved. When there are a large
number of outliers and multiple model structures in data, the com-
putational efficiency of model fitting will be significantly affected.
These limitations restrict their usefulness in complex scenes.

2.2 Deep Learning-Based Methods
Multi-model fitting methods based on deep learning have emerged
in recent years, owing to their powerful learning and expressive ca-
pabilities. For instance, CONSAC [28] aims to infer search strategies
directly from data. This method introduces neural network-guided
model estimation based on previously estimated instances to select a
subset of various metrics, which enables sequentially seeking model
instances. LDA [60] formulates the multi-model fitting problem as
one of learning deep feature embeddings that are clustering-friendly.
In other words, this network embeds the points belonging to the
same clusters together. ULRF [54] claims that robust model fitting
can be effectively solved by using an unsupervised learning frame-
work, which efficiently trains and explores search trees through
the use of backbone networks. FSNet [5] generates simple matrix
hypotheses and predicts the angular translation and rotation errors
of image pairs. It is a framework that employs correspondences
to formulate model hypotheses and integrates epipolar geometry
into the attention layer. However, it does not use epipolar geometry
to score the hypotheses throughout the RANSAC cycle. Moreover,
these methods solve multi-model fitting problems by utilizing the
priors learned from data, which constrains their interpretability. Ad-
ditionally, it may also be necessary to retrain task-specific models
when applying them to fit various multi-structure and multi-type
geometric models.

2.3 Motion Estimation-Based Methods
Motion estimation-based model fitting methods utilize the motion
estimation of objects in images or videos to fit models. Subspace-
based methods, such as ORK [6], initially reject outliers by remov-
ing data with low vector norms from the main subspace. Then,
they restore the number of clusters using the N-cut and K-means
algorithm to obtain the model parameters. ELSA [64] enhances
the local subspace and selects a model based on the probability
density function, which calculates the number of motions using
an eigenvalue spectral threshold to achieve the model fitting re-
sults. Optimization-based methods typically construct a function
and optimize this function. JESS [63] offers a sparse optimization
method that iteratively corrects motion segmentation and removes
outliers. This method reconstructs model fitting using the desired
motion structure. To address the challenge of unknown model
numbers, HOM [30] designs a pseudo-boolean formulation to opti-
mize multi-graph decomposition and construct a high-order loss
function. Affinity-based methods estimate models by constructing

affinity matrices and performing clustering. MSSC [29] integrates
motion information from all frames in a video sequence into a
correlation matrix. This method applies spectral clustering to esti-
mate the number of motions and fit multiple models. MCMS [23] is
designed for consistent affinity segmentation across all geometric
models. It obtains common structure information through block
diagonals to select consistent data. However, these methods often
face challenges in handling video sequences and image pairs with
camera motion, occlusion, and strong perspective effects.

In this work, unlike some conventional multi-model fitting meth-
ods that only utilize a single type of consensus and implicitly fuse
models, we propose a method that integrates the advantages of
analysis-based and motion estimation-based methods. It owns both
the comprehensive conciseness of model selection and the flexibility
of clustering.

3 Methodology
3.1 Residual Reconstruction with Tangent

Consensus
For multi-model fitting of two-view images and video sequences,
identifying the correct point correspondences is essential for sam-
pling the minimum subset of data and generating a set of precise
model hypotheses. In model fitting, the Sampson error [39] is com-
monly utilized to approximate the geometric distance between
a point and a model hypothesis to identify this correspondence.
However, it only evaluates certain geometric quantities and fails
to approximate the true reprojection error, thereby ignoring shape
and motion structure information at the image level. To address this
limitation, we design a tangent consensus residual reconstruction
module to screen residuals and select valuable model hypotheses
at the pixel level, as shown in Figure 2.

Let 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛} be a set of input data containing 𝑛 feature
points. We randomly select a minimal number of𝑚 points to gen-
erate three model hypothesis matrices represented by A, H, and
F, which denote the affine matrix A, the homography matrix H,
and the fundamental matrix F, respectively. The minimum num-
bers of points required to generate these models are 3, 4, and 8,
respectively.

Suppose thatwe are given a set of correspondences𝐶 = {𝑝𝑖 , 𝑝 𝑗 } ∈
R2×2 with a few outliers, where 𝑖 and 𝑗 are the index of the data
point. The residual with respect to each hypothesis and data point
is derived from the traditional Sampson error:

𝜀 =
(𝑝T

𝑗
E 𝑝𝑖 )2��E 𝑝𝑖

��2 + ��ET𝑝 𝑗 ��2 , (1)

where E is the essential matrix. This residual is approximated by
the geometric error [48], which is the distance between the nearest
pair of points that satisfy the epipolar constraint 𝐼 (·):

𝐼 (𝜏) = 𝑡T𝑗 E 𝑡𝑖 , (2)

where 𝜏 = {𝑡𝑖 , 𝑡 𝑗 } ∈ R2×2 represents the correct correspondence,
and 𝑡𝑖 and 𝑡 𝑗 correspond to 𝑝𝑖 and 𝑝 𝑗 , respectively.
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Figure 2: Overview of the proposed CMMFmethod. (a) An input image pair. (b) The tangent consensus residual reconstruction 𝜀𝑡𝑐
between the points 𝑃 and the model hypotheses𝑇 . (c) The affinity matrix Ω captured by the cross consensus affinity framework.
(d) The nested consensus clustering strategy merges the nested consensus sparse affinity matrices Π from various models and
groups the points into moving objects. (e) The final mutli-model fitting result. Points corresponding to different moving objects
are indicated by different colors.

We then reconstruct the residual derived from the tangent con-
sensus error 𝜀𝑡𝑐 for matching the motion estimation as follows:

𝜀𝑡𝑐 = min
𝐶
| |𝜏 −𝐶 | |2

𝑠 .𝑡 . 𝐼 (𝐶) = Ψ(𝑝 𝑗 )TE Ψ(𝑝𝑖 ),
(3)

where Ψ(·) is the tangent inverse function, which depends on the
forward projection function Φ(·). The forward projection function
is adopted from the Kannala-Brandt model [26]:

Φ(𝜏) =

√︃
𝑡2
𝑖
+ 𝑡2

𝑗

|𝑡2
𝑖
+ 𝑡2

𝑗
|
(𝛼𝑖𝑡𝑖 , 𝛼 𝑗 𝑡 𝑗 ) + (𝛽𝑖 , 𝛽 𝑗 ), (4)

where 𝛼 and 𝛽 are the inherent parameters. The forward projection
function solely defines forward projection to restore the shape of
an object on the image plane. However, during iterative solving for
unprojection, it fails to obtain the structural information about the
object. This limitation impacts the estimation of moving objects.
Note thatΦ(·) supports right inverses, but they only differ in lengths
assigned to the unprojected bearing vectors [51]. Nevertheless, for
motion estimation, a more complex model is required to capture the
structural details. Considering an arbitrary central camera model,
it is necessary to optimize the continuously differentiable bearing
vector at the pixel level tangent planes. Therefore, the tangent
inverse function is designed for 𝐶:

Ψ(𝐶) = 𝜕Φ(𝐶)
𝜕𝐶

𝐽𝑖 × 𝑝𝑖 + 𝐽 𝑗 × 𝑝 𝑗
𝐶 · (𝐽𝑖 × 𝐽 𝑗 )

, (5)

where 𝐽𝑖 and 𝐽 𝑗 ∈ R2×2 are the Jacobians of 𝑝𝑖 and 𝑝 𝑗 with respect
to the epipolar constraint, and × denotes the cross product. Inspired
by [47], we linearize the epipolar constraint:

𝜏 = 𝐶 − 𝐼 (𝐶)
| |𝐽 | |2

𝐽T . (6)

Thus we substitute and minimize Eq. (3) to obtain:

𝜀𝑡𝑐 =

������ 𝐼 (𝐶)| |𝐽 | |2 𝐽T������2 = (Ψ(𝑝 𝑗 )TEΨ(𝑝𝑖 ))2���𝑝T𝑗 E𝐽𝑖
���2 + ���𝑝T𝑖 ET 𝐽 𝑗

���2 . (7)

The tangent consensus residual reconstruction module reflects the
efficient optimization of the epipolar constraint on the differentiable
tangent plane of the points. Extracting motion structure informa-
tion on a pixel basis is meaningful since the original image has
a tangent measure. As long as we can determine the Jacobian of
the projection function in each corresponding connection, it works
with arbitrary central camera models. Notably, this reconstruction
module is cost-effective, as it requires computing only a single
forward projection and Jacobian.

Through the tangent consensus error, we reconstruct the residual
between each model hypothesis and data point. The residual vector
based on the tangent consensus error is defined as follows:

r = [𝜀1𝑡𝑐 , 𝜀2𝑡𝑐 , ..., 𝜀𝑛𝑡𝑐 ] . (8)

The reconstructed residual not only measures the geometric dis-
tance corresponding to the point but also approximates the true
reprojection error. This is because the forward projection function
can recover the shape information, meanwhile, the tangent inverse
function can obtain the structural information. Both of these func-
tions provide indispensable correlations for finding the affinity
matrix.

3.2 Affinity Captured as Cross Consensus
The affinity between two features can be characterized by alignment
based on the consistency of points across all hypotheses. However,
the model hypotheses generated by random sampling often include
a large number of irrelevant or incorrect hypotheses. This can
significantly impact the performance of motion estimation and the
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accuracy of the affinity matrix, especially in scenarios involving
multiple models.

To address the above issues, we propose a cross consensus affin-
ity framework to describe the affinity between points and underly-
ing model hypotheses. First, we sort the residual r of the tangent
consensus reconstruction in ascending order. Then, we obtain a
permutation 𝜼 = {𝜂1, 𝜂2, ..., 𝜂𝑛}, which expresses the preference re-
lationship between model hypotheses and data points. If two points
𝑝𝑖 and 𝑝 𝑗 are inliers from the same structure, they will have a lot
of shared hypotheses at the top of their preference lists. Motivated
by [45], we calculate the cross kernel 𝑘 of two points 𝑝𝑖 and 𝑝 𝑗 as
follows:

𝑘 (𝑝𝑖 , 𝑝 𝑗 ) =
1
𝜌

𝑛∑︁
𝑥=1

( ��� 𝜂1∼𝑥+1𝑖 ∩ 𝜂1∼𝑥+1𝑗

��� − ���𝜂1∼𝑥𝑖 ∩ 𝜂1∼𝑥𝑗

��� ), (9)

where 𝜌 is a bandwidth, 𝑥 is the element number of 𝜼, and 𝜂𝑎∼𝑏( ·)
represents the set made up of elements in 𝜂 ( ·) from the 𝑎-th to the
𝑏-th. The notation | · ∩ · | indicates the cross of elements having the
same indices in two permutations.

Next, for each pair of points in the three model hypothesis ma-
trices, the cross kernel matrix K is computed as follows:

K𝜆 =


𝑘 (𝑝1, 𝑝1)𝜆 · · · 𝑘 (𝑝1, 𝑝𝑛)𝜆

.

.

.
. . .

.

.

.

𝑘 (𝑝𝑛, 𝑝1)𝜆 · · · 𝑘 (𝑝𝑛, 𝑝𝑛)𝜆

 , (10)

where 𝜆 is defined as the set of three model hypothesis matrices
(i.e., A, H, and F).

Then, the adaptive weighted density estimation [8] is utilized
to assess the weighted score 𝑠 of a model hypothesis, which corre-
sponds to the three model hypothesis matrices:

𝑠𝜆𝑖 =

𝑛∑︁
𝑖=1

K(𝑟𝜆
𝑖
)

𝜅𝜆𝜌𝜆
, (11)

where 𝑖 is the number of model hypotheses, K is the Epanechnikov
kernel, 𝜅 is the inlier scale that IKOSE calculated [56], and 𝜌 is a
bandwidth. The weighted scores will assign a high score to mean-
ingful model hypotheses via Eq. (11). The cumulative weighted
score for each point can be expressed as:

S𝜆 =

𝑛∑︁
𝑗=1

𝑠𝜆𝑖 𝑗 , (12)

where 𝑗 is the number of points. The cross consensus affinity Ω𝜆

can be constructed based on the cross relationship of the points
and the weighted scores of the model hypotheses:

Ω𝜆 = S𝜆K𝜆 =


𝑠𝜆1𝑘 (𝑝1, 𝑝1)

𝜆 · · · 𝑠𝜆𝑛𝑘 (𝑝1, 𝑝𝑛)𝜆
.
.
.

. . .
.
.
.

𝑠𝜆𝑛𝑘 (𝑝𝑛, 𝑝1)𝜆 · · · 𝑠𝜆𝑛𝑘 (𝑝𝑛, 𝑝𝑛)𝜆

 . (13)

The cross consensus affinity between two points from the same
moving object should be greater, while the affinity between two
points from different moving objects should be smaller. At last, an
𝜖−neighborhoodmethod [29] is used to sparsify the cross consensus
affinity Ω𝜆 .

Algorithm 1: Diverse consensuses paired with motion
estimation-based multi-model fitting (CMMF)
Input: A set of data points 𝑃 .
Output: The model parameters𝑀 , the number of models 𝑁 ,

and the data point labels 𝐿.
1 // Tangent Consensus Residual Reconstruction Module
2 Construct the tangent consensus residual module by Eq. (3);
3 Compute the reconstructed residual by Eqs. (7) and (8);
4 // Cross Consensus Affinity Framework
5 for each type of model matrices 𝜆 ∈ [A,H, F] do
6 Construct K𝜆 according to 𝜆 by Eqs. (9) and (10);
7 Generate S𝜆 according to 𝜆 by Eqs. (11) and (12);
8 Compute Ω𝜆 according to 𝜆 by Eq. (13);
9 end

10 // Nested Consensus Clustering Strategy
11 while no converged do
12 for 𝜆 ∈ [A,H, F] do
13 Calculate Π𝜆 by Eq. (15);
14 Q𝜆 ← First eigenvectors of the Laplacian matrix;
15 end
16 end
17 𝑀 , 𝑁 , and 𝐿← Cluster Q𝜆 .

3.3 Nested Consensus Clustering Strategy
After obtaining the cross consensus affinity matrices of multiple
models, the next step is to find partitions for multiple motions.
We design a nested consensus clustering strategy to recover the
clustering of different moving objects. Unlike previous fusion or
accumulation methods, we utilize the potential relationships be-
tween different models. In the case of multi-model fitting for motion
estimation, we are aware that the fundamental matrix F can be de-
scribed as a family of F = ⟨𝝃 ⟩ ∗ H parameterized by a vector 𝝃 ,
where ⟨𝝃 ⟩ is the skew-symmetric matrix [16], and (∗) represents
the cross multiplication. This implies that for a given pair of points
within a homography matrix H, they are considered inliers with
respect to a specific fundamental matrix. Conversely, if two points
are outliers with regard to a fundamental matrix, they fail to satisfy
the constraints of a homography matrix. Similarly, the homography
matrix H can be defined as H = ⌈𝜁 ⌋ · A, where ⌈𝜁 ⌋ represents the
perspective transformation, and (·) denotes the dot product. This
means that through a series of translation and rotation transforma-
tions, the inliers of the affine matrix can be transformed into the
inliers of the homography matrix, and vice versa. If a point is not
an inlier of a certain homography matrix, it cannot be an inlier of
the affine matrix.

Based on the potential relationships between the moving object
models mentioned above,ΩA,ΩH, andΩF are the sparse affinityma-
trices of A, H, and F, respectively. We can define a nested consensus
clustering strategy for the existing affinities ΩA ∈ ΩH ∈ ΩF:

min
Q

∑︁
𝜆

{
QT
𝜆
[Λ(−1/2)Ω𝜆Λ(−1/2) ]Q𝜆

}
− 𝛾

∑︁
𝜆

(QT
𝜆

Π𝜆Q𝜆),

𝑠 .𝑡 . QTQ = I, Π ∈ {−𝜐, 0, 𝜐},
(14)
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where Q represents the spectral embedding, Λ denotes the degree
matrix of the sparse affinity matrix Ω, 𝛾 ∈ R, I is the identity
matrix, and Π is the nested consensus matrix. When 𝜋𝑖 𝑗 = 𝜐, the
nested consensus promotes a large inner product QT

𝜆𝑖
Q𝜆𝑗 , where

Q𝜆𝑖 denotes the 𝑖-th column. Therefore, it is desirable for points 𝑖
and 𝑗 to belong to the same cluster. There is no nested consensus
for 𝜋𝑖 𝑗 = 0. A different cluster assignment between 𝑖 and 𝑗 is
encouraged by the nested consensus when 𝜋𝑖 𝑗 = −𝜐. This nested
consensus will help affinity matrices to be further denoised or
repaired.

We relaxΠ to continuous values and optimizeΠ using the affinity
reconstructed from the spectral embedding G = QQT. Then Eq. (14)
is rewritten as:

min
Q

∑︁
𝜆

{
QT
𝜆
[Λ(−1/2)Ω𝜆Λ(−1/2) ]Q𝜆

}
− 𝛾

∑︁
𝜆

(QT
𝜆

Π𝜆Q𝜆),

𝑠 .𝑡 . QTQ = I,

Π =


G ⊙ I(G > 0), 𝜋 = 1
G ⊙ I(G > 0) + G ⊙ I(G < 0), 𝜋 = 0,
G ⊙ I(G < 0), 𝜋 = −1

(15)

where ⊙ denotes element-wise multiplication and I(·) represents
the indicator function. We assume that three model matrices are
arranged as follows: the affine (𝜋 = −1) followed by the homog-
raphy (𝜋 = 0) and the fundamental matrix (𝜋 = 1). According to
the principle of nested consensus, H and A can be nested in F, and
A can be nested in H. Finally, a separate K-means step is taken.
Normalized Q is input to group the points into motion groups. This
step helps obtain multi-model fitting results. Figure 2 depicts an
overview of the proposed method. An overview of the complete
steps is provided in Algorithm 1.

4 Experiments
4.1 Experimental Setup
Datasets. We assess the proposed method using four challenging
datasets:
• AdelaideRMF-F [58] is a two-view multi-model fitting dataset
that includes 19 pairs of images. Each image contains at least
two to four objects that may be scaled, rotated, or distorted, and
may also exhibit shadows or occlusions between objects. These
factors contribute to the challenging nature of this dataset.
• Hopkins155 [53] consists of two motion groups in 120 video
sequences and three motion groups in 35 video sequences. It
includes incomplete motion trajectories of objects, which makes
motion estimation difficult.
• KITTI [61] comprises a series of photos captured by a camera
mounted on a moving car. It contains two to five moving objects
in total, including the background. The photos have a resolution
of 1226 x 370 pixels. This benchmark showcases the interaction
of multiple actions, intricate backgrounds, and significant camera
translation.
• MTPV62 [32] is an extension of the Hopkins155 dataset [53], in-
volving 12 real outdoor fragments and 50 Hopkins 155 fragments.
Nine of the clips exhibit strong perspective effects, making them
suitable for robust perspective testing. Additionally, it provides
feature trajectory information.

(a) breadtoy (b) carchipscube

(c) breadcartoychips (d) cubebreadtoychip

Figure 3: Two-view multi-model fitting results obtained by
the proposed DCMF on the AdelaideRMF-F dataset. Points
corresponding to different moving objects are indicated by
different colors.

Evaluation Metrics. The average clustering error (ACE) and the
median clustering error (MCE) are applied to evaluate the perfor-
mance of multi-model fitting.

4.2 Comparison with State-of-the-Art Methods
Evaluation of Two-ViewModel Fitting.Wefirst evaluate the pro-
posed method on the AdelaideRMF-F dataset [58]. We compare the
proposed method with ten state-of-the-art methods. Among these,
PEARL [20], T-linkage [40], and RPA [42] are hypothesize-cluster
methods. MLink [43], RansaCov [41], Prog-X [3], and LDA [60] are
analysis-based methods. CBG [34], D2Fitting [33], and QUMF [11]
are optimization-based methods. As shown in Table 1, the proposed
method achieves the best performance in terms of ACE and MCE
criteria with improvements of 0.43% and 0.89%, respectively. These
improvements are attributed to the effectiveness of our tangent
consensus structural details reconstruction and the multi-model
nested consensus learning. Figure 3 shows some qualitative results
obtained by the proposed method. We observe consistently bet-
ter multi-model fitting results by our method. Specifically, for the
‘breadtoy’ and ‘carchipscub’ image pairs, our method demonstrates
robustness against occlusion and shadows. Furthermore, for the
‘breadcartoychips’ and ‘cubebreadtoychip’ image pairs, our method
accurately detects entire objects with multiple sub-classes. This is
because our method utilizes three diverse consensuses between
feature points and hypotheses, which improves the accuracy of
multi-model fitting.

Evaluation of Motion Estimation.We further compare our
method on the KITTI, Hopkins155, and MTPV62 datasets with
seven state-of-the-art methods. Subspace-based single-model meth-
ods include GPCA [55], SSC [10], BDR [38], and ALC [46]. Fusion-
based multi-model methods include Subset [61], MCMS [23], and
HMFMS [35]. Figure 1 summarizes the core differences between
them. As shown in Table 2, the subspace-based single-model meth-
ods exhibit larger ACE values. In contrast, ACE is significantly
improved by the fusion-based multi-model methods. Our proposed
method consistently outperforms all other competing methods in
terms of ACE, with performance improvements of 1.16%, 0.12%, and
0.11%, respectively. It is noteworthy that the KITTI dataset presents
various actions and intricate background effects. However, our
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Table 1: Performance comparison between the proposed CMMF and ten competing methods on the AdelaideRMF-F dataset.
The best results are boldfaced.

Methods PEARL T-linkage RPA MLink RansaCov Prog-X LDA CBG D2Fitting QUMF CMMF

ACE (%) 29.51 24.12 17.14 7.53 15.39 11.04 9.39 4.51 4.16 3.85 3.42
MCE (%) 14.83 17.22 11.11 6.56 9.16 8.59 6.05 2.92 3.82 3.54 2.03

Table 2: Performance comparison between the proposed CMMF and seven competing methods on the KITTI, Hopkins155, and
MTPV62 datasets. The best results of ACE (%) are boldfaced.

Methods GPCA SSC BDR ALC Subset MCMS HMFMS CMMF

KITTI 34.60 33.88 32.88 24.31 8.08 4.58 4.48 3.32

Two motions 4.59 1.52 0.95 2.40 0.23 0.24 0.21 0.16
Hopkins155 Three motions 28.66 4.40 0.85 6.69 0.58 0.82 0.67 0.46

All 10.02 2.18 0.93 3.56 0.31 0.37 0.31 0.19

12 clips 28.77 17.22 26.63 0.43 0.30 0.60 0.55 0.40
MPTV62 50 clips 16.20 2.01 7.81 18.28 0.77 0.58 0.51 0.44

All 16.58 5.17 5.09 14.88 0.65 0.58 0.52 0.41

(a) KITTI104-108 (b) KITTI198-201

(c) KITTI579-582 (d) KITTI738-742

Figure 4: Motion estimation results obtained by the proposed CMMF method from the KITTI dataset. Inlier correspondences
are marked by green lines, and outlier correspondences are marked by red lines.

proposed CMMF method effectively addresses these challenges by
leveraging the nested consensus of different models. To tackle the is-
sue of missing object motion trajectories in the Hopkins155 dataset
and the strong perspective problem in the MPTV62 dataset, our
method reconstructs the residual between points and hypotheses to
obtain structural information of moving objects. It further enhances
motion correlation between models using a cross consensus affinity
framework. This method effectively preserves pixel-level motion
structure information. Therefore, the proposed CMMF method of-
fers significant performance advantages over fusion-based methods.
Some qualitative estimation results obtained by our method are
shown in Figure 4. In the ‘KITTI104-108’ and ‘KITTI198-201’ video
sequences, the proposed method not only correctly recognizes cars

and a trash can but also properly marks walls in dark areas. In the
‘KITTI579-582’ and ‘KITTI738-742’ video sequences, our proposed
method accurately labels multiple moving objects. This is because
our method reduces residual-induced instability and enhances esti-
mation performance. It achieves this by exploring the correlation
of different moving objects in challenging scenarios.

4.3 Ablation Study
Influence of Tangent Consensus Residual Reconstruction
Module.We demonstrate the effectiveness of the proposed tangent
consensus residual reconstruction. This is achieved by approximat-
ing the true reprojection error between the points and hypotheses
during the residual reconstruction of the different errors, as shown
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Figure 5: Ablation study of the residual reconstruction com-
paring the tangent consensus error (TCE) with four compet-
ing errors. The darker the color, the worse the approximation
when comparing the 𝛿 coefficients of various error metrics.

Table 3: Ablation study of the cross consensus affinity (CCA)
framework on the MTPV62 and Hopkins155 datasets. The
best results of ACE (%) are boldfaced.

Methods TCRR ORK KA CCA NCC Hopkins155
All

MTPV62
All

(a) ✓ ✓ ✓ 8.91 8.08
(b) ✓ ✓ ✓ 0.36 0.74
(c) ✓ ✓ ✓ 0.19 0.41

in Figure 5. We utilize Kendall’s 𝛿 Rank correlation coefficient [27]
to analyze a series of checkerboard-like [37] error measures. The
coefficient 𝛿 ∈ [−1, 1] is calculated between two residual sortings.
The same sorting results in 𝛿 approaching 1, and 𝛿 approaching
-1 in the opposite case. Competitors are divided into two groups:
one group is used for geometric errors [48], such as algebraic error
(AE) and cosine error (CE), and the other group is used for image
errors [47], such as symmetric epipolar error (SEE), Sampson error
(SE), and tangent consensus error (TCE). We observe that the most
accurate approximation of the true reprojection error for each row
and column is provided by the tangent consensus error, excluding
the self error. The closer 𝛿 is to 1, the greater the likelihood that
two sortings come from the same structure. Our tangent consen-
sus residual reconstruction represents a pixel-level difference in
an image pair. It not only restores shape information through for-
ward projection but also obtains structural information through
inverse projection. This improves the correlation between points
and hypotheses. These observations indicate that the proposed
CMMF method offers an effective residual reconstruction manner
for multi-model fitting to approximate the true reprojection error.

Influence of Cross Consensus Affinity Framework.We con-
duct an ablation study to explore the contribution of cross con-
sensus affinity framework in our proposed method. As shown in
Table 3, the comparison reveals that augmenting the traditional
ordered residual kernels (ORK) [6] and kernels add (KA) [61] with

Table 4: Ablation study of the nested consensus clustering
(NCC) strategy on the Hopkins155, MTPV62, and KITTI
datasets. The best results of ACE (%) are boldfaced.

Methods Hopkins155 All MTPV62 All KITTI

Affine 0.59 0.82 15.76
Homography 0.71 1.08 11.45
Fundamental 1.79 3.97 13.92

CoReg 0.46 0.73 7.92
MCMS 0.37 0.58 4.48
CMMF 0.19 0.41 3.32

cross consensus notably improves results on the MTPV62 and Hop-
kins155 datasets. Method (a) utilizes ORK to encapsulate hypothesis
affinity in a kernel. Method (b) combines KA with a superposition
of multiple affinities. Our method (c) captures affinity through cross
consensus. It assigns weights to different hypotheses for sampling,
providing elasticity for severe sampling imbalances. This signifi-
cantly boosts the performance because it is easier to reduce the
impact of incorrect related information.

Influence of Nested Consensus Clustering Strategy. To in-
vestigate the effectiveness of the proposed nested consensus clus-
tering strategy, we conduct extensive ablation experiments on the
Hopkins155, MTPV62, and KITTI datasets. We apply the param-
eter 𝛾 to promote convergence and select 𝛾 = 10−2 can make the
problem more easily convergent and improve the accuracy of our
method. Specifically, we compare the single-model method (i.e.,
Affine, Homography, and Fundamental), the regularized method
(CoReg) [62], and the multiplicative decompositionmethod (MCMS)
[23]. As shown in Table 4, the proposed method consistently im-
proves results across all methods and metrics. The nested consen-
sus clustering strategy plays a critical role in our method. This
is because most of the other competitive methods only seek one
consensus spectral feature. We believe that segmenting information
solely based on one consensus may not be sufficient to eliminate
outliers. It may also lead to unreliable or semantically irrelevant
movement. Therefore, we construct the nested consensus cluster-
ing strategy, which integrates the nested consensus of multiple
models. It enhances motion connections between multiple models
and improves the accuracy of multi-model fitting.

5 Conclusion
In this paper, we propose a highly effective method for multi-model
fitting through diverse consensuses paired with motion estimation.
Our method comprises three key components: the tangent consen-
sus residual reconstruction module, the cross consensus affinity
framework, and the nested consensus clustering strategy. We lever-
age diverse types of consensuses to analyze potential correlations
between data points and model hypotheses, and we demonstrate
how the proposed method can be used on potential correlations,
thereby contributing to the understanding of motion collaboration
between multiple models. Our method is evaluated on four chal-
lenging datasets, with the results showing its superiority over other
state-of-the-art approaches. It is highly competent in practical vi-
sion tasks, excelling in fitting multiple models and achieving high
clustering accuracy, even in scenarios where prior knowledge of
the number of motions is lacking.
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