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ABSTRACT

The Cambrian explosion of easily accessible pre-trained diffusion models suggests
a demand for methods that combine multiple different pre-trained diffusion
models without incurring the significant computational burden of re-training a
larger combined model. In this paper, we cast the problem of combining multiple
pre-trained diffusion models at the generation stage under a novel proposed
framework termed superposition. Theoretically, we derive superposition from
rigorous first principles stemming from the celebrated continuity equation and
design two novel algorithms tailor-made for combining diffusion models in
SUPERDIFF. We demonstrate that SUPERDIFF is scalable to large pre-trained
diffusion models as superposition is performed solely through composition during
inference, and also enjoys painless implementation as it combines different
pre-trained vector fields through an automated re-weighting scheme. Notably, we
show that SUPERDIFF is efficient during inference time, and mimics traditional
composition operators such as the logical OR and the logical AND. We empirically
demonstrate the utility of using SUPERDIFF for generating more diverse images on
CIFAR-10, more faithful prompt conditioned image editing using Stable Diffusion,
and improved unconditional de novo structure design of proteins.
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Figure 1: Concept interpolations via different methods: SUPERDIFF (top row), the averaging of outputs with
different prompts (middle row), and joint prompting with standard Stable Diffusion (SD) (bottom row) for six
different prompt combinations. Here we use SUPERDIFF with the AND operation (sampling equal densities).

1 INTRODUCTION

The design and application of generative models at scale are arguably one of the fastest-growing
use cases of machine learning, with generational leaps in performance that often exceed expert
expectations (Steinhardt, 2022). A few of the central facilitators of this rapid progress are the
availability of high-quality training data and large computing hardware (Kaplan et al., 2020); which in
tandem provide a tried and trusted recipe to scale generative models in a variety of data modalities such
as video generation (Brooks et al., 2024), natural language understanding (OpenAI, 2023; Achiam

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2023; Dong et al., 2022), and other challenging domains like mathematical reasoning (Trinh
et al., 2024), or code assistance (Bubeck et al., 2023). As a result, it is not surprising that a driving force
behind current generative modeling research is centered around developing open-source tooling (Dao
et al., 2022; Kwon et al., 2023) to enable further scaling and understanding emergent behavior of
such models (Schaeffer et al., 2023), including probing current limitations (Dziri et al., 2024).
Indeed, the rapid escalation of generative model development has also induced a democratizing effect,
given the easy access to large pre-trained in the current AI climate (Stability AI, 2023; Midjourney,
2023; Ramesh et al., 2021). Furthermore, with the rise of open-source models, it is now easier than
ever to host and deploy fine-tuned models. However, the current pace of progress also makes it
infeasible to easily scale further models without confronting practical challenges. For instance, for
continuous domains such as natural images current pre-trained diffusion models already exhaust all
public data, with a growing proportion of the web already populated with synthetic data (Schuhmann
et al., 2022). Compounding these challenges is the tremendous cost of pre-training these large
diffusion models, which at present makes it computationally unattractive for individuals to build
large pre-trained models on different datasets without re-training a larger combined model.
A compelling alternative to training ever larger models is to consider the efficacy of maximizing the
utility of existing pre-trained models. In particular, it is interesting to consider the compositional
benefits of combining pre-trained models at the generation stage in place of training a single mono-
lithic model (Du & Kaelbling, 2024). For diffusion models, which are the current de facto modeling
paradigm over continuous domains, compositional generation can be framed as modifying the in-
ference mechanism through either guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022) or
applying complex MCMC correction schemes (Du et al., 2023). Despite advancements, methods that
utilize guidance lack a firm theoretical underpinning (Bradley & Nakkiran, 2024) and MCMC tech-
niques are prone to scaling issues, and more importantly, remain unproven at combining existing large
pre-trained diffusion models. This motivates the following timely research question: Can we combine
pre-trained diffusion models solely at inference in a theoretically sound and efficient manner?
Present work. In this paper, we cast the problem of combining and composing multiple pre-trained
diffusion models under a novel joint inference framework we term superposition. Intuitively we
develop our framework by starting from the well-known principle of superposition in physical systems
which summarizes the net response to multiple inputs in a linear system as the sum of individual inputs.
Applying the superposition principle we develop SUPERDIFF, a novel approach to combine pre-
trained diffusion models by superimposing learned vector fields at inference. Moreover, we demon-
strate that the same superposition principle underlies both flow-based methods (Liu et al., 2022b;
Lipman et al., 2022; Albergo et al., 2023) and diffusion models (Ho et al., 2020; Song et al., 2020)
(see App. B), and thus provides a unifying perspective over combining modern generative models.
SUPERDIFF relies on the key insight that following a superposition principle necessitates the efficient
evaluation of the densities of different models during the generation, which we present in Sec. 3.1.
Knowing the current density of the generated sample under different models (or the same model
with different conditioning) we are able to guide the generation to the desired result by controlling
the relative weights of model outputs. Namely, in Sec. 3.2, we propose two different algorithms that
implement: a mixture of densities (sampling from either from one model OR another), generating
samples of the equal densities (samples that are likely under one model AND another, e.g. see Fig. 1).
We test the applicability of our approach SUPERDIFF using the two proposed superimposition
strategies for image and protein generation tasks. For images, we first demonstrate the ability to
combine the outputs of two models trained on disjoint datasets such that they yield better performance
than the model trained on both of the datasets (see Sec. 4.1). In addition, we demonstrate the ability
to interpolate between densities which correspond to concept interpolation in the image space (see
Sec. 4.2). For proteins, we demonstrate that combining two different generative models leads to
improvements in designability and novelty generation (see Sec. 4.3). Across all our experimental
settings, we find that combining pre-trained diffusion models using SUPERDIFF leads to higher
fidelity generated samples that better match task specification in text-conditioned image generation
and also produce more diverse generated protein structures than comparable composition strategies.

2 PRELIMARIES

Generative models learn to approximate a target data distribution pdata ∈ P(Rd) defined over Rd

using a parametric model qθ with learnable parameters θ. In the conventional problem definition, the
data distribution is realized as an empirical distribution that is provided as a training set of samples
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D = {µi}mi=1. Whilst there are multiple generative model families to choose from, we restrict our
attention to diffusion models (Song et al., 2020; Ho et al., 2020) which are arguably the most popular
modeling family driving current application domains. We next review the basics of the continuous
time formulation of diffusion models before casting them within our superposition framework.

2.1 CONTINUOUS-TIME DIFFUSION MODELS

A diffusion model can be cast as the solution to the Stochastic Differential Equation (Øksendal, 2003),
dxt = ft(x)dt+ gtdWt, x0 ∼ q0(x0). (1)

In the Itô SDE literature, the function ft : Rd → Rd is known as the drift coefficient while gt : R → R
is a real-valued function called the diffusion coefficient and Wt is the standard Wiener process. The
subscript index t ∈ [0, 1] indicates the time-valued nature of the stochastic process. Specifically, we fix
the starting time t = 0 to correspond to the data distribution pdata := q0(x0) and set t = 1 as the ter-
minal time t = 1 to an easy to sample prior such as a standard Normal distribution pnoise := q1(x1) =
N (x1|0, I). As such the diffusion SDE, also called the forward process, can be seen as progressively
corrupting the data distribution and ultimately hitting a terminal distribution devoid of any structure.
To generate samples from the marginal density qt(xt) induced by the diffusion SDE in equation 1
we leverage the reverse-time SDE with the same marginal density as demonstrated below.

Proposition 1. [Reverse-time SDEs/ODE] Marginal densities qt(x) induced by Eq. (1) corre-
spond to the densities induced by the following SDE that goes back in time (τ = 1− t) with the
corresponding initial condition

dxτ =

(
−ft(xτ ) +

(
g2t
2

+ ξτ

)
∇ log qt(xτ )

)
dτ +

√
2ξτdW τ , xτ=0 ∼ q1(x0) , (2)

where W τ is the standard Wiener process in time τ , and ξτ is any positive schedule.

See proof in App. A.1. The reverse SDE flows backward in time τ = 1 − t and is linked to the
diffusion SDE through the score ∇x log qτ (x), and dW τ is another Weiner process. As a result,
a parametric model ∇ log qτ (x; θ) may directly learn to approximate this score function for every
point in time and then draw samples by simulating the reverse SDE in equation 2 by plugging back
in the learned score. Notably, for ξt ≡ 0, the SDE becomes an ODE which defines a smooth change
of measure corresponding to pnoise into the measure corresponding to pdata.
In practice, for generative modelling, the forward SDE from Eq. (1) is chosen to be so simple that
it can be integrated in time analytically without simulating the SDE itself. This is equivalent to
choosing the noising schedule first, and then deriving the SDE that corresponds to this schedule.
Namely, for every training sample µi, we can define the density of the corrupted µi as a normal
density with the mean scaled according to αt and the variance σ2

t , then the density of the entire
corrupted dataset is simply a mixture over all training samples µi, i.e.

qit(x) = N (x |αtµ
i, σ2

t I) , qt(x) =
1

N

N∑
i=1

qit(x) . (3)

Clearly, choosing αt, σt such that α0 = 1, σ0 = 0 and α1 = 0, σ1 = 1, we guarantee pdata := q0(x0)
and pnoise := q1(x1) = N (x1|0, I). This perturbation of the data distribution using a Gaussian
kernel offers specific forms for the drift ft, and diffusion coefficient gt as described next.

Proposition 2. [Ornstein–Uhlenbeck SDE] The time-dependent densities in Eq. (3) correspond
to the marginal densities of the following SDE, with the corresponding initial condition

dxt =
∂ logαt

∂t
xt︸ ︷︷ ︸

ft(xt)

dt+

√
2σ2

t

∂

∂t
log

σt

αt︸ ︷︷ ︸
gt

dWt , x0 ∼ q0(x0) . (4)

See proof in App. A.2. We highlight the simplicity of the drift term, a linear scaling, that allows us
to simulate efficiently the reverse SDE and is crucial for the proposed density estimators in Sec. 3.1.
Altogether, the derivations of this section allow us to go from the noise schedules of samples
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in Eq. (3) used during the training of a given diffusion model to the corresponding forward SDE
in Prop. 2, and finally to the reverse SDEs or ODE used in Prop. 1.

2.2 SUPERPOSITION OF ODES AND SDES
In this section, we introduce the superposition of multiple time-dependent densities that correspond
to different stochastic processes. A suggestive view of these densities is as processes corresponding
to different training data (e.g. different datasets), different conditions (e.g. different text prompts),
or simply differently trained diffusion models. Namely, we consider N forward noising process
{qit(x)}Ni=1 that possibly start from different initial distributions {qit=0(x)}Ni=1 (e.g. different datasets).
Assume that we know the individual vector fields vit(x) that define the change of corresponding
densities qit(x) via the state-space ODEs and continuity equations,

dxt

dt
= vit(xt) =⇒ ∂

∂t
qit(x) = −

〈
∇x, q

i
t(x)v

i
t(x)

〉
, ∀ i ∈ [N ]. (5)

The superposition of the noising processes {qit(x)}Ni=1 is the mixture of corresponding densities:

qmix
t (x) :=

N∑
j=1

ωjqjt (x),

N∑
i=1

ωi = 1 , ωi ≥ 0 , (6)

where ωj is a mixing coefficient. Note that superimposed qmix
t (x) also satisfies the continuity equation

for the superposition of the vector fields vit(x) as demonstrated in the following proposition.

Proposition 3. [Superposition of ODEs (Liu, 2022)] The mixture density in Eq. (6) follows the
continuity equation with the superposed vector fields from Eq. (5), i.e.

∂

∂t
qmix
t (x) = −

〈
∇x, q

mix
t (x)vt(x)

〉
, vt(x) =

1∑N
j=1 ω

jqjt (x)

N∑
i=1

ωiqit(x)v
i
t(x) . (7)

We reproduce the proof for Prop. 3 in the context of our superposition in App. A.3. The superposition
principle is the core principle that allows for efficient simulation-free learning of the flow-based
models (Liu et al., 2022b; Lipman et al., 2022; Albergo et al., 2023) and diffusion models (Song et al.,
2020). We discuss how these frameworks are derived from the superposition principle in App. B.
The superposition principle straightforwardly extends to the marginal densities of SDEs. That is,
consider marginals densities qiτ (x) generated by the following SDEs

dxτ = ui
τ (xτ )dτ + gτdW τ , xτ=0 = qiτ=0(x0) , (8)

where one has to note the same diffusion coefficient for all the SDEs. Then the mixture of densities
from Eq. (6) can be simulated by the SDE from the following proposition.

Proposition 4. [Superposition of SDEs] The mixture qmix
t (x) :=

∑N
i=1 ω

iqit(x) of density
marginals {qit(x)}Ni=1 induced by SDEs from Eq. (8) corresponds to the following SDE

dxτ = uτ (xτ )dτ + gτdW τ , ut(x) =
1∑N

j=1 ω
jqjt (x)

N∑
i=1

ωiqit(x)u
i
t(x) . (9)

See App. A.4 for the proof. Both Prop. 3 and Prop. 4 can be easily extended to the families of
densities parameterized with a continuous variable, but this is beyond the scope of the current paper.

3 SUPERPOSITION OF DIFFERENT MODELS

We now introduce our method for combining pre-trained diffusion models using the principle of
superposition. The result of this is a novel inference time algorithm SUPERDIFF which can be easily
applied without further fine-tuning or post-processing of any of the pre-trained diffusion weights. Our
proposed approach SUPERDIFF can be instantiated in two distinct ways that allow for the composition
diffusion models that can be informally interpreted as logical composition operators in the logical
AND and the logical OR. More precisely, given two pre-trained diffusion models that are trained on
datasets A and B inference using SUPERDIFF can be done by either sampling from the mixture of the
two learned densities, i.e. logical AND Fig. 2c, or sampling from the equal density locus (logical OR
Fig. 2d). In such a manner, superposition using AND leads to generated samples that are equally likely
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Train Data A Train Data B Generated samples

Train Data A Train Data B Generated samples

(a) Training datasets

Train Data A Train Data B Generated samples

(b) Averaging the vector
fields

Train Data A Train Data B Generated samples

(c) Sampling the mixture
of densities (ours)

Train Data A Train Data B Generated samples

(d) Sampling equal
densities (ours)

Figure 2: An intuitive illustration of using model superposition for improving inference performance. We show
an example of two disjoint datasets and train a model for each set. Each individual model learns to generate
samples only from their respective datasets. Using model superposition enables sampling from both densities.

under both pre-trained diffusion models while superposition using OR creates samples that are pref-
erentially generated by either pre-trained model—and thus mimics the empirical distributions A or B.
Method overview. SUPERDIFF is applicable in settings where the modeler has access to M
pre-trained diffusion models, along with its learned score function ∇x log q

i
t(x). Each of the

pre-trained models follows a marginal density qit(x) and as a result must admit a corresponding
vector field vit(x) that satisfies the continuity equation in Equation 5. The key idea of our approach is
an adaptive re-weighting scheme of the pre-trained model’s vector fields that relies on the likelihood
of a sample under different models. A naive approach to estimating each marginal density during
generation immediately presents several technical challenges as it requires the estimation of the
divergence of superimposed vector fields. In particular, these challenges can be stated as follows:
(C1) The marginal superpositioned vector field differs from the vector fields of either of the models.
(C2) The divergence operation requires backpropagation through the network and is computationally

expensive even with Hutchinson’s trace estimator (Hutchinson, 1989).
Our proposed approach SUPERDIFF overcomes these computational challenges by introducing
a novel density estimator in Sec. 3.1. Crucially, this new estimator does not require divergence
estimation and enjoys having the same variance as the computationally expensive Hutchinson’s trace
estimator, making it a favorable choice when generating using large pre-trained diffusion models. In
section Sec. 3.2 we exploit this new density estimator to formally present our algorithm SUPERDIFF
and derive connections to the composition operators that intuitively resemble logical AND and OR.

3.1 EVALUATING THE DENSITIES ON THE FLY
In this section, we introduce a novel method for evaluating the marginal density of a diffusion model
during the inference process. The conventional way to evaluate the density uses the continuity
equation and solves the same ODE that is used for generating samples. This, however, is not easily
possible in the case of our superposition of vector fields framework as outlined in Prop. 3. To solve this,
we present the following proposition that disentangles the vector field generating the sample (ut(x) in
the proposition) and the vector fields corresponding to different generative models vit(x).

Proposition 5. [Smooth density estimator] For the integral curve x(t) solving dx/dt = ut(xt),
and the density qit(x(t)) satisfying the continuity equation ∂

∂tq
i
t(x) = −

〈
∇x, q

i
t(x)v

i
t(x)

〉
, the

log-density along the curve changes according to the following ODE
d

dt
log qit(x(t)) = −

〈
∇x, v

i
t(x)

〉
−
〈
∇x log q

i
t(x), v

i
t(x)− ut(x)

〉
. (10)

See proof in App. C. We use this proposition for our experiments conducted in Sec. 4.1. However,
as outlined previously, evaluating the marginal density via the continuity equation is restricted to
small-scale models due to the computational challenges associated with efficiently estimating the
divergence of the associated vector field. As a result, a common line of attack assumes constructing
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Algorithm 1: SUPERDIFF pseudocode (for OR and AND operations)

Input :M pre-trained score models ∇x log q
i
t(x), the parameters of the schedule αt, σt, stepsize

dτ > 0, temperature parameter T , bias parameter ℓ, and initial noise z ∼ N (0, I).
for τ = 0, . . . , 1 do

t = 1− τ , ε ∼ N (0, I)

κi
τ ←

softmax(T log qit(xτ ) + ℓ) // for OR according to Prop. 3

solve Linear Equations // for AND according to Prop. 6

ut(x)←
∑M

i=1 κ
i
τ∇ log qit(xτ )

dxτ ←
(
−f1−τ (xτ ) + g21−τut(x)

)
dτ + g1−τdW τ // using Prop. 1

xτ+dτ ← xτ + dxτ

d log q1−τ (xτ ) =
〈
dxτ ,∇ log q1−τ (xτ )

〉
+

(〈
∇, f1−τ (xτ )

〉
+

+

〈
f1−τ (xτ )−

g21−τ

2
∇ log q1−τ (xτ ),∇ log q1−τ (xτ )

〉)
dτ // using Thm. 1

return x

a stochastic unbiased estimator that trades for increased speed by introducing a bit of variance into
the divergence estimate. This approach is known as Hutchinson’s estimator and requires computing
a Jacobian-vector product at every step of the inference.
Instead, we propose a new way to estimate density that allows for efficient computation while inte-
grating the backward SDE from Prop. 1 with a specific choice of the diffusion coefficient.

Theorem 1. [Ôti density estimator] Consider time-dependent density qt(x) induced by the
marginals of the following “forward” process

dxt = ft(xt)dt+ gtdWt , xt=0 ∼ q0(x) , t ∈ [0, 1] , (11)
where dWt is the Wiener process. Then, for the following “backward” SDE (with τ = 1− t)

dxτ = uτ (xτ )dτ + g1−τdW τ , τ ∈ [0, 1] , (12)
the change of the log-density log qτ (xτ ) follows the following SDE

d log q1−τ (xτ ) =
〈
dxτ ,∇ log q1−τ (xτ )

〉
+

(〈
∇, f1−τ (xτ )

〉
+

+

〈
f1−τ (xτ )−

g21−τ

2
∇ log q1−τ (xτ ),∇ log q1−τ (xτ )

〉)
dτ .

(13)

We provide the proof in App. C. Notably, the SDE Eq. (13) that keeps track of the change of
log-density does not include only the divergence of the forward SDE drift

〈
∇, f1−τ (xτ )

〉
. However,

in practice, when using the Ornstein-Uhlenbeck SDE, this divergence is simply a constant because
the drift term is a linear scaling. In App. D, we derive the same estimator but in discrete time using
the detailed balance condition.

3.2 SUPERDIFF: SUPERPOSING PRE-TRAINED DIFFUSION MODELS
Mixture of densities (logical OR). For a mixture of the densities, superposition of the models follows
directly from the propositions in Sec. 2.2. That is, for every qit(x), we assume that it can be generated
from SDEs or an ODE from Prop. 1 and we assume the knowledge of scores ∇ log qit(x).
Then, for the ODE simulation, according to Prop. 3, we can sample from the mixture of densities
qmix
t (x) := 1/M

∑M
i=1 q

i
t(x) using the following vector field

vτ (x) = −f1−τ (x) +
g21−τ

2

M∑
i=1

qit(x)∑
j q

j
t (x)

∇ log qi1−τ (x) , (14)

starting from samples xτ=0 ∼ q1(x0). The densities are estimated along the trajectory using Prop. 5.
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We highlight this analogously applies for simulation using the SDE dxτ = uτ (xτ )dτ + g1−τdW τ .
Namely, according to Prop. 4, we use the following vector field:

uτ (x) = −f1−τ (x) + g21−τ

M∑
i=1

qit(x)∑
j q

j
t (x)

∇ log qi1−τ (x) , (15)

starting from the samples xτ=0 ∼ q1(x0). The densities are estimated along the trajectory using
Thm. 1. We provide the pseudocode in Algorithm 1.
Sampling equal densities (logical AND). To produce the sample that have equal densities under
different models we rely on our formula for the density update (see Thm. 1) to find the optimal
weights for the vector fields. Indeed, for M diffusion models, we have a system of M equations: the
equal change of density for every model and the normalization constraint for model weights, which
is a linear system w.r.t. vector field weights as we show in the following proposition.

Proposition 6. [Density control] For the SDE

dxτ =

M∑
j=1

κju
j
τ (xτ )dτ + g1−τdW τ , (16)

where κ are the weights of different models and
∑

j κj = 1, one can find κ that satisfies

d log qi1−τ (xτ ) = d log qj1−τ (xτ ) , ∀ i, j ∈ [M ] , (17)
by solving a system of M linear equations w.r.t. κ.

We provide the proof and the formulas for the system of linear equations in App. C.1. This
proposition allows us to find κ that controls the densities to stay the same for all the models as
described in Algorithm 1. This approach can also be straightforwardly extended to the case of
diffusion models for satisfying different prescribed density ratios, i.e.

d log q11−τ (xτ ) = d log qi1−τ (xτ ) + ℓi . (18)

4 EXPERIMENTS

4.1 JOINING MODELS WITH DISJOINT TRAINING DATA

We validate the proposed Algorithm 1 for the generation of the mixture of the distributions (OR
setting). We split CIFAR-10 into two disjoint training sets of equal size (first 5 labels and last 5 labels),
train two diffusion models on each part, and generate the samples jointly using both models. Namely,
the stochastic inference is the OR implementation of Algorithm 1, whereas the deterministic setting
is the integration of the ODEs (see Prop. 1) and the estimation of the log-density according to Prop. 5.
For the choice of hyperparameters, architecture, and data preprocessing, we follow (Song et al., 2020).
In Table 1, we demonstrate that the performance of SUPERDIFF drastically outperforms the
performance of the individual models and performs even better than the model trained on the union
of both parts of the dataset. For comparison, we evaluate conventional image quality metrics (Frechet
inception distance (FID), Inception score (IS), and feature likelihood divergence (FLD) (Jiralerspong
et al., 2023), which takes into account the generalization abilities of the model.1

4.2 CONCEPT INTERPOLATION AND SELECTION WITH SUPERDIFF AND STABLE DIFFUSION

Next, we evaluate the ability of SUPERDIFF to interpolate (logical AND) or select (logical OR)
different concepts using prompt-conditioned Stable Diffusion (SD). In this setup, we generate images
from SD by conditioning it on a prompt using classifier-free guidance. We define two models using
two separate prompts that represent concepts — e.g. "a sunflower" and "a lemon". We can thus
consider each prompt-conditioned model as a separate diffusion model and apply Algorithm 1 to gen-
erate images sampled with proportionally equal likelihood with respect to both prompt-conditioned
models (logical AND), or to generate from the mixture of distributions (logical OR). We generate
20 images for 20 different concept pairs (tasks) for our model and baselines (c.f. App. H)).

1In Table 1, we report results for both the SDE and the ODE inference. However, we note that for the
ODE setting, evaluating densities takes about 4x longer than our density estimator in the SDE setting and
requires 1.5x more memory, and so we carry out remaining experiments only using SDEs.
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Table 1: Image generation performance for CIFAR-10 with unconditional models trained on two
disjoint partitions of the training data (labeled A and B). We compare SUPERDIFF (OR) with
the respective models (modelA and modelB) with the model that is trained on the full dataset
(modelA∪B) and random choice between two models (modelA OR B).

ODE inference SDE inference

FID (↓) IS (↑) FLD (↓) FID (↓) IS (↑) FLD (↓)
modelA 14.00 8.73 15.50± 0.17 15.33 7.98 15.47± 0.18
modelB 13.09 7.89 18.90± 0.18 13.50 7.98 18.54± 0.23
modelA∪B 6.00 8.95 8.06± 0.12 3.50 9.14 7.51± 0.11
modelA OR B 4.28 9.14 5.96± 0.11 3.99 9.36 5.29± 0.14
SUPERDIFF (OR) 4.41 9.12 6.10± 0.11 4.00 9.36 5.33± 0.05
SUPERDIFF T=100 (OR) 4.11 9.21 5.89± 0.11 4.00 9.48 5.20± 0.11

Table 2: Quantativate evaluation of SD-generated images. For logical AND, we compare SUPERDIFF (AND),
joint prompting, and averaging of outputs for two concept prompts. We report the minimum CLIP, ImageReward,
and TIFA scores from the two concept prompts, which gives a measure of how well each method represents
both concepts. For logical OR, we compare SUPERDIFF (OR), joint prompting, and an upper bound of randomly
selecting a single concept prompt (PromptA OR B). We report the maximum scores from each prompt pair, as
well as the absolute difference between the maximum and minimum scores (|∆|). These metrics reflect how
well a method can select one concept to generate.

Min. CLIP(↑) Min. ImageReward (↑) Min. TIFA (↑)
Joint prompting 23.87 −1.62 27.58
Average of scores (Liu et al., 2022a) 24.23 −1.57 32.48
SUPERDIFF (AND) 24.79 −1.39 39.92

|∆|/Max. CLIP (↑) |∆|/Max. ImageReward (↑) |∆|/Max. TIFA (↑)
PromptA OR B (uncorrelated random choice) 9.13/29.72 2.87/0.70 88.21/97.58

Joint prompting 7.20/29.80 2.47/0.59 79.46/97.92
SUPERDIFF (OR) 8.58/29.87 2.76/0.64 84.10/95.83

Baselines for concept interpolation (AND). We consider two approaches for composing images as
baselines. The first is simple averaging of SD outputs based on the approach in (Liu et al., 2022a);
we set κ = 0.5. The second guides SD generation with a single joint prompt that encourages SD
to interpolate concepts. The prompts are constructed by joining two input concepts with the linking
term "that looks like". For example, given the concepts "a sunflower" and "a lemon",
the prompt is "a sunflower that looks like a lemon". For fairness, we also flip the order
of the prompt and keep the image with the higher score for all metrics listed below (Luo et al., 2024).
Baselines for concept selection (OR). For the OR setting, our baseline is prompting SD that prompts
the model to select between two concepts: "a sunflower or a lemon". As with AND, we also
flip the prompt and keep the better image for each metric. As an upper bound, we generate images
from SD by prompting it with a random choice between the two concepts (PromptA OR B).

SUPERDIFF qualitatively generates images with better concept interpolations and selections.
We plot sample generated images for SUPERDIFF (AND) in Fig. 1. For the complete set of generated
images, see App. H (Figs. A1–A20). We observe that SUPERDIFF (AND) can interpolate concepts
while also maintaining high perceptual quality. In contrast, the averaging baseline either fails to
interpolate concepts form both prompts fully, are yields images with lower perceptual quality. We
observe that SD using a single prompt struggles to interpolate both concepts.
For concept selection (OR), we find that SUPERDIFF (OR) can faithfully generate images with a single
concept. The joint prompting baseline can sometimes generate images that combine fragments of
both concepts, but other times it also generates images of a single concept, typically the first concept
in the joint prompt (this also underscores why this method struggles with concept interpolation). We
show examples of these cases in Fig. A21.
SUPERDIFF outperforms baselines on three image evaluation metrics. To quantitatively evaluate
the generated images, we consider three metrics: CLIP Score (Radford et al., 2021), ImageRe-
ward (Xu et al., 2024), and TIFA (Hu et al., 2023). CLIP Score measures the cosine similarity
between an image embedding and text prompt embedding. ImageReward evaluates generated images
by assigning a score that reflects how closely they align with human preferences, including aesthetic
quality and prompt adherence. TIFA generates several question-answer pairs using a Large Language
Model for a given prompt and assigns a score by answering the questions based on the image with a
visual question-answering model. We report these metrics for SUPERDIFF and all baselines in Table 2.
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Table 3: Evaluation of SUPERDIFF and baseline models, Proteus & FrameDiff, for unconditional protein gen-
eration. We show results for three categories of metrics: designability, novelty, and diversity. We also include a
baseline of simple averaging of scores (κ = 0.5). We use the parameter ℓ (see Eq. (18)) to control and bias model
superposition towards Proteus, i.e. (ℓ > 0) or FrameDiff (ℓ < 0). We use temperature values T = 1 for all vari-
ants of SUPERDIFF. For each type of model composition (averaging or SUPERDIFF), we mark each metric with a
(†) if it is better than both Proteus and FrameDiff on their own, and with a (⋆) if it better than either one of them.

Designability Novelty Diversity

< 2Å scRMSD
(↑)

scRMSD
(↓)

< 0.5 scTM
(↑)

< 0.3 scTM
(↑)

Max. scTM
(↓)

Frac. β
(↑)

Pairwise scTM
(↓)

Max. cluster
(↑)

FrameDiff 0.392± 0.03 4.315± 0.25 0.152± 0.02 0.016± 0.01 0.570± 0.02 0.175± 0.01 0.337± 0.02 0.326± 0.05
Proteus 0.928± 0.02 1.014± 0.07 0.360± 0.03 0.020± 0.01 0.536± 0.01 0.119± 0.01 0.312± 0.01 0.217± 0.02
Average of scores (Liu et al., 2022a) 0.740± 0.03⋆ 1.960± 0.14⋆ 0.360± 0.03⋆ 0.024± 0.01† 0.511± 0.01† 0.139± 0.01⋆ 0.310± 0.01† 0.253± 0.01⋆

SUPERDIFFℓ=0(OR) 0.752± 0.03⋆ 1.940± 0.14⋆ 0.276± 0.03⋆ 0.008± 0.01 0.547± 0.01⋆ 0.147± 0.01⋆ 0.309± 0.02† 0.268± 0.02⋆

SUPERDIFFℓ=1(OR) 0.976± 0.01† 0.929± 0.05† 0.396± 0.03† 0.024± 0.01† 0.528± 0.01† 0.127± 0.01⋆ 0.307± 0.02† 0.246± 0.03⋆

SUPERDIFFℓ=0(AND) 0.740± 0.03⋆ 2.119± 0.16⋆ 0.320± 0.03⋆ 0.044± 0.01† 0.513± 0.01† 0.142± 0.01⋆ 0.310± 0.02† 0.265± 0.01†

For the logical AND setting, we evaluate the image against each concept prompt separately (i.e., "a
sunflower" as one prompt and "a lemon" as the other) and take the minimum score for each met-
ric. This is so that we can measure how well both concepts are represented. We find that SUPERDIFF
(AND) obtains the highest scores across all metrics, indicating that our method can better represent
both concepts in the images, while the baseline methods typically only represent one concept or (espe-
cially in the case of averaging outputs), generate compositions with lower fidelity. For the logical OR
setting, we again evaluate the image against each concept prompt separately and take both the max-
imum score and the absolute difference between both scores for each metric. This is so that we can
measure how well one concept is represented. The upper bound for this setting is randomly prompting
SD with either of the prompts; we find that we are almost able to match this setting across all scores,
indicating that our method is able to faithfully select a single concept. SD with joint prompting does
not perform as well, as nothing prevents it from combining components from both concepts.

4.3 PROTEIN GENERATION
Finally, we apply our method in the setting of unconditional de novo protein generation. Protein
generation has critical implications in drug discovery (Abramson et al., 2024). A good understanding
of the protein landscape is important to rationally find novel proteins.

Figure 3: UMAP visualization of protein structures showing
cluster archetypes where structure diversity is maintained
with SUPERDIFF ℓ=1 (OR).

We evaluate proteins generated by the su-
perposition of two existing protein diffusion
models, Proteus (Wang et al., 2024) and
FrameDiff (Yim et al., 2023b), in terms of
their designability, novelty, and diversity, fol-
lowing metrics from Bose et al. (2024). We
report the results of our best model in Table 3,
as well as results for each model individually
and simply averaging them. All results are av-
erages over 50 generated proteins at lengths
{100, 150, 200, 250, 300} for 500 timesteps.
Metrics for evaluations. We consider
designability, novelty, and diversity
metrics for evaluation of unconditional
generation of protein structures. Protein
designability refers to the in-silico agreement between generated structures and refolded
structures as computed using a purpose-built folding model e.g. ESMFold (Lin et al.,
2022), which is positively correlated with the synthesizability of the protein in a wet-lab
setting. Generally, if the root-mean-square distance between the generated and refolded proteins
(scRMSD) is less than 2Å, it is considered to be designable. We provide details of all metrics in this
section in App. G.2.
We compute several novelty metrics based on the similarity of generated proteins to those from
the set of known proteins (the training set), which are called scTM scores; the lower the score,
the less similar the generated protein is to the training data. Lastly, we use diversity to assess
the degree of heterogeneity present in the set of generated proteins. This is done by clustering
the generated proteins in terms of sequence overlap, and measuring the fraction of proteins with
challenging-to-generate secondary structures such as β sheets (Bose et al., 2024).
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SUPERDIFF improves structure generation. By combining two protein diffusion models,
SUPERDIFF is able to outperform both of them. This is somewhat surprising as FrameDiff is
substantially less designable than Proteus (0.392 vs. 0.928 scRMSD) (see Table 3). Nevertheless,
by using SUPERDIFF (OR), we can increase designability, novelty, and maintain diversity. We also
find that SUPERDIFF (OR) substantially outperforms simple averaging, which simply mixes the
performance of the two models, and does not improve over either one.
We also find that SUPERDIFF (AND) can match averaging in terms of designability while improving
diversity. Perhaps more impressively, SUPERDIFF (AND) can generate the most proteins that are
furthest away from the set of known proteins (scTM score < 0.3) by almost two times more than
the next best method. This motivates the utility of applying our method in novel discovery settings.

We further investigate the composition made by SUPERDIFF (OR) in Fig. 3. Here, we see a few modes
(particularly on the plot’s left-hand side) that Proteus does not generate. We find that SUPERDIFF (OR)
can maintain knowledge of these clusters (although to a lesser extent) while maintaining designability.

5 RELATED WORK
Compositional diffusion models. Combining multiple density models into one model with better
properties is a classical subject in machine learning (Hinton, 2002). For diffusion models, the most
straightforward combination is via averaging their respective learned score functions (Liu et al.,
2022a; Kong et al., 2024), which can also be viewed as a form of guidance (Ho et al., 2020; Dhariwal
& Nichol, 2021; Bansal et al., 2023). Another way to combine diffusion models comes from their
connections to energy-based models (Du et al., 2023; 2020; Nie et al., 2021; Ajay et al., 2024). This,
however, comes under a strong assumption that the marginal densities of the noising process are
given, which is not the case in most of the modern applications (e.g. Rombach et al. (2022)); our
method resolves this. Density estimation, also, is the main bottleneck for the continual learning of
diffusion models, e.g. Golatkar et al. (2023) proposes to learn a separate model for the densities in
order to simulate the vector fields from Prop. 3. Finally, some works (Zhong et al., 2024; Biggs et al.,
2024) propose to combine models by averaging their weights. This does not allow for merging of the
models with different architectures (as we do in Sec. 4.3) and does not allow for merging the same
model with different conditions (as we do in Sec. 4.2).

Protein generation. Structure-based de novo protein design using deep generative models has
recently seen a surge in interest, with a particular emphasis on diffusion-based approaches (Watson
et al., 2023; Yim et al., 2023b), and also flow matching methods (Bose et al., 2024; Yim et al.,
2023a; 2024; Huguet et al., 2024). Moreover, building on the initial SE(3) equivariant diffusion
paradigm multiple recent approaches have sought to increase the performance of the methods
through architectural innovations (Wang et al., 2024), conditioning on auxiliary modalities such as
sequence or sidechains (Ingraham et al., 2023; Lin et al., 2024). Finally, recent approaches tackle the
problem of co-generation which seeks to define a joint inference procedure over both structure and
sequences (Campbell et al., 2024; Ren et al., 2024; Lisanza et al., 2023), but remains distinct from
the setting of this work which attempts to combine different pre-trained models using superposition.

6 CONCLUSION

Despite the ubiquity of diffusion models, many possible ways of performing generation remain
unexplored, with classifier-free guidance being the only practical option (Ho & Salimans, 2022).
In this paper, we address this shortcoming by proposing two novel methods for combining different
models (or the same model with different condition variables) using SUPERDIFF for joint generation.
Limitations. While computationally efficient SUPERDIFF is still limited by the computational budget
required to produce the outputs of each model. In particular, the combination at the level of model
outputs cannot be simply done via cheap combinations of pre-trained model weights. This, however,
invites us to develop a more principled—architecture and training-agnostic—method that does not
require any assumptions prior assumptions which makes SUPERDIFF a general purpose method.
Future Work. Our method unlocks novel research directions by allowing for the principled
generation of novel samples that were not previously possible to generate easily Sec. 4.2. Furthermore,
we argue that the proposed way to estimate the density during the generation enables numerous new
potential ways to control the generation process by providing the information about the likelihoods.
We discuss the broader impacts of this work in App. E.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our empirical results and findings, we intend to make our code
publicly available in the final version. We describe all mathematical and algorithmic details necessary
to reproduce our results throughout this paper. In Sec. 3 we outline the theoretical basis and
mathematical framework for our method. Furthermore, we provide pseudocode for our method
in Algorithm 1. For our theoretical contributions, we provide detailed proofs for all theorems and
propositions in App. A, App. B and App. C. We provide experimental details for the CIFAR-10
image experiment results in Sec. 4.1. Details regarding experiments for concept interpolation via
Stable Diffusion are discussed in Sec. 4.2 and App. H. Experimental details for unconditional protein
generation are described in Sec. 4.3 and App. G.1.
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APPENDIX

A PROOFS FOR SEC. 2

A.1 PROOF OF PROP. 1

Proposition 1. [Reverse-time SDEs/ODE] Marginal densities qt(x) induced by Eq. (1) corre-
spond to the densities induced by the following SDE that goes back in time (τ = 1− t) with the
corresponding initial condition

dxτ =

(
−ft(xτ ) +

(
g2t
2

+ ξτ

)
∇ log qt(xτ )

)
dτ +

√
2ξτdW τ , xτ=0 ∼ q1(x0) , (2)

where W τ is the standard Wiener process in time τ , and ξτ is any positive schedule.

For the forward SDE we can write the corresponding Fokker-Planck equation
∂

∂t
qt(x) = −

〈
∇, qt(x)ft(x)

〉
+

g2t
2
∆qt(x) , (19)

then for the inverse time τ = 1− t, we have
∂

∂τ
q1−τ (x) =

〈
∇, q1−τ (x)f1−τ (x)

〉
−

g21−τ

2
∆q1−τ (x) (20)

=

〈
∇, q1−τ (x)

(
f1−τ (x)−

g21−τ

2
∇ log q1−τ (x)

)〉
(21)

= −
〈
∇, q1−τ (x)

(
−f1−τ (x) +

(
g21−τ

2
+ ξτ

)
∇ log q1−τ (x)

)〉
+ ξτ∆q1−τ (x) ,

(22)
which corresponds to the SDE

dxτ = dτ

(
−f1−τ (xτ ) +

(
g21−τ

2
+ ξτ

)
∇ log q1−τ (xτ )

)
+
√
2ξτdW τ . (23)

A.2 PROOF OF PROP. 2

Proposition 2. [Ornstein–Uhlenbeck SDE] The time-dependent densities in Eq. (3) correspond
to the marginal densities of the following SDE, with the corresponding initial condition

dxt =
∂ logαt

∂t
xt︸ ︷︷ ︸

ft(xt)

dt+

√
2σ2

t

∂

∂t
log

σt

αt︸ ︷︷ ︸
gt

dWt , x0 ∼ q0(x0) . (4)

Proof. For individual components qit from Eq. (3), we have to find the vector field satisfying the
continuity equation, which we can rewrite as

∂

∂t
log qit(x) = −

〈
∇x, v

i
t(x)

〉
−
〈
∇x log q

i
t(x), v

i
t(x)

〉
. (24)

Using the formula for the density of the normal distribution qit(x) = N (x |αtµ
i, σ2

t ), we have

∇x log q
i
t(x) = − 1

σ2
t

(x− αtµ
i) , (25)

∂

∂t
log qit(x) = d

∂

∂t
log σt +

1

σ3
t

∂σt

∂t

∥∥x− αtµ
i
∥∥2 + 1

σ2
t

〈
x− αtµ

i, µi
〉∂αt

∂t
(26)

=

〈
∇x,

∂ log σt

∂t
x

〉
−

〈
∇x log q

i
t(x),

∂ log σt

∂t
(x− αtµ

i) +
∂αt

∂t
µi︸ ︷︷ ︸

vi
t(x)

〉
(27)

=
〈
∇x, v

i
t(x)

〉
−
〈
∇x log q

i
t(x), v

i
t(x)

〉
. (28)
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For the mixture of densities qt from Eq. (3), we can use Prop. 3 and write

vt(x) =
1

qt(x)N

N∑
i=1

qit(x)

[
∂ log σt

∂t
(x− αtµ

i) +
∂αt

∂t
µi

]
(29)

=
∂ log σt

∂t
x+

[
∂αt

∂t
− ∂ log σt

∂t
αt

]
1

qt(x)N

N∑
i=1

qit(x)µ
i . (30)

At the same time

∇x log qt(x) =
1

qt(x)N

N∑
i=1

qit(x)

[
− 1

σ2
t

(x− αtµ
i)

]
, (31)

1

qt(x)N

N∑
i=1

qit(x)µ
i =

1

αt

[
σ2
t∇x log qt(x) + x

]
. (32)

Using this formula in Eq. (30), we have

vt(x) =

[
∂ log σt

∂t
+

1

αt

∂αt

∂t
− ∂ log σt

∂t

]
x+

[
∂αt

∂t
− ∂ log σt

∂t
αt

]
σ2
t

αt
∇x log qt(x) (33)

=
∂ logαt

∂t
x− σ2

t

∂

∂t
log

σt

αt
∇x log qt(x) . (34)

Hence, we have
∂

∂t
qt(x) = −

〈
∇, qt(x)vt(x)

〉
= −

〈
∇, qt(x)

(
∂ logαt

∂t
x

)〉
+ σ2

t

∂

∂t
log

σt

αt
∆qt(x) , (35)

which corresponds to the SDE in the statement.

A.3 PROOF OF PROP. 3

Proposition 3. [Superposition of ODEs (Liu, 2022)] The mixture density in Eq. (6) follows the
continuity equation with the superposed vector fields from Eq. (5), i.e.

∂

∂t
qmix
t (x) = −

〈
∇x, q

mix
t (x)vt(x)

〉
, vt(x) =

1∑N
j=1 ω

jqjt (x)

N∑
i=1

ωiqit(x)v
i
t(x) . (7)

Proof. By the straightforward substitution, we have

∂

∂t
qmix
t (x) =

m∑
i=1

ωi ∂

∂t
qit(x) = −

m∑
i=1

ωi
〈
∇x, q

i
t(x)v

i
t(x)

〉
(36)

= −

〈
∇x,

m∑
i=1

ωiqit(x)v
i
t(x)

〉
= −

〈
∇x,

qmix
t (x)

qmix
t (x)

m∑
i=1

ωiqit(x)v
i
t(x)

〉
(37)

= −

〈
∇x, q

mix
t (x)

1∑m
j=1 ω

jqjt (x)

m∑
i=1

ωiqit(x)v
i
t(x)︸ ︷︷ ︸

vt(x)

〉
. (38)

A.4 PROOF OF PROP. 4

Proposition 4. [Superposition of SDEs] The mixture qmix
t (x) :=

∑N
i=1 ω

iqit(x) of density
marginals {qit(x)}Ni=1 induced by SDEs from Eq. (8) corresponds to the following SDE

dxτ = uτ (xτ )dτ + gτdW τ , ut(x) =
1∑N

j=1 ω
jqjt (x)

N∑
i=1

ωiqit(x)u
i
t(x) . (9)
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Proof. By the straightforward substitution, we have

∂

∂t
qmix
t (x) =

m∑
i=1

ωi ∂

∂t
qit(x) =

m∑
i=1

ωi

(
−
〈
∇x, q

i
t(x)u

i
t(x)

〉
+

g2t
2
∆qit(x)

)
. (39)

The first term is analogous to Prop. 3, i.e.
m∑
i=1

ωi
(
−
〈
∇x, q

i
t(x)u

i
t(x)

〉)
= −

〈
∇x, q

mix
t (x)

1∑m
j=1 ω

jqjt (x)

m∑
i=1

ωiqit(x)u
i
t(x)︸ ︷︷ ︸

ut(x)

〉
. (40)

The second term is
m∑
i=1

ωi g
2
t

2
∆qit(x) =

g2t
2
∆

m∑
i=1

ωi∆qit(x) =
g2t
2
∆qmix

t (x) . (41)

This results in the following PDE

∂

∂t
qmix
t (x) = −

〈
∇x, q

mix
t (x)

1∑m
j=1 ω

jqjt (x)

m∑
i=1

ωiqit(x)u
i
t(x)︸ ︷︷ ︸

ut(x)

〉
+

g2t
2
∆qmix

t (x) . (42)

B FLOWS AND DIFFUSION AS A SUPERPOSITION OF ELEMENTARY VECTOR
FIELDS

From Prop. 3, one can immediately get the main principle for the simulation-free training of generative
flow models, as demonstrated in the following proposition.

Proposition 7. [Superposition of L2-losses] For the parametric vector field model vt(x; θ)
with parameters θ, the L2-loss for the vector field from Prop. 3 can be decomposed into the
losses for the vector fields from Eq. (5), i.e.∫ 1

0

dt Eqmix
t (x)∥vt(x)− vt(x; θ)∥2 =

N∑
i=1

ωi

∫ 1

0

dt Eqit(x)

∥∥vit(x)− vt(x; θ)
∥∥2 + constant ,

where the constant does not depend on the parameters θ.

Proof. By the straightforward calculation, we have∫ 1

0

dt Eqmix
t (x)∥vt(x)− vt(x; θ)∥2 =

∫ 1

0

dt Eqmix
t (x)

[
∥vt(x)∥2 − 2

〈
vt(x), vt(x; θ)

〉
+ ∥vt(x; θ)∥2

]
,

where the first term is constant w.r.t. θ and the last term is amenable for a straightforward estimation.
The middle term, according to Prop. 3, is∫

dx qmix
t (x)

〈
vt(x), vt(x; θ)

〉
=

∫
dx

m∑
i=1

ωiqit(x)
〈
vit(x), vt(x; θ)

〉
. (43)

Thus, we have∫ 1

0

dt Eqmix
t (x)

[
∥vt(x)∥2 − 2

〈
vt(x), vt(x; θ)

〉
+ ∥vt(x; θ)∥2

]
(44)

=

∫ 1

0

dt

[
Eqmix

t (x)∥vt(x)∥
2 −

m∑
i=1

ωiEqit(x)

∥∥vit(x)∥∥2︸ ︷︷ ︸
constant

+

m∑
i=1

ωiEqit(x)

∥∥vit(x)∥∥2− (45)

− 2

m∑
i=1

ωiEqit(x)

〈
vit(x), vt(x; θ)

〉
+

m∑
i=1

ωiEqit(x)
∥vt(x; θ)∥2

]
(46)
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=

∫ 1

0

dt

m∑
i=1

ωiEqit(x)

∥∥vit(x)− vt(x; θ)
∥∥2 + constant . (47)

The proof for proposition follows a simple extension of Liu (2022). Consequently, the generative
modeling problem explicitly boils down to learning a time-dependent vector field vt(x, θ). Moreover,
for the generative modeling task, the noising process is required to satisfy the following boundary
conditions qi0(x) = δ(x − µi) and qi1(x) = pnoise(x) ,∀ i ∈ D. Generating samples that resemble
pdata(µ) during inference then simply amounts to solving the reverse-time ODE with the learned
model vt(x; θ) starting from a noisy sample x1 ∼ pnoise(x).
Diffusion models can be incorporated into the flow-based framework by selecting a Gaussian forward
process which gives the marginal density at a timestep t as the mixture of corresponding Gaussians,

qit(x) = N (x |αtµ
i, σ2

t ) , qt(x) =
1

N

N∑
i=1

qit(x) . (48)

Under this Gaussian diffusion framework, we can express the vector fields analytically using the
score, which is formalized by the following proposition.

Proposition 8. [Diffusion processes] The time-dependent densities in Eq. (48) satisfy the
following continuity equations

∂

∂t
qit(x) = −

〈
∇x, q

i
t(x)v

i
t(x)

〉
, vit(x) =

∂ log σt

∂t
(x− αtµ

i) +
∂αt

∂t
µi , (49)

∂

∂t
qt(x) = −

〈
∇x, qt(x)vt(x)

〉
, vt(x) =

∂ logαt

∂t
x−

(
σ2
t

∂

∂t
log

σt

αt

)
∇x log qt(x) .

(50)

The proof repeats the proof for Prop. 2 in App. A.2 since Eq. (50) corresponds to the Ornstein-
Uhlenbeck process:

dxt =
∂ logαt

∂t
xtdt+

√
2

(
σ2
t

∂

∂t
log

σt

αt

)
dWt. (51)

Diffusion models using a Gaussian perturbation kernel enjoy the benefit of giving an exact expression
for the Stein score of the perturbed data which leads to the celebrated denoising score matching objec-
tive (Vincent, 2011; Ho et al., 2020). Analogously to Prop. 7 we can write the denoising score match-
ing objective as the superposition of the scores as demonstrated in the following proposition.

Proposition 9. [Denoising Score Matching (Vincent, 2011)] For the parametric score model
∇ log qt(x; θ) with parameters θ, the score matching objective can be decomposed into the
corresponding objectives for the individual scores, i.e.∫ 1

0

dt Eqt(x)∥∇ log qt(x)−∇ log qt(x; θ)∥2 =

=
1

N

N∑
i=1

∫ 1

0

dt Eqit(x)

∥∥∇ log qit(x)−∇ log qt(x; θ)
∥∥2 + constant ,

where the constant does not depend on the parameters θ and ∇ log qit(x) = − 1
σ2
t
(x− αtµ

i).

Proof. From Prop. 8, we have

vit(x) =
∂ log σt

∂t
(x− αtµ

i) +
∂αt

∂t
µi (52)

=
∂ log σt

∂t
(x− (x+ σ2

t∇ log qit(x))) +
∂αt

∂t

1

αt
(x+ σ2

t∇ log qit(x)) (53)
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=
∂ logαt

∂t
x+ σ2

t

∂

∂t
log

αt

σt
∇x log q

i
t(x) (54)

vt(x) =
∂ logαt

∂t
x+ σ2

t

∂

∂t
log

αt

σt
∇x log qt(x) . (55)

Applying the same change of variables to the parametric model

vt(x; θ) =
∂ logαt

∂t
x+ σ2

t

∂

∂t
log

αt

σt
∇x log qt(x; θ) , (56)

and using Prop. 7, we have∫ 1

0

dt Eqt(x)∥vt(x)− vt(x; θ)∥2 =

m∑
i=1

1

N

∫ 1

0

dt Eqit(x)

∥∥vit(x)− vt(x; θ)
∥∥2 + constant , (57)

∫ 1

0

dt Eqt(x)∥∇x log qt(x)−∇x log qt(x; θ)∥2 (58)

=

m∑
i=1

1

N

∫ 1

0

dt Eqit(x)

∥∥∇x log q
i
t(x)−∇x log qt(x; θ)

∥∥2 + constant(
σ2
t

∂
∂t log

αt

σt

) , (59)

which concludes the proof.

C DENSITY ESTIMATORS

Proposition 5. [Smooth density estimator] For the integral curve x(t) solving dx/dt = ut(xt),
and the density qit(x(t)) satisfying the continuity equation ∂

∂tq
i
t(x) = −

〈
∇x, q

i
t(x)v

i
t(x)

〉
, the

log-density along the curve changes according to the following ODE
d

dt
log qit(x(t)) = −

〈
∇x, v

i
t(x)

〉
−
〈
∇x log q

i
t(x), v

i
t(x)− ut(x)

〉
. (10)

Proof. By straightforward computation, we have
d

dt
log qit(x(t)) =

∂

∂t
log qit(x) +

〈
∇x log q

i
t(x),

dx

dt

〉
, (60)

and using the continuity equation ∂
∂tq

i
t(x) = −

〈
∇x, q

i
t(x)v

i
t(x)

〉
, we have

∂

∂t
log qit(x) = −

〈
∇x, v

i
t(x)

〉
−
〈
∇x log q

i
t(x), v

i
t(x)

〉
, (61)

d

dt
log qit(x(t)) = −

〈
∇x, v

i
t(x)

〉
−
〈
∇x log q

i
t(x), v

i
t(x)− ut(x)

〉
. (62)

Theorem 1. [Ôti density estimator] Consider time-dependent density qt(x) induced by the
marginals of the following “forward” process

dxt = ft(xt)dt+ gtdWt , xt=0 ∼ q0(x) , t ∈ [0, 1] , (11)
where dWt is the Wiener process. Then, for the following “backward” SDE (with τ = 1− t)

dxτ = uτ (xτ )dτ + g1−τdW τ , τ ∈ [0, 1] , (12)
the change of the log-density log qτ (xτ ) follows the following SDE

d log q1−τ (xτ ) =
〈
dxτ ,∇ log q1−τ (xτ )

〉
+

(〈
∇, f1−τ (xτ )

〉
+

+

〈
f1−τ (xτ )−

g21−τ

2
∇ log q1−τ (xτ ),∇ log q1−τ (xτ )

〉)
dτ .

(13)
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Proof. The Fokker-Planck equation describing the evolution of the marginals for the forward process
is

∂qt(x)

∂t
= −

〈
∇, ft(x)qt(x)

〉
+

g2t
2
∆qt(x) , (63)

hence, for the inverse time τ = 1− t, we have
∂

∂τ
q1−τ (x) =

〈
∇, f1−τ (x)q1−τ (x)

〉
−

g21−τ

2
∆q1−τ (x) (64)

∂

∂τ
log q1−τ (x) =

〈
∇, f1−τ (x)

〉
+
〈
∇ log q1−τ (x), f1−τ (x)

〉
−

−
g21−τ

2
∆ log p1−τ (x)−

g21−τ

2
∥∇ log q1−τ (x)∥2 .

(65)

For the following reverse-time SDE
dxτ = uτ (xτ )dτ + g1−τdW τ , (66)

using Itô’s lemma for log q1−τ (xτ ), we have

d log q1−τ (xτ ) =

(
∂

∂τ
log q1−τ (xτ ) +

〈
∇ log q1−τ (xτ ), uτ (xτ )

〉
+ (67)

+
g21−τ

2
∆ log qτ (xτ )

)
dτ + g1−τ

〈
∇ log q1−τ (xτ ), dW τ

〉
. (68)

Using Eq. (65), we have

d log q1−τ (xτ ) =

(〈
∇ log q1−τ (xτ ), f1−τ (xτ )−

g21−τ

2
∇ log q1−τ (xτ )

〉
+ (69)

+
〈
∇, f1−τ (xτ )

〉)
dτ +

〈
∇ log q1−τ (xτ ), uτ (xτ )dτ + g1−τdW τ︸ ︷︷ ︸

dxτ

〉
. (70)

C.1 PROOF OF PROP. 6

Proposition 6. [Density control] For the SDE

dxτ =

M∑
j=1

κju
j
τ (xτ )dτ + g1−τdW τ , (16)

where κ are the weights of different models and
∑

j κj = 1, one can find κ that satisfies

d log qi1−τ (xτ ) = d log qj1−τ (xτ ) , ∀ i, j ∈ [M ] , (17)
by solving a system of M linear equations w.r.t. κ.

Proof. Using the result of Thm. 1, for the density change of every model, we have

d log qi1−τ (xτ ) =
〈
dxτ ,∇ log qi1−τ (xτ )

〉
+

(〈
∇, f1−τ (xτ )

〉
+ (71)

+

〈
f1−τ (xτ )−

g21−τ

2
∇ log qi1−τ (xτ ),∇ log qi1−τ (xτ )

〉)
dτ (72)

=

M∑
j=1

κjdτ
〈
uj
τ (xτ ),∇ log qi1−τ (xτ )

〉
+

(〈
∇, f1−τ (xτ )

〉
+ (73)

+

〈
g1−τdW τ +

(
f1−τ (xτ )−

g21−τ

2
∇ log qi1−τ (xτ )

)
dτ,∇ log qi1−τ (xτ )

〉)
. (74)
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Let us denote
aij = dτ

〈
uj
τ (xτ ),∇ log qi1−τ (xτ )

〉
, (75)

bi =
〈
∇, f1−τ (xτ )

〉
+

〈
g1−τdW τ +

(
f1−τ (xτ )−

g21−τ

2
∇ log qi1−τ (xτ )

)
dτ,∇ log qi1−τ (xτ )

〉
.

(76)
Then the change of densities can be written as the following linear transformation

d log q11−τ (xτ )
. . .

d log qi1−τ (xτ )
. . .

d log qM1−τ (xτ )

 = Aκ+ b . (77)

Solving

Aκ+ b =


1
. . .
1
. . .
1

 , (78)

and normalizing kappas so we have
∑

j κj = 1, we get the solution.

D DISCRETE-TIME PERSPECTIVE ON THM. 1

In this section we derive Thm. 1 from another perspective by operating with discrete time transition
kernels and the detailed balance. Namely, we aim to compute the marginal density by starting from
the detailed balance equation, which states the equivalence of the following joint densities:

qt(y)k∆t(x | y) = qt+∆t(x)r∆t(y |x). (79)
The detailed balance condition simply states the pair (x, y) can be sampled in two equivalent ways:
1.) sampling y from the marginal qt(y) and then sampling x via the noising kernel k∆t(x | y), or 2.)
sampling x from qt+∆t(y) and then denoising it via r∆t(y |x). Indeed, there are infinitely many valid
kernels that may satisfy the detailed balance; we make a specific choice informed by the following
principle. We aim to construct a universal noising kernel that is independent of the data distribution
or other densities, i.e. pdata(·), qt(·), qt+∆t(·). Remarkably, this principle results in a unique kernel
choice, which we formalize in the following proposition.

Proposition 10. [Universal noising kernel] For any data density pdata(µ), for the continuous
noising process qt(x) =

∫
dµ N (x |αtµ, σ

2
t )pdata(µ), there exists unique noising kernel

k∆t(x | y) = N
(
x

∣∣∣∣ αt+∆t

αt
y, S2

t+∆t

)
, qt+∆t(x) =

∫
dy k∆t(y |x)qt(y), (80)

where S2
t+∆t = σ2

t+∆t−σ2
t
α2

t+∆t

α2
t

and it is independent of the densities pdata(·), qt(·), qt+∆t(·).

The proof for this proposition is presented in App. D.1. Note that the proposition holds exactly for
any ∆t—i.e. there are no any assumptions on the scale of ∆t or any approximations.
Once the noising kernel is fixed, the detailed balance Eq. (79) uniquely defines the denoising kernel
r∆t(y |x) that propagates samples back in time. However, the analytic form of this kernel depends on
the densities qt+∆t(x) and qt(y), which are unavailable for the modern large-scale diffusion models
that are served using limited API endpoints. Therefore, we consider the Gaussian approximation of
the reverse kernel and justify its applicability in the following theorem.

Theorem 2. [Denoising kernel] For the universal noising kernel k∆t(x | y), the Gaussian
approximation of the corresponding reverse kernel r∆t(y |x) = k∆t(x | y)qt(y)/qt+∆t(x) is

r̃∆t(y |x) = N

(
y

∣∣∣∣ αt

αt+∆t
x+

αt

αt+∆t
S2
t+∆t∇ log qt+∆t(x),

(
αt

αt+∆t
St+∆t

)2
)
, (81)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

which corresponds to a single step of the Euler discretization of the following SDE

dxτ = −
(

∂

∂t
logαtx− 2σ2

t

∂

∂t
log

σt

αt
∇x log qt(x)

)
· dτ +

√
2σ2

t

∂

∂t
log

σt

αt
dWτ , (82)

and
DKL(r̃∆t(y |x)∥r∆t(y |x)) = o(∆t) . (83)

See proof in App. D.3. Given the noising kernel from Prop. 10 and the approximation of the reverse
kernel from Thm. 2, we propose to estimate the log marginal density of the current sample using the
detailed balance as follows,

log qt(y)− log qt+∆t(x) = − log k∆t(x | y) + log r̃∆t(y |x) + log
r∆t(y |x)
r̃∆t(y |x)

, (84)

where the last term involves the unknown reversed kernel. This term can typically be approximated by
taking the divergence of the score (see Lemma 1), but due to the computational challenge of estimating
the divergence we opt for a different strategy. Instead, in the following theorem, we study the distribu-
tion of the last term for different samples y generated from x and argue that this term can be ignored.

Theorem 3. [Detailed balance density estimator error] For y = x + ∆t · v + gt+∆t

√
∆tε,

where gt+∆t =
√

2σ2
t

∂
∂t log

σt

αt
and ε is a standard normal random variable, the following

estimator is unbiased w.r.t. the generated samples y, i.e.

Eε

[
log

r∆t(y |x)
r̃∆t(y |x)

]
= o(∆t) , (85)

and the variance is

IDε

[
log

r∆t(y |x)
r̃∆t(y |x)

]
= ∆t2

g4t+∆t

4
IDε

(
εT

∂2 log qt(x)

∂x2
ε

)
+ o(∆t2) , (86)

where ∂2 log qt+∆t(x)
∂x2 is the Hessian matrix of the log-density.

We postpone the proof of this theorem until App. D.4. Note that the last term in Eq. (84) has zero
expectation and the same variance as Hutchinson’s trace estimator. Thus, we argue that the following
estimator is as efficient as the conventional divergence estimator with Hutchinson’s trick

log qt(y)− log qt+∆t(x) ≈ − log k∆t(x | y) + log r̃∆t(y |x) . (87)
We further highlight that since the generation via the inference process happens in many steps with
small ∆t, we approximate the relation Eq. (87) up to the second order terms in ∆t.

Proposition 11. [Recurrence relation for the log-density] For y = x+∆t · v + gt+∆t

√
∆tε,

where gt+∆t =
√
2σ2

t
∂
∂t log

σt

αt
and ε is a standard normal random variable, the estimator

from Eq. (87) can be expanded as follows

− log k∆t(x | y) + log r̃∆t(y |x) = d∆t
∂

∂t
logαt+∆t −∆t

g2t+∆t

2
∥∇ log qt+∆t(x)∥2+

+

〈
∆t · v + gt+∆t

√
∆tε+∆t

∂

∂t
logαt+∆tx,∇ log qt+∆t(x)

〉
+ o(∆t)

(88)

The proof for this proposition is included in App. D.5. For practical use cases we note that Eq. (88)
is the final form of our density estimator.

D.1 PROOF OF PROP. 10

Proposition 10. [Universal noising kernel] For any data density pdata(µ), for the continuous
noising process qt(x) =

∫
dµ N (x |αtµ, σ

2
t )pdata(µ), there exists unique noising kernel

k∆t(x | y) = N
(
x

∣∣∣∣ αt+∆t

αt
y, S2

t+∆t

)
, qt+∆t(x) =

∫
dy k∆t(y |x)qt(y), (80)
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where S2
t+∆t = σ2

t+∆t−σ2
t
α2

t+∆t

α2
t

and it is independent of the densities pdata(·), qt(·), qt+∆t(·).

Proof.

qt(x) =

∫
dµ N (x |αtµ, σ

2
t )pdata(µ) (89)

Let’s derive the incremental kernel k∆t(x | y) from this formula, i.e.

qt+∆t(x) =

∫
dy k∆t(x | y)qt(y) (90)∫

dµ N (x |αt+∆tµ, σ
2
t+∆t)pdata(µ) =

∫
dy k∆t(x | y)

∫
dµ N (y |αtµ, σ

2
t )pdata(µ) (91)∫

dµ

(
N (x |αt+∆tµ, σ

2
t+∆t)−

∫
dy k∆t(x | y)N (y |αtµ, σ

2
t )

)
pdata(µ) = 0 (92)

N (x |αt+∆tµ, σ
2
t+∆t) =

∫
dy k∆t(x | y)N (y |αtµ, σ

2
t ) (93)

x = αt+∆tµ+
y − αtµ

σt
S +Rε , where y ∼ N (y |αtµ, σ

2
t ) , and ε ∼ N (ε | 0, 1) (94)

S2 +R2 = σ2
t+∆t (95)

To make the kernel independent of µ we have to choose R = σt
αt+∆t

αt
, then the kernel is

k∆t(x | y) = N

x | αt+∆t

αt
y, σ2

t+∆t − σ2
t

α2
t+∆t

α2
t︸ ︷︷ ︸

S2
t+∆t

 . (96)

D.2 LEMMA 1

Lemma 1. [Reverse kernel lemma] For the universal noising kernel k∆t(x | y), the correspond-
ing reverse kernel r∆t(y |x) = k∆t(x | y)qt(y)/qt+∆t(x), and its Gaussian approximation

r̃∆t(y |x) = N

(
y

∣∣∣∣ αt

αt+∆t
x+

αt

αt+∆t
S2
t+∆t∇ log qt+∆t(x),

(
αt

αt+∆t
St+∆t

)2
)
, (97)

we have

log
r∆t(x+∆t · v + gt+∆t

√
∆tε |x)

r̃∆t(x+∆t · v + gt+∆t

√
∆tε |x)

= (98)

= ∆t ·
g2t+∆t

2

(
∆ log qt+∆t(x)− εT

∂2 log qt(x)

∂x2
ε

)
+ o(∆t) , (99)

where gt+∆t =
√
2σ2

t+∆t
∂
∂t log

σt+∆t

αt+∆t
.

Proof. From the detailed balance equation, we have
log r∆t(y |x) = log k∆t(x | y) + log qt(y)− log qt+∆t(x) (100)

=
−1

2S2
t+∆t

(
x− αt+∆t

αt
y

)2

− d

2
log 2πS2

t+∆t + log qt(y)− log qt+∆t(x) , (101)
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where we use the definition of the forward kernel. Thus, the difference between kernels is

log
r∆t(y |x)
r̃∆t(y |x)

=
−1

2S2
t+∆t

(
x− αt+∆t

αt
y

)2

− d

2
log 2πS2

t+∆t + log qt(y)− log qt+∆t(x)+ (102)

+
1

2(St+∆t
αt

αt+∆t
)2

(
y − αt

αt+∆t
x− αt

αt+∆t
S2
t+∆t∇ log qt+∆t(x)

)2

+ (103)

+
d

2
log 2πS2

t+∆t +
d

2
log

(
αt

αt+∆t

)2

. (104)

Opening the brackets, we have

log
r∆t(y |x)
r̃∆t(y |x)

=
�����������−1

2S2
t+∆t

(
x− αt+∆t

αt
y

)2

+ log qt(y)− log qt+∆t(x)+ (105)

+
�����������

1

2S2
t+∆t

(
αt+∆t

αt
y − x

)2

−
〈
αt+∆t

αt
y − x,∇ log qt+∆t(x)

〉
+ (106)

+
S2
t+∆t

2
∥∇ log qt+∆t(x)∥2 +

d

2
log

(
αt

αt+∆t

)2

. (107)

The constants can be estimated as follows

S2
t+∆t = σ2

t+∆t − σ2
t

α2
t+∆t

α2
t

= σ2
t+∆t − (σ2

t+∆t − 2dtσt+∆t
∂σt+∆t

∂t
+ o(∆t))

α2
t+∆t

α2
t

(108)

= σ2
t+∆t − (σ2

t+∆t − 2dtσt+∆t
∂σt+∆t

∂t
+ o(∆t))

(
1 + 2dt

α2
t+∆t

α3
t+∆t

∂αt+∆t

∂t
+ o(∆t)

)
(109)

= 2dtσ2
t+∆t

∂

∂t
log

σt+∆t

αt+∆t
+ o(∆t) , (110)

and
αt+∆t

αt
= 1− αt+∆t

α2
t+∆t

∂αt+∆t

∂t
(−∆t) + o(∆t) = 1 +∆t

∂ logαt+∆t

∂t
+ o(∆t) (111)

d

2
log

(
αt

αt+∆t

)2

= − dtd
∂

∂t
logαt+∆t + o(∆t) . (112)

Thus, we have

log
r∆t(y |x)
r̃∆t(y |x)

= log qt(y)− log qt+∆t(x) + ∆tσ2
t+∆t

∂

∂t
log

σt+∆t

αt+∆t
∥∇ log qt+∆t(x)∥2− (113)

−dtd
∂

∂t
logαt+∆t −

〈
(1 + ∆t

∂ logαt+∆t

∂t
)y − x,∇ log qt+∆t(x)

〉
+ o(∆t) . (114)

From Prop. 8, the time-derivative of the density is
∂

∂t
log qt(x) = −

〈
∇, vt(x)

〉
−
〈
∇ log qt(x), vt(x)

〉
(115)

= − d
∂ logαt

∂t
+

(
σ2
t

∂

∂t
log

σt

αt

)
∆ log qt(x)− (116)

− ∂ logαt

∂t

〈
∇ log qt(x), x

〉
+

(
σ2
t

∂

∂t
log

σt

αt

)
∥∇ log qt(x)∥2 . (117)
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Hence, we have

log qt(x)− log qt+∆t(x) = −∆t
∂

∂t
log qt+∆t(x) + o(∆t) (118)

= dtd
∂ logαt+∆t

∂t
−∆t

(
σ2
t+∆t

∂

∂t
log

σt+∆t

αt+∆t

)
∆ log qt+∆t(x)+

(119)

+∆t
∂ logαt+∆t

∂t

〈
∇ log qt+∆t(x), x

〉
−∆t

(
σ2
t+∆t

∂

∂t
log

σt+∆t

αt+∆t

)
∥∇ log qt+∆t(x)∥2 .

(120)
Using it in Eq. (114), we have

log
r∆t(y |x)
r̃∆t(y |x)

= log qt(y)− log qt(x)−∆t

(
σ2
t+∆t

∂

∂t
log

σt+∆t

αt+∆t

)
∆ log qt+∆t(x)− (121)

−(1 + ∆t
∂ logαt+∆t

∂t
)
〈
y − x,∇ log qt+∆t(x)

〉
+ o(∆t) . (122)

Finally, we consider y = x+∆t · v + gt+∆t

√
∆tε. Then we can estimate

log qt(y) = log qt(x) +
〈
∇ log qt(x), y − x

〉
+

1

2
(y − x)T

∂2 log qt(x)

∂x2
(y − x) (123)

+ o(∥y − x∥2) (124)

= log qt(x) +
〈
∇ log qt(x),∆t · v + gt+∆t

√
∆tε

〉
(125)

+∆t
g2t+∆t

2
εT

∂2 log qt(x)

∂x2
ε+ o(∆t) , (126)

where ∂2 log qt(x)
∂x2 denotes the Hessian of the log-density. Thus, for y = x+∆t · v + gt+∆t

√
∆tε,

we have

log
r∆t(y |x)
r̃∆t(y |x)

= ∆t
g2t+∆t

2
εT

∂2 log qt(x)

∂x2
ε−∆t

(
σ2
t+∆t

∂

∂t
log

σt+∆t

αt+∆t

)
∆ log qt+∆t(x)+ (127)

+
〈
∇ log qt(x)−∇ log qt+∆t(x),∆t · v + gt+∆t

√
∆tε

〉
+ o(∆t) . (128)

The last term is o(∆t) by expanding the scores in time, hence, for g2
t+∆t

2 = σ2
t+∆t

∂
∂t log

σt+∆t

αt+∆t
, we

have

log
r∆t(x+∆t · v + gt+∆t

√
∆tε |x)

r̃∆t(x+∆t · v + gt+∆t

√
∆tε |x)

= (129)

= ∆t

(
σ2
t+∆t

∂

∂t
log

σt+∆t

αt+∆t

)(
∆ log qt+∆t(x)− εT

∂2 log qt(x)

∂x2
ε

)
+ o(∆t) . (130)

D.3 PROOF OF THM. 2

Theorem 2. [Denoising kernel] For the universal noising kernel k∆t(x | y), the Gaussian
approximation of the corresponding reverse kernel r∆t(y |x) = k∆t(x | y)qt(y)/qt+∆t(x) is

r̃∆t(y |x) = N

(
y

∣∣∣∣ αt

αt+∆t
x+

αt

αt+∆t
S2
t+∆t∇ log qt+∆t(x),

(
αt

αt+∆t
St+∆t

)2
)
, (81)

which corresponds to a single step of the Euler discretization of the following SDE

dxτ = −
(

∂

∂t
logαtx− 2σ2

t

∂

∂t
log

σt

αt
∇x log qt(x)

)
· dτ +

√
2σ2

t

∂

∂t
log

σt

αt
dWτ , (82)

and
DKL(r̃∆t(y |x)∥r∆t(y |x)) = o(∆t) . (83)
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Proof. To find the reverse the kernel, we first use Tweedie’s formula to find the expectation, i.e.

∇ log qt+∆t(x) = − 1

qt+∆t(x)

∫
dy

1

S2
t+∆t

(
x− αt+∆t

αt
y

)
k∆t(x | y)qt(y) (131)

αt

αt+∆t
S2
t+∆t∇ log qt+∆t(x) = − 1

qt+∆t(x)

∫
dy

(
αt

αt+∆t
x− y

)
k∆t(x | y)qt(y) (132)

αt

αt+∆t
x+

αt

αt+∆t
S2
t+∆t∇ log qt+∆t(x) =

∫
dy y

k∆t(x | y)qt(y)
qt+∆t(x)

=

∫
dy yr∆t(y |x) . (133)

Thus, we are going to approximate

r̃∆t(y |x) = N

(
y

∣∣∣∣ αt

αt+∆t
x+

αt

αt+∆t
S2
t+∆t∇ log qt+∆t(x),

(
αt

αt+∆t
St+∆t

)2
)

(134)

where
(

αt

αt+∆t
St+∆t

)2
is chosen to match the leading term of k∆t(x | y). The constants can be

estimated as follows

S2
t+∆t = σ2

t+∆t − σ2
t

α2
t+∆t

α2
t

= σ2
t+∆t − (σ2

t+∆t − 2dtσt+∆t
∂σt+∆t

∂t
+ o(∆t))

α2
t+∆t

α2
t

(135)

= σ2
t+∆t − (σ2

t+∆t − 2dtσt+∆t
∂σt+∆t

∂t
+ o(∆t))

(
1 + 2dt

α2
t+∆t

α3
t+∆t

∂αt+∆t

∂t
+ o(∆t)

)
(136)

= 2dtσ2
t+∆t

∂

∂t
log

σt+∆t

αt+∆t
+ o(∆t) , (137)

and
αt

αt+∆t
= 1 +

1

αt+∆t

∂αt+∆t

∂t
(−∆t) + o(∆t) = 1−∆t

∂ logαt+∆t

∂t
+ o(∆t) . (138)

Thus, y can be generated as

y = x−∆t
∂ logαt+∆t

∂t
x+ 2dtσ2

t+∆t

∂

∂t
log

σt+∆t

αt+∆t
∇ log qt+∆t(x)+ (139)

+

√
2dtσ2

t+∆t

∂

∂t
log

σt+∆t

αt+∆t
ε , (140)

where ε is a standard normal random variable. This corresponds to the single step of the Euler
discretization of the following SDE

dxt = −
(

∂

∂t
logαtx− 2σ2

t

∂

∂t
log

σt

αt
∇x log qt(x)

)
·∆t+

√
2σ2

t

∂

∂t
log

σt

αt
dWt . (141)

For the KL-divergence between the reverse kernel and its Gaussian approximation, we have

DKL(r̃∆t(y |x)∥r∆t(y |x)) = Eε log
r̃∆t(x+∆t · v + gt+∆t

√
∆tε |x)

r∆t(x+∆t · v + gt+∆t

√
∆tε |x)

+ o(∆t) , (142)

where

v = −
(

∂

∂t
logαtx− 2σ2

t

∂

∂t
log

σt

αt
∇x log qt(x)

)
, and gt+∆t =

√
2σ2

t

∂

∂t
log

σt

αt
. (143)

From Lemma 1, we have
DKL (r̃∆t(y |x)∥r∆t(y |x)) = (144)

= ∆t

(
σ2
t+∆t

∂

∂t
log

σt+∆t

αt+∆t

)
Eε

(
εT

∂2 log qt(x)

∂x2
ε−∆ log qt+∆t(x)

)
+ o(∆t) (145)

= o(∆t) . (146)

D.4 PROOF OF THM. 3
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Theorem 3. [Detailed balance density estimator error] For y = x + ∆t · v + gt+∆t

√
∆tε,

where gt+∆t =
√

2σ2
t

∂
∂t log

σt

αt
and ε is a standard normal random variable, the following

estimator is unbiased w.r.t. the generated samples y, i.e.

Eε

[
log

r∆t(y |x)
r̃∆t(y |x)

]
= o(∆t) , (85)

and the variance is

IDε

[
log

r∆t(y |x)
r̃∆t(y |x)

]
= ∆t2

g4t+∆t

4
IDε

(
εT

∂2 log qt(x)

∂x2
ε

)
+ o(∆t2) , (86)

where ∂2 log qt+∆t(x)
∂x2 is the Hessian matrix of the log-density.

Proof. From Lemma 1, we have

Eε log
r∆t(y |x)
r̃∆t(y |x)

= Eε∆t
g2t+∆t

2

(
∆ log qt+∆t(x)− εT

∂2 log qt(x)

∂x2
ε

)
+ o(∆t) (147)

= ∆t
g2t+∆t

2

(
∆ log qt+∆t(x)− Eε Tr

[
εT

∂2 log qt(x)

∂x2
ε

])
+ o(∆t) (148)

= ∆t
g2t+∆t

2

(
∆ log qt+∆t(x)− Eε Tr

[
∂2 log qt(x)

∂x2

])
+ o(∆t) (149)

= o(∆t) . (150)
For the variance, we have

IDε log
r∆t(y |x)
r̃∆t(y |x)

= ∆t2
g4t+∆t

4
Eε

(
∆ log qt+∆t(x)− εT
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+ o(∆t2) (151)

= ∆t2
g4t+∆t

4
Eε
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Eη

[
ηT

∂2 log qt(x)

∂x2
η
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− εT

∂2 log qt(x)
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+ o(∆t2) (152)

= ∆t2
g4t+∆t

4
IDε

(
εT

∂2 log qt(x)

∂x2
ε

)
+ o(∆t2) , (153)

where we used a standard normal random variable η.

D.5 PROOF OF PROP. 11

Proposition 11. [Recurrence relation for the log-density] For y = x+∆t · v + gt+∆t

√
∆tε,

where gt+∆t =
√
2σ2

t
∂
∂t log

σt

αt
and ε is a standard normal random variable, the estimator

from Eq. (87) can be expanded as follows

− log k∆t(x | y) + log r̃∆t(y |x) = d∆t
∂

∂t
logαt+∆t −∆t

g2t+∆t

2
∥∇ log qt+∆t(x)∥2+

+
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√
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∂

∂t
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+ o(∆t)

(88)
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Proof. Indeed,

log
r̃∆t(y |x)
k∆t(x | y)

=
1

2B2
t+∆t

(
x− αt+∆t

αt
y

)2

+
d

2
log 2πS2

t+∆t− (154)

− 1

2(St+∆t
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Expanding the time around t+∆t, we have

log
r̃∆t(y |x)
k∆t(x | y)

= d∆t
∂

∂t
logαt+∆t +

〈
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∂

∂t
log

σt+∆t

αt+∆t
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∥∇ log qt+∆t(x)∥2 + o(∆t) . (160)

For y = x+∆t · v +
√
∆tgt+∆tε, gt+∆t =

√
2σ2

t+∆t
∂
∂t log

σt+∆t

αt+∆t
, we have

log
r̃∆t(y |x)
k∆t(x | y)

= d∆t
∂

∂t
logαt+∆t −∆t

g2t+∆t

2
∥∇ log qt+∆t(x)∥2+ (161)

+

〈
∆t · v + gt+∆t

√
∆tε+∆t

∂

∂t
logαt+∆tx,∇ log qt+∆t(x)

〉
+ o(∆t) . (162)

E BROADER IMPACTS

In this paper, we present theoretical results and demonstrate use cases in generation tasks such as
image generation and unconditional protein generation. Because of the theoretical nature of our
contributions, this work carries little societal impact. SUPERDIFF can be used to generated protein
structure from a composition of existing protein diffusion models. Better protein generation methods
can potentially lead to negative use in generating bio-hazardous molecules and proteins. We do not
perceive this as a great risk at the current stage of these models.

F ADDITIONAL RESULTS FOR CIFAR-10

Table A1: Image generation performance for CIFAR-10 with conditional models trained on two random
partitions of the training data (labeled A and B). We compare SUPERDIFF (OR) with the respective models
(modelA and modelB) with the model that is trained on the full dataset (modelA∪B) and random choice between
two models (modelA OR B).

ODE inference SDE inference

FID (↓) IS (↑) FLD (↓) FID (↓) IS (↑) FLD (↓)
modelA 4.75 8.98 6.95± 0.12 4.66 9.35 6.39± 0.13
modelB 4.78 8.97 6.86± 0.15 4.36 9.45 6.20± 0.14
modelA∪B 5.30 9.04 6.82± 0.09 2.83 9.44 6.26± 0.11
modelA OR B 4.75 8.94 6.86± 0.15 4.41 9.40 6.3± 0.18
SUPERDIFF (OR) 4.74 9.00 6.98± 0.10 4.46 9.40 6.22± 0.15
SUPERDIFF T=100 (OR) 4.63 8.98 6.81± 0.19 4.23 9.42 6.27± 0.12

G PROTEIN GENERATION

G.1 EXPERIMENTAL DETAILS

In our setting, we consider two state-of-the-art diffusion models for protein generation: Proteus (Wang
et al., 2024) and FrameDiff (Yim et al., 2023b), which were trained on protein structures from Protein

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Data Bank (PDB, (Berman et al., 2000)) to estimate the special Euclidean group (SE(3)) equivariant
score over multiple diffusion steps. The models’ outputs predict the coordinates of a monomeric
protein backbone.
We use pre-trained checkpoints from Proteus2 and FrameDiff3. During protein generation at inference,
we separately combine scores for translations and rotations from both models using Algorithm 1.
We investigate the use of different temperature (T ) settings to scale κ for controlling the densities.
We also found that adding a small bias (ω) towards Proteus log densities improved designability.

G.2 METRICS FOR EVALUATING GENERATED PROTEINS

Designability. We assess designability using the self-consistency evaluation from Trippe et al. (2023),
where given a generated backbone, we predict its scaffold using a sequence prediction model (we use
ProteinMPNN (Dauparas et al., 2022)) and re-fold the sequence using a structure prediction model
(we use ESMFold (Lin et al., 2022)). We then compare the re-folded protein to the original generated
backbone by computing their template modeling score (scTM) and root-mean-square-distance
(scRMSD). A protein is considered to be designable if its scRMSD is < 2Å to the refolded structure.
For each protein, we repeat this process 8 times and keep the sequence with the lowest scRMSD.
We report the fraction of designable proteins for each method in Table 3 as well as the scRMSD
mean of the resulting designable proteins.
Novelty. A significant impetus for generative modelling in biology and chemistry is to propose
compounds that have not been previously identified (i.e., different from the training data), but are
also possible to make. We compute three novelty metrics: the fraction of designable proteins with
a scTM score < 0.5 (higher is better), the fraction of designable proteins with a scTM score < 0.3,
and the mean scTM score between generated proteins and the proteins from PDB that the original
diffusion models were trained on, which represents the collective human knowledge of protein
structures; a lower score is indicates higher distance from the training set and is desirable since it
shows generalization ability.
Diversity. To measure how diverse the generated proteins are, we compute their mean pairwise
scTM score (lower is better), and also report the fraction of unique clusters formed after clustering
them with MaxCluster (Herbert & Sternberg, 2008) (higher is better). Finally, we report the fraction
of proteins that contain β-sheet secondary structures, as it has been found that these structures are
typically more rare to generate (Bose et al., 2024).

G.3 PROTEIN DIVERSITY EXPLORATION SETTINGS

To embed and cluster the generated protein backbones we use the foldseek (Van Kempen et al., 2024)
package to compute pairwise aligned TM-scores. We then use the UMAP (McInnes et al., 2018)
package to compute a 2D embedding. Where proteins are represented as points that are close to each
other if they are structurally similar (by aligned TM-Score).
We then clustered the proteins again with the foldseek tool to find representative structures. Finally
we used KMeans to explore the space and narrow down which protein structures belong where on the
protein structure manifold.

H GENERATING IMAGE COMPOSITIONS WITH STABLE DIFFUSION

For our concept interpolation experiments, we use publicly-available pre-trained weights, mod-
els, and schedulers from Stable Diffusion v1-4 https://huggingface.co/CompVis/
stable-diffusion-v1-4.
In Figs. A1–A20, we show examples of image compositions generated by SUPERDIFF (AND),
averaging of outputs, and joint prompting. Prompts are shown in each image caption. We show
images generated by the first 6 seeds (uniform sampling), as well as our favourite images generated
from 20 seeds. For joint prompting, we generate prompts from two concepts using the linking
term "that looks like". For example, given the concepts "a lemon" and "a sunflower",
the resulting prompt would be "a sunflower that looks like a lemon". We also generate

2https://github.com/Wangchentong/Proteus
3https://github.com/jasonkyuyim/se3_diffusion
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images with the reversed prompt ("a lemon that looks like a sunflower"), and keep the
images generated by the prompt resulting in the higher mean score for each metric. The order of the
concepts in each image caption reflects the ordering that obtained the higher TIFA score.
In Fig. A21, we show examples of image compositions generated by SUPERDIFF (OR), joint prompt-
ing, and an upper bound of randomly selecting a prompt of one concept. Again, we keep the prompt
order that resulted in higher scores for the baseline.

Figure A1: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting for
the concepts "an airplane" and "an eagle".
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Figure A2: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting for
the concepts "bottle cap" and "chess pawn".
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Figure A3: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting for
the concepts "a bicycle wheel" and "a spider web".

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure A4: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting for
the concepts "a chair" and "an avocado".
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Figure A5: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting for
the concepts "a cinnamon roll" and "a snail".
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Figure A6: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting for
the concepts "cookie" and "moon".
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Figure A7: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting for
the concepts "a dog" and "a cat".

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Figure A8: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting for
the concepts "a donut" and "a map".
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Figure A9: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting for
the concepts "duck" and "otter".
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Figure A10: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting
for the concepts "fireworks" and "dandelion".
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Figure A11: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting
for the concepts "a flamingo" and "a candy cane".
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Figure A12: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting
for the concepts "a helicopter" and "a dragonfly".
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Figure A13: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting
for the concepts "pebbles on a beach" and "a turtle".
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Figure A14: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting
for the concepts "a pineapple" and "a beehive".
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Figure A15: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting
for the concepts "a rocket" and "a cactus".
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Figure A16: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting
for the concepts "a silhouette of a dog" and "a mountain landscape".
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Figure A17: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting
for the concepts "a sunflower" and "a lemon".
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Figure A18: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting
for the concepts "teddy bear" and "panda".
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Figure A19: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting
for the concepts "a waffle cone" and "a volcano".
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Figure A20: Image compositions generated using SUPERDIFF (AND), averaging of outputs, or joint prompting
for the concepts "zebra" and "barcode".
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Figure A21: Concept selections using SUPERDIFF (OR), joint prompting, and randomly selecting a prompt of one
concept. The top subfigure shows generated images for the concepts "a candy cane" or "a flamingo".
The bottom subfigure shows generated images for the concepts "a pineapple" or "a beehive".
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