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ABSTRACT

With the rapid development and increasing diversification of image forged tech-
niques, existing detection methods have exposed significant limitations in address-
ing emerging challenges. Current forged techniques encompass traditional meth-
ods like image manipulation, text manipulation, as well as emerging ones such
as deepfake and artificial intelligence generated content. However, most existing
detection models are designed to detect or localize only a single type of forgery,
lacking a universal solution that can handle multiple forged methods. To address
this challenge, this paper proposes a unified multimodal large model for detecting
all-domain forged images named UniForge. This model aims to provide a general
forged detection method to discriminate the authenticity of various types of images
effectively. At its core is a novel Vision-Fusion Large Language Model, which
skillfully combines the powerful feature extraction capabilities of pre-trained vi-
sion models with the outstanding semantic understanding and reasoning abilities
of large language models. We have conducted extensive experimental evaluations
on datasets covering various forged types, including image manipulation, text
manipulation, artificial intelligence generated image, and deepfake. The results
demonstrate that UniForge achieves state-of-the-art performance in the detection
of all forged categories. Its comprehensive performance significantly surpasses
existing methods, validating the advanced nature and excellent generalization ca-
pability of our framework.

1 INTRODUCTION

In recent years, the rapid advancement of artificial intelligence generated content technology has
made it much easier to create and edit digital content. Therefore, it has also given rise to novel forged
techniques, prominently represented by Deepfake and AI-generated images. The images produced
by these techniques have reached a level of visual realism that is difficult to distinguish from authen-
tic ones, posing a significant challenge for humans. Their misuse poses a severe threat to personal
reputation and social trust. For instance, fabricated evidence can undermine judicial processes, syn-
thetic media can be weaponized for political disinformation campaigns, and realistic-looking fake
profiles can facilitate sophisticated phishing and fraud schemes. Consequently, developing detection
technologies that can accurately and efficiently identify various types of forged images has become
an urgent and critical task in the field of information security.

Unlike traditional tampering localization tasks(Zhou et al., 2018) (Hao et al., 2021), which focus
on identifying manipulated regions within an forged image, forged image detection places a greater
emphasis on determining the overall authenticity of an image. This fundamental problem of holistic,
binary classification (real vs. fake) is often overlooked by existing research. Current methods are
predominantly designed for specific forged types, such as models focusing only on Deepfake detec-
tion or the localization of particular tampering traces. This specialization results in a fragmented
landscape of detection tools, where each tool is only effective against a narrow subset of manipu-
lations. They lack a unified framework capable of addressing a diverse range of forged techniques.
When confronted with scenarios involving a mixture of multiple forged methods, the classification
accuracy of existing models still fails to meet the demands of practical applications, rendering them
incapable of reliably assessing the global authenticity of an image.
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Figure 1: Grad-CAM Visualization Results of Our Method for Different Forged Images.

Furthermore, existing detection methods exhibit limitations in feature utilization. On one hand,
they(Li et al., 2022) (Dang et al., 2020) primarily rely on capturing low-level, isolated visual anoma-
lies within the image, such as subtle inconsistencies in sensor noise patterns, compression artifacts,
or frequency domain irregularities. While effective for specific forgeries, these methods neglect the
rich, high-level semantic context where contains forgeries. They neglect the potential of leverag-
ing large language models for multimodal information fusion. On the other hand, even when some
studies(Xu et al., 2025) incorporate multimodal approaches, they often resort to simple feature con-
catenation or global fusion strategies(for a detailed description, please see A.1). Such methods
overlook the high-relevance requirement of features for the forged detection task, introducing a sub-
stantial amount of irrelevant and potentially confounding information during the alignment process.
This, in turn, diminishes the salience of forged traces, thereby constraining detection performance.

To address the aforementioned challenges, we propose a unified multimodal large model framework
named UniForge, designed to bridge the gaps in existing methodologies. This framework aims to
achieve universal forged image detection across all domains using a single, unified model. UniForge
leverages the powerful capabilities of a pre-trained visual encoder to extract a rich hierarchy of vi-
sual representations and a large language model (LLM) to parse textual semantics, capturing both
explicit descriptions and implicit world knowledge. Through a novel prediction module, the model
efficiently fuses visual anomaly features with deep-level image-text semantic inconsistencies, en-
abling a precise judgment of forged images. As shown in Figure1, visualization results from Class
Activation Maps confirm that our model effectively focuses on the forged regions, which serves as
a crucial basis for its judgment and demonstrates superior performance across various forged types.

Our main contributions are as follows:

□ 1) We present UniForge, an innovative multimodal large model framework designed to build a
unified model for image forged detection. This framework is composed of three core components:
a pre-trained image encoder for the extraction of deep image features; a Vision-Fusion Large Lan-
guage Model (VF-LLM) that leverages these image features in conjunction with probability-guided
prompts to generate a comprehensive multimodal feature; and a prediction head for forged detection
that integrates both the image and multimodal features to achieve accurate predictions.

□ 2) We design a novel Vision-Fused Large Language Model (VF-LLM) for the efficient extraction
and alignment of multimodal features. This model generates text embeddings highly relevant to
the forged analysis task through probability-guided prompt generation. This mechanism dynami-
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cally creates textual prompts that query the image’s most salient and potentially suspicious aspects,
guiding the LLM’s reasoning process. It also introduces a multimodal query attention mechanism,
which uses the text embeddings as queries to precisely retrieve and align corresponding tampering
traces within the visual features. This targeted alignment ensures that only the most pertinent visual
evidence is considered, effectively filtering out noise.

□ 3) Extensive experiments on multiple public benchmark datasets demonstrate that our method
achieves state-of-the-art performance in detecting a wide range of forged types, including tradi-
tional image manipulation, text manipulation, AI-generated image, and deepfake. Our comprehen-
sive evaluation shows that UniForge not only outperforms specialized detectors on their own target
domains but also exhibits strong generalization capabilities to a variety of forged types. These results
validate the effectiveness and superiority of our approach as a universal detection model.

2 RELATED WORK

Image Manipulation Detection With the development of deep learning, significant progress has
been made in CNN-based methods for image manipulation localization. Early studies focused on
capturing manipulation evidence through elaborately designed network frameworks. For instance,
RGB-N(Zhou et al., 2018) uses a dual-stream architecture to process RGB content and SRM noise
features separately, aiming to capture both macroscopic visual anomalies and microscopic noise
disturbances, which are then fused via a bilinear pooling layer to identify inconsistencies. PSCC-
Net(Liu et al., 2022a), in contrast, utilizes a bottom-up pathway to achieve coarse-to-fine localization
of tampered regions through multi-scale mask refinement and cross-scale connections, effectively
improving the prediction accuracy of manipulation boundaries.

To enhance detection robustness, subsequent research has explored more complex architectures. In-
spired by the Vision Transformer(Dosovitskiy et al., 2021), IML-ViT(Ma et al., 2024) was the first
to apply a pre-trained ViT model to this task, leveraging its powerful global context modeling ca-
pabilities while also effectively mitigating the issue of insufficient training data. Meanwhile, hybrid
models that merge the advantages of CNNs and Transformers have become a research focus. For
example, ObjectFormer(Wang et al., 2022a) combines the local feature extraction strength of CNNs
with the global relationship modeling capability of Transformers, enabling more accurate identifi-
cation of object-level semantic inconsistencies and significantly improving localization accuracy.

Detection in specific scenarios, such as document images, is also a dedicated research direction,
challenged by complex backgrounds and compression artifacts. Consequently, many methods have
turned to mining frequency-domain features. FFDN(Chen et al., 2024) introduces a Wavelet Pyra-
mid Enhancement module to decompose features into high and low-frequency components, thereby
enhancing the perception of weak tampering traces in the frequency domain. DTD(Qu et al., 2023)
designs a frequency perception head to extract frequency cues from JPEG compression artifacts and
deeply fuse them with visual features, while also adopting strategies like curriculum learning to
improve model robustness by training it on examples of increasing difficulty.

AI-generated and Deepfake Image Detection The rapid development of generative models, in-
cluding Generative Adversarial Networks and diffusion models, has led to a proliferation of highly
realistic AI-generated images and Deepfakes, posing severe challenges to digital forensics. In re-
sponse, the research community has developed various detection methods, targeting either general
AI-generated content or the specific domain of Deepfakes.

In the field of general AI-generated image detection, particularly for diffusion models, researchers
have proposed diverse strategies from different perspectives. One class of methods leverages the
intrinsic properties of the generation process. For example, Dire(Wang et al., 2023) proposes distin-
guishing images via ”Diffusion Reconstruction Error”, based on the principle that the reconstruction
error of a real image under a diffusion model is significantly higher than that of a generated one. An-
other class of methods aims to improve detection performance by designing sophisticated network
architectures. DualNet(Xi et al., 2023) employs a dual-stream network to separately extract texture
information and low-frequency forgery traces, while HiFiNet(Guo et al., 2023) adopts a hierarchical
fine-grained approach to uniformly handle various forgery types. Furthermore, to address the gener-
alization problem for unknown generative models, UnivFD introduces a novel strategy that utilizes
the feature space of large-scale pre-trained models for detection.
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In the domain of Deepfake detection, which primarily focuses on face forgery, research has also
made remarkable progress. Some methods are dedicated to capturing specific forgery artifacts. For
instance, Meso4(Afchar et al., 2018) is designed to capture the meso-scale properties of an im-
age. Another major category of methods delves into clues within the frequency domain. SPSL(Liu
et al., 2021a) combines spatial images with their phase spectra to capture up-sampling artifacts.
F3Net(Qian et al., 2020) designs a more complex cross-attention dual-stream network to collabora-
tively learn frequency-aware cues for revealing anomalous features in forged images. Additionally,
researchers have enhanced performance by improving network structures. For example, FFD(Dang
et al., 2020) introduces an attention mechanism into the detection network to focus on tampered
regions, while RECCE(Cao et al., 2022) constructs a multi-scale graph network that uses recon-
struction differences as a forgery clue.

3 METHOD
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Figure 2: Overview framework of UniForge. The framework is primarily composed of three
components: a pre-trained image encoder, a Vision-Fused Large Language Model(VF-LLM) ,and a
prediction head for forgery detection.

We propose a multimodal framework for forged image detection, the core of which lies in the deep
fusion of visual and textual information to achieve the precise identification of forgery traces. As
illustrated in Figure 2, the overall architecture consists of three core modules: a ConvNeXt-based im-
age encoder, a Vision-Fused Large Language Model, and an attention-based prediction head specif-
ically designed for forgery detection.

3.1 OVERALL ARCHITECTURE

Given an input image X ∈ RH×W×3, we first employ a pretrained image encoder Eimg based on
the ConvNeXt architecture to extract visual features. Specifically, the encoder maps X into a high-
dimensional visual representation Fimg and predicts the probability Pimg that the image is a fake.
To incorporate textual modality information, we construct a probability-guided text prompt: “The
probability that this image is a fake image is”, and append the predicted probability Pimg to the
end of the prompt. The resulting combined text is then fed into our proposed Vision-Fused Large
Language Model (Mfusion) to perform deeper multimodal reasoning.
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(Fimg, Pimg) = Eimg(X) (1)
Ymm = Mfusion (Fimg, T ⊕ Pimg) (2)

Following processing by Visual Fusion Large Language Model, we obtain a multimodal feature
representation, denoted as Ymm, which integrates both visual and textual information. These features
serve as the crucial input for the subsequent forgery detection task. These features are fed into a
prediction head specifically designed for image forgery detection. To fully leverage information
from different modalities and achieve deep fusion, we have designed an attention-based prediction
head. In this prediction head, the visual features of the image are utilized as the query, while the
aforementioned multimodal feature representation Ymm serves as both the key and the value. This
design enables the prediction head to effectively associate specific regions of the image with their
corresponding multimodal contextual information.

Ppatch = MLP (Fimg + Attention(Fimg, Ymm, Ymm)) (3)
Pfinal = σ (Wf [Pimg ⊕ Ppatch] + bf ) (4)

To ensure effective information propagation and mitigate the gradient vanishing problem, we intro-
duce a Residual Connection after the attention module(Vaswani et al., 2017). The resulting features
are then input into a Multi-Layer Perceptron to generate a patch-wise forgery probability prediction,
denoted as Ppatch, for each image patch. Finally, to derive a comprehensive judgment for the entire
image, we integrate the global image features Fglobal from the image encoder with the forgery prob-
abilities Ppatch of the individual patches generated by the prediction head. These two information
streams are fused through a final linear layer to output the final prediction, Pfinal, which determines
whether the entire image is forged.

During the training phase, we employ the Binary Cross-Entropy loss function to optimize the net-
work’s parameters, and freeze the RoBERTa(Liu et al., 2019), the large language model used in
our model. This loss function guides the model’s learning process by measuring the discrepancy
between the predicted probability and the ground-truth label. The formula is defined as follows:

L = −[y · log(σ(Pfinal)) + (1− y) · log(1− σ(Pfinal))] (5)

Where y is the ground-truth label, and σ(·) denotes the Sigmoid function. By minimizing this loss
function L, the model learns to effectively distinguish between authentic and forged images.

3.2 VISION-FUSED LARGE LANGUAGE MODEL

In this subsection, we will introduce the proposed Visual Fusion Large Language Model. The core of
this model lies in the deep alignment and efficient fusion of textual information and visual features.
First, the model takes a probability-guided text prompt as input and converts it into high-dimensional
text feature embeddings through the embedding layer built into the large language model. These text
embeddings not only contain rich semantic information but also provide important prior knowledge
for the subsequent cross-modal fusion. To achieve deep fusion of cross-modal information, we de-
sign a multimodal query attention mechanism. Specifically, we use the aforementioned text feature
embeddings as the Query, while the image features extracted from the image encoder serve as both
the Key and the Value. Through this design, the text features can act as a powerful semantic prior
to guide the attention mechanism to focus on the key content in the image, thereby achieving more
purposeful information alignment and fusion.

Subsequently, the output of this attention mechanism, which is the visually guided weighted visual
information, will be integrated with the original text embeddings through a residual connection. The
introduction of a residual connection is intended to ensure that the original text guidance information
is not diluted during the fusion process. This not only preserves the precise language instructions
but also incorporates highly relevant visual evidence. At the same time, this structure also helps
to maintain a stable gradient flow in the deep network, thereby improving the model’s training

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

efficiency and performance. Finally, the feature vector integrated through the residual connection
will be sent to the subsequent text encoder of the language model for deep contextual processing,
ultimately generating a unified and information-rich multimodal feature representation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets To achieve comprehensive model training, we construct an integrated training set span-
ning four key domains. We utilize the benchmark FaceForensics++(Rössler et al., 2019) dataset
for the Deepfake domain, the classic CASIAv2(Dong et al., 2013) dataset for the image manipu-
lation domain, and the large-scale GenImage(Zhu et al., 2023) dataset for the AIGC domain. For
text tampering, we consolidate multiple datasets, including OSTF(Qu et al., 2025), RealTextMa-
nipulation(RTM)(Luo et al., 2024), T-SROIE(Wang et al., 2022c), and Tampered-IC13(Wang
et al., 2022b). Building upon these datasets, we additionally supplement the test set with the
IMD2020(Novozámský et al., 2020) and CASIAv1(Dong et al., 2013) datasets for the image ma-
nipulation domain, the DiffusionForensics(Wang et al., 2023) dataset for the AIGC domain, and the
DFDC(Dolhansky et al., 2020) and Celeb-DF-v2(Li et al., 2020) datasets for the Deepfake domain.

Implementation Details To ensure fairness and reproducibility across all experiments, a unified
training configuration is adopted for all models. The training protocol adopts the Image Forensic
Fusion Protocol (IFF-Protocol)(Du et al., 2025). We employ the AdamW optimizer with hyperpa-
rameters set to β1 = 0.9 and β2 = 0.999, along with a weight decay of 0.05. All models are trained
for 20 epochs on a single NVIDIA 4090 GPU. A cosine annealing schedule is utilized for the learn-
ing rate, which is initialized at 1e-4 and gradually decayed to 1e-5. During the data preprocessing
stage, the resolution of all input images is uniformly resized to 256 × 256 pixels. To enhance the
generalization capabilities of the models, we also apply a variety of data augmentation techniques,
including random horizontal flipping, adjustments to brightness and contrast, JPEG compression,
and Gaussian blur.

State-of-the-Art Methods For a comprehensive benchmark evaluation, we select a suite of repre-
sentative methods from each domain that are both competitive and offer open-source implementa-
tions. Specifically, for the task of Image Manipulation Detection, we choose IML-ViT(Ma et al.,
2024) and Mesorch(Zhu et al., 2025). For Deepfake detection, we evaluate against RECCE(Cao
et al., 2022) and SPSL(Liu et al., 2021a). In the domain of AI-Generated Content detection, our
comparison includes HiFiNet(Guo et al., 2023) and DualNet(Xi et al., 2023), and for Text Manip-
ulation Detection, we select DTD(Qu et al., 2023) and FFDN(Chen et al., 2024).

4.2 COMPARISON WITH STATE-OF-THE-ART METHOD

Table 1: A performance comparison for image and text manipulation. The best-performing results
for each test set are highlighted in bold, and the second-best values are underlined.

Method
Image Manipulation Text Manipulation

Avg.
IMD2020 CASIAv1 OSTF RTM T-SROIE Tampered-IC13

IMLVIT 0.6844 0.5328 0.3894 0.2093 0.3401 0.6271 0.4639
Mesorch 0.7794 0.5672 0.3223 0.1898 0.2728 0.4796 0.4352
HiFiNet 0.8604 0.6843 0.3596 0.2472 0.5880 0.5716 0.5519
DualNet 0.4590 0.4681 0.3453 0.2065 0.3870 0.5925 0.4097

DTD 0.8001 0.6068 0.3656 0.2334 0.4119 0.5821 0.5000
FFDN 0.8975 0.6996 0.2935 0.2357 0.2712 0.5215 0.4865

RECCE 0.3141 0.3543 0.3458 0.1046 0.0078 0.5738 0.2834
SPSL 0.3179 0.6299 0.4437 0.3328 0.7451 0.7236 0.5322

UniForge(Ours) 0.7596 0.7648 0.7919 0.2116 0.8325 0.9166 0.7128

To evaluate the capability of UniForge in detecting forged images, we select several targeted datasets
for each type of image forgery method. As demonstrated in Table 1 and Table 2, our proposed
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method consistently outperforms other competing methods across almost all test datasets. Further-
more, given the absence of a universal method capable of detecting forgeries across all domains, we
conduct a comparative analysis of UniForge against two representative methods in each respective
domain.

In the task of traditional image and text manipulation detection, UniForge demonstrates exceptional
performance. According to the results, UniForge achieves the best performance on four out of the
six test sets: CASIAv1, OSTF, T-SROIE, and Tampered-IC13. It also secures the highest average
performance, significantly outperforming the second-best method by 29.15%. Its advantage is par-
ticularly prominent in text manipulation detection. On the OSTF dataset, its performance surpasses
the runner-up by an impressive 78.4%. Similarly, on the T-SROIE and Tampered-IC13 datasets,
it outperforms the second-best results by 11.73% and 26.67%, respectively. Furthermore, it also
obtains the top result on the CASIAv1 image manipulation dataset, outperforming the second-best
by 9.32%.

Table 2: A performance comparison for AI Generated Content and Deepfake. The best-performing
results for each test set are highlighted in bold, and the second-best values are underlined.

Method
AI Generated Content Deepfake

Avg.
DiffusionForensics GenImage FF-DF DFDC Celeb-DF-v2 FF-F2F

IMLVIT 0.4345 0.7506 0.6676 0.6779 0.7939 0.6682 0.6655
Mesorch 0.6168 0.6665 0.6663 0.6848 0.7935 0.6668 0.6825
HiFiNet 0.6252 0.6287 0.6640 0.5843 0.7528 0.6632 0.6530
DualNet 0.5136 0.6626 0.6664 0.6477 0.7935 0.6667 0.6584

DTD 0.5824 0.6721 0.6661 0.6703 0.7935 0.6662 0.6751
FFDN 0.6667 0.6638 0.6664 0.6852 0.7935 0.6667 0.6904

RECCE 0.4856 0.8174 0.7162 0.6608 0.7430 0.7144 0.6896
SPSL 0.4995 0.9417 0.9150 0.5908 0.7388 0.8974 0.7639

UniForge(Ours) 0.8018 0.9877 0.9446 0.6482 0.7865 0.9440 0.8523

For the detection of AI-generated images and Deepfakes, UniForge also shows superior perfor-
mance. According to the results, UniForge achieves the best performance on four of the six pub-
lic datasets: DiffusionForensics, GenImage, FF-DF, and FF-F2F. Ultimately, UniForge ranks first
among all competing methods in average performance, outperforming the second-best method,
SPSL, by 11.57%. On the AI-generated content datasets, it surpassed the runner-up by 20.26% on
DiffusionForensics and 4.88% on GenImage. In Deepfake detection, it led the second-best methods
by 3.23% on FF-DF and 5.19% on FF-F2F. These results indicate that UniForge is highly competi-
tive in detecting AIGC and Deepfake content.

4.3 ROBUSTNESS STUDY

To comprehensively evaluate the robustness of the UniForge model, our method simulates vari-
ous distortion scenarios that forged images may encounter during real-world dissemination. We
employed three common image attack methods: JPEG compression, Gaussian blur, and Gaussian
noise. By applying these perturbations at varying intensities to standard test datasets, we systemat-
ically examined the performance stability of UniForge in complex environments. The experimental
results, as illustrated in Figure 3, indicate that the UniForge model’s forgery detection performance
is significantly superior to existing methods when subjected to multiple types of image attacks.

In the JPEG compression attacks, UniForge demonstrates outstanding robustness. On the Dif-
fusionForensics dataset, its detection accuracy shows a notable upward trend as the compression
quality decreases, showcasing a strong resilience to compression artifacts. On the FF-DF dataset,
its performance remains high and peaks at the lowest quality setting. Across most datasets, includ-
ing DiffusionForensics, OSTF, and FF-DF, UniForge maintains a significant performance advantage
over other models, especially at more extreme compression levels.

Under Gaussian noise attacks, UniForge’s superiority is equally evident. On the DiffusionForen-
sics and FF-DF datasets, its performance curve is not only substantially higher than its competitors

7
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Figure 3: Robustness evaluations against three image post-processing techniques (JPEG compres-
sion, Gaussian blur, and Gaussian noise). The x-axis represents the processing intensity, and the
y-axis represents the F1-score.

but also remains almost perfectly flat as noise intensity increases. This demonstrates an exceptional
resilience to noise interference. On the CASIAv1 and OSTF datasets, it also consistently maintains
a clear performance lead over other models.

Against Gaussian blur attacks, UniForge’s performance is more varied but still leading in most
scenarios. On datasets like DiffusionForensics and OSTF, its accuracy is volatile, yet it achieves
performance peaks that are significantly higher than any other model. On the FF-DF dataset, while
its accuracy trends downward with increased blurring, it consistently maintains a substantial per-
formance margin over the other, more stable models. This indicates that while blurring impacts
UniForge, it remains the most effective model overall.

We attribute the exceptional robustness of the UniForge model, particularly against compression
and noise, to its unique, unified multi-modal large-model architecture. This architecture likely en-
ables the model to fuse and leverage high-dimensional, cross-modal semantic features for decision-
making. By not relying solely on low-level image forgery traces—which are easily corrupted by
compression and noise—UniForge can capture more fundamental and abstract forgery cues. This
results in its robust and superior performance when faced with various image post-processing at-
tacks.

4.4 ABLATION STUDY

To investigate the impact of different visual backbone networks on the image feature extraction ca-
pability, we replace the original image encoder in the UniForge model, ConvNeXt(Liu et al., 2022b),
with a series of mainstream vision models. These include the classic ResNet101(He et al., 2016),
the self-attention-based Swin Transformer(Liu et al., 2021b), the semantic segmentation-oriented
Segformer(Xie et al., 2021), the lightweight EfficientNet(Tan & Le, 2019), and Xception(Chollet,
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2017), which completely utilizes depthwise separable convolutions. During this process, other mod-
ules are kept constant. The experimental results are presented in the corresponding table 3.

Table 3: Performance comparison for Image Manipulation, Text Manipulation, AI-generated image
, and Deepfake datasets. The best-performing results for each test set should be highlighted in bold,
and the second-best underlined.

Model
Image Manipulation Text Manipulation AI Generated Content Deepfake

Avg.
IMD2020 FantasticReality OSTF RTM DiffusionForensics GenImage Celeb-DF-v2 FF-DF

ResNet101 0.2654 0.2312 0.2139 0.1176 0.2245 0.6875 0.7681 0.7998 0.4135
SwinTransformer 0.7196 0.3666 0.7842 0.2262 0.7464 0.9884 0.7614 0.9337 0.6908

Segformer 0.1656 0.1450 0.6901 0.2523 0.6533 0.9800 0.7475 0.9456 0.5724
Xception 0.2580 0.1497 0.5683 0.2068 0.4331 0.9331 0.5678 0.9317 0.5061

EfficientNet 0.1894 0.1601 0.1272 0.0230 0.1966 0.4217 0.7699 0.6512 0.3174
ConvNext 0.7596 0.5575 0.7919 0.2116 0.8018 0.9877 0.7865 0.9446 0.7302

Based on the ablation study of the image encoder, our chosen backbone, ConvNeXt, demonstrates
superior performance. Its comprehensive average score across nine evaluation metrics shows an im-
provement of approximately 5.7% compared to the Swin Transformer, and a significant increase of
about 76.6% over the classic ResNet101. These experiments clearly indicate that ConvNeXt pos-
sesses enhanced visual feature extraction capabilities, establishing it as a more robust and effective
foundation for the overall model in comparison to other mainstream backbones.

4.5 FLOPS AND PARAMETERS

Table 4: Comparison of models based on Parameters and FLOPs
Model Params (M) FLOPs (G) Model Params (M) FLOPs (G) Model Params (M) FLOPs (G)

Mesorch 85.75 57.95 HiFiNet 6.89 145.00 DTD 67.07 272.00

IML-ViT 91.78 80.37 DualNet 7.99 66.34 FFDN 89.20 453.00

RECCE 25.83 16.18 SPSL 20.81 12.06 UniForge 229.27 34.36

Table4 presents a comparison of different models in terms of their parameter count (in millions)
and floating-point operations per second (GFLOPs). As shown in the table, although our proposed
UniForge model has a relatively large number of parameters (229.27M), its computational load
is maintained at a low level (34.36G) through optimized calculation, which ensures a favorable
inference speed. In contrast, models such as FFDN and DTD, despite having fewer parameters than
UniForge, exhibit significantly higher computational complexity. This design effectively balances
model accuracy and inference efficiency, ultimately achieving excellent overall performance.

5 CONCLUTION

In this paper, we propose a novel and unified multimodal large model framework, named Uni-
Forge, to address the limitations of current image forgery detection methods in confronting diverse
and emerging forgery techniques. At the core of this framework is the Visual Fusion Large Lan-
guage Model, which successfully integrates the powerful capabilities of pre-trained visual encoders
with the semantic understanding of large language models, aiming to establish a universal detec-
tion solution for all forgery domains. Through an efficient multimodal feature alignment and fusion
mechanism, UniForge not only captures conventional visual tampering traces but also generates text
embeddings highly relevant to the forgery analysis task via probability-guided prompt generation.
Extensive experiments conducted on public benchmark datasets, covering a wide range of forgery
types including image manipulation, text manipulation, AI-generated image, and Deepfake, demon-
strate that our model achieves state-of-the-art performance across all forgery categories. Its superior
generalization ability and comprehensive performance significantly surpass existing methods, offer-
ing a robust and unified solution to the increasingly severe challenges in digital content security.
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A APPENDIX

A.1 COMPARISON WITH OTHER MULTIMODAL METHOD

In this subsection, we conduct a comprehensive comparative analysis of our proposed UniForge
model and FakeShield (Xu et al., 2025). Although both employ multimodal methods to address the
problem of image forgery detection, FakeShield utilizes multimodality for guidance and collabora-
tion on the information of a single image, whereas UniForge leverages it for fusion and enhance-
ment at the feature level. The former sacrifices some end-to-end simplicity in exchange for rich,
interpretable outputs and precise localization. In contrast, the latter focuses on optimizing a single
classification objective to achieve broader and more robust detection performance.

The core idea of FakeShield can be summarized as Text-guided Vision, with its architecture de-
signed to serve the goals of interpretability and precise localization. The framework adopts a two-
stage architecture, in which the Large Language Model (LLM) acts as an advanced reasoning and
explanation engine. In the first stage, the LLM conducts an in-depth analysis of the input image and
generates a detailed natural language description containing specifics of the tampering traces. This
generated text modality is not only an interpretable output for the user but, more critically, serves
as a functional ”instruction” or ”high-level prompt.” It is then fed into the subsequent localization
module to actively guide a visual segmentation model (e.g., SAM) in accurately identifying and de-
lineating the tampered regions. It applies multimodal interaction to the decomposition and control
of the image detection task, using the output of one modality to direct the operation of another. The
ultimate goal is to achieve a high degree of interpretability and pixel-level localization.

In contrast, UniForge embodies the more classic and efficient concept of Multimodal Feature Fu-
sion, with an architecture designed for all-domain, unified forgery detection. Our method constructs
an end-to-end framework whose objective is not to generate complex textual explanations but to
maximize the model’s universal detection capabilities and robustness. Within this framework, the
LLM functions as an internal feature enhancement module. It does not generate new information;
instead, it deeply fuses the high-level visual features extracted by the image encoder with a text
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prompt that is dynamically constructed from the model’s own predicted probability. By introduc-
ing the text prompt as a semantic prior, UniForge injects high-level semantic information into the
purely visual features. This enables the model to understand forgery traces from different sources
from a more abstract and unified dimension. This approach focuses the multimodal technique on
the enhancement and enrichment of feature representation. Through the fusion of cross-modal in-
formation, we construct a more discriminative unified representation, which in turn leads to superior
performance when facing diverse types of forgeries.

A.2 OVERVIEW OF THE DATASETS

In this section, we will introduce the datasets used in the experiment in detail.

Table 5: Summary of Our Used Datasets.
Task Dataset Year Real Fake Annotation

Deepfake
FaceForensics++ 2019 45,388 127,209 Label
Celeb-DF-v2 2020 15,144 190,577 Label
DFDC 2020 63,265 68,851 Label

IMDL
CASIAv2 2013 7,491 5,123 Label,Mask
IMD2020 2020 414 2,010 Label,Mask
CASIAv1 2019 800 921 Label,Mask

AIGC
DiffusionForensics 2023 134,000 481,200 Label
GenImage 2023 1,331,167 1,350,000 Label

Document

OSTF 2025 2,437 1,978 Mask
RealTextManipulation 2025 3,000 6,000 Mask
T-SROIE 2022 0 926 Mask
Tampered-IC13 2022 84 378 Mask

A.2.1 DEEPFAKE

FaceForensics++ Recognized as the foremost benchmark in the domain of Deepfake detection,
FaceForensics++ (FF++) comprises authentic and fabricated data produced by four distinct ma-
nipulation techniques. These methods are identified as DeepFakes (FF-DF), Face2Face (FF-F2F),
FaceSwap (FF-FS), and NeuralTextures (FF-NT). While each of these four subsets is generated us-
ing a different manipulation approach, they all utilize an identical set of genuine test images. The
purpose of these meticulously structured subsets is to thoroughly evaluate the performance of detec-
tion models when confronted with various types of generation methods.

Regarding the composition of the dataset, the training collection is made up of 22,993 authentic
images and 91,891 fabricated images. The test collection features 4,479 real images that are shared
among the four manipulation subsets, with the corresponding number of fake images being 4,473
for the FF-DF subset, 4,480 for the FF-F2F subset, 4,477 for the FF-FS subset, and 4,479 for the
FF-NT subset.

DFDC As one of the largest benchmarks for deepfake detection, the Deepfake Detection Challenge
(DFDC) dataset is created by Facebook AI to accelerate research in the field. The original dataset is
developed for a large-scale competition and features over 100,000 video clips with 3,426 paid actors
to ensure diversity while avoiding privacy issues. DeepfakeBench(Yan et al., 2023) provides a test
set with 63,265 real and 68,851 fake images, extracted from the original videos. The fabricated
content is generated using several manipulation techniques, including GAN-based face-swapping,
providing a comprehensive and challenging evaluation resource for detection models.

Celeb-DF-v2 The Celeb-DF-v2 dataset is developed to address the limitations of earlier deepfake
datasets, which often contain fakes with noticeable visual artifacts that make them easier to de-
tect. This dataset provides a more challenging benchmark by featuring higher-quality, more realistic
deepfakes that better reflect the current capabilities of synthesis technology. The authentic videos are
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sourced from YouTube, featuring 59 celebrities with diverse ages, genders, and ethnic backgrounds,
to ensure a wide range of real-world scenarios.

The dataset is comprised of 590 real videos and a significantly larger set of 5,639 corresponding
deepfake videos, which are created using an improved synthesis process to minimize common flaws
like color mismatch. While the core dataset consists of videos, it is often pre-processed into frames
for model training and testing, with one common split resulting in 9,524 real and 179,777 fake train-
ing images, and a test set of 5,620 real and 10,800 fake images. Celeb-DF-v2 is widely recognized
for its high-quality fakes and serves as a critical tool for evaluating the generalization capabilities of
detection models.

A.2.2 IMAGE MANIPULATION

IMD2020 IMD2020 is a large-scale image manipulation detection dataset designed to overcome
the diversity limitations of existing datasets. A core component of this dataset consists of 2010
authentically manipulated images collected from the internet, for which the corresponding original
images and manually created binary masks of the manipulated regions are provided. Furthermore,
to better simulate real-world scenarios and prevent model overfitting, IMD2020 also includes a large
set of 35,000 authentic images captured by 2322 different camera models. The dataset covers var-
ious manipulation techniques, including splicing, copy-move, and forgeries generated by advanced
techniques such as GANs or content-aware filling.

CASIAv1 The CASIA Image Tampering Detection Evaluation Database Version 1.0 (CASIA V1.0)
is a seminal dataset in the field of image forensics, widely recognized for its foundational role in
early research on image splicing detection. The dataset comprises a total of 1,721 images, con-
sisting of 800 authentic and 921 spliced color images. Its primary contribution lies in providing
a benchmark collection of tampered images created using simple yet effective manipulation tech-
niques, namely splicing and copy-move forgery.

CASIAv2 CASIAv2, released by the Institute of Automation, Chinese Academy of Sciences (CA-
SIA), is a widely recognized benchmark dataset in the domain of image tampering detection. The
dataset comprises 7,491 authentic and 5,123 tampered images, covering two mainstream image ma-
nipulation techniques: splicing and copy-move. Owing to its large scale and diversity of tampered
samples, CASIA v2.0 is extensively used to evaluate and compare the performance of various image
tampering detection algorithms.

A.2.3 AI-GENERATED IMAGE

DiffusionForensics DiffusionForensics is a dataset developed to support the assessment of detectors
designed to identify images created by diffusion models. This dataset is composed of both authen-
tic and artificially generated images from three distinct domains: LSUN-Bedroom, ImageNet, and
CelebA-HQ. It features image outputs from a broad array of diffusion models, which span uncondi-
tional, class-conditional, and text-to-image generation techniques. For every image, a unique triplet
of data is provided—the original source image, its reconstructed version, and the associated DIRE
image—to allow for a more in-depth forensic examination. The structure of DiffusionForensics is
intentionally divided into specific subsets for both training and testing purposes. By incorporating a
diverse selection of generative models and image categories, it functions as a thorough benchmark
for evaluating the adaptability and resilience of detectors for diffusion-based images.

GenImage GenImage is a massive dataset created to propel progress in the field of AI-generated
image detection. It holds more than one million pairs of real and synthetic images distributed across
numerous categories. The artificial images are crafted by premier generative models, such as so-
phisticated diffusion models and GANs. Specifically, GenImage incorporates outputs from models
like ADM, BigGAN, Midjourney, VQDM, GLIDE, Stable Diffusion V1.4, Stable Diffusion V1.5,
and Wukong. Each of these models contributes a nearly equal number of images (around 168,750
each), culminating in a total of 1,350,000 synthetic images. The dataset facilitates detector evalua-
tion under practical scenarios through two distinct challenges: one is cross-generator classification,
which measures a detector’s ability to generalize to models it wasn’t trained on, and the other is de-
graded image classification, which evaluates its performance against corruptions like compression,
blurring, and reduced resolution. Through its combination of vast scale, diversity, and rigorous eval-
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uation protocols, GenImage offers a robust benchmark for building dependable detectors for fake
images.

A.2.4 TEXT MANIPULATION

T-SROIE Introduced in 2022, T-SROIE stands as the pioneering dataset for identifying the locations
of AIGC-type forgeries in scanned receipts through a contemporary IML methodology. This dataset
features text altered by the SR-Net model and is initially distributed as large-dimension, full-frame
images. We employ an identical cropping procedure to standardize all images to a 512×512 resolu-
tion and similarly crop the corresponding masks at the pixel level. Following this preprocessing, the
collection designated for training is composed of 12,769 authentic and 2,747 manipulated images.
The test collection holds 8,499 authentic and 1,579 manipulated images.

RealTextManipulation The RealTextManipulation dataset, which appears in 2025, is composed
of document images that undergo both artificial and manual alterations. It encompasses a broad
spectrum of forgery methods, such as copy-move, splicing, printing, and erasure, applied across
various document categories like scanned forms. The source images are high-resolution and not
pre-cropped. Consequently, we resize them to 512 × 512 and align their associated masks. After
this process, the RealTextManipulation-Test set consists of 22,334 genuine and 3,444 fraudulent
samples.

OSTF Proposed in 2025, the OSTF dataset is a collection of texts from natural scenes that are ma-
nipulated by eight distinct AIGC-based text editing models. Its primary aim is to assess a model’s
capacity for generalization to text manipulation techniques and image formats not previously en-
countered. As the source images are high-resolution and unaligned, we implement the 512 × 512
cropping technique, applying the identical transformation to the related masks. This results in a
training set with 1,729 real and 639 fake samples, and a test set containing 14,676 real and 3,046
fake samples.

Tampered-IC13 The Tampered-IC13 dataset, from 2022, comprises scene texts from real-world
photos that are altered with the SR-Net AIGC text editing model. This dataset also does not have
a predetermined cropping format, so we crop on both images and masks to achieve a 512 × 512
resolution. Subsequent to this preprocessing, the training partition contains 1,729 authentic and 639
counterfeit images, while the testing partition includes 1,081 authentic and 589 counterfeit images.

A.3 SUPPLEMENTARY EXPERIMENTAL RESULTS

A.3.1 DETAILED RESULTS OF THE GENIMAGE DATASET

This subsection provides a detailed performance of our method on the GenImage dataset. The
dataset comprises images generated by eight models: ADM, BigGAN, Midjourney, VQDM,
GLIDE, Stable Diffusion V1.4, Stable Diffusion V1.5, and Wukong. As presented in Table 6, we
evaluated our method independently on the image subset from each model and list the respective
results.

Table 6: Detailed performance comparison on the eight subsets of the GenImage dataset. The best-
performing results for each test set are highlighted in bold, and the second-best values are underlined.

Method
GenImage Subsets

ADM BigGAN GLIDE Midjourney Stable Diffusion v1.4 Stable Diffusion v1.5 VDQM Wukong
IMLVIT 0.7449 0.8178 0.7779 0.6588 0.7919 0.7883 0.6240 0.8012
Mesorch 0.8328 0.8687 0.8248 0.7464 0.8586 0.8621 0.6961 0.8494
HiFiNet 0.6214 0.6060 0.6485 0.6363 0.6589 0.6573 0.5175 0.6837
DualNet 0.6709 0.7897 0.7872 0.6406 0.6048 0.5942 0.5272 0.6857

DTD 0.6000 0.7010 0.6895 0.6590 0.7176 0.7141 0.5780 0.7182
FFDN 0.6458 0.6667 0.6665 0.6667 0.6662 0.6660 0.6666 0.6657

RECCE 0.8328 0.8687 0.8248 0.7465 0.8586 0.8622 0.6961 0.8494
SPSL 0.9576 0.9681 0.9519 0.8937 0.9527 0.9519 0.9214 0.9365

UniForge(Ours) 0.9926 0.9944 0.9899 0.9667 0.9918 0.9910 0.9932 0.9825
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A.3.2 DETAILED RESULTS OF THE ROBUSTNESS STUDY

The detailed scores of each model on the robustness tests, corresponding to the results in Figure 3,
are presented in this subsection.

Table 7: The F1-scores of different models under various perturbations on the CASIAv1 dataset. For
each column, the best results are in bold, and the second-best results are underlined.

Perturbation Model Standard Deviations
3 7 11 15 19 23 Avg.F1

GaussNoise

Mesorch 0.5671 0.5682 0.5668 0.5685 0.5661 0.5675 0.5674
HifiNet 0.6851 0.6868 0.6866 0.6874 0.6879 0.6860 0.6866
Recce 0.3602 0.3565 0.3505 0.3421 0.3321 0.3194 0.3435
DTD 0.5957 0.5810 0.5710 0.5527 0.5492 0.5376 0.5645
UniForge 0.7152 0.6950 0.6885 0.6854 0.6840 0.6828 0.6918
Model Kernel Size

3 7 11 15 19 23 Avg.F1

GaussianBlur

Mesorch 0.5892 0.5965 0.5885 0.5780 0.5641 0.5561 0.5787
HifiNet 0.6850 0.6887 0.6882 0.6789 0.6748 0.6726 0.6814
Recce 0.2926 0.2038 0.2553 0.3218 0.3947 0.4438 0.3187
DTD 0.6182 0.6051 0.5836 0.5756 0.5903 0.6136 0.5977
UniForge 0.7134 0.6956 0.6488 0.5588 0.5016 0.4660 0.5974
Model Quality Factors

100 90 80 70 60 50 Avg.F1

JpegCompression

Mesorch 0.5661 0.5643 0.5656 0.5644 0.5613 0.5612 0.5638
HifiNet 0.6844 0.6855 0.6830 0.6914 0.6918 0.6855 0.6869
Recce 0.3210 0.3140 0.3124 0.3377 0.3250 0.3006 0.3185
DTD 0.5518 0.5598 0.5553 0.5975 0.5891 0.5261 0.5633
UniForge 0.6152 0.6594 0.6205 0.6814 0.7059 0.6104 0.6488
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Table 8: The F1-scores of different models under various perturbations on the DiffusionForensics
dataset. For each column, the best results are in bold, and the second-best results are underlined.

Perturbation Model Standard Deviations
3 7 11 15 19 23 Avg.F1

GaussNoise

Mesorch 0.6164 0.6164 0.6158 0.6168 0.6152 0.6151 0.6159
HifiNet 0.6224 0.6195 0.6178 0.6164 0.6147 0.6146 0.6176
Recce 0.3868 0.3034 0.2507 0.2221 0.2080 0.1973 0.2614
DTD 0.5514 0.5221 0.4964 0.4757 0.4627 0.4524 0.4935
UniForge 0.8231 0.8276 0.8248 0.8224 0.8213 0.8223 0.8236
Model Kernel Size

3 7 11 15 19 23 Avg.F1

GaussianBlur

Mesorch 0.6477 0.6478 0.6445 0.6409 0.6329 0.6277 0.6403
HifiNet 0.6363 0.6408 0.6424 0.6433 0.6435 0.6428 0.6415
Recce 0.5275 0.5484 0.5953 0.6193 0.6320 0.6421 0.5941
DTD 0.6287 0.6228 0.6201 0.6328 0.6427 0.6487 0.6326
UniForge 0.5937 0.6609 0.7540 0.7110 0.6794 0.6686 0.6779
Model Quality Factors

100 90 80 70 60 50 Avg.F1

JpegCompression

Mesorch 0.6219 0.6213 0.6184 0.6184 0.6167 0.6175 0.6190
HifiNet 0.6261 0.6240 0.6236 0.6212 0.6212 0.6203 0.6227
Recce 0.4411 0.4414 0.4426 0.4415 0.4557 0.4505 0.4455
DTD 0.5178 0.5287 0.5360 0.5546 0.5768 0.5442 0.5430
UniForge 0.6660 0.6966 0.7341 0.7650 0.7977 0.7781 0.7396

Table 9: The F1-scores of different models under various perturbations on the OSTF dataset. For
each column, the best results are in bold, and the second-best results are underlined.

Perturbation Model Standard Deviations
3 7 11 15 19 23 Avg.F1

GaussNoise

Mesorch 0.3211 0.3215 0.3219 0.3201 0.3021 0.3191 0.3176
HifiNet 0.3606 0.3589 0.3580 0.3570 0.3575 0.3569 0.3582
Recce 0.3183 0.2795 0.2540 0.2386 0.2251 0.2163 0.2553
DTD 0.3577 0.3364 0.3258 0.3135 0.3044 0.2995 0.3229
UniForge 0.5290 0.4924 0.4840 0.4747 0.4690 0.4617 0.4851
Model Kernel Size

3 7 11 15 19 23 Avg.F1

GaussianBlur

Mesorch 0.3378 0.3474 0.3568 0.3506 0.3422 0.3335 0.3447
HifiNet 0.3586 0.3591 0.3545 0.3522 0.3526 0.3489 0.3543
Recce 0.3330 0.3114 0.3064 0.3079 0.3082 0.3061 0.3122
DTD 0.3658 0.3532 0.3493 0.3444 0.3427 0.3479 0.3506
UniForge 0.7168 0.6011 0.8084 0.4361 0.3883 0.3577 0.5514
Model Quality Factors

100 90 80 70 60 50 Avg.F1

JpegCompression

Mesorch 0.3183 0.3178 0.3166 0.3166 0.3187 0.3185 0.3178
HifiNet 0.3591 0.3586 0.3582 0.3577 0.3574 0.3585 0.3583
Recce 0.3276 0.3104 0.2962 0.2919 0.2754 0.2745 0.2960
DTD 0.3445 0.3468 0.3417 0.3360 0.3351 0.3242 0.3381
UniForge 0.7743 0.7063 0.6436 0.5918 0.5605 0.5470 0.6373
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Table 10: The F1-scores of different models under various perturbations on the FFDF dataset. For
each column, the best results are in bold, and the second-best results are underlined.

Perturbation Model Standard Deviations
3 7 11 15 19 23 Avg.F1

GaussNoise

Mesorch 0.6663 0.6663 0.6663 0.6663 0.6663 0.6663 0.6663
HifiNet 0.6614 0.6609 0.6548 0.6458 0.6344 0.6172 0.6458
Recce 0.6675 0.6523 0.6415 0.6332 0.6258 0.6222 0.6404
DTD 0.6662 0.6666 0.6586 0.6506 0.6334 0.6149 0.6484
UniForge 0.9037 0.8888 0.8921 0.8990 0.9024 0.9070 0.8988
Model Kernel Size

3 7 11 15 19 23 Avg.F1

GaussianBlur

Mesorch 0.6663 0.6663 0.6663 0.6663 0.6663 0.6663 0.6663
HifiNet 0.6644 0.6647 0.6650 0.6652 0.6652 0.6651 0.6650
Recce 0.7168 0.6918 0.6744 0.6691 0.6677 0.6667 0.6811
DTD 0.6662 0.6663 0.6663 0.6663 0.6663 0.6663 0.6663
UniForge 0.9142 0.8450 0.7579 0.6985 0.6751 0.6680 0.7598
Model Quality Factors

100 90 80 70 60 50 Avg.F1

JpegCompression

Mesorch 0.6663 0.6663 0.6663 0.6663 0.6663 0.6663 0.6663
HifiNet 0.6631 0.6634 0.6639 0.6632 0.6637 0.6634 0.6635
Recce 0.7250 0.7247 0.7194 0.7096 0.7064 0.6944 0.7133
DTD 0.6663 0.6658 0.6660 0.6662 0.6660 0.6660 0.6661
UniForge 0.8719 0.8606 0.8590 0.8678 0.8900 0.9364 0.8810
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