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Abstract

Imaging tasks like segmentation and registration are fundamental in a broad range of
medical research studies. These tasks are increasingly solved by machine learning based
methods. However, given the heterogeneity of medical imaging modalities, many existing
methods are not able to generalize well to new modalities or even slight variations of ex-
isting modalities, and only perform well on the type of data they were trained on. Most
practitioners have limited training data for a given task, limiting their ability to train gen-
eralized networks. To enable neural networks trained on one image type or modality to
perform well on other imaging contrasts, we propose CIFL: contrast invariant feature learn-
ing. CIFL uses synthesized images of varying contrasts and artifacts, and an unsupervised
loss function, to learn rich contrast-invariant image features. The resulting representation
can be used as input to downstream tasks like segmentation or registration given some
modality available at training, and subsequently enables performing that task on contrasts
not available during training. In this paper, we perform experiments that demonstrate
generalizability in brain segmentation and registration.
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1. Introduction and Related Work

Imaging technologies including photographs, Magnetic Resonance Imaging (MRI) and Com-
putational Tomography (CT)-Scans have provided effective means of medical diagnosis and
treatment. As a result, there is significant variability in medical images given a variety of
acquisition technologies, vendors, protocol choices, and patient populations even within a
single institution. This poses a problem for neuroimaging tools that are usually trained
on very specific MRI pulse sequences in available data sets which poorly generalize to un-
seen MRI modalities at inference. To address this, data augmentation techniques are often
employed to produce Convolutional Neural Networks (CNNs) that generalize across MRI
pulse sequences. Some methods augment data with MRI-based forward models that leverage
physics-domain approximations to generate plausible, synthetic training examples similar
to MRI pulse sequences (Jog et al., 2019). Dense Cycle Generative Adversarial Neural Net-
works (GANs) achieve adaptation between image modalities by synthesizing one modality
from another (Lei et al., 2019). Recent strategies learn to use anatomically-consistent spa-
tial deformation fields and intensity augmentations in segmentation tasks (Chaitanya et al.,
2019; Zhao et al., 2019). Synthetic generation techniques of unseen MRI contrasts were
also explored (Billot et al., 2020; Hoffmann et al., 2021b; Hoopes et al., 2022). However, all
these methods train networks specific to a certain anatomy or deep-learning task (e.g. ei-
ther segmentation or registration). In this paper, we build on synthetic generation methods
but focus on producing general feature representations that are invariant to image contrast
(modality) and are useful for a variety of analysis tasks.
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Figure 1: From a synthesized label mask of random shapes, we assign random intensities
to each anatomy class to generate two different contrasts. We subsequently add
random noise to produce a synthesized image. We apply a Contrast Invariant
Feature Learner to each of the two images (with shared weights), giving image-
sized feature representations. We use an unsupervised loss which encourages the
features to be rich (diverse across channels of the representations) yet similar for
the two contrasts.

2. Method

We define function fθ : Rl×w×h → S l×w×h×C with parameters θ that encodes a feature
representation r for input image x. The feature representation r = fθ(x) is a C-channel
image of the same spatial dimensions as x. For two images xm1 and xm2 of the same
anatomy but different modalities m1 and m2, we encourage two properties for r:

• Similar representation of two modalities from the same anatomy: fθ(xm1) ≈ fθ(xm2)

• Rich representation to be usable in downstream applications: f c
θ (xm1) and f c′

θ (xm1)
should be different, where the superscript c represents the c-th channel of the feature
representation.

To achieve these properties, we build on contrastive learning to optimize the loss
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where τα, τβ and τγ are individual temperature terms that scale their effects and X is
a dataset of multi-modality images. We employ synthetic images of different shapes and
contrasts to train such a network following SynthMorph (Hoffmann et al., 2021a). This is
illustrated pictorially in Figure 1 which provides a broad overview of our CIFL training pro-
cess. We employ a CNN to approximate fθ with eight convolutional layers each with kernel
size 3 and normalize the output final CIFL features using a ℓ2 normalization layer to dis-
tribute features onto a unit hypersphere, producing uniform intensities and closer positive
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Table 1: Performance (Dice Score) on downstream tasks, on modalities unseen during train-
ing.

Method Dice Score

CIFL

Task Dimension Dataset Baseline τγ = 1 τγ = 0.1 τγ = 0.01

Segmentation 2D Inverted OASIS T1 0.18± 0.01 0.84± 0.04 0.83± 0.04 0.79± 0.04

Registration 2D OASIS T1-Inverted T1 0.45± 0.02 0.69± 0.05 0.69± 0.05 0.66± 0.06

IXI T1-T2 0.36± 0.03 0.59± 0.13 0.59± 0.12 0.61± 0.13
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Figure 2: Example of CIFL features yielded by a trained CIFL network for two different
MRI pulse sequences. The feature representations are similar for any two modal-
ities in the same channel shown in each blue rectangle. The representations for
each image are also different across channels (between blue rectangles), which
provide downstream deep learning models with rich information.

alignments (Wang and Isola, 2020). To train standard downstream networks for segmen-
tation and registration tasks (Balakrishnan et al., 2019; Ronneberger et al., 2015), we use
the feature representations yielded from the trained CIFL network to generate downstream
input features during inference on unseen modalities for the same task.

3. Experiments and Results

We perform preliminary experiments where we first train a CIFL network on image data
of synthetic shapes. Then we train a downstream network using CIFL features from a T1
MRI brain image, and test the performance of those networks using CIFL features from
unseen modalities. For downstream tasks, we employ the OASIS dataset (Hoopes et al.,
2021; Marcus et al., 2007) of T1 images, processed to be normalized, affinely aligned and
include 5-label segmentation maps consisting of the background, white matter, grey matter,
cortical spinal fluid, and thalamus. In this preliminary work, we extract the mid-coronal
slice and work in 2D. We partitioned 232 images for training, and 58 for validation. We then
test each model on 100 samples of unseen images from OASIS, and Information eXtraction
from Images (IXI) dataset1. Our preliminary experimental results in Table 1 show promise
that the CIFL features can enable generalizability to unseen modalities shown in Figure 2.

1. IXI Dataset: https://brain-development.org/ixi-dataset/
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