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Abstract

Recent advancements in large language models
have significantly influenced the field of online
medical consultations. However, critical chal-
lenges remain, such as the generation of hallu-
cinated information and the integration of up-
to-date medical knowledge. To address these is-
sues, we propose Informatics Llama (ILlama),
a novel framework that combines retrieval-
augmented generation with a structured med-
ical knowledge graph. ILlama incorporates
relevant medical knowledge by transforming
subgraphs from a structured medical knowl-
edge graph into text for retrieval-augmented
generation. By generating subgraphs from the
medical knowledge graph in advance, specifi-
cally focusing on diseases and symptoms, IL-
lama is able to enhance the accuracy and rel-
evance of its medical reasoning. This frame-
work enables effective incorporation of causal
relationships between symptoms and diseases.
Also, it delivers context-aware consultations
aligned with user queries. Experimental re-
sults on the two medical consultation datasets
demonstrate that ILlama outperforms the strong
baselines, achieving a semantic similarity F1-
score of 0.884 when compared with ground
truth consultation answers. Furthermore, qual-
itative analysis of ILlama’s responses reveals
significant improvements in hallucination re-
duction and clinical usefulness. These results
suggest that [Llama has strong potential as a re-
liable tool for real-world medical consultation
environments. !

1 Introduction

Traditional online medical consultation platforms,
such as HealthCareMagic® and iCliniq?, rely on
medical professionals to answer patient queries and
provide expert advice. However, due to their de-
pendence on human labor, these systems face limi-
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tations in delivering real-time responses, as experts
require significant time to review inquiries and gen-
erate appropriate answers (Cao et al., 2022). To
address this issue, rule-based medical consultation
systems have been introduced (Amato et al., 2017;
Mishra et al., 2023; Rosruen and Samanchuen,
2018; Huang et al., 2018). Nevertheless, these sys-
tems often struggle to handle complex symptoms
and patient-specific queries, as they rely on prede-
fined rules that lack flexibility and adaptability.

Recently, large language model (LLM)-based
consultation systems, such as ChatDoctor (Li et al.,
2023), have emerged as promising alternatives.
These systems typically extract keywords from
user queries to retrieve relevant medical informa-
tion from sources like Wikipedia or custom disease
databases. However, their reliance on potentially
inaccurate keyword extraction may lead to search
failures and hallucinations, failing to capture essen-
tial disease-symptom relationships. While dense
embedding-based retrieval methods (Karpukhin
et al., 2020) can alleviate keyword extraction errors,
they still have limitations in capturing the com-
plex symptom-disease relationships essential for
medical consultations. For example, distinguishing
whether shortness of breath and fatigue arise from a
serious condition like lung cancer or a more benign
cause such as anemia requires an understanding of
such causal relationships.

To overcome these limitations, we propose a
novel framework for real-time medical consulta-
tion, called Informatics Llama (ILlama), which
improves the response quality as measured by
embedding-based evaluation metrics by incorpo-
rating structured medical knowledge. To ensure
that ILlama performs reliably not only on known
data distributions but also in unfamiliar real-world
scenarios, we adopt both in-distribution and out-
of-distribution evaluation protocols throughout this
work. This setup allows us to assess the model’s
generalizability across different sources of med-
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ical consultations. ILlama leverages retrieval-
augmented generation (RAG) (Lewis et al., 2020b)
by incorporating medical knowledge from a struc-
tured knowledge graph (KG) built upon the unified
medical language system (UMLS)*. UMLS is up-
dated regularly, which aligns well with common
retraining cycles. Therefore, instead of frequently
retraining the language model, it is more efficient
to update the KG, enabling practical and timely
integration of new medical information.

Unlike keyword-dependent approaches, ILlama
improves both retrieval efficiency and reliability.
Keyword-extraction methods often misinterpret the
intent of user queries and, in many cases, fail to
return relevant results if relevant medical informa-
tion for the extracted keywords is unavailable. By
employing a KG-based retrieval approach (Luo
et al., 2025), ILlama effectively represents disease-
symptom causal relationships, enhancing the con-
textual relevance and accuracy of diagnostic re-
sponses.

In addition, ILlama tackles two core limitations
prevalent in existing dense embedding-based aug-
mentation systems: (1) the incompleteness of ex-
ternal knowledge representations and (2) the diffi-
culty in aligning user queries with the embedded
knowledge space (Varshney et al., 2023). ILlama
addresses the incompleteness of the KG by con-
structing subgraphs that enrich sparse regions with
semantically related triples. It is also designed to
alleviate the challenge of aligning user queries with
the KG structure by embedding each triple and inte-
grating it into the answer generation process. This
approach enables more accurate semantic match-
ing and enhances the clinical relevance of the gen-
erated responses. Specifically, embedding triples
allows the model to retrieve more precise symptom-
disease associations, reducing factual errors, while
the structured knowledge context provided by the
KG improves the alignment of responses with real-
world clinical reasoning.

We validate the effectiveness of ILlama using
two medical consultation datasets with different
characteristics. Specifically, we conducted experi-
ments with publicly available data collected from
HealthCareMagic and iCliniq. For in-distribution
evaluation, we use the HealthCareMagic dataset,
which includes separate training, validation, and
test splits. For out-of-distribution evaluation,
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we use real-world consultation records from the
iCliniq platform, serving as the test set. ILlamap,
which is based on the same base model as Chat-
Doctor, achieves F1 scores of 0.866 and 0.851 on
the in-distribution and out-of-distribution datasets,
respectively, and outperforms all baseline models.
These scores are computed based on the seman-
tic similarity between the generated responses and
the ground truth consultation records. ILlamagg,
with a more powerful backbone LLM, further im-
proves these results, achieving scores of 0.884 and
0.871, respectively. The reliability of the gener-
ated responses is further supported by a qualitative
evaluation that assesses their clinical quality.
In summary, our contributions are three-fold:

* We propose ILlama, a framework that reduces
hallucinations by integrating structured medi-
cal knowledge and explicit disease-symptom
causal relationships into LLMs. This frame-
work facilitates easy knowledge updates by al-
lowing replacement of the underlying UMLS-
based KG.

* [Llama utilizes subgraphs from a UMLS-
based KG, which are transformed into docu-
ment form, combined with vector search tech-
niques, enabling precise retrieval and integra-
tion of medically relevant knowledge into the
answer generation process.

* Our framework achieves state-of-the-art per-
formance across multiple datasets, with the
best results observed on the HealthcareMagic
dataset, significantly improving the reliability
and usefulness of automated medical consul-
tation systems.

2 Related Works

2.1 Early Medical Consultation Systems

Early systems (Amato et al., 2017; Mishra et al.,
2023; Rosruen and Samanchuen, 2018; Huang
et al., 2018) used rule-based approaches for simple
Q&A interactions, easing the burden on health-
care professionals but failing to handle complex
symptoms and disease interactions. To overcome
this, medical-specialized models using natural lan-
guage processing technologies (Lee et al., 2020;
Yuan et al., 2022; Lu et al., 2022) were developed,
yet challenges in incorporating structured medical
knowledge and understanding causal relationships
between symptoms and diseases remain. LLMs
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such as GPT-4 (Achiam et al., 2023) have catalyzed
the development of models capable of sophis-
ticated medical consultations (Thirunavukarasu
etal., 2023; Li et al., 2024; Toma et al., 2023; Chen
et al., 2023; Luo et al., 2022; Yang et al., 2024),
although persistent challenges remain, including
hallucinations and the incorporation of up-to-date
medical information (Vaishya et al., 2023; Hadi
et al., 2024). To mitigate these issues, we incor-
porate a UMLS-based KG that enables accurate
identification of disease relationships and contex-
tual information retrieval, thereby supporting more
clinically relevant and context-aware consultations.

2.2 Knowledge-Based LLMs in Medical
Consulting

To address the limitations of LLLMs, such as hallu-
cinations, lack of timely medical knowledge, and
insufficient adaptability to patient-specific contexts,
recent research has explored the integration of
real-world knowledge to enhance performance in
medical applications. Among these approaches,
the combination of LLMs with KGs has demon-
strated effectiveness in incorporating external in-
formation. For example, KG-enhanced models
have been used for diagnosis prediction (Gao et al.,
2025), graph-augmented medical dialogues (Varsh-
ney et al., 2023), and factual medical question an-
swering (Guo et al., 2022; Martino et al., 2023).
However, many of these methods rely on incom-
plete KGs, which are often limited in coverage or
biased toward certain clinical entities. They also
struggle with aligning unstructured user queries
to structured graph elements, both of which hin-
der their clinical precision. In contrast, ILlama
introduces subgraph-based retrieval and semantic
reranking to improve knowledge relevance and
integration, offering more accurate and context-
sensitive medical consultations.

3 Method

The proposed framework consists of three main
components: Retriever, Reranker, and Generator.
Medical knowledge from the KG is first segmented
into subgraphs and transformed into documents in
natural language form, which serve as input across
all stages. Section 3.1 describes how the Retriever
identifies subgraphs semantically relevant to the in-
put query. Section 3.2 presents the Reranker, which
employs a cross-encoder (Reimers and Gurevych,
2019) to rerank the retrieved documents in natural

language form. Section 3.3 explains how the Gen-
erator uses the top-ranked documents to generate
the final response. The overall process is illustrated
in Figure 1.

3.1 Retriever: Enhancing Medical Knowledge

In medical consultations, it is essential to provide
accurate, context-aware information without hallu-
cinations. Our framework requires comprehensive
medical knowledge, particularly regarding causal
relationships between symptoms and diseases. To
achieve this, we incorporate a KG based on UMLS,
which enables the language model to effectively
capture these relationships and allows targeted re-
trieval of relevant medical facts from the KG. This
ensures that responses are both precise and contex-
tually appropriate to the user’s query.

3.1.1 Triple-Centric Knowledge Structuring
for Medical Reasoning

To effectively represent medical knowledge within
the model, we adopt the Triple2Seq (Bi et al., 2024)
method to segment the UMLS-based KG into mean-
ingful and contextually coherent subgraphs. A seg-
mented KG (i.e., subgraph) is a structured represen-
tation where nodes denote medical concepts (e.g.,
diseases, symptoms, and treatments) and edges de-
fine the relationships among them (e.g., "has symp-
tom", "treated by", and "has causes").

Each subgraph 7, is composed of a center triple
7. (e.g., Lung Cancer-has symptom-Fatigue), rep-
resenting a core medical concept, and a set of neigh-
boring context triples 7 (e.g., Lung Cancer-has
causes-Smoking) that provide additional medical
facts related to the center triple:

Tg=TcUTN. ey

T includes all triples connected to the center
triple via its neighboring nodes in the KG and is
defined as:

Tn ={Ti | Ti e N}, 2

where A denotes the set of nodes that are directly
linked to the center concept in the graph. For ex-
ample, if the center triple corresponds to a disease
such as lung cancer, the context triples may include
related symptoms (e.g., shortness of breath and fa-
tigue), diagnostic procedures (e.g., chest X-ray), or
causes (e.g., smoking or air pollution). By organiz-
ing knowledge in this localized and relation-centric
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Figure 1: Overall architecture for medical query answering using contextualized subgraphs from the UMLS-based
KG. These subgraphs are encoded and stored in a vector database, then combined with the user query to generate

the final response using the Llama model.

manner, the model is guided to focus on medically
relevant and causally connected concepts, thereby
enhancing the contextual consistency of the gen-
erated responses. Furthermore, this structure en-
ables more accurate and context-aware diagnosis
and consultation based on the patient’s reported
symptoms, ultimately improving the reliability and
practicality of medical dialogue systems.

3.1.2 Subgraph-to-Text Transformation

The UMLS-based KG represents relation-
ships between medical concepts using a sub-
ject—predicate—object triple structure, which
closely resembles the structure of natural language
sentences. Leveraging this property, we convert
each triple into a natural sentence. This transfor-
mation reconstructs the structural relationships in
the graph into a coherent narrative, allowing the
model to intuitively understand the meaning and
connections between medical entities. As a result,
the graph-based knowledge is naturally integrated
into the text generation process, enabling the
model to learn richer contextual information.

We further define subgraphs consisting of a cen-
ter triple and its related neighboring triples. All
triples within each subgraph are converted into nat-
ural sentences and aggregated into a single doc-
ument, forming a semantically coherent and log-
ically structured unit of knowledge. A detailed
example of this subgraph-to-document transforma-
tion, including the rule-based sentence structure
and the resulting document format, is provided in
Appendix B.

3.1.3 Pseudo Query Generation for
Fine-Tuning Medical Search System

In our framework, document-form subgraph en-
coder and reranker models pre-trained on general
domain data are not sufficient to accurately re-
trieve medical information grounded in a UMLS-
based KG. To improve their ability to understand
and retrieve UMLS-specific representations, these
models should be fine-tuned on domain-specific
data. However, manually constructing high-quality
query-document pairs is impractical and costly. To
address this, we propose an automated pipeline
based on frozen Llama3.1gg (Dubey et al., 2024)
models that generates and filters training data with-
out human supervision. The pipeline consists of
two core components: a pseudo query generator,
which produces queries reflecting key contents
of each document, and an evaluator, which fil-
ters these queries based on two criteria, patient
centeredness ([Patient/notPatient|) and docu-
ment relevance ([Relevant/Irrelevant)).

As illustrated in Figure 2, the system generates
multiple candidate queries per document, evalu-
ates them, and filters those that meet the training
standards. Although the evaluator operates in a
zero-shot setting without parameter updates, it con-
sistently selects high-quality query-document pairs
and generalizes well across unseen pairs. These
filtered pairs are subsequently used to fine-tune
the document-form subgraph encoder and reranker
models, contributing to improved retrieval accuracy
and consistency. Details on the objective functions
used for each model are provided in Appendix C.
Furthermore, while our pipeline focuses on medi-
cal consultation documents in this study, it can be
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easily adapted to other domains by adjusting the
evaluation criteria.

3.1.4 Document Embedding and Vector
Retrieval

We fine-tuned the bge-large-en-vi.5 (Xiao et al.,
2024) model to generate embeddings for docu-
ments derived from the subgraph, optimizing its
ability to capture semantic nuances. These embed-
dings are stored in a vector database using FAISS
(Johnson et al., 2019), which is optimized for large-
scale similarity searches. By integrating maximum
inner product search (Shrivastava and Li, 2014), we
efficiently retrieve relevant documents, ensuring
low-latency and high-precision results, crucial for
real-time applications like conversational agents.

3.2 Reranker: Filtering for Exact Knowledge

To enhance the accuracy of retrieved documents,
we implemented a reranking process using the
fine-tuned bge-reranker-large® model. The cross-
encoder simultaneously encodes both the user’s
query and the documents, effectively capturing
complex interactions and evaluating the relevance
and specificity of each document in relation to the
user’s needs. Based on the reranking scores, doc-
uments are reordered to prioritize those most rele-
vant to the query and tailored to the user’s context.
This ensures the model can reflect more precise
and relevant information in the final response, ul-
timately providing answers that are accurate and
aligned with the user’s reported medical concerns.

5https://huggingface.co/BAAI/
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3.3 Generator: Generating Patient-Centered
Medical Consultation

In the final stage, we generate medically accurate
and context-aware responses using reranked doc-
uments. We fine-tune Llama2,g (Touvron et al.,
2023) and Llama3.1gg on real medical consultation
data, allowing the model to learn associations be-
tween patient queries and retrieved knowledge. Un-
like methods that rely solely on synthetic prompts,
our framework uses actual consultation records
with retrieved documents integrated during fine-
tuning. This helps the model better understand
semantic relationships between queries and sup-
porting knowledge, grounding its generation in
clinically relevant context. As a result, ILlama can
deliver more accurate and tailored responses while
reducing hallucinations and speculative content.

4 Experiments

HealthcareMagic iCliniq

# dialogues 112,165 1,380

# tokens 27,475,545 313,735
Avg. # tokens per dialogue 245.01 227.34
Max # tokens per dialogue 2,544 1,001
Min # tokens per dialogue 78 60

Table 1: Statistics of the datasets used for training, vali-
dation, and testing, showing the distribution of dialogues
and token counts.

4.1 Datasets

We use two types of data in ILlama, namely a
UMLS-based KG and real-world medical consulta-
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Category In-Distribution Out-of-Distribution
Model F1 METEOR BLEU-4 ROUGE-2 PPLJ| F1 METEOR BLEU-4 ROUGE-2 PPLJ
Baselines without Retrieval
BARTL yrge 0.837 0.059 0.0 0.038 1.398 | 0.838 0.063 0.0 0.023 1.404
TSLarge 0.840 0.061 0.0 0.031 1.475 | 0.843 0.069 0.0 0.020 1.417
Llama275 w/ LoRA 0.838 0.192 0.031 0.052 7.940 | 0.838 0.201 0.029 0.050 10.926
Llama3.1gg w/ LoRA | 0.844 0.230 0.061 0.074 10.659 | 0.841 0.222 0.029 0.048 14.259
Baselines without Fine-Tuning
Gemma2gp 0.836 0.180 0.016 0.036 19.211 | 0.841 0.201 0.022 0.040 16.648
Yil.50p 0.832 0.168 0.015 0.034 15.552 | 0.835 0.188 0.021 0.038 14.371
Falcon37p 0.839 0.135 0.008 0.025 39.389 | 0.844 0.156 0.012 0.028 34.445
DeepSeek-R1gp 0.832 0.175 0.012 0.028 43.653 | 0.837 0.191 0.014 0.030 40.259
Baselines with Fine-Tuning & Retrieval
Llama275 w/ LoRA 0.837 0.191 0.029 0.050 7.939 | 0.839 0.203 0.029 0.050 10.926
Llama3.1gg w/ LoRA | 0.786 0.222 0.010 0.024 10.657 | 0.789 0.199 0.006 0.019 14.259
ChatDoctor 0.846 0.218 0.008 0.022 10.009 | 0.845 0.211 0.035 0.045 12.676
Ours

ILlamazp 0.866 0.203 0.037 0.058 7.939 | 0.851 0.213 0.041 0.048 10.924
ILlamagg 0.884 0.231 0.063 0.075 7.659 | 0.871 0.222 0.030 0.049 10.259

Table 2: Performance comparison across baselines categorized into three groups: without retrieval, without fine-
tuning, and with fine-tuning & retrieval. Metrics such as F1, METEOR, BLEU, ROUGE, and PPL are evaluated
for both in-distribution and out-of-distribution datasets. The highlighted row represents our proposed method,

demonstrating superior performance across most metrics.

tion records. The KG provides structured clinical
relationships that support precise retrieval, while
the consultation data enables response generation
grounded in authentic patient—doctor interactions.
Detailed descriptions of each dataset are provided
in the following subsections.

4.1.1 Datasets for Medical Retrieval

We construct our KG using the 2024 release of the
UMLS Metathesaurus®, which comprises approx-
imately 20K entities, 22 relation types, and 250K
triples. This structured resource provides a seman-
tic backbone for our RAG framework, enabling
precise retrieval and integration of clinically rele-
vant knowledge. Grounding generation in this KG
enhances factual accuracy, reduces hallucinations,
and supports context-aware medical responses.

4.1.2 Datasets for Medical Consultation

To evaluate the performance of ILlama, we used
medical consultation records from two real-world
platforms: HealthcareMagic and iCliniq. The
HealthcareMagic dataset, specifically collected
for medical question answering tasks, consists of
single-turn interactions where each patient query
is paired with a response from a licensed medical
professional. We split this dataset into training, val-
idation, and in-distribution test sets using an 8:1:1

6h'ctps ://www.nlm.nih.gov/research/umls/
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ratio. In contrast, the iCliniq dataset, which follows
a similar single-turn format, was used exclusively
as an out-of-distribution test set. This separation
allows us to evaluate the model’s generalization
performance on unseen queries from a different
source, minimizing the risk of data leakage and en-
suring a fair comparison. Both datasets are publicly
available for academic research and have been de-
identified to protect user privacy. As these records
often include patient-reported details such as age
and symptoms, the model implicitly learns to adapt
responses to clinical contexts during fine-tuning.
Detailed dataset statistics are provided in Table 1.

4.2 Metrics

We evaluated our model using semantic and quanti-
tative metrics to assess the accuracy and contextual
appropriateness of generated responses. For seman-
tic evaluation, we adopted BERTScore (Zhang*
et al., 2020) with ROBERTay ye (Liu et al., 2019),
which measure contextual similarity using deep em-
beddings. This approach is particularly suitable for
handling the nuances of medical language where
lexical overlap is often limited (Hanna and Bojar,
2021). We report the F1 score from BERTScore as
our primary semantic similarity metric.

In addition to semantic evaluation, we also em-
ployed lexical metrics such as ROUGE-2 (Lin,
2004), BLEU-4 (Papineni et al., 2002), Perplexity
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Figure 3: Comparison of responses from ChatDoctor, ILlama;g, and ILlamagg regarding COVID-19 symptoms.
Highlighted sections indicate usefulness, ambiguity, hallucinations, and grammatical errors.

(PPL) (Lavie and Agarwal, 2007), and METEOR
to evaluate lexical accuracy, fluency, and coherence.
In particular, METEOR considers synonymy, stem-
ming, and paraphrasing, offering a flexible assess-
ment of sentence-level similarity. This evaluation
framework enables a comprehensive assessment of
the model’s ability to deliver precise, fluent, and
contextually relevant medical responses.

4.3 Baselines

Baselines without Retrieval These models rely
solely on fine-tuned capabilities on domain-specific
data, without any retrieval mechanism. We exam-
ine BART aree (Lewis et al., 2020a), TSy arge (Raffel
et al., 2020), and Llama27g w/ LoRA (Hu et al.,
2022) and Llama3.1gg w/ LoRA.

Baselines without Fine-Tuning Models in this
category use a retrieval mechanism but are not
fine-tuned on domain-specific data. These base-
lines enhance their performance by leveraging the
PubMed dataset (Xiong et al., 2024) for retrieval
of pertinent biomedical literature, which provides
a rich source of domain-specific information with-
out the need for additional fine-tuning. These
include Gemma2gg (Team et al., 2024), Yil.5¢g
(Young et al., 2024), Falcon375 (Team, 2024), and
DeepSeek-R1gp (DeepSeek-Al et al., 2025).

Baselines with Fine-Tuning & Retrieval This
category includes models that undergo fine-tuning
on domain-specific data and use retrieval. Mod-
els include Llama275 w/ LoRA (Hu et al., 2022),
Llama3.1gg w/ LoRA, and ChatDoctor, although
ChatDoctor does not use PubMed for retrieval.

4.4 Result

As shown in Table 2, ILlama consistently outper-
formed the baselines across both in-distribution

and out-of-distribution evaluations. In the in-
distribution setting, ILlamagg achieved the best
F1 score of 0.884 and METEOR of 0.231, surpass-
ing all baseline models. Notably, ILlamag also
showed strong performance (F1: 0.866, METEOR:
0.203), outperforming ChatDoctor, which shares
the same base model, across all major metrics in-
cluding F1, METEOR, and PPL. These results high-
light the effectiveness of ILlama’s RAG framework
in producing accurate and coherent responses.

In the out-of-distribution setting, ILlama
maintained robust generalization performance.
ILlamagg achieved an F1 of 0.871 and METEOR of
0.222, with minimal performance drop compared
to its in-distribution results. This demonstrates
ILlama’s ability to adapt to unseen queries and lin-
guistic variations from different data sources. The
integration of embedding-based vector retrieval and
a structured medical KG played a key role in im-
proving factual consistency while minimizing hal-
lucinations. Overall, ILLlama achieved state-of-the-
art performance across F1, METEOR, and PPL,
validating its reliability and generalization in real-
world medical consultation scenarios.

S Analysis

5.1 Qualitative Analysis of Outputs

As shown in Figure 3, we present a qualitative com-
parison of ChatDoctor, [Llamasg, and ILlamagg in
response to a COVID-19 related query, alongside
the underlying reasoning represented through con-
textualized subgraphs extracted from the UMLS-
based KG. While ChatDoctor exhibited frequent
hallucinations, such as recommending antibiotics
for viral infections, ILlama;g demonstrated im-
proved clinical reasoning but still included unneces-
sary suggestions. [Llamagg provided the most bal-
anced response, delivering accurate medical guid-
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ance and appropriate follow-up steps. These evalu-
ations were conducted using the OpenAl o1 model’
(Liu et al., 2023). The prompts used for this assess-
ment are provided in Appendix D. The reasoning
process is grounded in causal and diagnostic rela-
tionships (e.g., Viral Infection—-URI-Cough/Fever
or Chest X-Ray to rule out Lung Infection), cap-
tured within the subgraph structure.

5.2 Latency Analysis in Real-Time Medical
Consultation Systems

In Figure 4, we present a comparison of latency
and throughput between ILlama and ChatDoctor.
ILlama consistently demonstrates lower latency
across search, answer, and end-to-end processing.
For example, ILlama’s end-to-end latency ranges
from approximately 5,538 to 6,507 ms, whereas
ChatDoctor’s ranges from around 6,921 to over
26,491 ms. This gap stems from ChatDoctor’s
reliance on LLM-based keyword extraction fol-
lowed by live API calls to external sources such as
Wikipedia, whose articles average more than 900
tokens and thus markedly inflate the answer-latency
portion of the overall response time. In contrast,
ILlama uses pre-indexed graph-based retrieval with
documents averaging around 130 tokens, enabling

"https://openai.com/o1/

higher throughput with reduced delay. These re-
sults highlight ILlama’s efficiency and its suitabil-
ity for real-time medical consultation.

5.3 Full-Graph vs. Subgraph Search

We compared the effectiveness of subgraph-based
retrieval using Triple2Seq with that of a full-graph
approach. As shown in Figure 5, the subgraph
method produces more accurate and reliable re-
sponses. Full-graph retrieval, while comprehensive,
often includes loosely connected or clinically irrel-
evant nodes, which can overwhelm the generation
process with extraneous information and increase
the risk of hallucinations. In contrast, subgraph
retrieval narrows the focus to a central medical
concept and its semantically related neighbors, al-
lowing the model to process only the most relevant
context. This targeted representation helps align
retrieved knowledge more precisely with the user’s
query, resulting in improved factual accuracy and
reduced noise. Such precision is particularly im-
portant in the medical domain, where irrelevant or
overly broad context can compromise the safety
and trustworthiness of responses.

6 Conclusion

In this study, we proposed ILlama, a retrieval-
augmented medical consultation framework that
integrates structured KGs and cross-encoder rerank-
ing. ILlama captures causal relationships between
symptoms and diseases, and leverages patient de-
mographics during training to support advice while
reducing hallucinations. Experiments show strong
performance across accuracy, latency, and contex-
tual relevance in both in-distribution and out-of-
distribution settings, highlighting the promise of
structured medical knowledge in LLMs for scalable
healthcare applications.
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Limitations

Although ILlama improves the accuracy of medical
consultations and reduces hallucinations by lever-
aging a UMLS-based KG and embedding-based
retrieval, several limitations remain. First, the cov-
erage of the KG and datasets is relatively narrow,
primarily reflecting specific diseases and linguistic
patterns. This limits the model’s generalizability
to broader clinical domains and multilingual, mul-
ticultural contexts. Expanding the training data to
include more diverse and representative medical
cases is necessary to improve robustness. Second,
the KG may not capture the latest clinical updates
such as emerging diseases, new treatments, or re-
vised guidelines. Without real-time synchroniza-
tion, the model may generate outdated or clinically
irrelevant responses. Third, while ILlama achieves
strong performance on standard metrics such as
F1, METEOR, and PPL, these metrics do not fully
capture clinical safety or decision-making valid-
ity. Future work should explore automated evalua-
tion methods or deployment in simulated clinical
environments to further validate the model’s clin-
ical reliability without increasing the burden on
human experts. Lastly, the current system relies on
relatively large-scale models, which may limit de-
ployment in resource-constrained settings. Future
directions include developing lightweight variants
and adapting the framework for multilingual and
cross-cultural applications to enable broader adop-
tion in global healthcare environments.

Ethical Considerations

While our model, ILlama, aims to enhance medical
consultations by reducing hallucinations and incor-
porating up-to-date medical knowledge, it is not
100% accurate and may not always provide correct
diagnoses. In the medical field, inaccuracies can
lead to severe consequences, including misdiagno-
sis and inappropriate treatment recommendations,
which could potentially be life-threatening.

Therefore, it is crucial to acknowledge the
limitations of Al-based medical consultation sys-
tems. Further research is necessary to improve
the model’s accuracy and reliability. Additionally,
such systems should be used to support, not replace,
professional medical advice. We recommend that
users consult qualified healthcare professionals for
personalized medical guidance and that our model
be used as a supplementary tool to enhance access
to medical information.
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A Implementation Details

This study fine-tuned a medical domain-specific
model using LoRA with a configuration of r = 16,
lora_alpha = 16, and lora_dropout = 0. The
learning rate started at 2 x 107>, with 10% of the
total steps dedicated to warmup. A linear sched-
uler was used for adjusting the learning rate during
training. The model was trained for 3 epochs, and
the maximum sequence length was set to 4,096 for
handling complex queries, and the training was con-
ducted on two NVIDIA RTX A6000 48GB GPUs.

For retrieval, 50 documents were fetched using
maximum inner product search from the FAISS
vector store. The top 10 documents from this set
were selected for final use after reranking. This
approach improved the model’s ability to address
medical queries by leveraging dense retrieval meth-
ods, enhancing both retrieval accuracy and re-
sponse quality.

B Example Document from UMLS
Subgraph

Table 3 presents an example of subgraph-to-text
conversion used in our system. The subgraph is
constructed around the central triple (Lung cancer
— has symptom — fatigue) from the UMLS-based
KG. All triples connected to the central node are
included and expressed as simple natural language
sentences using a rule-based template. Each rela-
tion type (e.g., has symptom, diagnosed by, treated
by) is mapped to a consistent sentence pattern, such
as “X has symptom Y” or “X can be diagnosed by
Y. This consistency facilitates automatic transfor-
mation and retrieval in downstream components.
The resulting document serves as a structured and
semantically coherent unit of medical knowledge
for training and inference.

C Objective Functions for Fine-Tuning
the Medical Search System

C.1 Document-form Subgraph Encoder

The encoder is trained with the InfoNCE loss (Oord
et al., 2018), which is a contrastive learning objec-
tive widely used in self-supervised learning. Given
a set of N random samples X = {xi1,...,zn}
containing one positive sample x;, from the true
conditional distribution p(x41 | ¢;) and N —1 neg-
ative samples drawn from a proposal distribution
p(xyir), the loss is formulated as:
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where fi(x, c;) denotes a scoring function (e.g., a
dot product or similarity function) that estimates
the compatibility between context ¢; and future
sample z. Optimizing this loss leads fi(zyk, ct)
to approximate the density ratio:
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C.2 Reranker

The reranker model adopts a cross-encoder ar-
chitecture and is fine-tuned with a binary cross-
entropy loss. Given a query—document pair (g, d)
and a binary label y € {0,1} indicating rele-
vance, the model predicts a scalar relevance score
y = sigmoid(s(q, d)), and the loss is computed as:

Lpce = — [ylogy + (1 —y)log(1 — 7)]

This objective encourages the model to produce
high scores for relevant documents and low scores
for irrelevant ones, improving the quality of the
final ranking.

D Evaluation Prompt Design

To support the qualitative evaluation of model out-
puts, we designed three structured prompts target-
ing hallucination detection, grammatical correct-
ness, and patient helpfulness. These prompts were
used with the OpenAl ol model to evaluate re-
sponses generated by ILlama. Table 5 presents the
full text of each prompt. Each includes clear task
instructions, placeholders for the model-generated
response, and, in the helpfulness case, the original
patient question. The prompts instruct the model to
make a binary decision and identify specific parts
of the response when relevant.

The hallucination prompt assesses whether a re-
sponse contains fabricated or unsupported informa-
tion. The grammatical prompt checks for language
correctness. The helpfulness prompt determines
whether the response includes content that would
be useful to a patient, based on the given question.
Evaluations were conducted in a zero-shot setting,
and the prompt design aimed to guide the model
toward accurate and consistent judgments without



fine-tuning. This allowed for scalable and focused
assessment of clinical response quality.

E Algorithm
E.1 ILlama Algorithm

This algorithm, as shown in Algorithm 1, retrieves
and reranks relevant documents for context-aware
medical consultations. It combines FAISS search
results, reranks them with a cross encoder, and
generates a contextually accurate response using
Llama, maintaining optimal performance and accu-
racy throughout the process.

E.2 Pseudo Query Generation Algorithm

This algorithm, as shown in Algorithm 2, generates
patient-style queries and evaluates them to obtain
(g, d) pairs for training the encoder and reranker if
the conditions are met. Based on the input prompt
and documents derived from the KG, the pseudo
query generator (Llama3.1gg) creates a query. The
evaluator (Llama3.1gg) then checks if the gener-
ated query meets the "patient-style" and "relevant"
conditions. If the conditions are satisfied, the (¢, d)
pairs are stored for document-form subgraph en-
coder and reranker training; otherwise, the query is
regenerated, and the evaluation process is repeated.
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Subject

Relation Object

\ Document-form subgraph

Lung Cancer

Lung Cancer
Shortness of Breath
Fatigue

Lung Cancer

Lung Cancer

Lung Cancer

Lung Cancer

Lung Cancer
Surgery

has symptom Fatigue

has symptom  Shortness of Breath
is symptom of Anemia

is symptom of Anemia

has symptom  Chronic Cough
diagnosed by  Chest X-Ray

has cause Smoking

has cause Air Pollution
treated by Surgery

isa lobectomy

Lung cancer has symptom fatigue.

Lung cancer has symptom shortness of breath.
Shortness of breath is symptom of anemia.
Fatigue is symptom of anemia.

Lung cancer has symptom chronic cough.
Lung cancer can be diagnosed by chest X-ray.
Lung cancer has cause smoking.

Lung cancer has cause air pollution.

Lung cancer is treated by surgery.

Surgery is a lobectomy.

Table 3: Example of subgraph-to-text conversion for a document centered on the triple (Lung cancer — has symptom

— fatigue).

Prompting Category Input Prompt

ILlama’s prompt

You are a medical assistant specializing in providing expert consultations
for medical inquiries. Your role is to deliver accurate, user-friendly
medical information, clarify symptoms, explain potential

medical conditions, and recommend next steps with empathy

and professionalism. When formulating your response,

to ensure clarity and accuracy, user-friendly answer in your response.

### Context
{context}

### Input
{query}

### Response

Table 4: Prompt used for ILlama inference
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Algorithm 1 ILlama Algorithm for Medical Query Answering

1: Input:
q: User query
KG: UMLS-based KG
D B: FAISS vector database (Encoded Subgraph Documents)
T2S: Triple2Seq
QFE: Query Encoder
CE: Cross Encoder
Llama: Llama Model

2: Output: Final response r

3: Step 1: UMLS-based KG Processing

4: KGgyp < T2S.split(KG)

5: Dgyup < Convert Gy, to text-based documents
6: Store D, in FAISS Vector Database

7: Step 2: Query Encoding

8: Qemp < QFE.encode(q)

9: Step 3: Retrieval & Reranking from Vector DB
10: Dyopso <— DB.retrieve(gemp, k = 50)

11: for each document d in Dy,p50 do

12 sq < CE.score(q,d)

13: end for

14: Dyop10 < Select top-10 documents based on sg4

—_
W

: Step 4: Response Generation
s anput < q + Diopio

: 1 < Llama.generate(input)
: Return r

—_ = =
[cBEEN B e)

Algorithm 2 Patient-Style Pseudo Query Generation and Evaluation

1: Input:
p: Prompt for query generation
d: Graph Document (Derived from KG)
QG: Query Generator (Llama3.1gp)
Fval: Evaluator (Llama3.1gg)
Output: (g, d) pairs for training Encoder and Reranker
Step 1: Generate Query
q <+ QG.generate(p, d)
Step 2: Evaluate Query
(s1,82) < Fwal.check(q,d)
if s; == Patient-Style and sy == Relevant then
Store (g, d) for training Encoder and Reranker
else
Regenerate g using QG
Repeat from Step 2
. end if
: Return (g, d) pairs

R A A S

—_ = = =
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Prompting Category

Input Prompt

Hallucination Evaluation

The following is a response generated by a model.

Carefully read the response and evaluate whether it contains
hallucinations based on logical consistency and factual accuracy.
A hallucination refers to information that is fabricated

or unsupported by evidence.

### Instructions
- If a hallucination is found, pinpoint the exact part.
- If no hallucination is found, respond with "No hallucination."

### Model Response:
{model response}

### Evaluation:

Grammatical Error Evaluation

The following is a response generated by a model. Carefully read
the response and identify any grammatical errors.

### Instructions

- If grammatical errors are found, pinpoint the exact part.
- If no grammatical errors are found, respond with

"No grammatical errors."

### Model Response:
{model response}

### Evaluation:

Helpful Information for
Patients Evaluation

The following is a patient’s question and a response generated by a
model. Carefully read the response and identify any words or phrases
that could be helpful to the patient.

### Instructions

- Pinpoint the exact words or phrases in the model’s response
that are relevant to the patient’s question.

- If no helpful information is found, respond with

"No helpful information."

### Patient’s Question:
{question}

### Model Response:
{model response}

### Evaluation:

Table 5: Prompt for evaluation ILlama
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