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Abstract001

Recent advancements in large language models002
have significantly influenced the field of online003
medical consultations. However, critical chal-004
lenges remain, such as the generation of hallu-005
cinated information and the integration of up-006
to-date medical knowledge. To address these is-007
sues, we propose Informatics Llama (ILlama),008
a novel framework that combines retrieval-009
augmented generation with a structured med-010
ical knowledge graph. ILlama incorporates011
relevant medical knowledge by transforming012
subgraphs from a structured medical knowl-013
edge graph into text for retrieval-augmented014
generation. By generating subgraphs from the015
medical knowledge graph in advance, specifi-016
cally focusing on diseases and symptoms, IL-017
lama is able to enhance the accuracy and rel-018
evance of its medical reasoning. This frame-019
work enables effective incorporation of causal020
relationships between symptoms and diseases.021
Also, it delivers context-aware consultations022
aligned with user queries. Experimental re-023
sults on the two medical consultation datasets024
demonstrate that ILlama outperforms the strong025
baselines, achieving a semantic similarity F1-026
score of 0.884 when compared with ground027
truth consultation answers. Furthermore, qual-028
itative analysis of ILlama’s responses reveals029
significant improvements in hallucination re-030
duction and clinical usefulness. These results031
suggest that ILlama has strong potential as a re-032
liable tool for real-world medical consultation033
environments.1034

1 Introduction035

Traditional online medical consultation platforms,036

such as HealthCareMagic2 and iCliniq3, rely on037

medical professionals to answer patient queries and038

provide expert advice. However, due to their de-039

pendence on human labor, these systems face limi-040

1The code will be released upon publication.
2https://www.askadoctor24x7.com
3https://www.icliniq.com

tations in delivering real-time responses, as experts 041

require significant time to review inquiries and gen- 042

erate appropriate answers (Cao et al., 2022). To 043

address this issue, rule-based medical consultation 044

systems have been introduced (Amato et al., 2017; 045

Mishra et al., 2023; Rosruen and Samanchuen, 046

2018; Huang et al., 2018). Nevertheless, these sys- 047

tems often struggle to handle complex symptoms 048

and patient-specific queries, as they rely on prede- 049

fined rules that lack flexibility and adaptability. 050

Recently, large language model (LLM)-based 051

consultation systems, such as ChatDoctor (Li et al., 052

2023), have emerged as promising alternatives. 053

These systems typically extract keywords from 054

user queries to retrieve relevant medical informa- 055

tion from sources like Wikipedia or custom disease 056

databases. However, their reliance on potentially 057

inaccurate keyword extraction may lead to search 058

failures and hallucinations, failing to capture essen- 059

tial disease-symptom relationships. While dense 060

embedding-based retrieval methods (Karpukhin 061

et al., 2020) can alleviate keyword extraction errors, 062

they still have limitations in capturing the com- 063

plex symptom-disease relationships essential for 064

medical consultations. For example, distinguishing 065

whether shortness of breath and fatigue arise from a 066

serious condition like lung cancer or a more benign 067

cause such as anemia requires an understanding of 068

such causal relationships. 069

To overcome these limitations, we propose a 070

novel framework for real-time medical consulta- 071

tion, called Informatics Llama (ILlama), which 072

improves the response quality as measured by 073

embedding-based evaluation metrics by incorpo- 074

rating structured medical knowledge. To ensure 075

that ILlama performs reliably not only on known 076

data distributions but also in unfamiliar real-world 077

scenarios, we adopt both in-distribution and out- 078

of-distribution evaluation protocols throughout this 079

work. This setup allows us to assess the model’s 080

generalizability across different sources of med- 081
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ical consultations. ILlama leverages retrieval-082

augmented generation (RAG) (Lewis et al., 2020b)083

by incorporating medical knowledge from a struc-084

tured knowledge graph (KG) built upon the unified085

medical language system (UMLS)4. UMLS is up-086

dated regularly, which aligns well with common087

retraining cycles. Therefore, instead of frequently088

retraining the language model, it is more efficient089

to update the KG, enabling practical and timely090

integration of new medical information.091

Unlike keyword-dependent approaches, ILlama092

improves both retrieval efficiency and reliability.093

Keyword-extraction methods often misinterpret the094

intent of user queries and, in many cases, fail to095

return relevant results if relevant medical informa-096

tion for the extracted keywords is unavailable. By097

employing a KG-based retrieval approach (Luo098

et al., 2025), ILlama effectively represents disease-099

symptom causal relationships, enhancing the con-100

textual relevance and accuracy of diagnostic re-101

sponses.102

In addition, ILlama tackles two core limitations103

prevalent in existing dense embedding-based aug-104

mentation systems: (1) the incompleteness of ex-105

ternal knowledge representations and (2) the diffi-106

culty in aligning user queries with the embedded107

knowledge space (Varshney et al., 2023). ILlama108

addresses the incompleteness of the KG by con-109

structing subgraphs that enrich sparse regions with110

semantically related triples. It is also designed to111

alleviate the challenge of aligning user queries with112

the KG structure by embedding each triple and inte-113

grating it into the answer generation process. This114

approach enables more accurate semantic match-115

ing and enhances the clinical relevance of the gen-116

erated responses. Specifically, embedding triples117

allows the model to retrieve more precise symptom-118

disease associations, reducing factual errors, while119

the structured knowledge context provided by the120

KG improves the alignment of responses with real-121

world clinical reasoning.122

We validate the effectiveness of ILlama using123

two medical consultation datasets with different124

characteristics. Specifically, we conducted experi-125

ments with publicly available data collected from126

HealthCareMagic and iCliniq. For in-distribution127

evaluation, we use the HealthCareMagic dataset,128

which includes separate training, validation, and129

test splits. For out-of-distribution evaluation,130

4https://www.nlm.nih.gov/research/umls/
archive/archive_home.html

we use real-world consultation records from the 131

iCliniq platform, serving as the test set. ILlama7B, 132

which is based on the same base model as Chat- 133

Doctor, achieves F1 scores of 0.866 and 0.851 on 134

the in-distribution and out-of-distribution datasets, 135

respectively, and outperforms all baseline models. 136

These scores are computed based on the seman- 137

tic similarity between the generated responses and 138

the ground truth consultation records. ILlama8B, 139

with a more powerful backbone LLM, further im- 140

proves these results, achieving scores of 0.884 and 141

0.871, respectively. The reliability of the gener- 142

ated responses is further supported by a qualitative 143

evaluation that assesses their clinical quality. 144

In summary, our contributions are three-fold: 145

• We propose ILlama, a framework that reduces 146

hallucinations by integrating structured medi- 147

cal knowledge and explicit disease-symptom 148

causal relationships into LLMs. This frame- 149

work facilitates easy knowledge updates by al- 150

lowing replacement of the underlying UMLS- 151

based KG. 152

• ILlama utilizes subgraphs from a UMLS- 153

based KG, which are transformed into docu- 154

ment form, combined with vector search tech- 155

niques, enabling precise retrieval and integra- 156

tion of medically relevant knowledge into the 157

answer generation process. 158

• Our framework achieves state-of-the-art per- 159

formance across multiple datasets, with the 160

best results observed on the HealthcareMagic 161

dataset, significantly improving the reliability 162

and usefulness of automated medical consul- 163

tation systems. 164

2 Related Works 165

2.1 Early Medical Consultation Systems 166

Early systems (Amato et al., 2017; Mishra et al., 167

2023; Rosruen and Samanchuen, 2018; Huang 168

et al., 2018) used rule-based approaches for simple 169

Q&A interactions, easing the burden on health- 170

care professionals but failing to handle complex 171

symptoms and disease interactions. To overcome 172

this, medical-specialized models using natural lan- 173

guage processing technologies (Lee et al., 2020; 174

Yuan et al., 2022; Lu et al., 2022) were developed, 175

yet challenges in incorporating structured medical 176

knowledge and understanding causal relationships 177

between symptoms and diseases remain. LLMs 178
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such as GPT-4 (Achiam et al., 2023) have catalyzed179

the development of models capable of sophis-180

ticated medical consultations (Thirunavukarasu181

et al., 2023; Li et al., 2024; Toma et al., 2023; Chen182

et al., 2023; Luo et al., 2022; Yang et al., 2024),183

although persistent challenges remain, including184

hallucinations and the incorporation of up-to-date185

medical information (Vaishya et al., 2023; Hadi186

et al., 2024). To mitigate these issues, we incor-187

porate a UMLS-based KG that enables accurate188

identification of disease relationships and contex-189

tual information retrieval, thereby supporting more190

clinically relevant and context-aware consultations.191

2.2 Knowledge-Based LLMs in Medical192

Consulting193

To address the limitations of LLMs, such as hallu-194

cinations, lack of timely medical knowledge, and195

insufficient adaptability to patient-specific contexts,196

recent research has explored the integration of197

real-world knowledge to enhance performance in198

medical applications. Among these approaches,199

the combination of LLMs with KGs has demon-200

strated effectiveness in incorporating external in-201

formation. For example, KG-enhanced models202

have been used for diagnosis prediction (Gao et al.,203

2025), graph-augmented medical dialogues (Varsh-204

ney et al., 2023), and factual medical question an-205

swering (Guo et al., 2022; Martino et al., 2023).206

However, many of these methods rely on incom-207

plete KGs, which are often limited in coverage or208

biased toward certain clinical entities. They also209

struggle with aligning unstructured user queries210

to structured graph elements, both of which hin-211

der their clinical precision. In contrast, ILlama212

introduces subgraph-based retrieval and semantic213

reranking to improve knowledge relevance and214

integration, offering more accurate and context-215

sensitive medical consultations.216

3 Method217

The proposed framework consists of three main218

components: Retriever, Reranker, and Generator.219

Medical knowledge from the KG is first segmented220

into subgraphs and transformed into documents in221

natural language form, which serve as input across222

all stages. Section 3.1 describes how the Retriever223

identifies subgraphs semantically relevant to the in-224

put query. Section 3.2 presents the Reranker, which225

employs a cross-encoder (Reimers and Gurevych,226

2019) to rerank the retrieved documents in natural227

language form. Section 3.3 explains how the Gen- 228

erator uses the top-ranked documents to generate 229

the final response. The overall process is illustrated 230

in Figure 1. 231

3.1 Retriever: Enhancing Medical Knowledge 232

In medical consultations, it is essential to provide 233

accurate, context-aware information without hallu- 234

cinations. Our framework requires comprehensive 235

medical knowledge, particularly regarding causal 236

relationships between symptoms and diseases. To 237

achieve this, we incorporate a KG based on UMLS, 238

which enables the language model to effectively 239

capture these relationships and allows targeted re- 240

trieval of relevant medical facts from the KG. This 241

ensures that responses are both precise and contex- 242

tually appropriate to the user’s query. 243

3.1.1 Triple-Centric Knowledge Structuring 244

for Medical Reasoning 245

To effectively represent medical knowledge within 246

the model, we adopt the Triple2Seq (Bi et al., 2024) 247

method to segment the UMLS-based KG into mean- 248

ingful and contextually coherent subgraphs. A seg- 249

mented KG (i.e., subgraph) is a structured represen- 250

tation where nodes denote medical concepts (e.g., 251

diseases, symptoms, and treatments) and edges de- 252

fine the relationships among them (e.g., "has symp- 253

tom", "treated by", and "has causes"). 254

Each subgraph Tg is composed of a center triple 255

Tc (e.g., Lung Cancer-has symptom-Fatigue), rep- 256

resenting a core medical concept, and a set of neigh- 257

boring context triples TN (e.g., Lung Cancer-has 258

causes-Smoking) that provide additional medical 259

facts related to the center triple: 260

Tg = Tc ∪ TN . (1) 261

TN includes all triples connected to the center 262

triple via its neighboring nodes in the KG and is 263

defined as: 264

TN = {Ti | Ti ∈ N}, (2) 265

where N denotes the set of nodes that are directly 266

linked to the center concept in the graph. For ex- 267

ample, if the center triple corresponds to a disease 268

such as lung cancer, the context triples may include 269

related symptoms (e.g., shortness of breath and fa- 270

tigue), diagnostic procedures (e.g., chest X-ray), or 271

causes (e.g., smoking or air pollution). By organiz- 272

ing knowledge in this localized and relation-centric 273
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Figure 1: Overall architecture for medical query answering using contextualized subgraphs from the UMLS-based
KG. These subgraphs are encoded and stored in a vector database, then combined with the user query to generate
the final response using the Llama model.

manner, the model is guided to focus on medically274

relevant and causally connected concepts, thereby275

enhancing the contextual consistency of the gen-276

erated responses. Furthermore, this structure en-277

ables more accurate and context-aware diagnosis278

and consultation based on the patient’s reported279

symptoms, ultimately improving the reliability and280

practicality of medical dialogue systems.281

3.1.2 Subgraph-to-Text Transformation282

The UMLS-based KG represents relation-283

ships between medical concepts using a sub-284

ject–predicate–object triple structure, which285

closely resembles the structure of natural language286

sentences. Leveraging this property, we convert287

each triple into a natural sentence. This transfor-288

mation reconstructs the structural relationships in289

the graph into a coherent narrative, allowing the290

model to intuitively understand the meaning and291

connections between medical entities. As a result,292

the graph-based knowledge is naturally integrated293

into the text generation process, enabling the294

model to learn richer contextual information.295

We further define subgraphs consisting of a cen-296

ter triple and its related neighboring triples. All297

triples within each subgraph are converted into nat-298

ural sentences and aggregated into a single doc-299

ument, forming a semantically coherent and log-300

ically structured unit of knowledge. A detailed301

example of this subgraph-to-document transforma-302

tion, including the rule-based sentence structure303

and the resulting document format, is provided in304

Appendix B.305

3.1.3 Pseudo Query Generation for 306

Fine-Tuning Medical Search System 307

In our framework, document-form subgraph en- 308

coder and reranker models pre-trained on general 309

domain data are not sufficient to accurately re- 310

trieve medical information grounded in a UMLS- 311

based KG. To improve their ability to understand 312

and retrieve UMLS-specific representations, these 313

models should be fine-tuned on domain-specific 314

data. However, manually constructing high-quality 315

query-document pairs is impractical and costly. To 316

address this, we propose an automated pipeline 317

based on frozen Llama3.18B (Dubey et al., 2024) 318

models that generates and filters training data with- 319

out human supervision. The pipeline consists of 320

two core components: a pseudo query generator, 321

which produces queries reflecting key contents 322

of each document, and an evaluator, which fil- 323

ters these queries based on two criteria, patient 324

centeredness ([Patient/notPatient]) and docu- 325

ment relevance ([Relevant/Irrelevant]). 326

As illustrated in Figure 2, the system generates 327

multiple candidate queries per document, evalu- 328

ates them, and filters those that meet the training 329

standards. Although the evaluator operates in a 330

zero-shot setting without parameter updates, it con- 331

sistently selects high-quality query-document pairs 332

and generalizes well across unseen pairs. These 333

filtered pairs are subsequently used to fine-tune 334

the document-form subgraph encoder and reranker 335

models, contributing to improved retrieval accuracy 336

and consistency. Details on the objective functions 337

used for each model are provided in Appendix C. 338

Furthermore, while our pipeline focuses on medi- 339

cal consultation documents in this study, it can be 340
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(q,        )Relavant
Patient

(q,        )notPatient
Relavant
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(p', q,      )

### Instruction
You're an AI tasked with turning
medical symptoms or conditions
into a single, natural patient-
style question.

### Context

Encoder Reranker

Llama 3.1 8BDocument-form
subgraph

FrozenTrainable

p' = p + The generated query did not meet the following conditions.
Please regenerate it so that it satisfies the conditions.

Figure 2: Overview of training data generation process for the document-form subgraph encoder and reranker.
A fixed query generator creates questions that a patient is likely to ask, and an evaluator checks if they match a
patient-like style and are relevant to the document. If they don’t meet the criteria, they are regenerated. The final
data trains bge-large-en v1.5 and bge-reranker-large, enhancing the model’s ability to understand and process
patient-oriented queries.

easily adapted to other domains by adjusting the341

evaluation criteria.342

3.1.4 Document Embedding and Vector343

Retrieval344

We fine-tuned the bge-large-en-v1.5 (Xiao et al.,345

2024) model to generate embeddings for docu-346

ments derived from the subgraph, optimizing its347

ability to capture semantic nuances. These embed-348

dings are stored in a vector database using FAISS349

(Johnson et al., 2019), which is optimized for large-350

scale similarity searches. By integrating maximum351

inner product search (Shrivastava and Li, 2014), we352

efficiently retrieve relevant documents, ensuring353

low-latency and high-precision results, crucial for354

real-time applications like conversational agents.355

3.2 Reranker: Filtering for Exact Knowledge356

To enhance the accuracy of retrieved documents,357

we implemented a reranking process using the358

fine-tuned bge-reranker-large5 model. The cross-359

encoder simultaneously encodes both the user’s360

query and the documents, effectively capturing361

complex interactions and evaluating the relevance362

and specificity of each document in relation to the363

user’s needs. Based on the reranking scores, doc-364

uments are reordered to prioritize those most rele-365

vant to the query and tailored to the user’s context.366

This ensures the model can reflect more precise367

and relevant information in the final response, ul-368

timately providing answers that are accurate and369

aligned with the user’s reported medical concerns.370

5https://huggingface.co/BAAI/
bge-reranker-large

3.3 Generator: Generating Patient-Centered 371

Medical Consultation 372

In the final stage, we generate medically accurate 373

and context-aware responses using reranked doc- 374

uments. We fine-tune Llama27B (Touvron et al., 375

2023) and Llama3.18B on real medical consultation 376

data, allowing the model to learn associations be- 377

tween patient queries and retrieved knowledge. Un- 378

like methods that rely solely on synthetic prompts, 379

our framework uses actual consultation records 380

with retrieved documents integrated during fine- 381

tuning. This helps the model better understand 382

semantic relationships between queries and sup- 383

porting knowledge, grounding its generation in 384

clinically relevant context. As a result, ILlama can 385

deliver more accurate and tailored responses while 386

reducing hallucinations and speculative content. 387

4 Experiments 388

HealthcareMagic iCliniq
# dialogues 112,165 1,380
# tokens 27,475,545 313,735
Avg. # tokens per dialogue 245.01 227.34
Max # tokens per dialogue 2,544 1,001
Min # tokens per dialogue 78 60

Table 1: Statistics of the datasets used for training, vali-
dation, and testing, showing the distribution of dialogues
and token counts.

4.1 Datasets 389

We use two types of data in ILlama, namely a 390

UMLS-based KG and real-world medical consulta- 391
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Category In-Distribution Out-of-Distribution
Model F1 METEOR BLEU-4 ROUGE-2 PPL↓ F1 METEOR BLEU-4 ROUGE-2 PPL↓

Baselines without Retrieval

BARTLarge 0.837 0.059 0.0 0.038 1.398 0.838 0.063 0.0 0.023 1.404
T5Large 0.840 0.061 0.0 0.031 1.475 0.843 0.069 0.0 0.020 1.417
Llama27B w/ LoRA 0.838 0.192 0.031 0.052 7.940 0.838 0.201 0.029 0.050 10.926
Llama3.18B w/ LoRA 0.844 0.230 0.061 0.074 10.659 0.841 0.222 0.029 0.048 14.259

Baselines without Fine-Tuning

Gemma29B 0.836 0.180 0.016 0.036 19.211 0.841 0.201 0.022 0.040 16.648
Yi1.59B 0.832 0.168 0.015 0.034 15.552 0.835 0.188 0.021 0.038 14.371
Falcon37B 0.839 0.135 0.008 0.025 39.389 0.844 0.156 0.012 0.028 34.445
DeepSeek-R18B 0.832 0.175 0.012 0.028 43.653 0.837 0.191 0.014 0.030 40.259

Baselines with Fine-Tuning & Retrieval

Llama27B w/ LoRA 0.837 0.191 0.029 0.050 7.939 0.839 0.203 0.029 0.050 10.926
Llama3.18B w/ LoRA 0.786 0.222 0.010 0.024 10.657 0.789 0.199 0.006 0.019 14.259
ChatDoctor 0.846 0.218 0.008 0.022 10.009 0.845 0.211 0.035 0.045 12.676

Ours

ILlama7B 0.866 0.203 0.037 0.058 7.939 0.851 0.213 0.041 0.048 10.924
ILlama8B 0.884 0.231 0.063 0.075 7.659 0.871 0.222 0.030 0.049 10.259

Table 2: Performance comparison across baselines categorized into three groups: without retrieval, without fine-
tuning, and with fine-tuning & retrieval. Metrics such as F1, METEOR, BLEU, ROUGE, and PPL are evaluated
for both in-distribution and out-of-distribution datasets. The highlighted row represents our proposed method,
demonstrating superior performance across most metrics.

tion records. The KG provides structured clinical392

relationships that support precise retrieval, while393

the consultation data enables response generation394

grounded in authentic patient–doctor interactions.395

Detailed descriptions of each dataset are provided396

in the following subsections.397

4.1.1 Datasets for Medical Retrieval398

We construct our KG using the 2024 release of the399

UMLS Metathesaurus6, which comprises approx-400

imately 20K entities, 22 relation types, and 250K401

triples. This structured resource provides a seman-402

tic backbone for our RAG framework, enabling403

precise retrieval and integration of clinically rele-404

vant knowledge. Grounding generation in this KG405

enhances factual accuracy, reduces hallucinations,406

and supports context-aware medical responses.407

4.1.2 Datasets for Medical Consultation408

To evaluate the performance of ILlama, we used409

medical consultation records from two real-world410

platforms: HealthcareMagic and iCliniq. The411

HealthcareMagic dataset, specifically collected412

for medical question answering tasks, consists of413

single-turn interactions where each patient query414

is paired with a response from a licensed medical415

professional. We split this dataset into training, val-416

idation, and in-distribution test sets using an 8:1:1417

6https://www.nlm.nih.gov/research/umls/
licensedcontent/umlsknowledgesources.html

ratio. In contrast, the iCliniq dataset, which follows 418

a similar single-turn format, was used exclusively 419

as an out-of-distribution test set. This separation 420

allows us to evaluate the model’s generalization 421

performance on unseen queries from a different 422

source, minimizing the risk of data leakage and en- 423

suring a fair comparison. Both datasets are publicly 424

available for academic research and have been de- 425

identified to protect user privacy. As these records 426

often include patient-reported details such as age 427

and symptoms, the model implicitly learns to adapt 428

responses to clinical contexts during fine-tuning. 429

Detailed dataset statistics are provided in Table 1. 430

4.2 Metrics 431

We evaluated our model using semantic and quanti- 432

tative metrics to assess the accuracy and contextual 433

appropriateness of generated responses. For seman- 434

tic evaluation, we adopted BERTScore (Zhang* 435

et al., 2020) with RoBERTaLarge (Liu et al., 2019), 436

which measure contextual similarity using deep em- 437

beddings. This approach is particularly suitable for 438

handling the nuances of medical language where 439

lexical overlap is often limited (Hanna and Bojar, 440

2021). We report the F1 score from BERTScore as 441

our primary semantic similarity metric. 442

In addition to semantic evaluation, we also em- 443

ployed lexical metrics such as ROUGE-2 (Lin, 444

2004), BLEU-4 (Papineni et al., 2002), Perplexity 445
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Hello, doctor. I attended a wedding last week, and since then, I've been experiencing persistent coughing and fever. Recently, I've also noticed a loss of taste. Could
this be COVID-19? If it is COVID-19, what should I do?

ChatDoctor

Hello! Welcome to Chat Doctor! Cough and fever
after attending a wedding may not be due to
coronavirus infection. It can be due to allergic
reaction or viral upper respiratory tract infection.
You need to consult your family physician for
clinical examination and investigations like chest x-
ray, blood tests, sputum culture etc. In case of virus
infection, you will need antibiotics along with
supportive treatment. Hope this information was
helpful. Thanks and regards.

ILlama7B

No, it is not likely to be due to COVID 19. The
symptoms you have mentioned are more suggestive
of acute upper respiratory tract infection (URTI). It
may be due to viral or bacterial infection. I would
advise you to consult a physician and get yourself
examined. You may need a course of antibiotics and
anti-inflammatory.  Take plenty of fluids. Hope I
have answered your question. If you have any
further questions, I will be happy to help. Wish you
good health. Take care. Regards.

ILlama8B

Thanks for your question. I can understand your
concern. By your history and description, possibility
of viral upper respiratory tract infection (URI) is
more likely. But better to get done clinical
examination of respiratory system and chest x-ray to
rule out lung infection. If chest x-ray is normal then
no need to worry about lung infection. Viral URI is
self limiting. So don't worry, it will subside in 5-7
days. Avoid stress and tension, be relaxed and calm.
Do warm water gargles 5-6 times a day. Avoid hot
and spicy food. Avoid smoking and alcohol if you
have.
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Figure 3: Comparison of responses from ChatDoctor, ILlama7B, and ILlama8B regarding COVID-19 symptoms.
Highlighted sections indicate usefulness, ambiguity, hallucinations, and grammatical errors.

(PPL) (Lavie and Agarwal, 2007), and METEOR446

to evaluate lexical accuracy, fluency, and coherence.447

In particular, METEOR considers synonymy, stem-448

ming, and paraphrasing, offering a flexible assess-449

ment of sentence-level similarity. This evaluation450

framework enables a comprehensive assessment of451

the model’s ability to deliver precise, fluent, and452

contextually relevant medical responses.453

4.3 Baselines454

Baselines without Retrieval These models rely455

solely on fine-tuned capabilities on domain-specific456

data, without any retrieval mechanism. We exam-457

ine BARTLarge (Lewis et al., 2020a), T5Large (Raffel458

et al., 2020), and Llama27B w/ LoRA (Hu et al.,459

2022) and Llama3.18B w/ LoRA.460

Baselines without Fine-Tuning Models in this461

category use a retrieval mechanism but are not462

fine-tuned on domain-specific data. These base-463

lines enhance their performance by leveraging the464

PubMed dataset (Xiong et al., 2024) for retrieval465

of pertinent biomedical literature, which provides466

a rich source of domain-specific information with-467

out the need for additional fine-tuning. These468

include Gemma29B (Team et al., 2024), Yi1.59B469

(Young et al., 2024), Falcon37B (Team, 2024), and470

DeepSeek-R18B (DeepSeek-AI et al., 2025).471

Baselines with Fine-Tuning & Retrieval This472

category includes models that undergo fine-tuning473

on domain-specific data and use retrieval. Mod-474

els include Llama27B w/ LoRA (Hu et al., 2022),475

Llama3.18B w/ LoRA, and ChatDoctor, although476

ChatDoctor does not use PubMed for retrieval.477

4.4 Result478

As shown in Table 2, ILlama consistently outper-479

formed the baselines across both in-distribution480

and out-of-distribution evaluations. In the in- 481

distribution setting, ILlama8B achieved the best 482

F1 score of 0.884 and METEOR of 0.231, surpass- 483

ing all baseline models. Notably, ILlama7B also 484

showed strong performance (F1: 0.866, METEOR: 485

0.203), outperforming ChatDoctor, which shares 486

the same base model, across all major metrics in- 487

cluding F1, METEOR, and PPL. These results high- 488

light the effectiveness of ILlama’s RAG framework 489

in producing accurate and coherent responses. 490

In the out-of-distribution setting, ILlama 491

maintained robust generalization performance. 492

ILlama8B achieved an F1 of 0.871 and METEOR of 493

0.222, with minimal performance drop compared 494

to its in-distribution results. This demonstrates 495

ILlama’s ability to adapt to unseen queries and lin- 496

guistic variations from different data sources. The 497

integration of embedding-based vector retrieval and 498

a structured medical KG played a key role in im- 499

proving factual consistency while minimizing hal- 500

lucinations. Overall, ILlama achieved state-of-the- 501

art performance across F1, METEOR, and PPL, 502

validating its reliability and generalization in real- 503

world medical consultation scenarios. 504

5 Analysis 505

5.1 Qualitative Analysis of Outputs 506

As shown in Figure 3, we present a qualitative com- 507

parison of ChatDoctor, ILlama7B, and ILlama8B in 508

response to a COVID-19 related query, alongside 509

the underlying reasoning represented through con- 510

textualized subgraphs extracted from the UMLS- 511

based KG. While ChatDoctor exhibited frequent 512

hallucinations, such as recommending antibiotics 513

for viral infections, ILlama7B demonstrated im- 514

proved clinical reasoning but still included unneces- 515

sary suggestions. ILlama8B provided the most bal- 516

anced response, delivering accurate medical guid- 517
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ance and appropriate follow-up steps. These evalu-518

ations were conducted using the OpenAI o1 model7519

(Liu et al., 2023). The prompts used for this assess-520

ment are provided in Appendix D. The reasoning521

process is grounded in causal and diagnostic rela-522

tionships (e.g., Viral Infection–URI–Cough/Fever523

or Chest X-Ray to rule out Lung Infection), cap-524

tured within the subgraph structure.525

5.2 Latency Analysis in Real-Time Medical526

Consultation Systems527

In Figure 4, we present a comparison of latency528

and throughput between ILlama and ChatDoctor.529

ILlama consistently demonstrates lower latency530

across search, answer, and end-to-end processing.531

For example, ILlama’s end-to-end latency ranges532

from approximately 5,538 to 6,507 ms, whereas533

ChatDoctor’s ranges from around 6,921 to over534

26,491 ms. This gap stems from ChatDoctor’s535

reliance on LLM-based keyword extraction fol-536

lowed by live API calls to external sources such as537

Wikipedia, whose articles average more than 900538

tokens and thus markedly inflate the answer-latency539

portion of the overall response time. In contrast,540

ILlama uses pre-indexed graph-based retrieval with541

documents averaging around 130 tokens, enabling542

7https://openai.com/o1/

higher throughput with reduced delay. These re- 543

sults highlight ILlama’s efficiency and its suitabil- 544

ity for real-time medical consultation. 545

5.3 Full-Graph vs. Subgraph Search 546

We compared the effectiveness of subgraph-based 547

retrieval using Triple2Seq with that of a full-graph 548

approach. As shown in Figure 5, the subgraph 549

method produces more accurate and reliable re- 550

sponses. Full-graph retrieval, while comprehensive, 551

often includes loosely connected or clinically irrel- 552

evant nodes, which can overwhelm the generation 553

process with extraneous information and increase 554

the risk of hallucinations. In contrast, subgraph 555

retrieval narrows the focus to a central medical 556

concept and its semantically related neighbors, al- 557

lowing the model to process only the most relevant 558

context. This targeted representation helps align 559

retrieved knowledge more precisely with the user’s 560

query, resulting in improved factual accuracy and 561

reduced noise. Such precision is particularly im- 562

portant in the medical domain, where irrelevant or 563

overly broad context can compromise the safety 564

and trustworthiness of responses. 565

6 Conclusion 566

In this study, we proposed ILlama, a retrieval- 567

augmented medical consultation framework that 568

integrates structured KGs and cross-encoder rerank- 569

ing. ILlama captures causal relationships between 570

symptoms and diseases, and leverages patient de- 571

mographics during training to support advice while 572

reducing hallucinations. Experiments show strong 573

performance across accuracy, latency, and contex- 574

tual relevance in both in-distribution and out-of- 575

distribution settings, highlighting the promise of 576

structured medical knowledge in LLMs for scalable 577

healthcare applications. 578
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Limitations579

Although ILlama improves the accuracy of medical580

consultations and reduces hallucinations by lever-581

aging a UMLS-based KG and embedding-based582

retrieval, several limitations remain. First, the cov-583

erage of the KG and datasets is relatively narrow,584

primarily reflecting specific diseases and linguistic585

patterns. This limits the model’s generalizability586

to broader clinical domains and multilingual, mul-587

ticultural contexts. Expanding the training data to588

include more diverse and representative medical589

cases is necessary to improve robustness. Second,590

the KG may not capture the latest clinical updates591

such as emerging diseases, new treatments, or re-592

vised guidelines. Without real-time synchroniza-593

tion, the model may generate outdated or clinically594

irrelevant responses. Third, while ILlama achieves595

strong performance on standard metrics such as596

F1, METEOR, and PPL, these metrics do not fully597

capture clinical safety or decision-making valid-598

ity. Future work should explore automated evalua-599

tion methods or deployment in simulated clinical600

environments to further validate the model’s clin-601

ical reliability without increasing the burden on602

human experts. Lastly, the current system relies on603

relatively large-scale models, which may limit de-604

ployment in resource-constrained settings. Future605

directions include developing lightweight variants606

and adapting the framework for multilingual and607

cross-cultural applications to enable broader adop-608

tion in global healthcare environments.609

Ethical Considerations610

While our model, ILlama, aims to enhance medical611

consultations by reducing hallucinations and incor-612

porating up-to-date medical knowledge, it is not613

100% accurate and may not always provide correct614

diagnoses. In the medical field, inaccuracies can615

lead to severe consequences, including misdiagno-616

sis and inappropriate treatment recommendations,617

which could potentially be life-threatening.618

Therefore, it is crucial to acknowledge the619

limitations of AI-based medical consultation sys-620

tems. Further research is necessary to improve621

the model’s accuracy and reliability. Additionally,622

such systems should be used to support, not replace,623

professional medical advice. We recommend that624

users consult qualified healthcare professionals for625

personalized medical guidance and that our model626

be used as a supplementary tool to enhance access627

to medical information.628
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A Implementation Details886

This study fine-tuned a medical domain-specific887

model using LoRA with a configuration of r = 16,888

lora_alpha = 16, and lora_dropout = 0. The889

learning rate started at 2× 10−5, with 10% of the890

total steps dedicated to warmup. A linear sched-891

uler was used for adjusting the learning rate during892

training. The model was trained for 3 epochs, and893

the maximum sequence length was set to 4,096 for894

handling complex queries, and the training was con-895

ducted on two NVIDIA RTX A6000 48GB GPUs.896

For retrieval, 50 documents were fetched using897

maximum inner product search from the FAISS898

vector store. The top 10 documents from this set899

were selected for final use after reranking. This900

approach improved the model’s ability to address901

medical queries by leveraging dense retrieval meth-902

ods, enhancing both retrieval accuracy and re-903

sponse quality.904

B Example Document from UMLS905

Subgraph906

Table 3 presents an example of subgraph-to-text907

conversion used in our system. The subgraph is908

constructed around the central triple (Lung cancer909

– has symptom – fatigue) from the UMLS-based910

KG. All triples connected to the central node are911

included and expressed as simple natural language912

sentences using a rule-based template. Each rela-913

tion type (e.g., has symptom, diagnosed by, treated914

by) is mapped to a consistent sentence pattern, such915

as “X has symptom Y” or “X can be diagnosed by916

Y.” This consistency facilitates automatic transfor-917

mation and retrieval in downstream components.918

The resulting document serves as a structured and919

semantically coherent unit of medical knowledge920

for training and inference.921

C Objective Functions for Fine-Tuning922

the Medical Search System923

C.1 Document-form Subgraph Encoder924

The encoder is trained with the InfoNCE loss (Oord925

et al., 2018), which is a contrastive learning objec-926

tive widely used in self-supervised learning. Given927

a set of N random samples X = {x1, . . . , xN}928

containing one positive sample xt+k from the true929

conditional distribution p(xt+k | ct) and N−1 neg-930

ative samples drawn from a proposal distribution931

p(xt+k), the loss is formulated as:932

LN = −EX

log fk(xt+k, ct)∑
xj∈X

fk(xj , ct)

 ,

where fk(x, ct) denotes a scoring function (e.g., a 933

dot product or similarity function) that estimates 934

the compatibility between context ct and future 935

sample x. Optimizing this loss leads fk(xt+k, ct) 936

to approximate the density ratio: 937

fk(xt+k, ct) ∝
p(xt+k | ct)
p(xt+k)

.

C.2 Reranker 938

The reranker model adopts a cross-encoder ar- 939

chitecture and is fine-tuned with a binary cross- 940

entropy loss. Given a query–document pair (q, d) 941

and a binary label y ∈ {0, 1} indicating rele- 942

vance, the model predicts a scalar relevance score 943

ŷ = sigmoid(s(q, d)), and the loss is computed as: 944

LBCE = − [y log ŷ + (1− y) log(1− ŷ)] 945

This objective encourages the model to produce 946

high scores for relevant documents and low scores 947

for irrelevant ones, improving the quality of the 948

final ranking. 949

D Evaluation Prompt Design 950

To support the qualitative evaluation of model out- 951

puts, we designed three structured prompts target- 952

ing hallucination detection, grammatical correct- 953

ness, and patient helpfulness. These prompts were 954

used with the OpenAI o1 model to evaluate re- 955

sponses generated by ILlama. Table 5 presents the 956

full text of each prompt. Each includes clear task 957

instructions, placeholders for the model-generated 958

response, and, in the helpfulness case, the original 959

patient question. The prompts instruct the model to 960

make a binary decision and identify specific parts 961

of the response when relevant. 962

The hallucination prompt assesses whether a re- 963

sponse contains fabricated or unsupported informa- 964

tion. The grammatical prompt checks for language 965

correctness. The helpfulness prompt determines 966

whether the response includes content that would 967

be useful to a patient, based on the given question. 968

Evaluations were conducted in a zero-shot setting, 969

and the prompt design aimed to guide the model 970

toward accurate and consistent judgments without 971
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fine-tuning. This allowed for scalable and focused972

assessment of clinical response quality.973

E Algorithm974

E.1 ILlama Algorithm975

This algorithm, as shown in Algorithm 1, retrieves976

and reranks relevant documents for context-aware977

medical consultations. It combines FAISS search978

results, reranks them with a cross encoder, and979

generates a contextually accurate response using980

Llama, maintaining optimal performance and accu-981

racy throughout the process.982

E.2 Pseudo Query Generation Algorithm983

This algorithm, as shown in Algorithm 2, generates984

patient-style queries and evaluates them to obtain985

(q, d) pairs for training the encoder and reranker if986

the conditions are met. Based on the input prompt987

and documents derived from the KG, the pseudo988

query generator (Llama3.18B) creates a query. The989

evaluator (Llama3.18B) then checks if the gener-990

ated query meets the "patient-style" and "relevant"991

conditions. If the conditions are satisfied, the (q, d)992

pairs are stored for document-form subgraph en-993

coder and reranker training; otherwise, the query is994

regenerated, and the evaluation process is repeated.995
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Subject Relation Object Document-form subgraph

Lung Cancer has symptom Fatigue Lung cancer has symptom fatigue.
Lung Cancer has symptom Shortness of Breath Lung cancer has symptom shortness of breath.
Shortness of Breath is symptom of Anemia Shortness of breath is symptom of anemia.
Fatigue is symptom of Anemia Fatigue is symptom of anemia.
Lung Cancer has symptom Chronic Cough Lung cancer has symptom chronic cough.
Lung Cancer diagnosed by Chest X-Ray Lung cancer can be diagnosed by chest X-ray.
Lung Cancer has cause Smoking Lung cancer has cause smoking.
Lung Cancer has cause Air Pollution Lung cancer has cause air pollution.
Lung Cancer treated by Surgery Lung cancer is treated by surgery.
Surgery isa lobectomy Surgery is a lobectomy.

Table 3: Example of subgraph-to-text conversion for a document centered on the triple (Lung cancer – has symptom
– fatigue).

Prompting Category Input Prompt
ILlama’s prompt You are a medical assistant specializing in providing expert consultations

for medical inquiries.Your role is to deliver accurate, user-friendly
medical information, clarify symptoms, explain potential
medical conditions, and recommend next steps with empathy
and professionalism. When formulating your response,
to ensure clarity and accuracy, user-friendly answer in your response.

### Context
{context}

### Input
{query}

### Response

Table 4: Prompt used for ILlama inference
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Algorithm 1 ILlama Algorithm for Medical Query Answering

1: Input:
q: User query
KG: UMLS-based KG
DB: FAISS vector database (Encoded Subgraph Documents)
T2S: Triple2Seq
QE: Query Encoder
CE: Cross Encoder
Llama: Llama Model

2: Output: Final response r
3: Step 1: UMLS-based KG Processing
4: KGsub ← T2S.split(KG)
5: Dsub ← Convert Gsub to text-based documents
6: Store Dsub in FAISS Vector Database
7: Step 2: Query Encoding
8: qemb ← QE.encode(q)
9: Step 3: Retrieval & Reranking from Vector DB

10: Dtop50 ← DB.retrieve(qemb, k = 50)
11: for each document d in Dtop50 do
12: sd ← CE.score(q, d)
13: end for
14: Dtop10 ← Select top-10 documents based on sd
15: Step 4: Response Generation
16: input← q +Dtop10

17: r ← Llama.generate(input)
18: Return r

Algorithm 2 Patient-Style Pseudo Query Generation and Evaluation

1: Input:
p: Prompt for query generation
d: Graph Document (Derived from KG)
QG: Query Generator (Llama3.18B)
Eval: Evaluator (Llama3.18B)

2: Output: (q, d) pairs for training Encoder and Reranker
3: Step 1: Generate Query
4: q ← QG.generate(p, d)
5: Step 2: Evaluate Query
6: (s1, s2)← Eval.check(q, d)
7: if s1 == Patient-Style and s2 == Relevant then
8: Store (q, d) for training Encoder and Reranker
9: else

10: Regenerate q using QG
11: Repeat from Step 2
12: end if
13: Return (q, d) pairs
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Prompting Category Input Prompt
Hallucination Evaluation The following is a response generated by a model.

Carefully read the response and evaluate whether it contains
hallucinations based on logical consistency and factual accuracy.
A hallucination refers to information that is fabricated
or unsupported by evidence.

### Instructions
- If a hallucination is found, pinpoint the exact part.
- If no hallucination is found, respond with "No hallucination."

### Model Response:
{model response}

### Evaluation:
Grammatical Error Evaluation The following is a response generated by a model. Carefully read

the response and identify any grammatical errors.

### Instructions
- If grammatical errors are found, pinpoint the exact part.
- If no grammatical errors are found, respond with
"No grammatical errors."

### Model Response:
{model response}

### Evaluation:
Helpful Information for
Patients Evaluation The following is a patient’s question and a response generated by a

model. Carefully read the response and identify any words or phrases
that could be helpful to the patient.

### Instructions
- Pinpoint the exact words or phrases in the model’s response
that are relevant to the patient’s question.
- If no helpful information is found, respond with
"No helpful information."

### Patient’s Question:
{question}

### Model Response:
{model response}

### Evaluation:

Table 5: Prompt for evaluation ILlama
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