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Abstract

We study incentivized exploration (IE) in centralized two-sided matching markets1

where all agents and arms are myopic human decision-subjects with preferences2

over their potential matches. The platform can leverage information asymmetry to3

encourage all sequentially arriving agents and arms to explore alternative options.4

In particular, we use inverse-gap weighting, a technique studied in reinforcement5

learning and contextual bandits, as the theoretical underpinning for our novel rec-6

ommendation policy. We obtain the first set of results for incentivized exploration7

in two-sided matching markets with dual incentive-compatibility constraints and8

asymptotically match the regret guarantee for combinatorial semi-bandits.9

1 Introduction10

Consider an online job market where job applicants seek to get matched with employers in a one-11

to-one format, i.e., each job opening only accepts a single candidate. Each job applicant has their12

preference over which position they want to work in to utilize their skill set best. Similarly, employers13

want to match with candidates with well-documented track records who they can trust to perform14

well in the new job. This is a canonical example of the one-to-one matching problem studied by Gale15

and Shapley [1962]. While preference matching is ubiquitous, it may lead to self-imposed bias where16

job applicants only seek out employers they know beforehand, ignoring other options on the market.17

At the same time, employers also suffer from a lack of exploration as they are more favorable to18

prominent job applicants instead of expanding their search for the most suitable candidates. Moreover,19

in a large market, it is improbable that an employer can form an accurate preference ordering over job20

applicants without interacting with them first. Our goal is to incentivize exploration in a centralized21

matching market, where the platform provides recommendations for either the job applicants or the22

employees to explore alternative options. Such exploration is crucial to any learning algorithm that23

seeks to find the optimal matching in two-sided markets.24

Overview of results. Our main contributions are as follows:25

1. Prior work in incentivized exploration only considers the agents’ incentives. Instead, this26

work considers the incentive-aware exploration problem in an online matching market from27

the perspectives of both agents and arms. See Appendix B for a detailed motivation.28

2. We provide an end-to-end BIC algorithm with two components: ’warm-start’ and accelerated29

exploration. Particularly, we develop a novel recommendation policy based on the inverse-30

gap weighting technique to accelerate exploration with near-optimal regret guarantees.31

3. We provide numerical simulation on synthetic data and show that our end-to-end algorithm32

is both 1) incentive-compatible and 2) efficient in terms of regret minimization.33
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2 Preliminary34

Notation. We write [K] = {1, 2, · · · ,K} for K ∈ N+. We use subscripts i, j to denote different35

agents or arms, and superscript t ∈ [T ] to denote different time-steps.36

We focus on an online two-sided matching market with time horizon T . At time-step t ∈ [T ], a fresh37

batch of N agents and N arms arrive and form N one-to-one matches. If they successfully match38

with some arms, the agents (and arms) report their shared utility to the platform and leave.39

Reward formulation and Bayesian priors. We assume that the reward of each successful match is a40

bilinear function of the agent and the arm’s profiles. Concretely, at time-step t, each agent of type i has41

their user profile x(t)i ∈ Rd. Similarly, each arm of type j has profile vector a(t)j ∈ Rd. Let Σ ∈ Rd×d42

be a latent matrix with rank r < d. Then, the realized reward of a match (type i agent, type j arm) is:43

r
(t)
i,j = r(t)(x

(t)
i , a

(t)
j ) := (x

(t)
i )⊤Σa

(t)
j + η

(t)
i,j (1)

where η(t)i,j ∼ subG(σ). We write µi.j = x⊤i Σaj to denote the expected reward of a match between44

agents of type i and arms of type j, and µ(0)
i,j to denote the prior-mean reward. Wlog, we assume that45

∀i, j : µi,j ∈ [0, 1]. Henceforth, we write xi and aj to refer to agents of type i and arms of type j.46

Preferences. We focus on the stylized setting with two types of agents and arms. Let i, j ∈ [2]47

denote the type of agents and arms, respectively. We are interested in two sets of preferences:48

agent-to-arm and arm-to-agent. In our motivating example, job applicants want to be matched with49

compatible employers and employers prefer to be matched with applicants who can perform well.50

Wlog, we assume that the initial preference ordering is µ(0)
1,1 ≥ µ

(0)
1,2 ≥ µ

(0)
2,2 and µ(0)

1,1 ≥ µ
(0)
2,1 ≥ µ

(0)
2,2.51

That is, all agents prefer type 1 arms to type 2 arms, and all arms prefer type 1 agents to type 2 agents.52

Incentive-compatibility. Absent incentives and coordination from the platform, the agents and53

arms match each other using their initial preferences. However, the platform wants to incentivize54

both the agents and the arms to explore different options to find the optimal matching and maximize55

the cumulative reward. In particular, at each time step t, the platform can broadcast a signal s(t) as a56

recommendation to all agents and arms. By direct revelation principle [Myerson, 2018], this signal is57

equivalent to directly telling the agents which arm to match with, and vice versa.58

Definition 2.1 (Two-sided Bayesian Incentive-Compatible Condition). ∀t ∈ [T ], the platform’s59

recommendation is ϵ−two-sided Bayesian Incentive-Compatible (ϵ-BIC) for some ϵ > 0 if it satisfies:60

E[r(t)i,j |rec = (x
(t)
i , a

(t)
j )]− sup

ℓ∈[N ]

E[r(t)i,ℓ |rec = (x
(t)
i , a

(t)
j )] ≥ ϵ (2)

E[r(t)i,j |rec = (x
(t)
i , a

(t)
j )]− sup

ℓ∈[N ]

E[r(t)ℓ,j |rec = (x
(t)
i , a

(t)
j )] ≥ ϵ (3)

61

Assumption 2.2 (Behavioral Assumption). Agents and arms follow recommendations for any ϵ0-62

BIC policy, for some fixed ϵ0 > 0. If one side rejects the recommendation, then both sides of the63

recommended (agent, arm) pair do have a match for that time-step and the platform receives a reward64

of 0 for that recommended pair. Both the agents and the arms are assumed to be myopic, i.e., they65

will choose the posterior best arms (agents) at the current time-step to match with.66

Reduction to combinatorial semi-bandits. Our first insight is to reduce the two-sided matching67

problem to a combinatorial semi-bandits problem. Consider the following mapping: at each time-step,68

the set of all feasible matches between agents and arms constitutes the action space A ⊂ RN×N . An69

atom (x
(t)
i , a

(t)
j ) is a match between x(t)i and a(t)j , and there are N2 total atoms. An action A(t) ∈ A70

at time-step t is the combination of matches at that round, where
∥∥A(t)

∥∥
1
≤ N . At each time-step t,71

a learner arrives at the platform, receives a recommendation for an action A ∈ A, and chooses an72

action A(t) ∈ A. The platform and the learner both observe the reward of each atom in this arm (and73

nothing else). The algorithm’s reward in this time-step is the total reward of these atoms.74

Under this reduction, a few technical challenges differentiate our result from that of combinatorial75

semi-bandits. Particularly, it is unclear how to collect the ’warm-start’ samples, which are input to76

any efficient incentivized exploration algorithm. For a detailed explanation, see Appendix B.77
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3 Incentivized exploration for two agents and two arms78

In this section, we focus on the fundamental special case of incentivized exploration with two types of79

agents and arms to show the salient points of our analysis. In essence, the platform first incentivizes all80

agents and arms to match each other and collect samples from these matches. Then, the platform use81

these ’warm-start’ samples to accelerate exploration and quickly converge to the optimal matching.82

3.1 Initial exploration with Hidden Exploration83

We present our first contribution, a BIC algorithm to collect the ’warm-start’ samples, where the84

objective is to sample each atom, i.e., match between an agent and an arm, at least once and completes85

in T0 time-steps for some T0 determined by the prior. In the following algorithm, we show that in the86

’worst case’ with one ’explorable’ atom initially, we can incentivize both the agents and the arms to87

explore different matches. Intuitively, given enough samples of the ’explorable’ atom, we can split88

the remaining time-steps into phases such that in each phase, a new atom, i.e., a match between an89

agent and an arm that was previously not explorable, can be chosen by the learner upon receiving90

the principal’s recommendation. The incentivized exploration technique within each phase builds91

on the approach from Mansour et al. [2015], which is defined for multi-armed bandits. However,92

the reward priors are highly correlated in two-sided matching markets, and the set of ’explorable’93

atoms can initially be of size 1. Furthermore, the intricate incentive interplay between agents and94

arms requires a more careful notion of which action to explore. Our technical contribution here is to95

provide a sequence of actions and prove that it is possible to incentivize both the agents and the arms96

to explore given some mild conditions on the posterior distribution of the reward for each atom.97

We make the following non-degeneracy assumption: any action Acand can be the posterior best action98

with a margin τP and probability at least ρP after seeing at least nP samples of the previous actions.99

Assumption 3.1 (Fighting chance assumption). There exists number nP ∈ N and τP , ρP ∈ (0, 1)100

determined by the prior P such that: for a sequence of actions A1
cand, · · · , AN

2

cand defined by101

NextCandidate(A,S,P). Let S be the dataset containing exactly k ∈ N samples of each arm, then102

Pr[Xk
i ≥ τP ] ≥ ρP ∀i ∈ A and k ≥ nP , (4)

where Xk
i = minarms A̸=Acand

E[µAcand
− µA|S]103

We state our initial sampling algorithm in Algorithm 1 and its theoretical guarantees in Theorem 3.2.

Algorithm 1: Initial sampling: Hidden Exploration
Input: Batch size L ∈ N, target number of samples k ∈ N, gap C ∈ (0, 1).

1: Initialize dataset S = ∅;
2: The first k learners choose A = {(x1, a1)} without recommendations. Let r̂k1,1 be the sample

average of these rewards. Add these k samples to S;
3: for each phase ψ = 1 to N2 do
4: A

(ψ)
cand = NextCandidate(A,S,P);

5: if r̂k1,1 ≤ µ
(0)

Aψcand

− C then

6: ’Exploit’ action A∗ = Aψcand.
7: else
8: ’Exploit’ action A∗ = {(x1, a1)}.
9: From the set P of the next L · k learners, pick a set Q of k learners uniformly at random;

10: Every learner p ∈ P −Q is recommended the ’exploit’ action A∗;
11: Every learner p ∈ Q is recommended action Acand. Add the reward from all p ∈ Q to S.

104

Theorem 3.2. Assuming Assumption 3.1 holds with constants nP , τP , ρP . Then, Algorithm 1 is105

two-sided ϵ-BIC as long as the batch size L is at least106

L ≥ 1 + max

 2 + 2ϵ

τP · ρP − 2ϵ
,

2ϵ

µ
(0)
1,2 + µ

(0)
2,1 − µ

(0)
2,2 + E[∆k

A0,A2,2
|ξ3] Pr[ξ3]− 2ϵ

 (5)

and completes in T0 = N2 · nP · 1+N2

τP ·ρP time-steps. All actions are sampled at least nP times.107
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Figure 1: Regret using Algorithm 1 and Inverse Gap Weighting with time horizon T = 20000.
Results are averaged over 10 runs, with the shaded region representing one standard error.

3.2 Accelerated Exploration with Inverse Gap Weighting108

Given the data collected by Algorithm 1, the platform wants to accelerate exploration and converge109

to the optimal matching. The platform has to balance exploitation, i.e., recommending the empirical110

best match to minimize regret, and exploration, i.e., ensuring that the two-sided BIC condition holds.111

The theoretical underpinning of our recommendation policy at this stage is inverse gap weighting,112

i.e., recommending a match with probability inversely proportional to the reward gap between that113

match and the empirical best match. Formally, we let b(t) = argmaxA∈Ar̂
(t)
A denote the empirical114

best action at time-step t. Then, the probability of an action A being recommended at time-step t115

is: p(t)A =


1

N2+γ(r̂
(t)

b(t)
−r̂(t)A )

if A ̸= b(t)

1−
∑
A̸=b(t) p

(t)
A otherwise

, where the hyperparameter γ > 0 shows the tradeoff116

between exploration and exploitation. A smaller γ leads to more exploration, while a larger γ induces117

more exploitation. To ensure that γ is adaptive to the samples collected, we set γ = C0 ·N
√

1/ϕ(t),118

where ϕ(t) is the mean squared error of the prediction at time-step t. Similar to Foster and Rakhlin119

[2020], we assume there exists an efficient regression-oracle that accurately compute ϕ(t) at time-step120

t. With this recommendation policy, we state the theoretical guarantee for accelerated exploration:121

Theorem 3.3 (Informal). Given sufficiently many ’warm-start’ samples of all atoms, the inverse122

gap weighting recommendation policy is two-sided ϵ-BIC. The total regret during this stage is123

O(N
√
dT log(T )), which asymptotically matches the optimal regret of combinatorial semi-bandits.124

4 Numerical Simulations125

In this section, we complement our theoretical results with an experiment (Figure 1) to show incentive126

compatibility and regret minimization of our combined algorithm. For details, see Appendix D.127

5 Conclusion and Future Work128

In this work, we present the first results for incentivized exploration in two-sided matching markets,129

where the agents and arms are individuals with preferences over their matches. We characterize the130

incentive-compatibility constraints and provide a reduction to combinatorial semi-bandits. With this131

reduction, we present a BIC algorithm that collects ’warm-start’ samples and accelerates exploration132

to minimize regret. In the future, we want to extend this work in several directions. First, we want133

to analyze the setting with more than two types of agents and arms. Moreover, we are working on134

experiments using synthetic and real-world datasets to support our theoretical findings.135
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A Related Work209

Incentivized exploration The notion of incentivized exploration in this work has been introduced210

in [Kremer et al., 2014] and subsequently studied by [Mansour et al., 2015, Immorlica et al., 2018,211

2019]. Recent work in incentivized exploration focuses on extending the framework beyond the212

classical multi-armed bandits setting. Notably, Hu et al. [2022], Sellke [2023] studied incentivized213

exploration using Thompson Sampling and allowing the Bayesian prior to be correlated across214

different arms. This framework is later generalized by [Kalvit et al., 2024] to allow for private agent215

types, informative recommendations, and correlated priors.216

Incentivized exploration is related to the literature on information design [Kamenica and Gentzkow,217

2011, Bergemann and Morris, 2019], where each time-step of incentivized exploration is essentially218

an instance of Bayesian persuasion, a central model in this literature. There exists a line of work219

orthogonal to ours that seeks to incentivize exploration via payment [Frazier et al., 2014, Kannan220

et al., 2017, Chen et al., 2018], time-discounted rewards [Papanastasiou et al., 2018]. For a detailed221

discussion, see Slivkins [2017]. Absent incentives, our model reduces to multi-armed bandits and its222

extension to bilinear bandits [Jun et al., 2019].223

Two-sided matching market. The literature on two-sided matching market is first studied by the224

seminal work by [Gale and Shapley, 1962]. The two-sided market has many applications, ranging225

from streaming platforms to payment systems [Rysman and Wright, 2014] and loan market [Chen226

and Song, 2013]. For a broad overview of these applications, see Rochet and Tirole [2003]. The227

formulation of the two-sided matching problem as a combinatorial semi-bandits problem has been228

studied by Kasy and Teytelboym [2022]. There is a line of work on incentivized exploration in229

two-sided markets [Li et al., 2024b, Dai et al., 2022, Li et al., 2024a]. However, similar to other230

prior work in incentivized exploration, they only consider the agents’ incentives in their algorithms.231

However, many real-world applications of two-sided matching markets have human decision-subjects232

on both sides whose incentives need to be taken into consideration when the platform designs a233
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matching algorithm. In Appendix B, we describe a counterexample to illustrate the necessity of novel234

incentive mechanism designs for two-sided matching markets.235

B Counterexample: One-sided incentive in matching market236

This section provides an example to show the need for dual BIC constraints in a two-sided matching237

market. Consider a stylized setting with two types of agents and arms and a time horizon of T . In the238

first T0 time-steps, the platform runs a black-box recommendation algorithm such that, at the end of239

T0 time-steps, the agents always follow the platform’s recommendation and take the recommended240

arm. We show that there exists a problem instance where in the remaining T − T0 time-steps, the241

algorithm incurs regret Ω(T − T0).242

We examine when a stable matching can happen without external incentives from the platform. The243

number of possible matchings between 2 agents and 2 arms is 24 = 16 (each agent has 2 choices244

for which arm they prefer, and vice versa). Due to symmetry among the agents and the arms (e.g., a245

matching {(x1, a1), (x2, a2)} is equivalent to the matching {(x1, a2), (x2, a2)} by renaming the246

variables a1 to a2), there are 5 possible unique matchings between agents x1, x2 to arms a1, a2.247

Among these unique matchings, only one is stable according to the initial preferences: Figure 2(a). If248

the optimal solution falls into this case (or its isomorphic forms), then the platform does not need to249

run an incentivized exploration algorithm to achieve optimal matching. However, for the remaining 4250

possibilities, there always exists a possible realization of the rewards such that the initial preferences251

of either the agents or the arms will block an optimal matching (due to incompatible preference from252

either side) and any non-incentive-aware learning algorithm would incur linear regret.253

x1

x2

a1

a2

(a) Agent x1 prefers arm a1 (and
vice versa), and agent x2 prefers
arm a2 (and vice versa).

x1

x2

a1

a2

(b) Agent x1 prefers arm a1 (and
vice versa). Agent x2 prefers arm
a1, and arm a2 prefers agent x2.

x1

x2

a1

a2

(c) Agent x1 prefers arm a1 (and
vice versa). Agent x2 prefers arm
a2, and arm a2 prefers agent x1.

x1

x2

a1

a2

(d) Agent x1 prefers arm a1 (and
vice versa). Agent x2 prefers arm
a1, and arm a2 prefers agent x1.

x1

x2

a1

a2

(e) Agent x1 prefers arm a1,
which prefers agent x2. Agent
x2 prefers arm a2, arm a2 prefers
agent x1.

Figure 2: Possible unique matchings between 2 agents and 2 arms. Blue nodes on the left represent
agents, and red nodes on the right represent arms. Arrow indicates that the start node prefers to be
matched with the end node. Among all possible matchings, only the first case, where the matching
forms two disjoint cyclic subgraphs, does not need the platform’s interventions to have successful
matches for all agents and arms. In any other cases, we can always find a blocking pair of nodes.
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C Proofs of incentivized exploration for two types of agents and arms254

C.1 Warm-start proofs255

Proof of Theorem 3.2.256

Proof. First, we show that agents of type 1 and arms of type 1 are willing to change their initial257

preference and follow the platform’s recommendation. Then, we show that agents of type 2 and arms258

of type 2 will follow the recommendation and match each other.259

Recommended action is A(t) = {(x1, a2), (x2, a1)}. For both agents of type 1 and arms of type 1260

to change their initial preferences, we want to show that:261

E[µ1,2 − µ1,1|A(t) = {(x1, a2), (x2, a1)}] ≥ ϵ (6)

and262

E[µ2,1 − µ1,1|A(t) = {(x1, a2), (x2, a1)}] ≥ ϵ (7)

Combining these conditions, we instead will prove the following:263

E[µ1,2 + µ2,1 − 2µ1,1)|A(t) = {(x1, a2), (x2, a1)}] ≥ 2ϵ (8)

Let A0 = {(x1, a1), (x1, a1)} be a dummy action whose reward is twice the reward from choosing264

the prior-best atom (x1, a1). Then, our goal is to show that E[µA − µA0 |A(t) = A] ≥ ϵ.265

Define the following two events:266

ξ1 = {exploit: E[µA − µA0 |SkA0 ] > 0} (9)

and267

ξ2 = {explore: E[µA − µA0 |SkA0 ] ≤ 0 and selected for exploration} (10)

Then, we can write268

E[µA − µA0 |A(t) = A] ≥ E[µA − µA0 |ξ1] Pr[ξ1] + E[µA − µA0 |ξ2] Pr[ξ2]

Let ∆k
A,A0 := E[µ(A)− µ(A0)|SkA0 ]. Then, we have:269

Pr[ξ2] = Pr
[
E[µA − µA0 |SkA0 ] ≤ 0 and selected for exploration

]
= Pr[∆k

A,A0 ≤ 0] Pr[selected|∆k
A,A0 ≤ 0]

=
1

L
· Pr[∆k

A,A0 ≤ 0]

where the first equality is by definition and the second equality is due to ∆k
A,A0 being independent of270

the event that the learner is selected for exploration. Then, we can write271

E[∆k
A,A0 |ξ2] Pr[ξ2]

= E[∆k
A,A0 |∆k

A,A0 ≤ 0 and selected] Pr[∆k
A,A0 ≤ 0] · 1

L

= E[∆k
A,A0 |∆k

A,A0 ≤ 0] Pr[∆k
A,A0 ≤ 0] · 1

L

8



Hence, the left-hand side of the dual BIC condition is272

E[∆k
A,A0 |A(t) = A] Pr[A(t) = A]

= E[∆k
A,A0 |∆k

A,A0 > 0] Pr[∆k
A,A0 > 0]

+ E[∆k
A,A0 |∆k

A,A0 and selected] Pr[∆k
A,A0 < 0 and selected]

= E[∆k
A,A0 |∆k

A,A0 > 0] · Pr[∆k
A,A0 > 0]

+
1

L
· E[∆k

A,A0 ≤ 0|∆k
A,A0 ≤ 0]

=

(
1− 1

L

)
· E[∆k

A,A0 |∆k
A,A0 > 0] · Pr[∆k

A,A0 > 0]

+
1

L
·
(
E[∆k

A,A0 |∆k
A,A0 > 0] · Pr[∆k

A,A0 > 0] + E[∆k
A,A0 |∆k

A,A0 ≤ 0] · Pr[∆k
A,A0 ≤ 0]

)
=

(
1− 1

L

)
· E[∆k

A,A0 |∆k
A,A0 > 0] · Pr[∆k

A,A0 > 0] +
1

L
· E[∆k

A,A0 ]

=
L− 1

L
· E[∆k

A,A0 |∆k
A,A0 > 0] · Pr[∆k

A,A0 > 0] +
1

L
·
(
µ0
A − µ0

A0

)
For the dual BIC condition to hold, we can set273

L− 1

L
· E[∆k

A,A0 |∆k
A,A0 > 0] Pr[∆k

A,A0 > 0] +
1

L
· (µ(0)

A − µ
(0)
A0 ) ≥ 2ϵ

⇐⇒ L ≥
E[∆k

A,A0 |∆k
A,A0 > 0] Pr[∆k

A,A0 > 0]− (µ
(0)
A − µ

(0)
A0 )

E[∆k
A,A0 |∆k

A,A0 > 0] Pr[∆k
A,A0 > 0]− 2ϵ

⇐⇒ L ≥ 1−
µ
(0)
A − µ

(0)
A0 − 2ϵ

E[∆k
A,A0 |∆k

A,A0 > 0] Pr[∆k
A,A0 > 0]− 2ϵ

⇐⇒ L ≥ 1 +
µ
(0)
A0 − µ

(0)
A + 2ϵ

E[∆k
A,A0 |∆k

A,A0 > 0] Pr[∆k
A,A0 > 0]− 2ϵ

The expression above can be simplified by using definitions of τP , ρP and observing that µ(0)
A0−µ(0)

A ≥274

2 to get275

L ≥ 1 +
2 + 2ϵ

τP · ρP − 2ϵ
(11)

Recommended action is A(t) = {(x1, a1), (x2, a2)}. We want to show that all agents and arms276

will comply with this recommendation. That is, we want to show277

E[µ2,2 − µ2,1|A(t) = {(x1, a1), (x2, a2)}] ≥ ϵ

E[µ2,2 − µ1,2|A(t) = {(x1, a1), (x2, a2)}] ≥ ϵ

E[µ1,1 − µ1,2|A(t) = {(x1, a1), (x2, a2)}] ≥ ϵ

E[µ1,1 − µ2,1|A(t) = {(x1, a1), (x2, a2)}] ≥ ϵ

Let A2,2 = {(x2, a2), (x2, a2)} and A1,1 = {(x1, a1), (x1, a1)} be a pair of dummy actions with278

reward twice that of atom (x2, a2) and (x1, a1), respectively. Let A0 = {(x1, a2), (x2, a1)} denote279

the prior-best actions for x2 and a2. Then, we can combine these conditions and show that:280

E[µA2,2 − µA0 |A(t) = {(x1, a1), (x2, a2)}] ≥ 2ϵ

E[µA1,1
− µA0 |A(t) = {(x1, a1), (x2, a2)}] ≥ 2ϵ

First, we consider the incentives of x1 and a1. We have:281

E[µA1,1
− µA0 |¬explore] Pr[¬explore]

E[µA1,1 − µA0 ]− E[µA1,1 − µA0 |explore] Pr[explore]

= 2µ
(0)
1,1 − (µ

(0)
1,2 + µ

(0)
2,1) + E[µA0 − µA1,1

|explore] Pr[explore]

9



Since the first term is non-negative according to the initial preference ordering, it suffices to show282

that E[µA0 − µA1,1 |explore] Pr[explore] ≥ 2ϵ. This inequality holds from the previous analysis for283

recommending Acand = {(x1, a2), (x2, a1)}.284

Then, we consider the incentives of x2 and a2. By construction, when agent x2 receives a recommen-285

dation for arm a2, they can infer that they are not in the explore group. Hence, it suffices to show that286

E[µA2,2
− µA0 |¬explore] Pr[¬explore] ≥ 2ϵ. We have:287

E[µA2,2 − µA0 |¬explore] Pr[¬explore]

= E[µA2,2
− µA0 ]− E[µA2,2

− µA0 |explore] Pr[explore]

= (2µ
(0)
2,2 − µ

(0)
2,1 − µ

(0)
1,2) + E[µA0 − µA2,2

|explore] Pr[explore]

Define the following events:288

ξ3 = {E[µA0 − µA2,2
|Sk1,1] > 0}

ξ4 = {E[µA0 − µA2,2
|Sk1,1] ≤ 0}

Then, we can write:289

E[µA0 − µA2,2
|explore] Pr[explore]

= E[µA0 − µA2,2 |ξ3] Pr[ξ3] + E[µA0 − µA2,2 |ξ4] Pr[ξ4]

Let ∆k
A0,A2,2

= E[µA0 − µA2,2
|Sk1,1]. Then, we have:290

Pr[ξ3] = Pr[∆k
A0,A2,2

≤ 0|selected for exploration] Pr[selected for exploration]

= Pr[∆k
A0,A2,2

≤ 0] Pr[selected for exploration]

Furthermore, we have291

E[µA0 − µA2,2
|explore] Pr[explore]

= E[E[µA0 − µA2,2
|Sk1,1]|explore] Pr[explore]

= E[∆k
A0,A2,2

|explore] Pr[explore]

where the first equality is by the law of iterated expectation and the second equality is by definition of292

∆k
A0,A2,2

.293

Therefore, we have:294

E[µA0 − µA2,2 |explore] Pr[explore]

= E[∆k
A0,A2,2

|ξ3] Pr[ξ3] + E[∆k
A0,A2,2

|ξ4] Pr[ξ4]

= E[∆k
A0,A2,2

|ξ3] Pr[ξ3] + E[∆k
A0,A2,2

|∆A0,A2,2
< 0] Pr[∆k

A0,A2,2
< 0] · 1

L

=

(
1− 1

L

)
E[∆k

A0,A2,2
|ξ3] Pr[ξ3] +

1

L
· E[∆k

A0,A2,2
]

=
L− 1

L
E[∆k

A0,A2,2
|ξ3] Pr[ξ3] +

1

L
· (µ(0)

1,2 + µ
(0)
2,1 − 2µ

(0)
2,2)

The BIC condition can be written as:295

E[µA2,2
− µA0 |¬explore] Pr[¬explore]

= µ
(0)
2,2 − (µ

(0)
1,2 + µ

(0)
2,1) +

L− 1

L
· E[∆k

A0,A2,2
|ξ3] Pr[ξ3] +

1

L
· ((µ(0)

1,2 + µ
(0)
2,1)− µ

(0)
2,2)

=
L− 1

L

(
µ
(0)
1,2 + µ

(0)
2,1 − µ

(0)
2,2 + E[∆k

A0,A2,2
|ξ3] Pr[ξ3]

)
Solving for L, we obtain the following condition:296

L ≥ 1 +
2ϵ

µ
(0)
1,2 + µ

(0)
2,1 − µ

(0)
2,2 + E[∆k

A0,A2,2
|ξ3] Pr[ξ3]− 2ϵ

To ensure that this lower bound is not vacuous, we choose ϵ small enough such that the denominator297

is positive.298
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C.2 Accelerated Exploration Proofs299

First, we state the following theorem from Jun et al. [2019] on finite sample error for low-rank bilinear300

bandits.301

Theorem C.1 ([Jun et al., 2019]). There exists a constant C such that for302

nP ≥ C · σ2(g20 + g21) ·
κ6

dσ2
min(K

∗)
r(r + log(d))

with probability at least 1− 2/d32, we have303 ∥∥∥K̂ −K∗
∥∥∥
F
≤ C1κ

2σ

√
dr

nP
(12)

where C1 is an absolute constant, K∗ is the mean reward matrix defined by K∗
i,j = µi,j with rank304

r, K̂ is the noisy estimate of K∗ using nP samples of each atom, κ = σmax(K
∗)/σmin(K

∗). Let305

K∗ = URV ⊤ be the SVD of K∗. Let (g0, g1) are the smallest values such that for all i, j ∈ [d]306

r∑
k=1

U2
ik ≤ g0r/d

r∑
k=1

V 2
jk ≤ g0r/d∣∣∣∣∣

r∑
k=1

Uik(σk(K
∗)/σmax(K

∗))Vjk

∣∣∣∣∣ ≤ g1

√
r

d2
307

Proof of Theorem 3.3. We begin by stating the formal theorem for accelerated exploration:308

Theorem C.2 (Accelerated Exploration BIC). Given nP samples of all atoms where309

ncP ≥ N6C2
1κ

4σ2dr

4C2
0 (∆

(t)

(b(t))
− ϵN2)2

the inverse gap weighting recommendation policy is two-sided ϵ-BIC. The total regret during this310

stage is O(N
√
dT log(T )), which asymptotically matches the optimal regret of combinatorial semi-311

bandits.312

Proof. We want to show that given a recommendation for any action A ∈ A, the learner would not313

switch to some other action A′. Formally, we want to ensure the following condition:314

E[µA − µA′ |rec(t) = A] Pr[rec(t) = A] ≥ ϵ

Let ∆(t)
A,A′ = E[µA − µA′ |S] denote the posterior gap between action A and A′ given the data315

collected during the warm-start stage. Let ∆(t)
A = minA′ ̸=A∆

(t)
A,A′ denote the minimal posterior316

gap between action A and any other action. Then, when action A is recommended at time-step t, it317

means either 1) A is indeed the posterior best action at this time-step and ∆
(t)
A > 0 or 2) A is not the318

posterior best action and ∆
(t)
A ≥ 0. We have319

E[∆(t)
A |rec(t) = A] Pr[rec(t) = A]

= E[E[µA − max
A′∈A

µA′ |S]|rec(t) = A] Pr[A(t) = A]

= E[E[µA|S]− max
A′∈A

E[µA′ |S]|A(t) = b(t)] · Pr[A(t) = b(t)]

+ E[E[µA|S]− max
A′∈A

E[µA′ |S]|A(t) ̸= b(t)] · Pr[A(t) ̸= b(t)]

We proceed to analyze the lower bound for each case separately.320

Exploitation: Recommended action A(t) = b(t). By construction, the posterior best action is321

recommended with probability p(t)
b(t)

= 1 −
∑
A̸=b(t)

1

N2+γ(r̂
(t)

b(t)
−r̂(t)A )

. Since γ > 0, we observe322

that the probability of recommending any other action A ̸= b(t) is at most 1/N2. Hence, we have323

p
(t)

b(t)
≥ 1/N2. Therefore, we can write the reward gap in this case as:324

E[E[µA|S]− max
A′∈A

E[µA′ |S]|A(t) = b(t)] · Pr[A(t) = b(t)] ≥ 1

N2
·∆(t)

b(t)
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Exploration: Recommended action A(t) ̸= b(t). The reward gap in this case can be written as325

follows.326

E[E[µA|S]− max
A′∈A

E[µA′ |S]|A(t) ̸= b(t)] · Pr[A(t) ̸= b(t)]

=
∑
A̸=b(t)

p
(t)
A (E[µA − µb(t) |S])

=
∑
A̸=b(t)

1

N2γ(r̂
(t)

b(t)
− r̂

(t)
A )

(E[µb(t) − µA|S])

= −E

 ∑
A̸=b(t)

1

γ
·

γ(r̂
(t)

b(t)
− r̂

(t)
A )

N2 + γ(r̂
(t)

b(t)
− r̂

(t)
A )


< −N

2 − 1

γ
(since

γ(r̂
(t)

b(t)
−r̂(t)A )

N2+γ(r̂
(t)

b(t)
−r̂(t)A )

< 1)

< −N
2

γ

Hence, for the BIC condition to hold, it suffices to show that327

E[∆(t)
A |rec(t) = A] Pr[rec(t) = A] ≥ ϵ

⇐⇒
∆

(t)

b(t)

N2
− N2

γ
≥ ϵ

⇐⇒ γ ≥ N4

∆
(t)

b(t)
− ϵN2

By definition, we have γ = C0 ·N
√
1/ϕ(t). Then, combining with the condition above, we derive328

the requirement for the minimum prediction error at time-step t as:329

γ ≥ N4

∆
(t)

b(t)
− ϵN2

⇐⇒ C0 ·
N√
ϕ(t)

≥ N4

∆
(t)

b(t)
− ϵN2

⇐⇒ ϕ(t) ≤
C2

0 · (∆(t)

b(t)
− ϵN2)2

N6

Then, we use the theoretical guarantee of Theorem 2 in Jun et al. [2019] for bilinear bandits: Hence,330

it suffices to have331

ϕ(t) ≤
C2

0 · (∆(t)

b(t)
− ϵN2)2

N6

C2
1κ

4σ2dr

4nP
≤
C2

0 · (∆(t)

b(t)
− ϵN2)2

N6

ncP ≥ N6C2
1κ

4σ2dr

4C2
0 (∆

(t)

(b(t))
− ϵN2)2

Regret Analysis Following the analysis of Foster and Rakhlin [2020], with probability at least 1−δ,332

the regret upper bound of the inverse gap weighting algorithm is O(N
√
T · ϕ(T ) log(2/δ)).333

D Experiment Detail334

In this section, we provide the experimental details and analysis of Figure 1 that were previously335

omitted from the main body.336
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Experimental Details We consider a stylized setting with two types of agents and two types of337

arms as described in Section 2. All agents prefer to match with arms of type 1 and all arms prefer to338

match with agents of type 1. Our goal is to incentivize all agents and arms to explore all possible339

alternative matches and minimize regret.340

We consider an online setting with a time horizon of T = 20000. At each time-step t ∈ [T ], 8 units341

arrive in a batch: two units for each type of agent or arm. The user profile for each agent of type342

1 (resp. type 2) is x(t)1 = [v(t)0] (resp. x(t)2 = [0v(t)]) where v(t) ∼ Unif[0, 1]. Similarly, the user343

profile for each arm of type 1 (resp. type 2) is a(t)1 = [u(t)0] (resp. a(t)2 ) where u(t) ∼ Unif[0, 1].344

The latent matrix Σ is generated as
(

1 0.6
0.4 0.2

)
to ensure that all agents prefer arms of type 1 and345

all arms prefer agents of type 1. Finally, the realized reward is generated by adding independent346

Gaussian noise η(t)i,j ∼ N (0, 0.01) to each inner product of the user profiles.347

Using Theorem 3.2, we calculate a lower bound on the phase length L of Algorithm 1 such that the348

ϵ-BIC condition (Definition 2.1) is satisfied for all agents and arms. Then, we calculate the number349

of samples needed to ensure that the efficient oracle in Section 3.2 is well-defined. We calculate the350

regret incurred by the combined algorithm by summing over the gap between the realized reward of351

the chosen action and the optimal matching at each time-step. This experiment is repeated 10 times352

and we report the regret and the standard error incurred at each time-step.353

Results Our result is consistent with that of prior work in incentivized exploration. In the first stage354

of collecting ’warm-start’ samples (Algorithm 1), we observe linear regret due to construction of355

the recommendation policy. Note that linear regret is also the state-of-the-art regret for the initial356

sample collection [Mansour et al., 2015]. When the second stage begins and we run the inverse357

gap weighting algorithm, the regret growth immediately decreases as the platform can explore more358

efficiently. In a real-life two-sided matching market, the platform can collect the initial samples by359

buying them, thus incurring no regret for the firs stage. Then, the platform only has to use the inverse360

gap weighting algorithm and observe sub-linear regret during its running time.361

Future Work for experiments In our next revision, we aim to run more experiments to complement362

our theoretical results and explore how the regret changes in response to changes in hyperparameters.363

Particularly, we are interested in running experiments with more types of agents and arms, more364

number of agents and arms at each time-step, higher dimension of the user profiles, and varying gaps365

in the prior mean reward between different matches.366
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