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Abstract

In this paper, we consider the general stochastic non-convex optimization problem
when the sampling process follows a Markov chain. This problem exhibits its
significance in capturing many real-world applications, ranging from asynchronous
distributed learning to reinforcement learning. In particular, we consider the worst
case where one has no prior knowledge and control of the Markov chain, meaning
multiple trajectories cannot be simulated but only a single trajectory is available
for algorithm design. We first provide algorithm-independent lower bounds with
Q(e=?) (and Q(e~*)) samples, when objectives are (mean-squared) smooth, for
any first-order methods accessing bounded variance gradient oracles to achieve
e-approximate critical solutions of original problems. Then, we propose Markov-
Chain SPIDER (MaC-SPIDER), which leverages variance-reduced techniques, to
achieve a O(e~?) upper bound for mean-squared smooth objective functions. To
the best of our knowledge, MaC-SPIDER is the first to achieve O(e~3) complexity
when sampling from a single Markovian trajectory. And our proposed lower bound
concludes its (near) optimality.

1 Introduction

Many modern learning tasks can be modeled as stochastic optimization problems. Specific applica-
tions range from (un)supervised learning, reinforcement learning to large-scale generative models. In
particular, the surge in deep learning and large models has made first-order methods—those that rely
solely on gradient information—attractive due to their ease of implementation and computational
efficiency [} 140l

Yet, the commonly assumed i.i.d. data setting rarely reflects real-world scenarios. In many practical
applications, data arrive sequentially and exhibit temporal dependencies, often shaped by underlying
dynamical systems that can be modeled as Markov processes. For instance, in reinforcement learning,
data are collected through interactions with an environment governed by a Markov decision process
(MDP), producing inherently correlated samples [35]. In recommendation systems, user feedback
unfolds over time, where each action depends on previous interactions in a Markovian fashion
[2]. Time-series data—from sensors to financial markets—are also naturally Markovian [18, [12].
MCMC methods, widely used in Bayesian inference, rely on Markov chains to sample from complex
posteriors [8,28]. Even in language modeling, transformer architectures produce token sequences
with local dependencies that can be interpreted through a Markovian lens [1} 27].

These examples point to a clear fact: i.i.d. assumptions are sometimes insufficient, and optimizing
in the presence of Markovian data requires more careful analysis. As a result, a growing body of
work has emerged to study stochastic optimization under Markov sampling, spanning areas such as
reinforcement learning [7, 139], distributed optimization [33|[14], and federated learning [34]]. These
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developments underscore the need for a more unified and general theoretical foundation that can
account for the challenges introduced by Markovian dynamics.

Compared to the extensively studied i.i.d. setting, analyzing first-order optimization methods under
Markov sampling introduces new and significant challenges due to data correlation. In the i.i.d. case,
each data point is sampled independently from a fixed distribution, yielding unbiased estimates of
the stochastic gradient. This independence enables the direct application of standard tools such as
variance bounds and concentration inequalities [29} 22| [25]]. However, when data are generated by a
Markov process, consecutive samples are inherently correlated, complicating the statistical properties
of gradient estimates. Specifically, the Markovian dependence introduces bias into the gradient
estimates, which disrupts the foundational assumptions that are crucial for i.i.d.-based analysis. As a
result, many classical techniques no longer apply directly, and alternative tools are required to handle
the joint effects of bias and temporal correlation [[7, {13} 31} 33} [21]].

There are fruitful results about stochastic optimization with Markovian samples in literature, where
a large amount focus on designing new algorithms and deriving corresponding sample complexity
upper bounds. A common assumption placed by these works is that the algorithm is implemented
in the simulated environment, meaning multiple trajectories can be incorporated to facilitate the
performance of the algorithm. For example, in [36} [23] multiple trajectories are sampled from
the underlying Markov chain for an update of policy in the RL problem. And variance-reduced
techniques are incorporated by utilizing multiple trajectories to obtain better convergence rates and
sample complexities [30, 26| [37, 38]]. However, in practice one may have no access to multiple
trajectories due to no prior knowledge and uncontrollability of the Markov chain. In such case, once
the sampling begins, the chain keeps evolving and cannot be restarted, i.e., only a single trajectory is
available for algorithm design. Based on this restriction, [13}|10]] establish SGD-based approaches
with batched samples drawn from a single trajectory and [6]] further proposes the accelerating
versions and generalizes them to variational inequalities. However, these methods suffer from
slow convergence rates or high sample complexity, which is mainly because no variance reduction
technique is considered as the i.i.d. counterpart. Moreover, when considering variance reduction for
the Markov setting, biasness and time dependence make the analysis developed for the i.i.d. case
fail to hold, which bring challenges in the derivation of new mathematical tools. Therefore, in this
paper we are interested in understanding whether variance reduction can be achieved in the Markov
sampling case when only one trajectory is available and aim to derive a new variance-reduced method
to reduce sample complexity. Besides, we would also like to figure out what is the fundamental limit
of our method and all existing methods. To achieve this, we further develop lower bound of sample
complexity under both smooth and mean-squared smooth (which is commonly assumed for variance
reduction applications) settings for any first-order algorithms, which nearly match the upper bound of
our method. This concludes the near min-max optimality of our algorithm. Our main contributions
are summarized as follows:

* We provide the algorithm-independent sample complexity lower bound for any first-order
methods of stochastic non-convex optimization problems, given data samples are generated
by a Markov chain for smooth functions. Our lower bound shows a complexity with the
order of ¢~#, which nearly matches the upper bound of algorithm MAG provided in [10, [6].

* We also consider the case of mean-squared smooth functions, which shows broad applica-
tions in variance reduction for the i.i.d. case. We provide a lower bound of order e~ when
samples are Markovian.

* We then propose a new algorithm, called MaC-SPIDER. The convergence and sample
complexity analysis is provided for MaC-SPIDER, which indicates nearly the same order of
€3, hence combining with our lower bound demonstrates its (near) min-max optimality.

Variance reduction for non-convex stochastic optimization. Variance reduction has drawn much
attention very recently. It effectively controls the variance to a low level and hence improves sample
efficiency of solving stochastic optimization problems. Mature variance-reduced techniques have
been successfully applied to the i.i.d. case to reduce sample complexity. Popular methods include
but not limited to SAG [32]], SVRG [20, 4], SPIDER [15]. In particular, it is shown that SPIDER
can achieve the optimal order of e =3 sample complexity. However, in practice data might not be
ii.d. but Markovian. For the RL problem, variance-reduced methods have been developed by
assuming multiple trajectories can be used for every iteration of the algorithm. Under this assumption,



incorporating with SVRG gives a sample complexity of O(e~1°/3) [30,37] and O(e~?) is achievable
when combining with SPIDER [3§]].

Lower bounds for stochastic optimization. The sample complexity of first-order stochastic
optimization has been a central topic of study over the past two decades. Among these developments,
lower bounds play a fundamental role, as they characterize the inherent difficulty of optimization
and set performance limits for all algorithms within a given class. In the full-batch setting, where the
algorithm has access to all data, a lower bound of (¢ ~2) has been established for smooth non-convex
objectives [9], and this rate is achieved by standard Gradient Descent [[17]. Under the i.i.d. sampling
assumption, lower bounds of £2(e~2) for convex objectives [3]] and Q(e~*) for general non-convex
objectives [5] have been proven. The latter improves to £2(e~2) under a mean-square smoothness
assumption [3)]. Correspondingly, stochastic gradient descent (SGD) [16, [17] and SPIDER [15]
achieves matching upper bounds in both settings, respectively. In the Markovian sampling regime,
where data are temporally correlated, complexity results explicitly depend on the chain’s mixing
or hitting time, denoted by 7. For strongly convex functions, [6] establishes a lower bound of
Q(7log(e™1)), while for general convex objectives, [I1] proves a lower bound of Q(7¢~2), which
matches the known upper bound for SGD in that setting. For non-convex objectives, [13] recently
derived a loose lower bound of Q(7¢ 1), whereas the best-known upper bound remains O(7e~4).

2 Problem Formulation

Consider the general stochastic optimization problem,

mzin F(z) :=Egor[f(z;8)] )
where s € S for S being the support, and 7 denotes some unknown underlying distribution. In this
paper we focus on the Markovian case, i.e., we assume that the samples {s;}2, form a sequence
generated by some underlying Markov chain with its stationary distribution being 7. Moreover we
focus on countable-state Markov chains, meaning the state spaces are countable but may not be finite.

Note that the Markovian setting reduces to the i.i.d. setting by decoupling the dependence across
time.

Since exactly solving (I)) is NP-hard [19], by restricting to first-order methods, we search for an
e-approximate critical solution, which is widely adopted by literature [9} [5, 6] of F'(z) defined in (T).
In particular, given differentiable function F' : RY — R, our goal is to find some  such that

IVE(z)]| < e
for any € > 0.

2.1 Function class

Particularly, we consider all smooth functions in the following class:
F(A, L) :={F:R* - R | F(0) —inf F(z) < A,

IVF(z) = VE(y)|| < Lllz — yll, Yo,y € R} @

where A > 0 and L > 0 are fixed parameters. The condition F'(0) — inf, F(z) < A on F(0) can
be generalized to any initial value F'(x(). However, for zero-respecting algorithms (to be defined in
Section[2.2)), we have z( = 0. In particular, we consider the case where the objective F' is smooth
and has bounded initial gap to the optimum.

2.2 Algorithm class
Our algorithm class is inspired by [S]]. We consider the following first-order algorithms such that:

* the algorithm can access an unknown F' € F(A, L) by a stochastic first-order oracle O;

* the oracle O returns a sequence of samples z := {s;}2 | (B can be time-dependent)
generated by a Markov chain and a mapping

Or (@, {si}21) = {g(; 5:)) 1Ly
where g(xz; s) := V f(z; s) is the stochastic gradient.



* atiteration ¢, the algorithm queries a batch of M points{]_-]
Ty = (Te 1, 4,2, -y Tt M);
* for each batch query z¢, O responses with
Or(xt,2t) = (Or (24,1, 201), - -, OF (T, 01, 26,0) )
where z; ; is the sequence of sample drawn for z; ; and z; := Uf\il Zti.

Then algorithm A consists of a sequence of measurable mappings {.4;}$°, to generate a sequence of
iterates {x; }$2, satisfying the following conditions:

o the (¢ + 1)-th iterate is the output of .A; when taking all previous oracle responses as input,

ie.,
xﬁ?ﬂ = A (OF(JCBA[OF],ZOL . ~70F($24[OF]7Zt)> ;
* Algorithm A is zero-respecting, i.e., for any O and samples zg, z1,... with any M, it
satisfies for any ¢t > —1 and any m € [M]
A[O
support(xH[l;@]) C U support(gr. m/), 3)
k<t,m’€[M]

A[OF]

where gy . is the stochastic gradient for x;, -,

coordinates of x.

and support(x) represents non-zero

We denote A,,.(M) the class of all zero-respecting algorithms. It is worth noting that for any
AcA..(M), :cé[loﬂ = 0 by definition.
We note that the above-mentioned algorithm class is general, which captures many existing first-order
algorithms. For example, the vanilla MC-SGD [[13]]

Typ1 = Ty — Neg(Te; St)
corresponds to M = 1, B = 1,Vt > 0. For Randomized ExtraGradient [6]], which maintains the
update by

Li41/2 = Tt — ntg(Tt; 57, 41)
Ti+1 = T — MUyt

where by generating .J, ~ Geom(1/2)

_ 0 2% (ult — ') if 2k < K
Ut = up F { 0 otherwise
with ‘
2.7
uy =277 Zg(xt+1/2§ s1y1i+1), Tey1 =Ty + 1427 for Ty = 0,
i=1

one can clearly see that it fits in the case of M = 2 and B = 27+,

2.3 Markov-Chain Classes

In this section, we are interested in any sampling schemes characterized by finite-state Markov chains,
i.e., |S| < oo. Before formally defining the classes of Markov chains, we present the definitions of
hitting and mixing times which are two critical quantities characterizing the structure of a chain.

Definition 2.1 (Hitting time). For any state w € S, define
Tw = nf{t > 1] s =w}
as the time Markov chain firstly reaches state w. The hitting time 77,;; is defined by

Thit 1= v,u%{?sxxsE[Tw | so = v].

'The batched queries represent multiple variables maintained by the algorithm to update iteratively at every
iteration.



Intuitively, the hitting time measures the maximal number of steps for which any pair of states take to
transit between each other.

Definition 2.2 (Mixing time). Consider Markov chain P. For any € > 0, define
timie(€) ;== nf{7 > 0| dpy (P7,7) < €}

where dry (P, Q) represents the total variation distance between probability measures P and Q). We
call 7, the mixing time of P, where 70 := tmiz(1/4).

The mixing time measures the convergence speed of a Markov chain to its stationary distribution.
Then we consider the class of Markov chains for which the stationary distribution 7 exists and the
hitting time 73 is upper bounded by parameter 7 > 1 (scaled by some numerical constant). We
denote the chain by P. Specifically,

M(1) = {P | Thit < coT, tlggo uPt = W,V,u} 4)

where ¢y > 0 is some numerical constant; 75;; is defined in Definition Pt represents the
distribution of the chain after ¢-step transitions starting from the initial distribution .

2.4 Oracle Classes

Recalling that the oracle O returns a sequence of stochastic gradient evaluated at each query, we
place the following assumption.

Assumption 2.3. There exists some 0 < 02 < oo, such that Eq.,||g(z; s) — VF(2)||?> < 02 and
Esrlg(z; s)] = VF(z) for any .

Basically, Assumption [2.3only limits the asymptotic behaviors of the stochastic gradient: 1) gradient
estimate, i.e., Eg,[g(7; s)] = VF(x); and 2) bounded variance, i.e., Es x| g(7;8) — VF(2)||? <
o2. Note that this assumption does not place any restriction when the chain has not yet converged to
its stationary distribution. Moreover, it becomes aligned with the bounded variance assumption of
stochastic first-order methods under i.i.d. sampling by further forcing independence across samples
(L7, 14].

Then, we are interested in two oracle classes. The first natural class denoted by Q(o2, 7), is that the
stochastic gradient g is sampled from a chain contained in M(7) by @]) and such that Assumption
@]15 satisfied. This oracle class is considered in SGD-based analy51s in literature [6]].

The second class we consider is inspired by applications of variance reduction in the i.i.d. setting
[L5}15]], where besides bounded variance of stochastic gradients, an stronger requirement is placed. In
particular, we assume that the stochastic gradient g satisfies the mean-squared smoothness:

Assumption 2.4. There exists L > 0 such that E, ||g(z; s) — g(y; 8)||? < L?||x —y||?,Vz,y € R%

It is straightforward to observe that mean-squared smoothness implies smoothness of F' by observing
IEsmrlg(;8) — g(y; )] < Bonrllg(z; s) — g(y; 5)||> < L?||z — y||>. Then, in the second oracle
class, denoted by O(c?, 7, L?), we force the stochastic gradient g is sampled from a chain in M (1)
and such that both Assumptions[2.3]and [2.4] are satisfied.

2.5 Sample Complexity Measures

Our results of lower bounds are established in terms of the sample complexity for finding an e-
approximate critical solution of F'. Define P as the collection of all well-defined probability measures
supported on S. Let S;(A) = [J,, 2+ be the collection of all samples utilized til time ¢ by algorithm
A. -

Concretely, the sample complexity measure for the smooth setting is defined by

Nf(M A,L,0% 7)

=sup sup sup inf
TEP 0€0(o2,7) FEF(A,L) AeAzr(M)
inf{|sT< |2 1 EIVF@r?™) < f . )



Similarly, for the mean-squared smooth setting, the sample complexity measure is given by
N¢(M,A,L? 0% 1)

1= sup sup sup inf
TEP O€0(c?,r,L2) FEF(A,L) A€A (M)
inf {|Sr(A)] > 1| BIVF (@7 ™)) < e} ©)

When N¢(M, A, L,o?, 7) is lower bounded by Nz, i.e., N(M, A, L,0? 7) > Nr with Nt denot-
ing all collected samples up to time 7', it indicates that there exists some stationary Markov sampling
process P with bounded hitting time and an oracle O € Q(o?,7) such that for any A € A,.(M)

there exists F' € F(A, L) for which E||VF(3:;}’[1O F])|| > ¢, where the expectation is taken over
randomness in .4 and O. In other words, at least N7 number of samples must be required to (possi-
bly) achieve an e-approximate critical solution for any first-order algorithm (and similarly for the
mean-squared smooth setting).

3 Algorithm-independent Lower Bounds

In this section, we show our main results on the lower bounds of sample complexity for stochastic
non-convex optimization under Markov sampling. The result is algorithm-independent, implying that
all first-order methods that are zero-respecting take at least such samples to reach an e-approximate
critical point of the non-convex objective function.

We show the following sample complexity lower bounds for any finite Markov sampling processes
under both smooth and mean-squared smooth settings. Please refer to Appendices [B] and [C] for
detailed proof.

Theorem 3.1. For the smooth setting, there exist numerical constants cy, ce > 0 such that for any
M,L,A,o,7 >0,

2
NE(M,A,L,O'z,T)—Q(TLA TO >

= + >y min {0102, CQLA}

For the mean-squared smooth setting, we have

= TLA  TLAG?
NE(M,A,L2,O'2,T)=Q( +— .
€ €
Remark 3.2. Note that the extreme case 7 = 1 corresponds to the i.i.d. sampling case. To see this,
recalling the definition of hitting time 7 = 1 indicates exactly one step is taken transiting from one
state to any other, which then implies the samples are drawn exactly from the stationary distribution 7
and there is no time dependence across samples drawn at different time steps, hence reducing to i.i.d.

case. Thus, when o2 > LA our lower bound results are aligned with those provided in [5]. Moreover,

2
noting that for the smooth setting the lower bound reduces to {2 (TE%A + ”’C%A if 02 = LA, it

~ 2
nearly matches the best-known upper bound in literature [6], which is O (T’m:gL A4 T"‘”';Z LA )

4 Min-max Optimality for Mean-squared Smooth Functions

In this section, we propose Markov-Chain SPIDER (MaC-SPIDER) ,which is a variant of SPIDER

[L5] under Markov sampling, manifesting the (near) min-max optimality of sample complexity.
In particular, we show that the sample complexity of MaC-SPIDER is O(Tmiww;%%_?’) (with
Tmin = Ming 7(s)), which is comparable to our proposed lower bound Q(7¢~2) up to some constant

/ QTmm and the hitting time 7. Proof for this section is deferred

gap (independent of ¢€) between 7, ./

to Appendix D]

We present MaC-SPIDER in Algorithm [T} which exhibits effective variance reduction ability, hence
improving sample complexity. Algorithmically, it is similar to SPIDER [[15]], while now the sampled

Note that this upper bound is achieved under a stronger assumption than Assumption i.e., in [6] it is
assumed that ||g(z; s) — VF(z)||* < o2, Vz, s. But we conjecture this bound also holds under Assumption



Algorithm 1 Markov-Chain SPIDER (MaC-SPIDER)
1: Input: initial point z¢, Ny = 0, batch size M; and Mo, integers T and r, stepsizes {nt}tT;Ol
2: fort=0,1,..., 7T —1do
3: ift mod r = 0 then

4: Draw M, samples and compute v; = J%Il Z?ill (X5 SNy +i)-

5: Niy1 = Ne + M.

6: else o

7: Draw M samples and compute vy = v;_1 + %b doialg(es sny+im1) — 9(Te—15 SN, 44))-
8: NtJrl S Nt + MQ.

9: endif
10:  Set the learning rate n; = min {8%, m}
11: Ti41 = T — NU¢.
12: end for

13: Output: 77 sampled uniformly from {z;}/ "

gradients are drawn from some unknown Markov chain rather than identically and independently.
One crucial characteristic of MaC-SPIDER is that only one single trajectory generated by the chain
is used for implementation. In other words, one needs not to care about when or where to restart
the chain once the sampling process begins, but just keeps in mind how many samples should be
drawn every iteration. This also enables its broader application in practice. For example, in literature
[30, 26]] multiple trajectories must be simulated before variance-reduced techniques to be applied,
which costs extra resources and waiting time since every trajectory requires restart and then wait until
enough collected samples. More problematically, multiple trajectories may even become unavailable
in practical scenarios, when the chain is uncontrollable to simulate. MaC-SPIDER only uses a single
trajectory with no further limitation and knowledge on the chain, which in this sense distinguishes its
simplicity and applicability for practical implementation.

In particular, v; maintained in Algorithm [1|serves as an estimate of V F(x) that incorporates the
history of sampled gradients for a better estimation with fewer samples to control the variance.
This is intuitive and understandable when samples are i.i.d., as each sample is an independent
and unbiased estimate of the true gradient. However, such unbiasedness no longer holds in our
case, since Markovian samples are essentially biased and time-dependent, which makes it unknown
whether or not variance can still be reduced effectively. Fortunately, by carefully analyzing the
coupled correlation across different samples, we provide a positive answer to the controllability of
the variance of v;, formally stated by Proposition d.3]

We first present the following useful lemma, which generally provide the basic guidance on the
variance control of Markov sampling.

Lemma 4.1. For a Markov chain {s:}32, with state space S and stationary distribution m, consider
any function h : S — R? and define h, = Es..[h(s)]. Denoting E(-) as the expectation
conditioning on filtration F; and T, as the mixing time, the following holds:

(1). If Esr||h(s) — hr|? < 02, givenany s; € S,

1 o :

M Z h(st—l-i) — hﬂ-
i=1

(2). If Egor||R(5)||? < B2, then for any s;

1 M
]Et (M Zl h(5t+i) — h,.n—)

T Tomin 02 7872 . 52
vV 7"-7711‘71]\4 7T-'minj\42

E;

6TmizB
S e ®

M 2 2 B2
% Z h(st1i) — hx|| < 14;"”‘10?4 + 272T8fm}\“:4§
i=1 V min min
Remark 4.2. Note that similar variance bounds as Part (1) are provided in [[6}[10]. However, either
of their analysis requires bounded gradient assumption, i.e., || VF(z)|| < G < oo,V or bounded

2

E; ©))




noise assumption, i.e., ||g(z;s) — VF(z)|* < 0% < o0, V, s, while ours do not depend on such
restrictive assumptions.

Then leveraging Lemma[.1] gives the following result, which indicates that the variance of v; can be
well controlled to an arbitrary level.
Proposition 4.3. Considering Algorithm[I|and supposing Assumptions hold, by setting

1127’7,”13 2 167—m'm 1
M, = —/— == max{o,0°}, My=—]= r==
vV Tmin €2 { } V Tmin€ €

E|lv; — VF(z4)||* < €2, Vt > 0.

we have for any e < 1

It is worth noting that Proposition implies that to control the variance to a level of O(e?), the
average number of samples per iteration that Algorithmuses is O(e~1), while simply using batched
samples requires O(e~2) samples [10,6]. Thus MaC-SPIDER successfully reduces the variance with
fewer samples. This is the main reason why the sample complexity can be improved to O(e~3). It is
formally summarized by the following theorem.

Theorem 4.4. For Algorithm[l\with any ¢ < 1 assuming Assumptions hold, setting

1127 i 167z 1 16LA
My, = Lmax{a,az}, My = Dhmie -, T=

N Tormin €2 /Trmin€ € T2
where A = F(xg) — min, F(z), we guarantee
E|VF(Zr)| < Te.

. ~1/2 _
Moreover, the total number of samples is O(Tmmﬂ'mié €3).

Remark 4.5. Combining with the lower bound in Theorem [3.1] we note that MaC-SPIDER achieves

almost the same order of €2 up to some gap (independent of ¢) between 7 and 71'7:11427'7”13;. This
shows its near min-max optimality.

5 Proof Idea of the Lower Bounds

In this section we present the proof idea of how we obtain the sample complexity lower bounds for
Markov sampling. We first clarify the proof sketch by focusing on the case where B = 1, i.e., only
one sample is drawn from the underlying Markov chain by the algorithm. Then, we generalize it to
the case of B > 1 which can also be time-dependent. Full proofs are presented in Appendices [B|and

The core technique inspired by [3]] is to construct a "hard" function F' with f(-; s) supported on each
state of a Markov chain lying in the required class such that the gradient norm, |V F(x)||, is small
only if each coordinate of = has a large enough absolute value. We use the progress function to
mathematically evaluate the largest coordinate whose absolute value is larger than some nonnegative
scalar a, i.e.,

prog, (x) := max{k > 1| |[z]x| > a}
where [z]), represents the k-th coordinate of x. We set prog,, (x) = 0 if |[x]x| < o, Vk € [d]. Then
the task of finding an e-approximate critical solution is equivalently transformed to finding a solution
x whose coordinate progress is high. Formally it is stated by the following lemma.

Lemma 5.1. There exists some F* € F(O(Ae?d), L) such that |[VF*(x)| > e,Ye > 0 if
progy(z) < d.

Indicated by Lemma 5.1]ensuring ||V F*(z)| < € requires all coordinates of z to be nonzero. Then
for the smooth setting, we construct a chain with its hitting time upper bounded by 7 and at least
Q(7/q) (with ¢ € (0, 1)) iterations are needed to make one increase in prog,(x). It is stated by the
following lemma.

Lemma 5.2. For any q € (0, 1) and any zero-respecting algorithm A € A ,,., there exist a Markov
chain contained in M(7) and some F* € F(O(Ade?), L) with g*(z; ) satisfying VF*(x) =
Esrlg* (25 8)] and Esr||g* (2;8) — VF*(2)||* < O(0%€%/q) such that for any 0 < & < 1, with
probability at least 1 — §

(d—logd—1)

A[OF] T
max max prog,(x <d, vVt <
me[]i'(l] sgfp gO( ST ) - 4q



In fact the constructive function F* in Lemma[5.2] coincides with the one in Lemma[3.1} which then
implies that at least {2(7d/q) iterations are needed to guarantee an e-approximate critical solution
output by any algorithm and hence Q(7d/q) samples (due to B = 1). Finally setting d = Q(e~2)
and ¢ = O(e?) concludes the lower bound Q(7¢~*) shown by the smooth setting of Theorem [3.1

For the mean-squared smooth setting, we have the following result.

Lemma 5.3. For any g € (0,1) and any zero-respecting algorithm A € A ,,, there exist a Markov
chain contained in M(7) and some F* € F(O(Ade), L) with g*(x; s) satisfying VF*(z) =
Esor[g* (x5 8)] and Esr||g* (z; 5) — VF*(2)||* < O(0?%€%/q) such that for any 0 < & < 1, with
probability at least 1 — §

(d—logdo~1)

A[OF] T
max ma <d, Vt <
6[1\}/([] Sgi(progo(xs,m ) — 4q

Thus, taking d = O(e~ 1) and ¢ = O(€?) recovers the bound for the mean-squared smooth setting in
Theorem [3.11

Note that the above proof derivations are established on the precondition when B = 1 by which we
are able to directly obtain the sample complexity bounds through the iteration complexity analysis,
since the iteration complexity is the same as the sample complexity. To generalize our results to
B > 1, we present the following result.

Lemma 5.4. There exist a Markov chain in @) and some functions F*,g* (F*,g*) satisfying
corresponding conditions in Lemmal[5.2)(or Lemma[5.3)) such that for any zero-respecting algorithm

A, with B > 1, there is a zero-respecting algorithm A%, with B = 1 for which the following holds:

foranyt > 0 if max,, e maxs<y pmgo(xﬁfn[op]) < k, then max,,c[n) maxs<¢ progo(xéi,?ﬂ) <

k V0 <k <d.

The above lemma indicates that we can always find an algorithm that only draws one sample per
iteration to achieve no worse progress in its update than other algorithms that access multiple samples
per iteration. In other words, combining with Lemmas [5.1] and [5.2] yields that accessing multiple
samples every iteration has no benefit on improving the sample complexity for the algorithm, which
hence implies the lower bounds that holds for B = 1 also holds for B > 1.

6 Limitation

The paper only considers the case of finite-state Markov chains, while in practice it is highly possible
that the underlying Markovian sampling process admits infinitely many states. Besides, we only
consider stationary Markov chains in the paper, which limits the generalization to the non-stationary
setting. Therefore, extension to non-stationary Markov chains is an interesting direction and may
need extra efforts.

7 Conclusion

In this paper, we study the first-order non-convex stochastic optimization problems. Unlike the
conventional i.i.d. sampling, we focus on the case where data samples and stochastic gradient
estimates are generated by an unknown Markov chain, which introduces additional data correlation
and hence non-trivial analysis difficulties. Due to the lack of sample complexity lower bound results
and the gap to the best-known upper bound under the Markovian setting, we provide an improved
complexity lower bound with the order of ¢ ~# for general smooth functions, which nearly matches the
best-known upper bound. We also consider the mean-squared smooth setting, which exhibits broad
applications in variance reduction literature. We prove that for the mean-squared smooth setting, the
sample complexity lower bound is the order of ¢~ for Markovian samples. Finally, we propose a new
algorithm MaC-SPIDER, which to the best of our knowledge is the first variance-reduced method
under a single Markovian trajectory, such that its sample complexity upper bound nearly matches our
proposed lower bound, implying its near min-max optimality and the tightness of the lower bound.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Both the abstract and introduction discuss the sample complexity lower bound
and the new proposed algorithm MaC-SPIDER with near optimality, which reflects the
contribution and scope of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of the paper is clearly discussed.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper provides complete proof for each theoretical result and clearly states
the corresponding assumptions.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper is purely theoretical and has no empirical result.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper is purely theoretical and has no experiment.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper is purely theoretical and does not have experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper is purely theoretical and has no experiment.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper is purely theoretical and has no experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors reviewed the NeurIPS Code of Ethics and affirm the paper
conforms with it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper studies the theory of stochastic optimization and has no societal
impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper studies the theory of stochastic optimization and has no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper is purely theoretical and does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper is purely theoretical and does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper studies the theory of stochastic optimization and does not involve
crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper is purely theoretical and does not involve crowdsourcing nor research
with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper provides the sample complexity theory of stochastic optimization
and does not involve LLMs as any important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Constructions of the Markov Chain and '"Hard"' Function F

A.1 Construction of Markov chains

In this section, we construct a Markov chain that is used for the lower bound proofs. The idea is to
construct a chain such that 1) there exist two states between which at least 7 steps must be take to
transit; 2) the hitting time of the constructed chain is upper bounded by 7. Without loss of generality
we assume 7 is even.

In particular, we consider a directed cyclic-like chain with self-loops. Denote s = ¢ be the ¢-th state of
the Markov chain for i € {0,1,...,27" + 1} with 7’ = 7/2. Then for any ¢ € (0, 1/2) the transition
of the chain is defined as follows:

* P(s=2s=0)=P(s=0/s=0)=P(s=2|s=1)=P(s=1ls=1)=1/2;
e Ps=7"43ls=7+1)=P(s=7"+1lls=74+1)=Pls=7+3[s=7+2) =
Ps=1742s=7+4+2)=1/2;
P Pls— 7 4 1ls =) = g P(s = 7'+ 2s = ) = 1/2 — ¢, Pls = }s = ') = 1/
(

r
s=0s=2r"+1)=¢P(s=1s=2r"+1) =1/2—q,P(s = 27" + 1|s =
21 +1)=1/2;
s P(s=i+1ls=i)=P(s=ils=14)=1/2,Vi ¢ {0, 1,7/, 7"+ 1,7" +2,27" + 1}.
Then letting vi = 0,05 = 1,wi = 7" + 1,ws = 7/ + 2, it is straightforward that the above
constructed Markov chain guarantees that transitioning between v} and w7 takes at least 7/ = 7/2

steps. Moreover, the hitting time of the chain is O(7) by noting the hitting time of directed cyclic
chain with self-loops and n states is O(n). We denote this chain by P*, and hence P* € M(T).

A.2  Construction of function F'
Now we construct a "hard" function that is difficult for any first-order algorithm to search for the
critical point. Specifically we consider the following two functions

ld/2]-1

() = =)o) + D (@(=lala)d(—[2]2i1) — (([a]20)d([2]2i41))  (10)

i=1

Ld/2]
ha(x) = Z (P(—[z]2i-1)p(=[z]2:) — P([x]2i-1)B([2]2:)) (11
i=1
where
0 , u< %
d}(u){ exp(l—ﬁ) , u>%
and u .
ow=ve [ eHar
with u € R.

We denote 7, as the corresponding probability of state s of the stationary distribution 7. Then, given
the Markov chain P* constructed in Appendix we know that at least %7’ steps are required
to take transiting from v} to w} and vice versa. Then, we construct function F' such that F'(z) =
Ty=h1(x) + Tw-ho(x), where we denote v* = {v],v3}, w* = {w],wi} and my« = Tyx + Ty,
Tws = Twr + Tws. Forany 2 and ¢ > 0 define x<; := ([]1,...,[2],0,...,0) as the truncated
version by only keeping the first 7 coordinates. We also set <o = x. Then we have the following
properties of F'.

Lemma A.1. Let F(z) = my+h1(2) + 7y~ ha(2) for hy, ho defined by (I0),(T1). Then we have the
following:

(1). F(0)—inf, F(x) < Aod for some constant g > 0.
(2). ||VRhi(2)]loo < 23 and ||Vhi(z)|| < 23Vd,i =1,2.
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(3). F(x) is l1-smooth for some constant l; > 0.
(4). Ifprog,(x) < d, ||[VF(z)|| > 1.
(3). [Vhi(x)]iprog%(w) = [Vhi(xﬁpwg%(w))]éprvg%(w)’ =12

(6). If progy(x) is odd, progy(Vhi(z)) < progy (), progy(Vha(z)) < prog
is even, prog,(Vhi(z)) < progy (z) + 1, progo(Vhz(z)) < prog: (z).
(7). If progy () is odd, Vhi(x) = Vhl(xgpmg%(x)), Vha(z) = th(:vgl_ﬂ,mg%(m)). If progy () is
even, Vhy(z) = Vhl(xgl-‘,-progl(m))r Vha(x) = Vho(T<prog, (z))-
2 2

(z) 4 1. If progy(x)

1
2

Proof. For Part (1), observing that F'(0) < 0 and noting that 0 < 9 (u) < e, 0 < ¢(u) < /2me,

d

F(z) > —p(W)e([zh) = > v([ali-1)é([z]i) > —dev2me = —dAo

i=2
with Ay = ev/2me, which completes its proof.

For Part (2), noting that 0 < ¢’(u) < v54e~1 and 0 < ¢/(u) < /e, combining with the fact that
foreachi = 1,2

gzvh;(x) > Y(~la]j-1)¢/ (~[ol,) — (lalj—1)¢' (1a];) =¥’ (= [o]) o~ ol +) =¥ (o))l 1)

yields
< eve+ Vbde1y/2me < 23

Oh;
\ s

implying || Vh;(z)| < 23 and | Vh;(z)| < 23Vd, Vi =1,2.
Parts (3) and (4) follow directly from [9]]. Parts (5)-(7) follow from the observation that

. ...
Vhl(l') = Vhl([l']l,...,[$]2i+1,07...,0), lf|$2j| S 5, VJ 2 l+1

. . .
Vh2($) = th([i]l,...7[$]21,07...,0), lf|$2j,1‘ é 57 V_] 2 1+ 1

B Lower Bound for the Smooth Setting

In this section, we show the lower bound of the smooth setting in Theorem B;fl Based on the
contructive F' in the last section, we consider the following gradient oracle g: for each ¢-th coordinate
of g

its € (o503}, [o(oi 9l = (ol (1410 > progy (0} (22 1)),
its & {utup), ool = (Va(ol - (1410 > prog (o)) (221 1)),

otherwise, g(z;s) = 0. (12)

Recalling the definition of P*, we note P(s = v} | s € {vj,v3}) =P(s = w} | s € {wi,w}}) =
q € (0,1/2). Then, we have the following lemma.

Lemma B.1. Considering stochastic gradient g(x; s) constructed as (12)), the following statements
hold:

(1). For s € {vf,v3,wi,ws}, with probability at least 1 — q, prog,(g(x;s)) < prog%(:r) and

g(z;s) = g(xgpmg%(m); s) for all x.
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(2). For s & {v},v3,wi, w3}, with probability 1, progy(g(x;s:)) < progi(z) and g(x;s) =

g(xﬁprog% (z)5 st) for all x.

(3). For any s, with probability 1, prog,(g(x;s)) < 1 + prog (z) and g(x;5) = 9(T<14prog, ()5 5)
2
forall x.

(4). Esnlg(z; )] = VF(2).

Proof. We firstly show Part (3). Note that by (I2) and Part (7) of Lemma [A71] for any z,s,
[9(x;s¢)]: = 0,Vi > 1—|—pr0g%(x) in the sense that [Vhq (z)]; = [Vha(x)]; = 0,Vi > 1+progs (z),
which implies prog,(g(z;s)) < 1+ prog%(:c). Moreover, by Part (7) of Lemma defin-
ing @' 1= T<ijprog, (2) gives Vhy(xz) = Vhi(z') and Vhy(xz) = Vhy(z'). Thus, we obtain
g(z;s) = g(a'ss) for any z, s, implying Part (3).

For Part (1), we note that when ¢ > 1 + prog%(x) and s € {vi,wi}, g(z;s) = [Vh; (J;)]Spmg%m
for j = 1,2, which implies prog,(g(z;s)) < prog (x),Vs € {v3,w3}. Further, according to (5) of
Lemma we have g(z;s) = g(xgpmg%(x); s)fors € {vi,w}}andall x. Since P(z = 0) = 1—g,
hence Part (1) is proved.

Part (2) holds trivially in the sense that g(z; s;) = 0 when s ¢ {v],v3, w], w5 }. Finally, Part (4)
holds since E[1,/q | s € {vi,v5}] = E[Lls/q | s € {w},w3}] = 1. O

Also, we show in the following lemma that g has bounded variance.

Lemma B.2. For F(z) = m,«h1(x) + mw=ha(x) and g defined as (12)), then for any Markov chain
with stationary distribution m, given any x € R?,

1—
Esrllg(z;s) = VF(@)|* < a1d + a2

for some constant ay,as > 0.

Proof. By Part (4) of Lemma|[B.1] we know E,[g(z; s)] = VF ().

Denote i* = 1 + prog, (x). For any s € {v}, v, w}, w5}, we have

g(x;8) = VF(x) = (0,...,0,[Vhi(2)]i+ (Ls=vz /q — 1),0,...,0) + (1 = Ty )Vhy(z) — To= Vha(z), if s € {v],v5}
g(w;s) = VF(x) = (0,...,0,[Vha(z)]i (Ls=ws /g — 1),0,...,0) + (1 = Ty ) Vha(x) — Ty Vhy(2), if s € {w], w3}

When i* — 1 is odd, from Part (6) of Lemma we know that [V hq(x)];« = 0. Therefore,

lg(xss) = VE(@)|I* < 2| Vha(2)[|* + 2[[Vha(2)[|* < 4-23%d, s € {v], v3}

lg(z;s) = VE(@)|? < 3|[Vho(2)]i |*(Lsmw; /g — 1) + 3| Vha (2)|* + 3[|Vha(2) ||
<3-23%(Lomuw: /g — 1) +6-23%d, s € {w],w}}

and
lg(;50) = VF(2)||> = [|[VF(2)||* < 4-23%d, whens ¢ {v},v5,w}, w5}

where we use (2) of Lemma[A.T] Combining the above three inequalities, it yields that when ¢* — 1
is odd, for any Markov chain, any xz, t > 0 and any initial distribution of the chain,

1—
E|g(z;s:) — VF(2)||* < a1d + az d

where a; = 6 - 23%,as = 3 - 23% and we use that E[(1s/q — 1)? | s € {w},w}}] = (1 — q)/q. The
case when ¢* — 1 is even can be derived similarly. O
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Then, we are ready to show Lemmas[5.]and[5.2] We first focus on the case B = 1 and then generalize
itto B > 1.
Proof of Lemmas .1l and 5.2} Given any e > 0, we consider the following F'™*
L\? T
F*(z) = 22 F (f
(]") l] )\
And we consider the following gradient g*
g ’ T ll g )\ ’
with g(z; s) defined as (T12). Since VF(x) = Esr[g(z; 8)], VE*(2) = Esur[g* (x5 5)]. We note
that

2
) , Where A = %e. (13)

L
VP (@) = ZVF (%)
1
which implies that F'* is L-smooth by Part (3) of Lemma[A-T] Moreover, by Part (1) of Lemma [A]
we obtain that

41, €2 411 Age?
F*(0) — inf F*(z) = f (F(0) — inf F(z)) < —* Loe d.
All the above concludes Lemmal[3.11
To see Lemma[5.2] note by Lemma|[B.2] we have
das(1 —
Eorllg” (z:5) — VF*(2)||* < 4ayde® + da2(124) o

Then, define

By =1 {3 x : progy(g*(x;s)) =1 +prog%(x)}.
Note that under the construction of the Markov chain P* and F'* and g*, for any zero-respecting
algorithm A

By, =0, VE=1,..., %T, conditioning on B; = 1.

That is to say within every %T iterations B; can be 1 at most once. And Part (1) of

Lemma indicates that the probability of B, being 1 is no greater than ¢q. Let k(t) :=
max,, () Max;< progo(asﬁ[no]‘v "). Then, the above implies that
k(t) <Y B
1<t
Also recalling the definition of P* guarantees for any ¢ in the ideal case the number of possible
non-zero B; can be at most 2¢/7 with each being 1 with probability at most g, it implies

[2t/7]
ZBl < Z 2
1<t =1

where z; denotes the Bernoulli random variable with succeeding probability being at most q. Note
that z;s are independent in the sense that conditioning on the chain hits v* = {v}, v} and will hit
w* = {w7, w3} at exactly 7/2 steps later, whether w} or wj will be visited is independent of which
of v or v; has been visited. Thus

P(k(t)>d) <P (> B >d
1<t

P | exp ZBZ zed

1<t

IN

e 9E[exi<t B

BT 5

IN

= (1~ g+ eq) 7]
< e(4t/r'\q—d
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Therefore, we conclude that for any 6 € (0,1) and ¢ € (0, 1/2) with probability at least 1 — J,

k(t) < d, Vt < T(d_lzqg(l/‘s))

which completes the proof of Lemma[5.2]

Proof of Lemma[5.4} To see the part of the smooth setting of Lemma [5.4] note that for any algorithm
A with B > 1, we simply observe that by the construction of F* and ¢g* and the Markov chain P*,
for any ¢ > 0 and m € [M], there exists an algorithm A with B = 1 for which progo(xf,[,? " *]) <

progo(mf,[no r *]), since multiple samples do not contribute to additional progress of x, which then

proves the part of smooth setting (Similar claims can be achieved for the mean-squared setting of

Lemma[5.4).
Proof of the smooth setting of Theorem[3.1; Now to show the lower bound for the smooth setting of
Theorem [3.1] setting
LA o?
d = mi 14
win | e |senal) a4
and )
1 o
Z =1 15
q * S8aqe? (15)

yields that F* € F(A, L) and Assumption [2.3]is satisfied. By Part (4) of Lemma[A.1|and Lemma
choosing § = 1/2 renders that for any m € [M] with probability at least 1/2,

d—1
[VE 0 ) 2 2e, v < T2 1)
’ q
which implies that
d—1
BIVE (e 2 e ves T,

Therefore, we conclude that

d—1) _tLA  ro?
NEM A Lo?r) > TE— 1 TEA 10 (6102 LA}
€

4q T €
by the selections of d, ¢ as (T4),(I3) for some constants ¢y, c2 > 0.

C Lower Bound for the Mean-squared Smooth Setting

In this section, we show the lower bound of the mean-squared smooth setting in Theorem [3.1] The
idea is similar to the proof for the smooth setting, except that we replace the indicator function in
(T2) by its smoothed surrogate:

d 1/2
Oi(z):=T|1- (Z FQ(ka) (16)
k=1

where I' is defined by
B flt/4 A(T)dr
(t) = 11//42 A(r)dr
with
0, t<1/dort>1/2
Alt) = { exp (1/(100(t — 1/4)(t — 1/2))), 1/4/<(t)< 1/2./

Then, we consider the following stochastic gradient g:

its € {ufop), oG9l = [9mal- (14 0460) (221 1)),
its & futvus), [oGass)) = (Vhe) - (14 0460) (P22 - 1)),

q
otherwise, g(z; s) = 0. (17)
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It is straightforward to see E;...[g(x; s)] = VF(z). According to Observation 1 of [3], we know
©;(x) = 0,Vi < progy(x) and hence [g(z;s)]; = [Vh;(z)]i,j = 1,2,Vi < progs(z) when
s € {v},v3, wy, ws}. Moreover, according to Part (6) of Lemma we have forany s € S

gl 5))i = 0, Vi > 1+ prog, (x).

Defining §(x; s) := g(x; s) — VF(z), it yields that there is eactly one non-zero coordinate of §(x; ),
which is the 1 + prog: (x)-th coordinate. Moreover, we have the following results for g.

Lemma C.1. Consider g defined as (7). Then,

1—
Eonrllg(a;s) — VF(z)|* < asd + a4

(18)
for some constants as, ay > 0. And for some constant l; > 0
Bonrl3(0:9) - 303 )° < Dl — ol vy € R, (19)
Proof. Similar to the proof of Lemma|[B.2] we can easily obtain (I8). To show (I9), note that
El|g(z;s) — g(y: s)1* = E[|6(z;5) — 8(y; 9)|* + [I[VF(2) = VE(y)|?
= ie{;i*}E(WfE; s)li = [0(y; 9)i)> + |VF(z) = VF(y)|*
where i% = 1+ prog, (x), i} = 1 Jr;ryogé (y). Since
E([8(x;5)]s — [8(y; 8)]i)* = ([VF(2)]iOi(z) — [VF(y)]iQi(y))Q%
= ([VF(@)]:(i(z) — Bi(y)) + [VF(x) — VF(y)}iGi(y)f%
< 2([VF(2)];(0i(z) — ©;(y))* + [VF(z) — VF(y)ﬁ@i(y)Q)é

and by Observation 1.3 of [3]] |©;(z) — ©;(y)| < 36|z — y|| and noting |©;(x)| < 1, [VF(z)| s <
23, we obtain

2
E([8(x;5)]; — [8(y; 8)]i)* < 6(232 -36%[|lz — ylI* + [|[VF(2) = VE@)[?).
Finally leveraging Part (3) of Lemma[A] gives
_ _ 17
Elg(w;s) = gy o)* <l —y?
with [? = 4 - 232 - 362 + 512. O

Then we show the lower bound corresponding to the mean-squared smooth setting of Theorem 3.1}

Proof of the mean-squared smooth setting of Theorem and Lemma ' Noting that L-mean-
squared smoothness implies L smoothness, we thus consider the case L < L with L to be determined
later. Consider the same F™* as (I3) and let g*(x; s) = (LA/l1)g(x/A; s). Similarly, we have F™* is
L-smooth. Also

Eovrl§*(z:5) - VE*(2) 2 < <Lf) (asd + as(1 - g)/a)

and

2
Eorllg”(2:5) — 5" (43| = (Lf) Euer [3(2/A5) — 55/ 5)|

02

Ll ) )
< xr — .
(h\/a oyl
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Then taking

d = min LA o
B 4Z1A062 ’ 8&362
1 o? I?
g 14— 1
7 max{ + Sasc?’ l% }
Ll _
L= 137\/6 <L
1

we guarantee that F* € F(L, A) and Assumptions are satisfied. Similar to the proof of the
smooth setting, we can easily obtain Lemma[5.3]and then conclude that

7LA  TLAG?
+ 3

NE(M,A,EQ,O'Q,T) -
€ €

which completes the proof.

D Convergence Analysis of MaC-SPIDER

In this section, we provide the proof for Section ] We first present the following technical lemma.
Lemma D.1. We have the following claims:

s dpy (P, ) < dpy (pPt ).

o Fork > 2, tmiz(27%) < (k — )Tz

e Moreover,
T

ZdTV(Nkaﬂ-) < 37—mixa vT > 0.
k=0

Proof. The first two claims are directly from [24].

To see the third claim, we note that

ZdTV(NP ;) < ZdTV(MPkﬂT)
k=0 k=0
Tmix (o9} t,,,L”_,(Q_(k"'l))
< dry (P!, ) —|—Z Z dpy (uPt, )
=0 k=0 l:tnu'u:(2_k)+1
00
< dTV(,Ua 7T)Tmiazc + Z(t7rnix(27(k+l)) - tmix(Qik))Qik
k=2
S dTV (,U/a 7'l-)Tmix + Z k2_k7—miw
k=2
S dTV (,u, ’/T)Tmiz + QTmiI
which completes the proof with dpy (u, 7) +2 < 3. O

D.1 Proof of Lemma[4.1)and Proposition 4.3

Proof of Lemmad. 1} Let hi = h(s,y;) — hx and h(s) = h(s) — h,. We have

| M 2 | M ) g M-1 M o
Eq Mzh(st-&-i)_hw :sztHhiHQ*'m > D Eilhi,hi).
=1 =1 =1 j=i+1
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First, we show the following useful bound: for any s € S, givent > 0and 1 < i < j,

(Z [P(ser =" | i =5) = 7r(8’)Illfl(8’)ll>

s'eS

= <Z7T(S) V2P (s = 8" | seri = 5) = m(s)[/m(s") IR (s' )

s'eS

<Y Tl Plsiy =8 [ i = 8) = (s> D w(s) (s

s'eS s'eS
2
= (Z Toin |P(st4s = 8 | 5000 = 5) — 7r(5l)|> o
s'eS
< do®m i, (maxdpy (P77 | s = 5) — m))? (20)

Then, noting that forany 1 <1 < 5 < M,

Eo(hi,hi) =Y Plseri =5 | s1) Y Plsesy = | sevi = 8){h(s), hls"))

- tz:w(stﬂ Cala- fr(s)) > (Ploves = | s = 8) = () (). F(s)
: > (0) 3 (Plovss = o st = ) = (), )
= ZSPu =30 3 7(s)hla) )

< ZjP(stH s e e R L LT ]
f;sw(s) > 1Plotss = st 5) - )

<do’m, maXdTV(PZ( | s),7) - maXdTv(iji(- | s), )

+ 2027 1/2 InaxdTV( | s),m)

min

where we use (@0) and note Y w(s')(h(s),h(s")) = (h(s),>, w(shh(s')) =
(h(s),Egr[h(s')]) = 0. Further using the fact Zlemaxs dry (Pi(- | s),m) < 3Tpiz by
Lemma|[DT] we obtain

M-1 M 2 2 2

2 Z Ey( i h] 72777”-360 6Tmiz0
ty .
M? & Lo S i M? M

Similarly we note that

Efhf)|? =" P(seri = s | so)|h(s)]?

seS
=Y (P(seri =5 | se) = w(s))|a(s)[1* + D w(s) [ h(s)]”
seS seS
<D P(sis = s | s1) = 7(s)[[2(s)]]* + 0
SES
< Tt D P(s14i = s [ 5) = m(s)] Y_ w(s)|[als)||* + o
sES seS

< 20%m b max dry (P(- | 8),7) + o2
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which then implies by Lemma[D.T]

6Tmiz0>

M2 ZEt IR < 77 + Tomin M2
Combining all above gives (7).
To show (9)), we note that

M

Z 5t+1 -
M 1M M
Z St4i) (M Zh St+ti ) + E; (MZ (St4i) — hr )

=1 =1

1 M
2 ||E; (M; 5t+z )

where we use (a + b)? < 2a? + 2b% and E[X - E(X))? <E[X]?.

2

M 2

§ 3t+z

=1

< 2R,

We note that by replacing /(s) in (20) by k(s

E; (AZ ;<h<st+i> - hn) H

Z Z (sti = 5| s¢) —7(s))h(s)
i1 ses

M
ZZ (511 = 5 | 0) — () [1(s)]
i=1 s€S

| /\

< — me i Z max dpy (P*(- | ), 7)
6T iz B

< mr
- vV 7Tm,in]\I

where we use Eqr[|2(s)]| < (E s~ |lh(8)]|?)}/? < B and this concludes (8). Moreover, similar to
the analysis of E,(h?, h7), we have

M M-—1
B? 6me32 2
h(stvi)|| = v i et Z Z E¢(h(st+i), h(st+5))
i=1 min 1=1 j=i+1
B2 67'77“‘3032 GTmmBQ 72T, 7, B2
< —+ e + + Uz 5
M TminM vV TminM TminM
< iz B> n 78 m“LB2
IRV, Tomin M sznMQ
and hence
1 & Y 4r,.B? 22872, B2
]E . h ) — hTr < mir mix
' M; (St+) - \/ﬂ'mmM * Tomin M?

which concludes (9).

Proof of Proposition ' We denote E,(+) as the expectation conditioning on filtration F.
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Note that for t mod r = 0,

Eillve — VF(z)|* =

1
A i:Zlg(iUt; SN,+i) — V()

< TTmiz0> 7872,.0°
o vV 7Tmin]\41 szanz
€2
<
- 8
by (@) of Lemmaand noting My = 1127’mm7rm% e 2max{o, 0?}.
For ¢ mod r # 0, conditioning on F;11 and letting g7} = 1\% wazlg(xtﬂ,smﬂﬂ) —

9(x¢; SN, +4) yields
2
Eial[vess = VF(@eq)|” = Eep Hvt — VE(w:) + gp43 — VF(2e41) + VF(JCt)H

= |lve = VF (@) [” + Eeya[|lgis — VF(we41) + VF ()|
+2(vg — VE(24), E1 (3,13 — VF(241) + VE(z4)])

< ve = VF (@) |? + Bega |03 — VF(z41) + VF ()|
+2llv; = VF (@) [|[Br41[G143 — VF(z141) + VF ()]

Noting that Ey 1 sr||g(i+158) — g(z; 8)|| < Ll|zi1 — 24|, Vs € S and B¢ 1 s [9(71415 5) —
g(z4;8)] = VF(2441) — VF (), combining with (8) and @) of Lemma[d.1| gives

127, 147, B? 22872
E ~VF 2 < oy — VF(@)|? + 2mizB v e miz
t1l[ve4 (@eg)[” < [loe (@ )l” + iy ——— v (@)l + i M + Tomin M2
where B := Lmax; ||x¢+1 — x¢||. Further noting
167miz €
My = B<L < -
2 ¢’ = mtax{ntHth} =7

we have
3 4

62 € €
Eiitllveer — VF(ze1)]1? < Jloe — VF () |* + ZH% — VE(z,)] LT
€
< |loy = VF(y)[|* + §||Ut VF()|* + (€ +¢'/2)

where we use %Hvt — VE(z¢)|| < §lloe — VF(xy)]|* + i(Z) in the second inequality. Then
noting that for 7ty <t < r(tp + 1) given any ¢y > 0, we have for r = 1/

1
Bl = V(@I < (1-+¢/2) Bllrt = VP + (14 ¢/2)7( +€!/2) -

e <2and E|lvye, — VF(2p4)||? < €2/8.
0 0

D.2 Proof of Theorem 4.4

Noting L-mean-squared smoothness implies L-smoothness of F', we have

L
F(xi41) — Fxg) <(VF(24), 2441 — 24) + §H$t+1 —z)?

E 2
=~ (VF (), ve) + =" e

L
—e(VE(x¢) — vg,vp) + 7\|Ut||2 — melve |

IN

— 2 (1= ) lloell? + Flfoe = VE ()
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Noting that 7 < 5=, then using the fact that min{|z|,2?/2} > |z| — 2,Vz € R,

Mt

20— ) ol = 2 o) ?

el
16L 2¢2 7 €

> i [[vell _9
— 16L €

2

el - <
= — ||V _— —
6L 8L
which hence induces
2 1
Flaip1) = Flar) € ——= ol + = + = o — VF(z,)|?
— 16L 8L 4L
Taking expectation on both sides and using Lemma[4.3] gives
€ 3e2
—FE < E[F - F —
6L ]| < E[F(¢) (Te41)] + 57
which indicates
T-1 -
1 16LE[F(xo) — F(x7)]
— E < 6
T tz:; [[ve]| < Te + Ge
16LAg
< Ge.
S e + b¢
By T' = 16 LAge? we conclude
=
E|VE(ir)| = T Z E[[VE(z)|
t=0
=
<7 > (Elvell + Elloy — VF(2,)])
t=0
< Te.

It is straightforward to see that the total number of samples is upper bounded by

T _
[w (My + Mar) = O(Timiam, 12e™3).

r
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