
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOOKING BACKWARD: STREAMING VIDEO-TO-VIDEO
TRANSLATION WITH FEATURE BANKS

Anonymous authors
Paper under double-blind review

Stylization
webcam
stream

Elon Musk Will Smith Doodle art Claymation

… … … … …

Edit prompt:

… …

Edit prompt: Sunset beach

Face swap Draw
rendering

drawing
stream

Figure 1: We present StreamV2V to support real-time video-to-video translation for streaming input.
For webcam input, our StreamV2V supports face swap (e.g., to Elon Musk) and video stylization
(e.g., to doodle art). Additionally, StreamV2V provides drawing rendering capabilities, enabling
iterative creation. We encourage readers to check our video results in the supplementary materials.

ABSTRACT

This paper introduces StreamV2V, a diffusion model that achieves real-time stream-
ing video-to-video (V2V) translation with user prompts. Unlike prior V2V methods
using batches to process a limited number of frames, we opt to process frames
in streaming fashion, to support an unlimited number of frames. At the heart of
StreamV2V lies a backward-looking approach that relates the present to the past.
This is realized by maintaining a feature bank that archives information from past
frames. For incoming frames, StreamV2V extends self-attention to include banked
keys and values, and directly fuses similar past features into the output. The feature
bank is continually updated by merging stored and new features, making it compact
yet informative. StreamV2V stands out for its adaptability and efficiency, seam-
lessly integrating with image diffusion models without fine-tuning. StreamV2V
can run 20 FPS on one A100 GPU, being 15×, 46×, 108×, and 158× faster than
FlowVid, CoDeF, Rerender, and TokenFlow, respectively. Quantitative metrics
and user studies confirm StreamV2V’s exceptional ability to maintain temporal
consistency.

1 INTRODUCTION

Text-driven video-to-video (V2V) translation, which aims to alter the input video following given
prompts, has wide applications, such as creating short videos, and more broadly in the film industry.
Most diffusion model based methods (Wu et al., 2023b; Yang et al., 2023; Ouyang et al., 2023; Wang
et al., 2023a; Khachatryan et al., 2023; Qi et al., 2023; Zhang et al., 2023; Wang et al., 2023b; Chen
et al., 2023; Zhao et al., 2023; Geyer et al., 2023; Liang et al., 2023; Wu et al., 2023a; Singer et al.,
2024) use batches to process recorded videos, as shown in Figure 2(a). However, batch processing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

necessitates loading all frames into GPU memory, thereby limiting the video length they can handle,
typically up to 4 seconds. Furthermore, these methods do not accommodate real-time translation and
typically require several minutes to process a single 4-second clip.

(a) Batch processing (b) Stream processing

Existing
V2V methods

StreamV2V
(ours)

…

…

(c) Memory consumption comparsion

Figure 2: (a) Existing V2V methods
process frames in batches, restricting
them to a limited number of frames. (b)
Our StreamV2V framework processes
frames in streaming fashion, can oper-
ate on streaming videos in real-time. (c)
Batch processing requires O(N) mem-
ory for the video length N , whereas our
StreamV2V only needs O(1) memory
regardless of video length.

This paper targets streaming V2V applications, such as
webcam video translation and AI-assisted drawing, where
users want to modify the streaming video iteratively. This
necessitates the model to handle input videos of varying
lengths and perform real-time translation. To tackle this
challenge, we introduce StreamV2V, an approach that
processes frames in streaming fashion, as shown in Fig-
ure 2(b). Leveraging advancements in one-/few-step dif-
fusion models (Song et al., 2023; Sauer et al., 2023; Luo
et al., 2023b), StreamDiffusion (Kodaira et al., 2023) has
designed a pipeline for real-time interactive image genera-
tion. However, directly applying StreamDiffusion for V2V
tasks leads to noticeable pixel flickering across frames.
This is because StreamDiffusion treats each frame inde-
pendently, disregarding the continuity of videos. In con-
trast, humans implicitly memorize visual elements across
frames and see the current frame as it links with past ob-
servations. To generate consistent videos, it is critical
to integrate a mechanism that can effectively bridge the
current frame to its predecessors.

Recent studies have shown that diffusion features (Tang
et al., 2024; Luo et al., 2023a) captured during U-Net’s
forward process contain rich correspondences between im-
ages. Inspired by this, our StreamV2V maintains a feature
bank, which stores the intermediate features of past frames.
For incoming frames, we extend self-attention by incorpo-
rating the corresponding stored keys and values. This can
be interpreted as a weighted sum of similar regions across
frames via attention, effectively aligning the current frame with previous frames. Additionally, to
ensure the consistency of fine-grained details, we directly fuse the block’s output with similar features
from past frames.

The challenge then becomes: How can we implement this feature bank? A straightforward approach
might store a constant number of frames, such as employing a sliding window technique. However,
this method is sub-optimal, as it inadvertently discards valuable data when a frame is omitted, and
generates redundancy when the stored frames are similar. To address this, we propose to continuously
update the bank by merging redundant features within incoming and stored features. This allows us
to preserve the most representative features while keeping a consistent bank size over time. Through
our experiment, we find the feature bank can be condensed to the size needed to store just one frame.

StreamV2V requires no training or fine-tuning, making it compatible as an add-on with any image
diffusion models. It excels in efficiency, capable of processing high-resolution video (512×512)
in real-time at 20 frames per second (FPS) on a single A100 GPU. This speed surpasses current
V2V methods—FlowVid (Liang et al., 2023), CoDeF (Ouyang et al., 2023), Rerender (Yang et al.,
2023), and TokenFlow (Geyer et al., 2023)—by factors of 15×, 46×, 108×, and 158×, respec-
tively. We evaluate our method with quantitative metrics, such as CLIP score (Radford et al., 2021)
and warp error (Lai et al., 2018), and a user study. Our findings indicate that users significantly
favor our StreamV2V over StreamDiffusion (Kodaira et al., 2023) (with over 70% win rates) and
CoDeF (Ouyang et al., 2023) (with over 80% win rates). While our method may not yet match the
performance of state-of-the-art (SOTA) methods like TokenFlow and FlowVid, its rapid real-time
execution opens up new venues for streaming V2V applications.

Our contributions are three-fold: (1) To the best of our knowledge, our approach is the first approach
to tackle real-time video-to-video translation for streaming videos. (2) Our method, StreamV2V,
employs a simple yet effective looking-backward principle by maintaining a feature bank to improve

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

consistency. (3) We develop a dynamic feature bank updating strategy that merges redundant features,
ensuring the feature bank remains both compact and descriptive.

2 RELATED WORK

2.1 VIDEO-TO-VIDEO TRANSLATION

Significant progress has been made in the domain of text-guided image-to-image (I2I) transla-
tion (Brooks et al., 2023; Hertz et al., 2022; Tumanyan et al., 2023; Mou et al., 2023), greatly
supported by large pre-trained text-to-image diffusion models (Ramesh et al., 2022; Rombach et al.,
2022; Saharia et al., 2022). Similarly, video-to-video (V2V) translation, which aims to generate
consistent videos, has attracted substantial interest as well. To generate coherent multiple frames,
most existing works (Esser et al., 2023; Wu et al., 2023b; Wang et al., 2023a; Guo et al., 2023;
Chen et al., 2023; Khachatryan et al., 2023; Ceylan et al., 2023; Qi et al., 2023; Geyer et al., 2023;
Wu et al., 2023a; Liang et al., 2023; Ku et al., 2024; Singer et al., 2024) process batches of frames
simultaneously with cross-frame attention mechanisms. However, as the memory usage increases
with an increased number of frames, these methods are typically constrained to about 4 seconds
length. Additionally, they tend to rely on expensive DDIM inversion (Song et al., 2020; Qi et al.,
2023; Geyer et al., 2023) or optical flow computation (Yang et al., 2023; Liang et al., 2023), leading
to long processing time. In contrast, our StreamV2V handles videos in real-time and in streaming
fashion, allowing for processing videos of any length. Compared to concurrent work Live2Diff (Xing
et al., 2024) that requires additional video fine-tuning to train uni-directional temporal attention, our
method is training-free and can serve as an add-on for any image diffusion model.

2.2 ACCELERATING DIFFUSION MODELS

While achieving great generation quality, diffusion models are commonly limited by their slow speed
due to the need for multiple denoising steps. Recent advancements have introduced reusing cached
features in denoising steps (Ma et al., 2023; Wimbauer et al., 2023) and one-/few-step diffusion
models through distillation (Song et al., 2023; Meng et al., 2023; Luo et al., 2023b; Sauer et al., 2023;
Yin et al., 2023; Lin & Yang, 2024). StreamDiffusion (Kodaira et al., 2023) proposes a pipeline to
leverage these developments for real-time image generation. However, its application to video without
adjustments brings unsatisfactory results. Leveraging StreamDiffusion’s groundwork, we enhance
frame consistency by implementing a backward-looking feature bank. Our approach introduces a
dynamic merging technique for the feature bank, ensuring it remains compact and incurs minimal
additional computational cost in comparison to StreamDiffusion.

2.3 FEATURE BANKS

Long-term feature banks (Wu et al., 2019; Pan et al., 2021) have been used in video understanding as
supportive context features to help reason the entire video. Adapting this concept, we employ feature
banks to enhance video generation consistency. To ensure our feature bank remains both informative
and compact, we introduce a dynamic feature merging strategy. While token merging (Bolya et al.,
2022; Bolya & Hoffman, 2023) is a common method for merging similar features within single
images, our approach extends this technique across video frames, differentiating it from traditional
within-image operations.

3 BACKGROUND: STREAMDIFFUSION

StreamDiffusion (Kodaira et al., 2023) leverages the Latent Consistency Model (LCM) (Luo et al.,
2023b) to implement a stream batch strategy, enabling the real-time generation of images. Instead of
waiting for one image to be entirely denoised (usually 2-4 steps for LCM), stream batch reformulates
sequential denoising steps into batched processes. This allows simultaneous processing of S images
at varying denoising steps, where S is the number of denoising steps. For instance, at a given timestep
t (assuming t > S), StreamDiffusion first encodes the image It with a variational autoencoder (VAE)
and adds a certain level of noise. We denote encoded latent as zSt , where the subscript t denotes the
frame timestep and the superscript S denotes the denoising step. StreamDiffusion processes latent
denoising batch {zSt , zS−1

t−1 , ..., z1t−S+1}. Upon advancing to timestep t+ 1, the model outputs the
final latent z0t−S+1, which is then decoded into the output image I ′(t−S+1). The remaining latent

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

EA EA FF

EA: Extended self-Attention
Feature
bank

EA EA FF

Fetch

Update
& save

Fetch

Update
& save

Input frames Output frames

𝐼!

𝐼!"#

𝐼!$

𝐼!"#$

𝑄! 𝐾! 𝐾"#
𝑉!
𝑉"#

𝑥!

Scaled Dot-Product Attention

FF: Feature Fusion

𝑂!

𝑂"#

Matching w/
similarity

Weighted sum

…

Feature bank Feature bank

… …

transformer
input block out

transformer output fused block out

Figure 3: Overview of StreamV2V. Left: StreamV2V connects the current frame to the past by
maintaining a feature bank that stores the intermediate transformer features. For new incoming
frames, StreamV2V fetches the stored features and uses them by Extended self-Attention (EA) and
direct Feature Fusion (FF). Middle: EA concatenates the stored keys Kfb and values Vfb directly
to that of the current frame in the self-attention computation (Section 4.1). Right: Operating on the
output of transformer blocks, FF first retrieves the similar features in the bank via a cosine similarity
matrix, and then conducts a weighted sum to fuse them (Section 4.2). The update method of the
feature bank is elaborated in Section 4.3.

would be denoised one step further, and the latent zSt+1 from the new image It+1 would be added to
the batch. We include the diagram of the stream batch (Figure 12) in Appendix A.1. StreamDiffusion
kick-starts the process by initializing the batch with S identical starting images, enabling a warm start.
To further accelerate the inference, SteamDiffusion also utilizes the Tiny autoencoder (madebyollin,
2023) and TensorRT (NVIDIA, 2024) acceleration.

4 STREAMV2V

While being real-time, directly applying StreamDiffusion to video-to-video generation tasks brings
unsatisfactory flickering results because each frame is generated independently. Built upon StreamD-
iffusion, we introduce a backward-looking mechanism so that the generation of the current frame
can reason about the past to bring a consistent output. This is realized by maintaining a feature bank
storing the information of past frames. As shown on the left of Figure 3, StreamV2V fetches the
stored features in the bank to process the frame It. We introduce two training-free techniques to
leverage the stored features, namely Extended self-Attention (EA) (Section 4.1) and direct Feature
Fusion (FF) (Section 4.2) Lastly, we discuss how to update the compact but informative feature bank
by dynamically merging the stored and newly incoming features in Section 4.3.

4.1 EXTENDED SELF-ATTENTION

We mainly use Stable Diffusion (Rombach et al., 2022), which is built upon the U-Net architecture.
The model contains multiple encoder and decoder blocks. Each block comprises a residual convolu-
tional unit and a transformer module, the latter including a self-attention layer, a cross-attention layer,
and a feed-forward network. While it’s been a common practice to inflate the self-attention layer to
cross-frame attention in image diffusion (Hertz et al., 2023; Tewel et al., 2024; Zhou et al., 2024) or
video diffusion methods (Ho et al., 2022; Wu et al., 2023b; Khachatryan et al., 2023; Ceylan et al.,
2023; Qi et al., 2023; Liang et al., 2023), these approaches require processing all the frames at the
same time in a batch. We extend the self-attention to accommodate the feature bank, which stores
past frame information. As shown in the middle of Figure 3, for a given video frame It, we obtain
the projected queries Qt ∈ Rn×d, keys Kt ∈ Rn×d, and values Vt ∈ Rn×d from the intermediate
transformer input xt. Here, n and d denote the number and dimension of feature tokens, respectively.
Denoting Kfb ∈ Rm×d, and Vfb ∈ Rm×d as stored keys and values from previous frames, where m
indicates the size of the bank, we can write the extended self-attention:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ExAttn = softmax

(
Qt · [Kt,Kfb]

Tr

√
d

)
[Vt, Vfb] (1)

[·] and Tr denotes concatenation and transpose operation. Essentially, this extended self-attention
functions as a weighted sum of similar areas across frames, thereby aligning the current frame with
its past for improved consistency. (More illustrations can be found in Appendix A.2) We extend all
the self-attention layers with all denoising times. Further details on updating the feature bank are
included in Section 4.3.

4.2 FEATURE FUSION

While extended self-attention offers significant improvements in consistency, it operates implicitly
through attention. We further introduce an explicit strategy for enhancing fine-grained consistency
by directly fusing features based on correspondence. This is motivated by recent findings that
diffusion features (Tang et al., 2024; Luo et al., 2023a) during the U-Net forward process contain rich
correspondences between images. As shown on the right of Figure 3, for a given video frame It, we
obtain the output features for the intermediate blocks Ot ∈ Rn×d, and we also maintain the output
features of past frames Ofb ∈ Rm×d. For the token at position p in Ot, we seek the closed token at
position q in Ofb, utilizing cosine similarity as described by Tang et al. (2024). We denote Ot(p) as
selecting the token p from Ot and O′

t as the fused output feature:

O′
t(p) = (1− α)Ot(p) + αOfb(q), where q = arg max

(
Ot(p) ·OTr

fb

)
(2)

where α is a hyperparameter to identify the strength of fusion, which is usually set to 0.75. Intuitively,
this direct feature fusion aims to enhance consistency by merging similar regions from past frames to
the current frame. In some cases, the current frame introduces novel regions which are absent in past
frames. To prevent misalignment, we generate a mask based on a predefined similarity threshold.
Specifically, we generate the mask by calculating the cosine similarities between each feature in the
current output and all features stored in the bank. For each feature, we identify the most similar
stored feature and calculate the similarity score. If the score is lower than a predefined threshold
(set at 0.9), it indicates that we cannot find a suitable match in the feature bank. In such cases, we
mask out this position, meaning this feature remains unchanged and is not fused with others from
the bank. Our analysis further indicates that the location of feature fusion across various network
blocks significantly impacts overall performance. Specifically, we observed that limiting feature
fusion to the low-resolution decoder blocks results in optimal performance enhancements. For a
comprehensive comparison and further insights, refer to Appendix A.3.

4.3 UPDATING THE FEATURE BANK WITH DYNAMIC MERGING

𝑇!

Pop

(a). Naïve queue

𝑇
"

𝑇
!

𝑇
" DyMe

𝑇
{!,"}

𝑇
{!,"}

𝑇
& DyMe

𝑇
{!,",&}

𝑇
{!,",&}

𝑇' DyMe

𝑇
{!,",&,'}

𝑇
!𝑇!

Append𝑇!𝑇
!

Append

𝑇
"

Append 𝑇
" 𝑇!

𝑇
&

Append 𝑇
& 𝑇
"

𝑇'

Append 𝑇' 𝑇
&

Bank Bank

(b). Dynamic merging

Figure 4: Naive queue vs. our dynamic
merging (DyMe). DyMe has a more
compact and informative feature bank.

We denote all transformer intermediate features of frame
It as Tt = {Kt, Vt, Ot}, where Kt and Vt are projected
keys and values of self-attention input, Ot is the output
of transformer block. An initial approach for creating a
feature bank is to store features from a constant number
of frames. As depicted in Figure 4 (a), after deciding the
maximum number of frames (which is set to 2), the bank
operates like a queue: as new frames arrive, the oldest
frames are popped out to make space for the newcomers.
Yet, this method encounters two primary limitations: (1)
the continuous removal of the oldest frames restricts the
feature span to a brief temporal window, and (2) the redun-
dant features in the bank incur extra storage and processing
costs.

To create a compact and informative bank, we propose to
dynamically merge (DyMe) the stored features and newly
coming features. As shown in Figure 4 (b), at timestep 2,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

we merge T1 and T2 into T{1,2}, which has the same size as T1. By applying DyMe, we can the get
condensed bank T{1,2,3,4} which contains the information for all 4 frames, yet occupies only half
the space of a naive queue. We follow the efficient bipartite matching technique (Bolya et al., 2022;
Bolya & Hoffman, 2023) to do the merging. In more detail: (1) we first concatenate features of
the current frame (green boxes) and features stored in the bank (gray boxes); (2) we then randomly
partition the features into two sets source (src) and destination (dst) of equal size; (3) For each feature
vector fsrc in the src set, we identify the most similar feature vector fdst in the dst set using the cosine
similarity metric defined as follows: sim(fsrc, fdst) =

fsrc·fdst
|fsrc||fdst| . In this expression, · represents the dot

product, and | · | denotes the norm of a vector. (4) Once we find the most similar features fdst of fsrc,
we proceed to merge the features from src into dst. This is achieved by averaging the values of each
matched pair:f new

dst = fsrc+fdst
2 . This step ensures that the features in dst are updated to reflect a blend

of both the original and the matched features from src. Our experiments show that our dynamically
merged feature bank brings better performance-speed trade-off than the naive queue-based bank.
Empirically, we find the feature bank can be condensed to the size of storing just one frame. For
more details, please refer to Section 5.4.2. We also visualize the effect of DyMe in Appendix A.5.1.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We built our method on StreamDiffusion (Kodaira et al., 2023) with Latent Consistency Model (Luo
et al., 2023b). By default, we use a 4-step LCM without the classifier-free guidance (Ho & Salimans,
2022). We update the feature bank every 4 frames. The underlying image-to-image method is
SDEdit (Meng et al., 2021), with an initial noise strength of 0.4. Unlike some methods (Yang et al.,
2023; Liang et al., 2023) which use frame interpolation to generate high FPS video, our StreamV2V
generates all frames in the same pipeline.

Following TokenFlow (Geyer et al., 2023) and FlowVid (Liang et al., 2023), we build our user study
by selecting 19 object-centric videos from the DAVIS trainval 2017 dataset (Pont-Tuset et al., 2017),
covering diverse subjects such as humans and animals. We reuse 67 prompts from (Liang et al.,
2023), ranging from stylization to object swaps, for these videos. We conduct a thorough comparison
with state-of-the-art V2V methods such as Rerender (Yang et al., 2023), CoDeF (Ouyang et al., 2023),
TokenFlow (Geyer et al., 2023), and FlowVid (Liang et al., 2023), utilizing their official codes under
default settings. We report both qualitative comparison 5.2, and quantitative metrics 5.3, such as
CLIP score (Radford et al., 2021), warp error (Lai et al., 2018), and user preference, to verify the
effectiveness of our method.

5.2 QUALITATIVE RESULTS

In Figure 5, we qualitatively compare our StreamV2V with several representative V2V methods,
starting with our per-frame baseline StreamDiffusion (Kodaira et al., 2023), which treats each
frame independently. StreamDiffusion often results in noticeable flickering, such as the background
flowers and the dancer’s legs. CoDeF (Ouyang et al., 2023) tends to produce outputs with significant
blurriness, especially when there is a big motion within the input video, which fails in the construction
of the canonical image. Rerender (Yang et al., 2023) fails to keep tracking the clothing color in
the dance, which fluctuates between brown and blue. TokenFlow (Geyer et al., 2023) occasionally
struggles to follow the prompt, such as transforming the video into pixel art. FlowVid (Liang
et al., 2023) maintains good prompt alignment but similarly struggles with color consistency in
clothing and suffers from blurriness in the final frame. In contrast, our method stands out in terms of
editing capabilities and overall video quality, demonstrating superior performance over these methods.
Moreover, our StreamV2V can handle arbitrary lengths of videos as showcased in the Appendix A.6.

5.3 QUANTITATIVE RESULTS

5.3.1 EVALUATION METRICS

CLIP score Following previous research (Geyer et al., 2023; Liang et al., 2023), we first utilize
CLIP (Radford et al., 2021) to evaluate the consistency of generated videos. Specifically, we first get
the CLIP image embeddings for all the video frames, then we measure the mean cosine similarity

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

TokenFlowRerender FlowVidCoDeF StreamV2V
(Ours)

StreamDiffusion
(Per-frame)Input video

Figure 5: Qualitative comparison with representative V2V models. Prompt is ’A pixel art
of a man doing a handstand on the street’. Our method stands out in terms of
prompt alignment and overall frame consistency. We highly encourage readers to refer to video
comparisons in our supplementary videos.

Table 1: Quantitative metrics comparison. We report the CLIP score and warp error to indicate the
consistency of generated videos. We bold the best result and underline the second best.

StreamDiffusion CoDeF Rerender TokenFlow FlowVid StreamV2V (ours)

CLIP score ↑ 95.24 96.33 96.20 97.04 96.68 96.58
Warp error ↓ 117.01 116.17 107.00 114.25 111.09 102.99

across all sequential frame pairs. Our evaluation, detailed in Table 1, includes an analysis of 67
video-prompt pairs from the DAVIS dataset. TokenFlow shows superior performance in maintaining
temporal consistency which aligns with the findings from our user study. StreamDiffusion, which is a
per-frame image model, achieves the worst score. Our StreamV2V ranks in third place regarding
CLIP score. Taking the consideration that our StreamV2V is a real-time stream processing method for
unlimited length videos which is significantly faster than these batch processing, limited length video
V2V methods (Section 5.3.2), our method is shown to have a good performance-speed trade-off.

Warp error We also propose to use warp error (Lai et al., 2018) as a measure of temporal consistency
following previous research (Ceylan et al., 2023; Geyer et al., 2023). We first compute the optical
flow between consecutive frames in input video using a pre-trained RAFT flow estimator (Teed
& Deng, 2020). Then we warp the frame in the transferred video to the next using the estimated
flow. This allows for the evaluation of pixel discrepancies between the warped frame and the target
counterpart. We calculate the average mean squared pixel error over the un-occluded regions as warp
error. As shown in Table 1, our StreamV2V achieves the best warp error among all methods.

5.3.2 PIPELINE RUNTIME

We benchmark the runtime with a 512 × 512 resolution video containing 120 frames (4 seconds
video with FPS of 30) in Figure 6. For StreamV2V, we conducted ten runs, discarded the top and
bottom two results, and averaged the remaining six. The runtime for FlowVid, CoDeF, Rerender, and
TokenFlow is taken from the FlowVid paper (Liang et al., 2023). FlowVid (Liang et al., 2023) and
Rerender (Yang et al., 2023) first generate key frames, then use frame interpolation methods (Jamriska,
2018; Huang et al., 2022) to generate non-key frames. We choose the keyframe interval of 4 for
these two methods, following (Liang et al., 2023). Two other methods, CoDeF (Ouyang et al.,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

StreamV2V(ours) FlowVid TokenFlowCoDeF Rerender

5

10

15

1.2
1.5 3.5

1.1
4.6

5.2

5.6

10.8

10.4

5.4

15.8

Ti
m

e
(m

in
ut

es
)

9 sec

StreamV2V inference
FlowVid key-frame gen.
FlowVid frame interp.
CoDeF train
CoDeF inference
Rerender key-frame gen.
Rerender frame interp.
TokenFlow DDIM inv.
TokenFlow inference

Figure 6: Runtime breakdown on one A100
GPU of generating a 4-second 512x512 reso-
lution video with 30 FPS.

13.2

71.1 25.3 3.6

81.3 5.5

30.2 31.4 38.4

19.8 21.3 58.9

19.3 13.4 67.3

StreamV2V
wins

StreamDiff

draw StreamV2V
loses

CoDeF

Rerender

FlowVid

TokenFlow

St
re

am
V

2V
 (o

ur
s)

Win rate (%)
0 50 100

Figure 7: User study comparison. The win rate
indicates the frequency our StreamV2V is preferred
compared with certain counterpart.

2023) and TokenFlow (Geyer et al., 2023), both require per-video preparation. Specifically, CoDeF
involves training a model for reconstructing the canonical image, while TokenFlow requires a
500-step DDIM inversion process to acquire the latent representation. Unlike all these methods
requiring two-stage processing, our StreamV2V produces all the frames in a single stage. We
continue to use xFormers (Lefaudeux et al., 2022) for fair comparison with existing methods. Our
StreamV2V processes videos in 9 seconds with the 4-step LCM, making it significantly faster than
current approaches. We note that while existing V2V methods use an A100-80GB GPU for runtime
measurement, we only use an A100-40GB GPU. Despite this, StreamV2V remains significantly
faster. Further acceleration is possible with fewer steps, though this may slightly affect performance.
For more details, see Appendix A.4.

5.3.3 USER STUDY

We further conducted a user study to compare our method with five notable works. Following
TokenFlow Geyer et al. (2023) and FlowVid Liang et al. (2023), we use the DAVIS dataset Pont-
Tuset et al. (2017) with 67 video-prompt pairs. We adopt a Two-alternative Forced Choice (2AFC)
protocol used in (Yang et al., 2023; Geyer et al., 2023), where participants are shown our result and a
counterpart result, and are asked to identify which one has the best quality, considering both temporal
consistency and text alignment. For each comparison, feedback was gathered from at least three
different participants. The final win rates are shown in Figure 7. We find users significantly favor
our StreamV2V over StreamDiffusion baseline (over 70% win rates) and CoDeF (over 80% win
rates). It is important to note that while our method does not outperform the more advanced V2V
methods such as Rerender, FlowVid, and TokenFlow, StreamV2V primarily aims to achieve real-time
video transfer, rather than beating the state-of-the-art V2V methods, none of which support real-time
processing and unlimited video length. Moreover, our StreamV2V can deal with half-minute long
videos as showcased in Appendix A.6, while FlowVid and TokenFlow are limited to 4 seconds due to
the memory limit (illustrated in Figure 2(c)). We have made all videos from the user study available
on our project page for further examination. More details about the user study can be found in
Appendix A.7.

5.4 ABLATION STUDY

We ablate several of our key designs in this section. The evaluation set contains 18 in-house videos
with cartoon-style prompts.

5.4.1 EXTENDED SELF-ATTENTION (SA) AND FEATURE FUSION (FF)

As shown in Figure 8, the StreamDiffusion baseline, which doesn’t have EA or FF, produces
inconsistent outcomes. Noticeable flickering can be observed in the man’s hands, hair, and the strips
on his clothes. After introducing the EA (the third column), the consistency is much improved, with
the warp error decreased from 85.2 to 74.0. However, some artifacts persist in the man’s hand. After

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

further introducing FF (the last column), we have the most consistent result, with the lowest warp
error of 73.4. We also isolate the effect of FF in the fourth column, we lower the warp error from
85.2 to 80.4 with the introduction of FF.

Input video
w/o EA, w/o FF
Warp Error: 85.2

w/ EA, w/o FF
Warp Error: 74.0

w/o EA, w/ FF
Warp Error: 80.4

w/ EA, w/ FF
Warp Error: 73.4

Figure 8: Ablation on Extended self-Attention (EA) and Feature
Fusion (FF). Warp error is averaged within 18 videos.

Table 2: Ablation on different
feature banks. No bank indi-
cates the StreamDiffusion base-
line. Queue represents the naive
first-in-first-out queue. Our Dy-
namic Merging (DyMe) main-
tains a compact and informative
bank.

Bank type
(size)

Time
(ms)

Mem
(GiB)

Warp
error ↓

no bank (0) 60 3.68 85.2

queue (1) 70 4.03 76.4
queue (2) 79 4.17 74.8
queue (4) 100 4.77 72.4

DyMe (1) 75 4.07 73.4

A masterpiece painting, man in yellow suit, is holding a cup, standing in front of a bookshelf, a crown in his head.

(a
).

w
/o

fe
at

ba
nk

(b
).

w
/f

ea
tb

an
k

Figure 9: Continuous text-to-image generation with feature bank. The images from left to right
are the intermediate generation as we type continuously. The caption of each column image is a
segment of the prompt (separated by the line). (a) Per-frame LCM baseline has severe flickering even
with slight one or two-word modification. (b) The feature bank provides a much smoother transition.
We highly encourage readers to refer to video comparisons in our supplementary materials.

5.4.2 DYNAMIC MERGING (DYME) BANK

We study different feature banks in Table 2. The case of no bank, which represents the StreamDiffusion
baseline, needs 60 ms to process a 512×512 frame on a single A100 GPU. However, its warp error
is considerably high at 85.2. For queue-based banks, we test sizes of 1, 2, and 4. As expected,
increasing bank size increases inference time but reduces warp error. Our dynamic merging (DyMe)
bank achieves a running speed of 75 ms, faster than the queue bank of size 2, while maintaining
a lower warp error. We also report the memory usage obtained via the nvidia-smi command. The
introduced DyMe bank only adds a very small 10% GPU memory overhead when compared to
StreamDiffusion.

5.5 EXTEND FEATURE BANK TO CONTINUOUS IMAGE GENERATION

The concept of the proposed feature bank, which links the current with the past, is expected to be
broadly applicable beyond video-to-video. To demonstrate its versatility, we validate its effectiveness
in a continuous text-to-image generation task.

Continuous or real-time image generation allows users to produce images instantly when the prompt
is being typed. However, most current frameworks generate each frame independently, resulting in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Input video Pope Batman

(a) Fail to edit the video as prompted

Edit prompts:

(b) Inconsistent output

Input video Anime style Van Gogh Style

Edit prompts:

Figure 10: Limitations of StreamV2V. (a). StreamV2V fails to alter the person within the input
video into Pope or Batman. (b). StreamV2V can produce inconsistent output, as seen in the girl for
Anime style and the backpack straps for Van Gogh style.

flickering transitions between frames. Figure 9(a) illustrates per-frame generation in the LCM (Luo
et al., 2023b). The images from left to right reflect the intermediate results as we type continuously.
Even with slight one or two words, the layout of the image can shift dramatically. By incorporating a
feature bank as in Figure 9(b), the model can reference previous frames, enabling smoother transitions.

5.6 LIMITATIONS

Despite achieving notable improvements, our model encounters certain limitations. First, our
StreamV2V can fail to alter the video with the provided prompts. As shown in Figure 10(a),
when we try to transfer the man to Pope or Batman, our model struggles to change the input video.
This may be due to the use of SDEdit (Meng et al., 2021) as the primary image editing method, which
has limited ability to significantly alter objects. We also find that increasing initial noise strength
can improve editability but at the cost of introducing more pixel flickering. Another limitation is
that StreamV2V can produce inconsistent output, especially for videos with rapid movements of
the camera or the object. This is also the major reason why our StreamV2V still cannot match the
performance of state-of-the-art FlowVid and TokenFlow. As demonstrated in Figure 10(b), when
converting the video into anime style, the appearance of the girl in the background changes
significantly. Similarly, when applying Van Gogh style, there are noticeable changes to the
backpack straps of the man.

6 CONCLUSION

In this paper, we present StreamV2V: a diffusion model that can perform real-time video-to-video
translation for streaming videos. The key to StreamV2V lies in a look-backward mechanism that
enables the current frame to reason the past to ensure consistency. We propose a feature bank to store
the intermediate features for past frames and reuse them in the current frame generation via extended
self-attention and direct feature fusion. Furthermore, we propose dynamic merging, a method to make
the bank compact and informative. Our evaluation shows that StreamV2V is an order of magnitude
faster than existing video-to-video methods and can produce temporally consistent outputs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4598–4602, 2023.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. arXiv preprint arXiv:2210.09461, 2022.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18392–18402, 2023.

Duygu Ceylan, Chun-Hao P Huang, and Niloy J Mitra. Pix2video: Video editing using image
diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
23206–23217, 2023.

Weifeng Chen, Jie Wu, Pan Xie, Hefeng Wu, Jiashi Li, Xin Xia, Xuefeng Xiao, and Liang Lin.
Control-a-video: Controllable text-to-video generation with diffusion models. arXiv preprint
arXiv:2305.13840, 2023.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germanidis.
Structure and content-guided video synthesis with diffusion models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7346–7356, 2023.

Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Tokenflow: Consistent diffusion features
for consistent video editing. arXiv preprint arXiv:2307.10373, 2023.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. Animatediff:
Animate your personalized text-to-image diffusion models without specific tuning. arXiv preprint
arXiv:2307.04725, 2023.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-
to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626, 2022.

Amir Hertz, Andrey Voynov, Shlomi Fruchter, and Daniel Cohen-Or. Style aligned image generation
via shared attention. arXiv preprint arXiv:2312.02133, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv:2204.03458, 2022.

Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. Real-time intermediate
flow estimation for video frame interpolation. In Proceedings of the European Conference on
Computer Vision (ECCV), 2022.

Ondrej Jamriska. Ebsynth: Fast example-based image synthesis and style transfer. https://
github.com/jamriska/ebsynth, 2018.

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang,
Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models are
zero-shot video generators. arXiv preprint arXiv:2303.13439, 2023.

Akio Kodaira, Chenfeng Xu, Toshiki Hazama, Takanori Yoshimoto, Kohei Ohno, Shogo Mitsuhori,
Soichi Sugano, Hanying Cho, Zhijian Liu, and Kurt Keutzer. Streamdiffusion: A pipeline-level
solution for real-time interactive generation. arXiv preprint arXiv:2312.12491, 2023.

Max Ku, Cong Wei, Weiming Ren, Huan Yang, and Wenhu Chen. Anyv2v: A plug-and-play
framework for any video-to-video editing tasks. arXiv preprint arXiv:2403.14468, 2024.

Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman, Ersin Yumer, and Ming-Hsuan Yang.
Learning blind video temporal consistency. In Proceedings of the European conference on computer
vision (ECCV), pp. 170–185, 2018.

11

https://github.com/jamriska/ebsynth
https://github.com/jamriska/ebsynth

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable transformer
modelling library. https://github.com/facebookresearch/xformers, 2022.

Feng Liang, Bichen Wu, Jialiang Wang, Licheng Yu, Kunpeng Li, Yinan Zhao, Ishan Misra, Jia-Bin
Huang, Peizhao Zhang, Peter Vajda, et al. Flowvid: Taming imperfect optical flows for consistent
video-to-video synthesis. arXiv preprint arXiv:2312.17681, 2023.

Shanchuan Lin and Xiao Yang. Animatediff-lightning: Cross-model diffusion distillation. arXiv
preprint arXiv:2403.12706, 2024.

Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander Holynski, and Trevor Darrell. Diffusion
hyperfeatures: Searching through time and space for semantic correspondence. In Advances in
Neural Information Processing Systems, 2023a.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
arXiv preprint arXiv:2312.00858, 2023.

madebyollin. Tiny autoencoder for stable diffusion. https://github.com/madebyollin/
taesd, 2023. GitHub repository.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan, and Xiaohu Qie.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. arXiv preprint arXiv:2302.08453, 2023.

NVIDIA. Tensorrt: High performance deep learning inference library. https://developer.
nvidia.com/tensorrt, 2024.

Hao Ouyang, Qiuyu Wang, Yuxi Xiao, Qingyan Bai, Juntao Zhang, Kecheng Zheng, Xiaowei Zhou,
Qifeng Chen, and Yujun Shen. Codef: Content deformation fields for temporally consistent video
processing. arXiv preprint arXiv:2308.07926, 2023.

Junting Pan, Siyu Chen, Mike Zheng Shou, Yu Liu, Jing Shao, and Hongsheng Li. Actor-context-
actor relation network for spatio-temporal action localization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 464–474, 2021.

Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and
Luc Van Gool. The 2017 davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017.

Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, and Qifeng Chen.
Fatezero: Fusing attentions for zero-shot text-based video editing. arXiv preprint arXiv:2303.09535,
2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

12

https://github.com/facebookresearch/xformers
https://github.com/madebyollin/taesd
https://github.com/madebyollin/taesd
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023.

Uriel Singer, Amit Zohar, Yuval Kirstain, Shelly Sheynin, Adam Polyak, Devi Parikh, and Yaniv
Taigman. Video editing via factorized diffusion distillation. arXiv preprint arXiv:2403.09334,
2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emergent
correspondence from image diffusion. Advances in Neural Information Processing Systems, 36,
2024.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16, pp. 402–419. Springer, 2020.

Yoad Tewel, Omri Kaduri, Rinon Gal, Yoni Kasten, Lior Wolf, Gal Chechik, and Yuval Atzmon.
Training-free consistent text-to-image generation. arXiv preprint arXiv:2402.03286, 2024.

Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
text-driven image-to-image translation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1921–1930, 2023.

Wen Wang, Kangyang Xie, Zide Liu, Hao Chen, Yue Cao, Xinlong Wang, and Chunhua Shen. Zero-
shot video editing using off-the-shelf image diffusion models. arXiv preprint arXiv:2303.17599,
2023a.

Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang, Yujun Shen,
Deli Zhao, and Jingren Zhou. Videocomposer: Compositional video synthesis with motion
controllability. arXiv preprint arXiv:2306.02018, 2023b.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating diffusion models
through block caching. arXiv preprint arXiv:2312.03209, 2023.

Bichen Wu, Ching-Yao Chuang, Xiaoyan Wang, Yichen Jia, Kapil Krishnakumar, Tong Xiao, Feng
Liang, Licheng Yu, and Peter Vajda. Fairy: Fast parallelized instruction-guided video-to-video
synthesis. arXiv preprint arXiv:2312.13834, 2023a.

Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming He, Philipp Krahenbuhl, and Ross
Girshick. Long-term feature banks for detailed video understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 284–293, 2019.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
models for text-to-video generation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7623–7633, 2023b.

Zhening Xing, Gereon Fox, Yanhong Zeng, Xingang Pan, Mohamed Elgharib, Christian Theobalt,
and Kai Chen. Live2diff: Live stream translation via uni-directional attention in video diffusion
models. arXiv preprint arXiv:2407.08701, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change Loy. Rerender a video: Zero-shot text-guided
video-to-video translation. arXiv preprint arXiv:2306.07954, 2023.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. arXiv preprint
arXiv:2311.18828, 2023.

Yabo Zhang, Yuxiang Wei, Dongsheng Jiang, Xiaopeng Zhang, Wangmeng Zuo, and Qi Tian. Con-
trolvideo: Training-free controllable text-to-video generation. arXiv preprint arXiv:2305.13077,
2023.

Min Zhao, Rongzhen Wang, Fan Bao, Chongxuan Li, and Jun Zhu. Controlvideo: Adding conditional
control for one shot text-to-video editing. arXiv preprint arXiv:2305.17098, 2023.

Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, and Qibin Hou. Storydiffusion: Con-
sistent self-attention for long-range image and video generation. arXiv preprint arXiv:2405.01434,
2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DIAGRAM OF STREAM BATCH

𝐼!"# 𝑧!"#$ 𝑧!"#$"% 𝑧!"#$"# 𝑧!"#& 𝐼!"#$

𝐼!"% 𝑧!"%$ 𝑧!"%$"% 𝑧!"%$"# 𝑧!"%&

𝐼! 𝑧!$ 𝑧!$"% 𝑧!$"# 𝑧!&Input
images

𝐼!"%$

𝐼!$

Output
images①

①

①

②

②

②

① VAE encodeing
+ adding noise ② VAE decodingDenoising batch

Figure 11: Stream batch of StreamDiffusion. The approach enables the processing of S images
with different denoising steps in a batch (S is set to 3).

A.2 HEATMAP VISUALIZATION OF EXTENDED SELF-ATTENTION

Given an anchor point (marked in red) in frame 4, we extract its query tensor from the last layer
of the UNet up-block. We also obtain and store key tensors from the preceding frames 1, 2, and
3. We then calculate the dot product between the anchor query and stored key tensors. The most
similar position is marked by the red point in frames 1, 2, and 3. This shows that the anchor point
in frame 4 is highly correlated with the same goggle spot in earlier frames, indicating that extended
self-attention functions as a weighted sum of similar areas across frames, thereby aligning the current
frame with its past for improved consistency.

Frame 4Frame 3Frame 2Frame 1

Figure 12: Heatmap of extended self-attention. The anchor point (marked in red) in frame 4 has a
very high correlation with the same goggles spot in previous frames.

A.3 DETAILS OF FEATURE FUSION

A.3.1 FEATURE FUSION VISUALIZATION

To further verify the intuition of feature fusion, we visualize the output feature from the last layer of
the UNet up-block. We begin by concatenating the features from all frames and applying principle
component analysis (PCA) for visualization. The second row of Figure 13 shows the visualization
of the first three principal components. We observe that similar concepts tend to appear in similar
colors, indicating their similarity in feature space. For example, features corresponding to the goggles
(blue box) and pants (red box) exhibit consistent coloring across frames, highlighting the potential of
feature fusion to average them.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Frame 3Frame 2Frame 1

In
pu

t f
ra

m
e

Fe
at

ur
e

af
te

r P
C

A

Figure 13: Feature Fusion Illustration. For input frames, PCA is applied to diffusion features
extracted from all frames, and the first three principal components are visualized (second row).
Features like the goggles (blue box) and pants (red box) show similar colors across frames, indicating
consistent features.

A.3.2 FEATURE FUSION POSITIONS

While feature fusion significantly enhances temporal consistency, it may result in blurry artifacts.
As demonstrated in Figure 14, incorporating feature fusion in the layers makes the cat’s face appear
blurry. We believe that doing feature fusion at high-resolution features would average the features
across frames, resulting in a diminishing of details. Thus, we suggest applying feature fusion only to
low-resolution features, specifically within the middle block and the first two blocks of the upper
block. As displayed in the right column of Figure 14, this approach preserves higher-quality details
compared to using all layers.

Input video FF in all layers FF in mid+up01

Figure 14: Ablation on feature fusion (FF) layers. Applying FF to all layers sometimes results
in blurry artifacts, as seen in the cat’s face. We propose to only apply FF to low-resolution layers,
specifically the middle block (mid) and the first two blocks of the upper block (up01).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Input video

Edit prompts: Elon Musk

4 denoising steps
75 ms per frame

2 denoising steps
50 ms per frame

1 denoising step
41 ms per frame

4 denoising steps
75 ms per frame

2 denoising steps
50 ms per frame

1 denoising step
41 ms per frame

Edit prompts: Claymation

Figure 15: Ablation on different denoising steps. While using fewer denoising steps would
accelerate the inference time for every frame, we do observe a certain level of quality drop if we use
only 1 step.

Frame 3Frame 2Frame 1

In
pu

t f
ra

m
e

A
fte

r d
yn

am
ic

 m
er

gi
ng

Frame 4

Figure 16: Visualization of Dynamic Merging. Similar patches across frames are merged, showcas-
ing that the DyMe bank can maintain a compact yet informative feature bank.

A.4 DETAILS OF DIFFUSION STEPS

As outlined in Section 5.1, our StreamV2V utilizes LCM (Luo et al., 2023b) as the accelerated
diffusion model. LCM can perform denoising in 4, 2, or 1 steps, and we examine these variations in
Figure 15. Reducing the number of steps decreases the inference time per frame from 75 ms to 41
ms. However, this also leads to a decline in video quality. Unless otherwise specified, we use the
4-step LCM to achieve optimal performance.

A.5 MORE DETAILS OF DYNAMIC MERGING

A.5.1 VISUALIZATION OF DYNAMIC MERGING

As discussed in Section 4.3, the Dynamic Merging (DyMe) bank merges redundant information across
time. Figure 16 illustrates this effect. For better visualization, we applied the merging operation 10
times to the output features from the last layer of the UNet up-block, where merged features are

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

marked in the same color. We observe that key elements, such as the person, sky, and snow, are
grouped consistently, demonstrating the effectiveness of dynamic merging.

A.5.2 PSEUDO CODE OF DYNAMIC MERGING

1 import torch
2 import torch.nn.functional as F
3

4 def dynamic_merge(current_frame, feature_bank):
5 """
6 Dynamic merging (DyMe) to create a compact feature bank.
7

8 Args:
9 current_frame (Tensor): Features of the current frame (shape: [N,

D]).
10 feature_bank (Tensor): Existing feature bank (shape: [N, D]).
11

12 Returns:
13 Tensor: Updated feature bank with dynamic merging.
14 """
15 # Step 1: Concatenate current frame features and feature bank
16 all_features = torch.cat([current_frame, feature_bank], dim=0) #

Shape: [(2N, D]
17

18 # Step 2: Randomly partition features into source (src) and
destination (dst)

19 num_features = all_features.size(0)
20 permuted_indices = torch.randperm(num_features)
21 src_indices = permuted_indices[:num_features // 2]
22 dst_indices = permuted_indices[num_features // 2:]
23 src_set = all_features[src_indices] # Shape: [N, D]
24 dst_set = all_features[dst_indices] # Shape: [N, D]
25

26 # Step 3: Find the most similar features between src and dst
27 # Compute cosine similarity
28 similarity_matrix = F.cosine_similarity(src_set.unsqueeze(1), dst_set

.unsqueeze(0), dim=2)
29 max_similarities, matched_indices = similarity_matrix.max(dim=1)
30

31 # Step 4: Merge src into dst by averaging matched pairs
32 for i, match_idx in enumerate(matched_indices):
33 dst_set[match_idx] = (dst_set[match_idx] + src_set[i]) / 2
34

35 updated_feature_bank = dst_set
36 return updated_feature_bank

A.6 MORE RESULTS ON LONG VIDEO

While most existing methods typically handle up to 4 seconds of video, StreamV2V can scale to
arbitrary lengths thanks to the streaming processing and feature bank. As demonstrated in Figure 17,
our approach handles a video exceeding 1000 frames (over 30 seconds) while maintaining consistent
face swapping or style transfer throughout.

A.7 MORE DETAILS OF USER STUDY

As described in Section 5.3.3, we conducted a user study to compare our method with existing
approaches. Figure 18 illustrates the interface presented to each participant. The instructions given to
users were as follows: The left/right video is labeled as A/B. You will be asked three questions to
compare these two videos. If you perceive minimal differences between the videos, whether they are
both good or bad, please select ’draw’.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

El
on

 M
us

k
Cl

ay
ma

ti
on

Frame # 0 Frame # 250 Frame # 450 Frame # 650 Frame # 1000

Figure 17: Long video (> 1000 frames) generation. Our StreamV2V can handle arbitrary length of
videos without consistency degradation.

Figure 18: User study Interface. Each user is asked three questions about temporal consistency,
prompt alignment and overall preference.

We find that user preference is very subjective and there are huge variances between users. We report
the mean and standard deviation among at least three users in Table 2. It is worth noting that, instead
of providing numerical metrics for comparison, the study aims to offer a first-impression comparison
between the two models. The results, whether indicating one model is better, worse, or on par
with another, are generally consistent. This information can guide our decision-making, particularly
when we need to balance speed and accuracy in model selection. In practice, we recommend
using StreamV2V for applications where speed is a critical requirement, such as real-time webcam
translation and draw rendering. For other uses, such as creating short video content, slower methods
like FlowVid might yield better results.

Table 2: Comparison of StreamV2V against various models. We also report the mean and standard
deviation (std) for each set of users.

Model StreamV2V wins
(mean ± std)

Draws
(mean ± std)

StreamV2V loses
(mean ± std)

vs. StreamDiffusion 71.1± 10.2 25.3± 13.3 3.6± 5.2
vs. CoDeF 81.3± 20.1 13.2± 12.1 5.5± 9.3
vs. Rerender 30.2± 15.1 31.4± 7.8 38.4± 18.9
vs. FlowVid 19.8± 9.5 21.3± 8.5 58.9± 18.0
vs. TokenFlow 19.3± 9.0 13.4± 9.7 67.3± 13.4

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.8 MORE ANALYSIS AND ABLATION STUDIES

A.8.1 MEMORY CONSUMPTION WITH LARGER VIDEO RESOLUTION

We tested the memory footprint under different resolutions with one 24-GB A5000 GPU. As shown
in Table 3, we can run StreamV2V up to a high resolution of 1536 × 1536. However, we did see a
steady increase in the relative memory overhead of the DyMe bank. We conjecture the reason for this
increase is that the baseline diffusion pipeline has specific optimization regarding memory usage,
while our DyMe implementation doesn’t. Some potential solutions are (1) storing features with key
layers rather than all the layers; and (2) implementing memory optimization techniques for the DyMe
data structure. We will consider these in our future work.

Table 3: Memory Usage Comparison. We report the memory usage (in GiB) of the baseline and
StreamV2V across different resolutions, along with the relative memory overhead increase.

Resolution Mem of Baseline (GiB) Mem of StreamV2V (GiB) Relative Memory Overhead Increase

512 × 512 4.87 5.34 + 10%
768 × 768 5.59 7.29 + 30%
1024 × 1024 6.62 9.86 + 49%
1536 × 1536 9.52 22.47 + 136%

A.8.2 SIMILARITY THRESHOLD OF FEATURE FUSION

We ablate the effect of similarity threshold in feature fusion as in Table 4. The similarity threshold of
0.9 yields the lowest average warp error of 19 videos. We have worse results when the threshold is
set to 1.0 (no features are fused) or 0.0 (all features are fused).

Table 4: Effect of similarity threshold. We analyze the impact of varying similarity thresholds
on the average warp error of 19 videos. The best result, achieved with our default value of 0.9, is
highlighted.

Similarity Threshold Warp Error ↓
0.0 74.0
0.8 73.5
0.9 (default) 73.4
1.0 74.0

A.8.3 BANK UPDATING INTERVAL

We ablate the effect of bank updating intervals in Table 5. The interval of 8 brings us the best
performance. During practice, we may want to adjust this value according to our videos: videos with
larger motion may require a more frequent update.

Table 5: Effect of bank updating interval. We report the average warp error of 19 videos for
different bank updating intervals. The best result and our method are highlighted.

Bank Updating Interval Warp Error ↓
1 78.1
2 75.3
4 (default) 73.4
8 72.4
16 72.5

A.8.4 SAMPLING STRATEGY OF DYME UPDATING

Our DyMe bank needs to derive source (src) and destination (dst) sets from current and stored past
features. We ablated three choices in Table 6. (1) Randomly sample (our default setting) ; (2)
Uniformly grid sample: After concatenation, features at even locations are used as the source, and
features at odd locations are used as the destination; and (3) Split sample: Use the current features as

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 6: Effect of sample strategy. We evaluate warp error across different sampling strategies. The
best result is highlighted.

Sample Strategy Warp Error ↓
Random (default) 73.4
Uniform Grid 73.7
Split 74.2

the destination, and the stored past features as the source. Split sampling has the worst warp errors,
as it performs more like a queue bank, in which the current features dominate the bank. Compared to
uniform grid sampling, random sampling proved more general and achieved the lowest warp error.
Thus, random sampling was chosen as the default strategy.

21

	Introduction
	Related Work
	Video-to-video translation
	Accelerating diffusion models
	Feature banks

	Background: StreamDiffusion
	StreamV2V
	Extended self-Attention
	Feature fusion
	Updating the feature bank with dynamic merging

	Experiments
	Implementation details
	Qualitative results
	Quantitative results
	Evaluation metrics
	Pipeline runtime
	User study

	Ablation study
	Extended self-Attention (SA) and Feature Fusion (FF)
	Dynamic merging (DyMe) bank

	Extend feature bank to continuous image generation
	Limitations

	Conclusion
	Appendix
	Diagram of stream batch
	Heatmap visualization of extended self-attention
	Details of Feature Fusion
	Feature fusion visualization
	Feature fusion positions

	Details of diffusion steps
	More details of dynamic merging
	Visualization of dynamic merging
	Pseudo code of dynamic merging

	More results on long video
	More details of user study
	More analysis and ablation studies
	Memory consumption with larger video resolution
	Similarity threshold of feature fusion
	Bank updating interval
	Sampling strategy of DyME updating

