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Figure 1: We present StreamV2V to support real-time video-to-video translation for streaming input.
For webcam input, our StreamV2V supports face swap (e.g., to Elon Musk) and video stylization
(e.g., to doodle art). Additionally, StreamV2V provides drawing rendering capabilities, enabling
iterative creation. We encourage readers to check our video results in the supplementary materials.

ABSTRACT

This paper introduces StreamV2V, a diffusion model that achieves real-time stream-
ing video-to-video (V2V) translation with user prompts. Unlike prior V2V methods
using batches to process a limited number of frames, we opt to process frames
in streaming fashion, to support an unlimited number of frames. At the heart of
StreamV2V lies a backward-looking approach that relates the present to the past.
This is realized by maintaining a feature bank that archives information from past
frames. For incoming frames, StreamV2V extends self-attention to include banked
keys and values, and directly fuses similar past features into the output. The feature
bank is continually updated by merging stored and new features, making it compact
yet informative. StreamV2V stands out for its adaptability and efficiency, seam-
lessly integrating with image diffusion models without fine-tuning. StreamV2V
can run 20 FPS on one A100 GPU, being 15×, 46×, 108×, and 158× faster than
FlowVid, CoDeF, Rerender, and TokenFlow, respectively. Quantitative metrics
and user studies confirm StreamV2V’s exceptional ability to maintain temporal
consistency.

1 INTRODUCTION

Text-driven video-to-video (V2V) translation, which aims to alter the input video following given
prompts, has wide applications, such as creating short videos, and more broadly in the film industry.
Most diffusion model based methods (Wu et al., 2023b; Yang et al., 2023; Ouyang et al., 2023; Wang
et al., 2023a; Khachatryan et al., 2023; Qi et al., 2023; Zhang et al., 2023; Wang et al., 2023b; Chen
et al., 2023; Zhao et al., 2023; Geyer et al., 2023; Liang et al., 2023; Wu et al., 2023a; Singer et al.,
2024) use batches to process recorded videos, as shown in Figure 2(a). However, batch processing
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necessitates loading all frames into GPU memory, thereby limiting the video length they can handle,
typically up to 4 seconds. Furthermore, these methods do not accommodate real-time translation and
typically require several minutes to process a single 4-second clip.

(a) Batch processing (b) Stream processing

Existing  
V2V methods

StreamV2V 
(ours)

…

…

(c) Memory consumption comparsion

Figure 2: (a) Existing V2V methods
process frames in batches, restricting
them to a limited number of frames. (b)
Our StreamV2V framework processes
frames in streaming fashion, can oper-
ate on streaming videos in real-time. (c)
Batch processing requires O(N) mem-
ory for the video length N , whereas our
StreamV2V only needs O(1) memory
regardless of video length.

This paper targets streaming V2V applications, such as
webcam video translation and AI-assisted drawing, where
users want to modify the streaming video iteratively. This
necessitates the model to handle input videos of varying
lengths and perform real-time translation. To tackle this
challenge, we introduce StreamV2V, an approach that
processes frames in streaming fashion, as shown in Fig-
ure 2(b). Leveraging advancements in one-/few-step dif-
fusion models (Song et al., 2023; Sauer et al., 2023; Luo
et al., 2023b), StreamDiffusion (Kodaira et al., 2023) has
designed a pipeline for real-time interactive image genera-
tion. However, directly applying StreamDiffusion for V2V
tasks leads to noticeable pixel flickering across frames.
This is because StreamDiffusion treats each frame inde-
pendently, disregarding the continuity of videos. In con-
trast, humans implicitly memorize visual elements across
frames and see the current frame as it links with past ob-
servations. To generate consistent videos, it is critical
to integrate a mechanism that can effectively bridge the
current frame to its predecessors.

Recent studies have shown that diffusion features (Tang
et al., 2024; Luo et al., 2023a) captured during U-Net’s
forward process contain rich correspondences between im-
ages. Inspired by this, our StreamV2V maintains a feature
bank, which stores the intermediate features of past frames.
For incoming frames, we extend self-attention by incorpo-
rating the corresponding stored keys and values. This can
be interpreted as a weighted sum of similar regions across
frames via attention, effectively aligning the current frame with previous frames. Additionally, to
ensure the consistency of fine-grained details, we directly fuse the block’s output with similar features
from past frames.

The challenge then becomes: How can we implement this feature bank? A straightforward approach
might store a constant number of frames, such as employing a sliding window technique. However,
this method is sub-optimal, as it inadvertently discards valuable data when a frame is omitted, and
generates redundancy when the stored frames are similar. To address this, we propose to continuously
update the bank by merging redundant features within incoming and stored features. This allows us
to preserve the most representative features while keeping a consistent bank size over time. Through
our experiment, we find the feature bank can be condensed to the size needed to store just one frame.

StreamV2V requires no training or fine-tuning, making it compatible as an add-on with any image
diffusion models. It excels in efficiency, capable of processing high-resolution video (512×512)
in real-time at 20 frames per second (FPS) on a single A100 GPU. This speed surpasses current
V2V methods—FlowVid (Liang et al., 2023), CoDeF (Ouyang et al., 2023), Rerender (Yang et al.,
2023), and TokenFlow (Geyer et al., 2023)—by factors of 15×, 46×, 108×, and 158×, respec-
tively. We evaluate our method with quantitative metrics, such as CLIP score (Radford et al., 2021)
and warp error (Lai et al., 2018), and a user study. Our findings indicate that users significantly
favor our StreamV2V over StreamDiffusion (Kodaira et al., 2023) (with over 70% win rates) and
CoDeF (Ouyang et al., 2023) (with over 80% win rates). While our method may not yet match the
performance of state-of-the-art (SOTA) methods like TokenFlow and FlowVid, its rapid real-time
execution opens up new venues for streaming V2V applications.

Our contributions are three-fold: (1) To the best of our knowledge, our approach is the first approach
to tackle real-time video-to-video translation for streaming videos. (2) Our method, StreamV2V,
employs a simple yet effective looking-backward principle by maintaining a feature bank to improve
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consistency. (3) We develop a dynamic feature bank updating strategy that merges redundant features,
ensuring the feature bank remains both compact and descriptive.

2 RELATED WORK

2.1 VIDEO-TO-VIDEO TRANSLATION

Significant progress has been made in the domain of text-guided image-to-image (I2I) transla-
tion (Brooks et al., 2023; Hertz et al., 2022; Tumanyan et al., 2023; Mou et al., 2023), greatly
supported by large pre-trained text-to-image diffusion models (Ramesh et al., 2022; Rombach et al.,
2022; Saharia et al., 2022). Similarly, video-to-video (V2V) translation, which aims to generate
consistent videos, has attracted substantial interest as well. To generate coherent multiple frames,
most existing works (Esser et al., 2023; Wu et al., 2023b; Wang et al., 2023a; Guo et al., 2023;
Chen et al., 2023; Khachatryan et al., 2023; Ceylan et al., 2023; Qi et al., 2023; Geyer et al., 2023;
Wu et al., 2023a; Liang et al., 2023; Ku et al., 2024; Singer et al., 2024) process batches of frames
simultaneously with cross-frame attention mechanisms. However, as the memory usage increases
with an increased number of frames, these methods are typically constrained to about 4 seconds
length. Additionally, they tend to rely on expensive DDIM inversion (Song et al., 2020; Qi et al.,
2023; Geyer et al., 2023) or optical flow computation (Yang et al., 2023; Liang et al., 2023), leading
to long processing time. In contrast, our StreamV2V handles videos in real-time and in streaming
fashion, allowing for processing videos of any length. Compared to concurrent work Live2Diff (Xing
et al., 2024) that requires additional video fine-tuning to train uni-directional temporal attention, our
method is training-free and can serve as an add-on for any image diffusion model.

2.2 ACCELERATING DIFFUSION MODELS

While achieving great generation quality, diffusion models are commonly limited by their slow speed
due to the need for multiple denoising steps. Recent advancements have introduced reusing cached
features in denoising steps (Ma et al., 2023; Wimbauer et al., 2023) and one-/few-step diffusion
models through distillation (Song et al., 2023; Meng et al., 2023; Luo et al., 2023b; Sauer et al., 2023;
Yin et al., 2023; Lin & Yang, 2024). StreamDiffusion (Kodaira et al., 2023) proposes a pipeline to
leverage these developments for real-time image generation. However, its application to video without
adjustments brings unsatisfactory results. Leveraging StreamDiffusion’s groundwork, we enhance
frame consistency by implementing a backward-looking feature bank. Our approach introduces a
dynamic merging technique for the feature bank, ensuring it remains compact and incurs minimal
additional computational cost in comparison to StreamDiffusion.

2.3 FEATURE BANKS

Long-term feature banks (Wu et al., 2019; Pan et al., 2021) have been used in video understanding as
supportive context features to help reason the entire video. Adapting this concept, we employ feature
banks to enhance video generation consistency. To ensure our feature bank remains both informative
and compact, we introduce a dynamic feature merging strategy. While token merging (Bolya et al.,
2022; Bolya & Hoffman, 2023) is a common method for merging similar features within single
images, our approach extends this technique across video frames, differentiating it from traditional
within-image operations.

3 BACKGROUND: STREAMDIFFUSION

StreamDiffusion (Kodaira et al., 2023) leverages the Latent Consistency Model (LCM) (Luo et al.,
2023b) to implement a stream batch strategy, enabling the real-time generation of images. Instead of
waiting for one image to be entirely denoised (usually 2-4 steps for LCM), stream batch reformulates
sequential denoising steps into batched processes. This allows simultaneous processing of S images
at varying denoising steps, where S is the number of denoising steps. For instance, at a given timestep
t (assuming t > S), StreamDiffusion first encodes the image It with a variational autoencoder (VAE)
and adds a certain level of noise. We denote encoded latent as zSt , where the subscript t denotes the
frame timestep and the superscript S denotes the denoising step. StreamDiffusion processes latent
denoising batch {zSt , zS−1

t−1 , ..., z1t−S+1}. Upon advancing to timestep t+ 1, the model outputs the
final latent z0t−S+1, which is then decoded into the output image I ′(t−S+1). The remaining latent
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Figure 3: Overview of StreamV2V. Left: StreamV2V connects the current frame to the past by
maintaining a feature bank that stores the intermediate transformer features. For new incoming
frames, StreamV2V fetches the stored features and uses them by Extended self-Attention (EA) and
direct Feature Fusion (FF). Middle: EA concatenates the stored keys Kfb and values Vfb directly
to that of the current frame in the self-attention computation (Section 4.1). Right: Operating on the
output of transformer blocks, FF first retrieves the similar features in the bank via a cosine similarity
matrix, and then conducts a weighted sum to fuse them (Section 4.2). The update method of the
feature bank is elaborated in Section 4.3.

would be denoised one step further, and the latent zSt+1 from the new image It+1 would be added to
the batch. We include the diagram of the stream batch (Figure 12) in Appendix A.1. StreamDiffusion
kick-starts the process by initializing the batch with S identical starting images, enabling a warm start.
To further accelerate the inference, SteamDiffusion also utilizes the Tiny autoencoder (madebyollin,
2023) and TensorRT (NVIDIA, 2024) acceleration.

4 STREAMV2V

While being real-time, directly applying StreamDiffusion to video-to-video generation tasks brings
unsatisfactory flickering results because each frame is generated independently. Built upon StreamD-
iffusion, we introduce a backward-looking mechanism so that the generation of the current frame
can reason about the past to bring a consistent output. This is realized by maintaining a feature bank
storing the information of past frames. As shown on the left of Figure 3, StreamV2V fetches the
stored features in the bank to process the frame It. We introduce two training-free techniques to
leverage the stored features, namely Extended self-Attention (EA) (Section 4.1) and direct Feature
Fusion (FF) (Section 4.2) Lastly, we discuss how to update the compact but informative feature bank
by dynamically merging the stored and newly incoming features in Section 4.3.

4.1 EXTENDED SELF-ATTENTION

We mainly use Stable Diffusion (Rombach et al., 2022), which is built upon the U-Net architecture.
The model contains multiple encoder and decoder blocks. Each block comprises a residual convolu-
tional unit and a transformer module, the latter including a self-attention layer, a cross-attention layer,
and a feed-forward network. While it’s been a common practice to inflate the self-attention layer to
cross-frame attention in image diffusion (Hertz et al., 2023; Tewel et al., 2024; Zhou et al., 2024) or
video diffusion methods (Ho et al., 2022; Wu et al., 2023b; Khachatryan et al., 2023; Ceylan et al.,
2023; Qi et al., 2023; Liang et al., 2023), these approaches require processing all the frames at the
same time in a batch. We extend the self-attention to accommodate the feature bank, which stores
past frame information. As shown in the middle of Figure 3, for a given video frame It, we obtain
the projected queries Qt ∈ Rn×d, keys Kt ∈ Rn×d, and values Vt ∈ Rn×d from the intermediate
transformer input xt. Here, n and d denote the number and dimension of feature tokens, respectively.
Denoting Kfb ∈ Rm×d, and Vfb ∈ Rm×d as stored keys and values from previous frames, where m
indicates the size of the bank, we can write the extended self-attention:
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ExAttn = softmax

(
Qt · [Kt,Kfb]

Tr

√
d

)
[Vt, Vfb] (1)

[·] and Tr denotes concatenation and transpose operation. Essentially, this extended self-attention
functions as a weighted sum of similar areas across frames, thereby aligning the current frame with
its past for improved consistency. (More illustrations can be found in Appendix A.2) We extend all
the self-attention layers with all denoising times. Further details on updating the feature bank are
included in Section 4.3.

4.2 FEATURE FUSION

While extended self-attention offers significant improvements in consistency, it operates implicitly
through attention. We further introduce an explicit strategy for enhancing fine-grained consistency
by directly fusing features based on correspondence. This is motivated by recent findings that
diffusion features (Tang et al., 2024; Luo et al., 2023a) during the U-Net forward process contain rich
correspondences between images. As shown on the right of Figure 3, for a given video frame It, we
obtain the output features for the intermediate blocks Ot ∈ Rn×d, and we also maintain the output
features of past frames Ofb ∈ Rm×d. For the token at position p in Ot, we seek the closed token at
position q in Ofb, utilizing cosine similarity as described by Tang et al. (2024). We denote Ot(p) as
selecting the token p from Ot and O′

t as the fused output feature:

O′
t(p) = (1− α)Ot(p) + αOfb(q), where q = arg max

(
Ot(p) ·OTr

fb

)
(2)

where α is a hyperparameter to identify the strength of fusion, which is usually set to 0.75. Intuitively,
this direct feature fusion aims to enhance consistency by merging similar regions from past frames to
the current frame. In some cases, the current frame introduces novel regions which are absent in past
frames. To prevent misalignment, we generate a mask based on a predefined similarity threshold.
Specifically, we generate the mask by calculating the cosine similarities between each feature in the
current output and all features stored in the bank. For each feature, we identify the most similar
stored feature and calculate the similarity score. If the score is lower than a predefined threshold
(set at 0.9), it indicates that we cannot find a suitable match in the feature bank. In such cases, we
mask out this position, meaning this feature remains unchanged and is not fused with others from
the bank. Our analysis further indicates that the location of feature fusion across various network
blocks significantly impacts overall performance. Specifically, we observed that limiting feature
fusion to the low-resolution decoder blocks results in optimal performance enhancements. For a
comprehensive comparison and further insights, refer to Appendix A.3.

4.3 UPDATING THE FEATURE BANK WITH DYNAMIC MERGING
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Figure 4: Naive queue vs. our dynamic
merging (DyMe). DyMe has a more
compact and informative feature bank.

We denote all transformer intermediate features of frame
It as Tt = {Kt, Vt, Ot}, where Kt and Vt are projected
keys and values of self-attention input, Ot is the output
of transformer block. An initial approach for creating a
feature bank is to store features from a constant number
of frames. As depicted in Figure 4 (a), after deciding the
maximum number of frames (which is set to 2), the bank
operates like a queue: as new frames arrive, the oldest
frames are popped out to make space for the newcomers.
Yet, this method encounters two primary limitations: (1)
the continuous removal of the oldest frames restricts the
feature span to a brief temporal window, and (2) the redun-
dant features in the bank incur extra storage and processing
costs.

To create a compact and informative bank, we propose to
dynamically merge (DyMe) the stored features and newly
coming features. As shown in Figure 4 (b), at timestep 2,
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we merge T1 and T2 into T{1,2}, which has the same size as T1. By applying DyMe, we can the get
condensed bank T{1,2,3,4} which contains the information for all 4 frames, yet occupies only half
the space of a naive queue. We follow the efficient bipartite matching technique (Bolya et al., 2022;
Bolya & Hoffman, 2023) to do the merging. In more detail: (1) we first concatenate features of
the current frame (green boxes) and features stored in the bank (gray boxes); (2) we then randomly
partition the features into two sets source (src) and destination (dst) of equal size; (3) For each feature
vector fsrc in the src set, we identify the most similar feature vector fdst in the dst set using the cosine
similarity metric defined as follows: sim(fsrc, fdst) =

fsrc·fdst
|fsrc||fdst| . In this expression, · represents the dot

product, and | · | denotes the norm of a vector. (4) Once we find the most similar features fdst of fsrc,
we proceed to merge the features from src into dst. This is achieved by averaging the values of each
matched pair:f new

dst = fsrc+fdst
2 . This step ensures that the features in dst are updated to reflect a blend

of both the original and the matched features from src. Our experiments show that our dynamically
merged feature bank brings better performance-speed trade-off than the naive queue-based bank.
Empirically, we find the feature bank can be condensed to the size of storing just one frame. For
more details, please refer to Section 5.4.2. We also visualize the effect of DyMe in Appendix A.5.1.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We built our method on StreamDiffusion (Kodaira et al., 2023) with Latent Consistency Model (Luo
et al., 2023b). By default, we use a 4-step LCM without the classifier-free guidance (Ho & Salimans,
2022). We update the feature bank every 4 frames. The underlying image-to-image method is
SDEdit (Meng et al., 2021), with an initial noise strength of 0.4. Unlike some methods (Yang et al.,
2023; Liang et al., 2023) which use frame interpolation to generate high FPS video, our StreamV2V
generates all frames in the same pipeline.

Following TokenFlow (Geyer et al., 2023) and FlowVid (Liang et al., 2023), we build our user study
by selecting 19 object-centric videos from the DAVIS trainval 2017 dataset (Pont-Tuset et al., 2017),
covering diverse subjects such as humans and animals. We reuse 67 prompts from (Liang et al.,
2023), ranging from stylization to object swaps, for these videos. We conduct a thorough comparison
with state-of-the-art V2V methods such as Rerender (Yang et al., 2023), CoDeF (Ouyang et al., 2023),
TokenFlow (Geyer et al., 2023), and FlowVid (Liang et al., 2023), utilizing their official codes under
default settings. We report both qualitative comparison 5.2, and quantitative metrics 5.3, such as
CLIP score (Radford et al., 2021), warp error (Lai et al., 2018), and user preference, to verify the
effectiveness of our method.

5.2 QUALITATIVE RESULTS

In Figure 5, we qualitatively compare our StreamV2V with several representative V2V methods,
starting with our per-frame baseline StreamDiffusion (Kodaira et al., 2023), which treats each
frame independently. StreamDiffusion often results in noticeable flickering, such as the background
flowers and the dancer’s legs. CoDeF (Ouyang et al., 2023) tends to produce outputs with significant
blurriness, especially when there is a big motion within the input video, which fails in the construction
of the canonical image. Rerender (Yang et al., 2023) fails to keep tracking the clothing color in
the dance, which fluctuates between brown and blue. TokenFlow (Geyer et al., 2023) occasionally
struggles to follow the prompt, such as transforming the video into pixel art. FlowVid (Liang
et al., 2023) maintains good prompt alignment but similarly struggles with color consistency in
clothing and suffers from blurriness in the final frame. In contrast, our method stands out in terms of
editing capabilities and overall video quality, demonstrating superior performance over these methods.
Moreover, our StreamV2V can handle arbitrary lengths of videos as showcased in the Appendix A.6.

5.3 QUANTITATIVE RESULTS

5.3.1 EVALUATION METRICS

CLIP score Following previous research (Geyer et al., 2023; Liang et al., 2023), we first utilize
CLIP (Radford et al., 2021) to evaluate the consistency of generated videos. Specifically, we first get
the CLIP image embeddings for all the video frames, then we measure the mean cosine similarity

6
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TokenFlowRerender FlowVidCoDeF StreamV2V
(Ours)

StreamDiffusion
(Per-frame)Input video

Figure 5: Qualitative comparison with representative V2V models. Prompt is ’A pixel art
of a man doing a handstand on the street’. Our method stands out in terms of
prompt alignment and overall frame consistency. We highly encourage readers to refer to video
comparisons in our supplementary videos.

Table 1: Quantitative metrics comparison. We report the CLIP score and warp error to indicate the
consistency of generated videos. We bold the best result and underline the second best.

StreamDiffusion CoDeF Rerender TokenFlow FlowVid StreamV2V (ours)

CLIP score ↑ 95.24 96.33 96.20 97.04 96.68 96.58
Warp error ↓ 117.01 116.17 107.00 114.25 111.09 102.99

across all sequential frame pairs. Our evaluation, detailed in Table 1, includes an analysis of 67
video-prompt pairs from the DAVIS dataset. TokenFlow shows superior performance in maintaining
temporal consistency which aligns with the findings from our user study. StreamDiffusion, which is a
per-frame image model, achieves the worst score. Our StreamV2V ranks in third place regarding
CLIP score. Taking the consideration that our StreamV2V is a real-time stream processing method for
unlimited length videos which is significantly faster than these batch processing, limited length video
V2V methods (Section 5.3.2), our method is shown to have a good performance-speed trade-off.

Warp error We also propose to use warp error (Lai et al., 2018) as a measure of temporal consistency
following previous research (Ceylan et al., 2023; Geyer et al., 2023). We first compute the optical
flow between consecutive frames in input video using a pre-trained RAFT flow estimator (Teed
& Deng, 2020). Then we warp the frame in the transferred video to the next using the estimated
flow. This allows for the evaluation of pixel discrepancies between the warped frame and the target
counterpart. We calculate the average mean squared pixel error over the un-occluded regions as warp
error. As shown in Table 1, our StreamV2V achieves the best warp error among all methods.

5.3.2 PIPELINE RUNTIME

We benchmark the runtime with a 512 × 512 resolution video containing 120 frames (4 seconds
video with FPS of 30) in Figure 6. For StreamV2V, we conducted ten runs, discarded the top and
bottom two results, and averaged the remaining six. The runtime for FlowVid, CoDeF, Rerender, and
TokenFlow is taken from the FlowVid paper (Liang et al., 2023). FlowVid (Liang et al., 2023) and
Rerender (Yang et al., 2023) first generate key frames, then use frame interpolation methods (Jamriska,
2018; Huang et al., 2022) to generate non-key frames. We choose the keyframe interval of 4 for
these two methods, following (Liang et al., 2023). Two other methods, CoDeF (Ouyang et al.,
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Figure 7: User study comparison. The win rate
indicates the frequency our StreamV2V is preferred
compared with certain counterpart.

2023) and TokenFlow (Geyer et al., 2023), both require per-video preparation. Specifically, CoDeF
involves training a model for reconstructing the canonical image, while TokenFlow requires a
500-step DDIM inversion process to acquire the latent representation. Unlike all these methods
requiring two-stage processing, our StreamV2V produces all the frames in a single stage. We
continue to use xFormers (Lefaudeux et al., 2022) for fair comparison with existing methods. Our
StreamV2V processes videos in 9 seconds with the 4-step LCM, making it significantly faster than
current approaches. We note that while existing V2V methods use an A100-80GB GPU for runtime
measurement, we only use an A100-40GB GPU. Despite this, StreamV2V remains significantly
faster. Further acceleration is possible with fewer steps, though this may slightly affect performance.
For more details, see Appendix A.4.

5.3.3 USER STUDY

We further conducted a user study to compare our method with five notable works. Following
TokenFlow Geyer et al. (2023) and FlowVid Liang et al. (2023), we use the DAVIS dataset Pont-
Tuset et al. (2017) with 67 video-prompt pairs. We adopt a Two-alternative Forced Choice (2AFC)
protocol used in (Yang et al., 2023; Geyer et al., 2023), where participants are shown our result and a
counterpart result, and are asked to identify which one has the best quality, considering both temporal
consistency and text alignment. For each comparison, feedback was gathered from at least three
different participants. The final win rates are shown in Figure 7. We find users significantly favor
our StreamV2V over StreamDiffusion baseline (over 70% win rates) and CoDeF (over 80% win
rates). It is important to note that while our method does not outperform the more advanced V2V
methods such as Rerender, FlowVid, and TokenFlow, StreamV2V primarily aims to achieve real-time
video transfer, rather than beating the state-of-the-art V2V methods, none of which support real-time
processing and unlimited video length. Moreover, our StreamV2V can deal with half-minute long
videos as showcased in Appendix A.6, while FlowVid and TokenFlow are limited to 4 seconds due to
the memory limit (illustrated in Figure 2(c)). We have made all videos from the user study available
on our project page for further examination. More details about the user study can be found in
Appendix A.7.

5.4 ABLATION STUDY

We ablate several of our key designs in this section. The evaluation set contains 18 in-house videos
with cartoon-style prompts.

5.4.1 EXTENDED SELF-ATTENTION (SA) AND FEATURE FUSION (FF)

As shown in Figure 8, the StreamDiffusion baseline, which doesn’t have EA or FF, produces
inconsistent outcomes. Noticeable flickering can be observed in the man’s hands, hair, and the strips
on his clothes. After introducing the EA (the third column), the consistency is much improved, with
the warp error decreased from 85.2 to 74.0. However, some artifacts persist in the man’s hand. After

8
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further introducing FF (the last column), we have the most consistent result, with the lowest warp
error of 73.4. We also isolate the effect of FF in the fourth column, we lower the warp error from
85.2 to 80.4 with the introduction of FF.

Input video
w/o EA, w/o FF
Warp Error: 85.2

w/ EA, w/o FF
Warp Error: 74.0 

w/o EA, w/ FF
Warp Error: 80.4

w/ EA, w/ FF
Warp Error: 73.4

Figure 8: Ablation on Extended self-Attention (EA) and Feature
Fusion (FF). Warp error is averaged within 18 videos.

Table 2: Ablation on different
feature banks. No bank indi-
cates the StreamDiffusion base-
line. Queue represents the naive
first-in-first-out queue. Our Dy-
namic Merging (DyMe) main-
tains a compact and informative
bank.

Bank type
(size)

Time
(ms)

Mem
(GiB)

Warp
error ↓

no bank (0) 60 3.68 85.2

queue (1) 70 4.03 76.4
queue (2) 79 4.17 74.8
queue (4) 100 4.77 72.4

DyMe (1) 75 4.07 73.4

A masterpiece painting, man in yellow suit, is holding a cup, standing in front of a bookshelf, a crown in his head.

(a
). 

w
/o

fe
at

ba
nk

(b
). 

w
/f

ea
tb

an
k

Figure 9: Continuous text-to-image generation with feature bank. The images from left to right
are the intermediate generation as we type continuously. The caption of each column image is a
segment of the prompt (separated by the line). (a) Per-frame LCM baseline has severe flickering even
with slight one or two-word modification. (b) The feature bank provides a much smoother transition.
We highly encourage readers to refer to video comparisons in our supplementary materials.

5.4.2 DYNAMIC MERGING (DYME) BANK

We study different feature banks in Table 2. The case of no bank, which represents the StreamDiffusion
baseline, needs 60 ms to process a 512×512 frame on a single A100 GPU. However, its warp error
is considerably high at 85.2. For queue-based banks, we test sizes of 1, 2, and 4. As expected,
increasing bank size increases inference time but reduces warp error. Our dynamic merging (DyMe)
bank achieves a running speed of 75 ms, faster than the queue bank of size 2, while maintaining
a lower warp error. We also report the memory usage obtained via the nvidia-smi command. The
introduced DyMe bank only adds a very small 10% GPU memory overhead when compared to
StreamDiffusion.

5.5 EXTEND FEATURE BANK TO CONTINUOUS IMAGE GENERATION

The concept of the proposed feature bank, which links the current with the past, is expected to be
broadly applicable beyond video-to-video. To demonstrate its versatility, we validate its effectiveness
in a continuous text-to-image generation task.

Continuous or real-time image generation allows users to produce images instantly when the prompt
is being typed. However, most current frameworks generate each frame independently, resulting in

9
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Input video Pope Batman

(a) Fail to edit the video as prompted

Edit prompts:

(b) Inconsistent output

Input video Anime style Van Gogh Style

Edit prompts:

Figure 10: Limitations of StreamV2V. (a). StreamV2V fails to alter the person within the input
video into Pope or Batman. (b). StreamV2V can produce inconsistent output, as seen in the girl for
Anime style and the backpack straps for Van Gogh style.

flickering transitions between frames. Figure 9(a) illustrates per-frame generation in the LCM (Luo
et al., 2023b). The images from left to right reflect the intermediate results as we type continuously.
Even with slight one or two words, the layout of the image can shift dramatically. By incorporating a
feature bank as in Figure 9(b), the model can reference previous frames, enabling smoother transitions.

5.6 LIMITATIONS

Despite achieving notable improvements, our model encounters certain limitations. First, our
StreamV2V can fail to alter the video with the provided prompts. As shown in Figure 10(a),
when we try to transfer the man to Pope or Batman, our model struggles to change the input video.
This may be due to the use of SDEdit (Meng et al., 2021) as the primary image editing method, which
has limited ability to significantly alter objects. We also find that increasing initial noise strength
can improve editability but at the cost of introducing more pixel flickering. Another limitation is
that StreamV2V can produce inconsistent output, especially for videos with rapid movements of
the camera or the object. This is also the major reason why our StreamV2V still cannot match the
performance of state-of-the-art FlowVid and TokenFlow. As demonstrated in Figure 10(b), when
converting the video into anime style, the appearance of the girl in the background changes
significantly. Similarly, when applying Van Gogh style, there are noticeable changes to the
backpack straps of the man.

6 CONCLUSION

In this paper, we present StreamV2V: a diffusion model that can perform real-time video-to-video
translation for streaming videos. The key to StreamV2V lies in a look-backward mechanism that
enables the current frame to reason the past to ensure consistency. We propose a feature bank to store
the intermediate features for past frames and reuse them in the current frame generation via extended
self-attention and direct feature fusion. Furthermore, we propose dynamic merging, a method to make
the bank compact and informative. Our evaluation shows that StreamV2V is an order of magnitude
faster than existing video-to-video methods and can produce temporally consistent outputs.

10
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A APPENDIX

A.1 DIAGRAM OF STREAM BATCH
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① VAE encodeing
+ adding noise ② VAE decodingDenoising batch

Figure 11: Stream batch of StreamDiffusion. The approach enables the processing of S images
with different denoising steps in a batch (S is set to 3).

A.2 HEATMAP VISUALIZATION OF EXTENDED SELF-ATTENTION

Given an anchor point (marked in red) in frame 4, we extract its query tensor from the last layer
of the UNet up-block. We also obtain and store key tensors from the preceding frames 1, 2, and
3. We then calculate the dot product between the anchor query and stored key tensors. The most
similar position is marked by the red point in frames 1, 2, and 3. This shows that the anchor point
in frame 4 is highly correlated with the same goggle spot in earlier frames, indicating that extended
self-attention functions as a weighted sum of similar areas across frames, thereby aligning the current
frame with its past for improved consistency.

Frame 4Frame 3Frame 2Frame 1

Figure 12: Heatmap of extended self-attention. The anchor point (marked in red) in frame 4 has a
very high correlation with the same goggles spot in previous frames.

A.3 DETAILS OF FEATURE FUSION

A.3.1 FEATURE FUSION VISUALIZATION

To further verify the intuition of feature fusion, we visualize the output feature from the last layer of
the UNet up-block. We begin by concatenating the features from all frames and applying principle
component analysis (PCA) for visualization. The second row of Figure 13 shows the visualization
of the first three principal components. We observe that similar concepts tend to appear in similar
colors, indicating their similarity in feature space. For example, features corresponding to the goggles
(blue box) and pants (red box) exhibit consistent coloring across frames, highlighting the potential of
feature fusion to average them.
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Figure 13: Feature Fusion Illustration. For input frames, PCA is applied to diffusion features
extracted from all frames, and the first three principal components are visualized (second row).
Features like the goggles (blue box) and pants (red box) show similar colors across frames, indicating
consistent features.

A.3.2 FEATURE FUSION POSITIONS

While feature fusion significantly enhances temporal consistency, it may result in blurry artifacts.
As demonstrated in Figure 14, incorporating feature fusion in the layers makes the cat’s face appear
blurry. We believe that doing feature fusion at high-resolution features would average the features
across frames, resulting in a diminishing of details. Thus, we suggest applying feature fusion only to
low-resolution features, specifically within the middle block and the first two blocks of the upper
block. As displayed in the right column of Figure 14, this approach preserves higher-quality details
compared to using all layers.

Input video FF in all layers FF in mid+up01

Figure 14: Ablation on feature fusion (FF) layers. Applying FF to all layers sometimes results
in blurry artifacts, as seen in the cat’s face. We propose to only apply FF to low-resolution layers,
specifically the middle block (mid) and the first two blocks of the upper block (up01).
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Input video

Edit prompts: Elon Musk

4 denoising steps
75 ms per frame

2 denoising steps
50 ms per frame

1 denoising step
41 ms per frame

4 denoising steps
75 ms per frame

2 denoising steps
50 ms per frame

1 denoising step
41 ms per frame

Edit prompts: Claymation

Figure 15: Ablation on different denoising steps. While using fewer denoising steps would
accelerate the inference time for every frame, we do observe a certain level of quality drop if we use
only 1 step.
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Figure 16: Visualization of Dynamic Merging. Similar patches across frames are merged, showcas-
ing that the DyMe bank can maintain a compact yet informative feature bank.

A.4 DETAILS OF DIFFUSION STEPS

As outlined in Section 5.1, our StreamV2V utilizes LCM (Luo et al., 2023b) as the accelerated
diffusion model. LCM can perform denoising in 4, 2, or 1 steps, and we examine these variations in
Figure 15. Reducing the number of steps decreases the inference time per frame from 75 ms to 41
ms. However, this also leads to a decline in video quality. Unless otherwise specified, we use the
4-step LCM to achieve optimal performance.

A.5 MORE DETAILS OF DYNAMIC MERGING

A.5.1 VISUALIZATION OF DYNAMIC MERGING

As discussed in Section 4.3, the Dynamic Merging (DyMe) bank merges redundant information across
time. Figure 16 illustrates this effect. For better visualization, we applied the merging operation 10
times to the output features from the last layer of the UNet up-block, where merged features are
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marked in the same color. We observe that key elements, such as the person, sky, and snow, are
grouped consistently, demonstrating the effectiveness of dynamic merging.

A.5.2 PSEUDO CODE OF DYNAMIC MERGING

1 import torch
2 import torch.nn.functional as F
3

4 def dynamic_merge(current_frame, feature_bank):
5 """
6 Dynamic merging (DyMe) to create a compact feature bank.
7

8 Args:
9 current_frame (Tensor): Features of the current frame (shape: [N,

D]).
10 feature_bank (Tensor): Existing feature bank (shape: [N, D]).
11

12 Returns:
13 Tensor: Updated feature bank with dynamic merging.
14 """
15 # Step 1: Concatenate current frame features and feature bank
16 all_features = torch.cat([current_frame, feature_bank], dim=0) #

Shape: [(2N, D]
17

18 # Step 2: Randomly partition features into source (src) and
destination (dst)

19 num_features = all_features.size(0)
20 permuted_indices = torch.randperm(num_features)
21 src_indices = permuted_indices[:num_features // 2]
22 dst_indices = permuted_indices[num_features // 2:]
23 src_set = all_features[src_indices] # Shape: [N, D]
24 dst_set = all_features[dst_indices] # Shape: [N, D]
25

26 # Step 3: Find the most similar features between src and dst
27 # Compute cosine similarity
28 similarity_matrix = F.cosine_similarity(src_set.unsqueeze(1), dst_set

.unsqueeze(0), dim=2)
29 max_similarities, matched_indices = similarity_matrix.max(dim=1)
30

31 # Step 4: Merge src into dst by averaging matched pairs
32 for i, match_idx in enumerate(matched_indices):
33 dst_set[match_idx] = (dst_set[match_idx] + src_set[i]) / 2
34

35 updated_feature_bank = dst_set
36 return updated_feature_bank

A.6 MORE RESULTS ON LONG VIDEO

While most existing methods typically handle up to 4 seconds of video, StreamV2V can scale to
arbitrary lengths thanks to the streaming processing and feature bank. As demonstrated in Figure 17,
our approach handles a video exceeding 1000 frames (over 30 seconds) while maintaining consistent
face swapping or style transfer throughout.

A.7 MORE DETAILS OF USER STUDY

As described in Section 5.3.3, we conducted a user study to compare our method with existing
approaches. Figure 18 illustrates the interface presented to each participant. The instructions given to
users were as follows: The left/right video is labeled as A/B. You will be asked three questions to
compare these two videos. If you perceive minimal differences between the videos, whether they are
both good or bad, please select ’draw’.
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Figure 17: Long video (> 1000 frames) generation. Our StreamV2V can handle arbitrary length of
videos without consistency degradation.

Figure 18: User study Interface. Each user is asked three questions about temporal consistency,
prompt alignment and overall preference.

We find that user preference is very subjective and there are huge variances between users. We report
the mean and standard deviation among at least three users in Table 2. It is worth noting that, instead
of providing numerical metrics for comparison, the study aims to offer a first-impression comparison
between the two models. The results, whether indicating one model is better, worse, or on par
with another, are generally consistent. This information can guide our decision-making, particularly
when we need to balance speed and accuracy in model selection. In practice, we recommend
using StreamV2V for applications where speed is a critical requirement, such as real-time webcam
translation and draw rendering. For other uses, such as creating short video content, slower methods
like FlowVid might yield better results.

Table 2: Comparison of StreamV2V against various models. We also report the mean and standard
deviation (std) for each set of users.

Model StreamV2V wins
(mean ± std)

Draws
(mean ± std)

StreamV2V loses
(mean ± std)

vs. StreamDiffusion 71.1± 10.2 25.3± 13.3 3.6± 5.2
vs. CoDeF 81.3± 20.1 13.2± 12.1 5.5± 9.3
vs. Rerender 30.2± 15.1 31.4± 7.8 38.4± 18.9
vs. FlowVid 19.8± 9.5 21.3± 8.5 58.9± 18.0
vs. TokenFlow 19.3± 9.0 13.4± 9.7 67.3± 13.4
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A.8 MORE ANALYSIS AND ABLATION STUDIES

A.8.1 MEMORY CONSUMPTION WITH LARGER VIDEO RESOLUTION

We tested the memory footprint under different resolutions with one 24-GB A5000 GPU. As shown
in Table 3, we can run StreamV2V up to a high resolution of 1536 × 1536. However, we did see a
steady increase in the relative memory overhead of the DyMe bank. We conjecture the reason for this
increase is that the baseline diffusion pipeline has specific optimization regarding memory usage,
while our DyMe implementation doesn’t. Some potential solutions are (1) storing features with key
layers rather than all the layers; and (2) implementing memory optimization techniques for the DyMe
data structure. We will consider these in our future work.

Table 3: Memory Usage Comparison. We report the memory usage (in GiB) of the baseline and
StreamV2V across different resolutions, along with the relative memory overhead increase.

Resolution Mem of Baseline (GiB) Mem of StreamV2V (GiB) Relative Memory Overhead Increase

512 × 512 4.87 5.34 + 10%
768 × 768 5.59 7.29 + 30%
1024 × 1024 6.62 9.86 + 49%
1536 × 1536 9.52 22.47 + 136%

A.8.2 SIMILARITY THRESHOLD OF FEATURE FUSION

We ablate the effect of similarity threshold in feature fusion as in Table 4. The similarity threshold of
0.9 yields the lowest average warp error of 19 videos. We have worse results when the threshold is
set to 1.0 (no features are fused) or 0.0 (all features are fused).

Table 4: Effect of similarity threshold. We analyze the impact of varying similarity thresholds
on the average warp error of 19 videos. The best result, achieved with our default value of 0.9, is
highlighted.

Similarity Threshold Warp Error ↓
0.0 74.0
0.8 73.5
0.9 (default) 73.4
1.0 74.0

A.8.3 BANK UPDATING INTERVAL

We ablate the effect of bank updating intervals in Table 5. The interval of 8 brings us the best
performance. During practice, we may want to adjust this value according to our videos: videos with
larger motion may require a more frequent update.

Table 5: Effect of bank updating interval. We report the average warp error of 19 videos for
different bank updating intervals. The best result and our method are highlighted.

Bank Updating Interval Warp Error ↓
1 78.1
2 75.3
4 (default) 73.4
8 72.4
16 72.5

A.8.4 SAMPLING STRATEGY OF DYME UPDATING

Our DyMe bank needs to derive source (src) and destination (dst) sets from current and stored past
features. We ablated three choices in Table 6. (1) Randomly sample (our default setting) ; (2)
Uniformly grid sample: After concatenation, features at even locations are used as the source, and
features at odd locations are used as the destination; and (3) Split sample: Use the current features as
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Table 6: Effect of sample strategy. We evaluate warp error across different sampling strategies. The
best result is highlighted.

Sample Strategy Warp Error ↓
Random (default) 73.4
Uniform Grid 73.7
Split 74.2

the destination, and the stored past features as the source. Split sampling has the worst warp errors,
as it performs more like a queue bank, in which the current features dominate the bank. Compared to
uniform grid sampling, random sampling proved more general and achieved the lowest warp error.
Thus, random sampling was chosen as the default strategy.
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