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Abstract

Large language models (LLMs) have re-001
cently pushed open-domain question answering002
(ODQA) to new frontiers. However, prevailing003
retriever–reader pipelines often depend on mul-004
tiple rounds of prompt-level instructions, lead-005
ing to high computational overhead, instability,006
and suboptimal retrieval coverage. In this pa-007
per, we propose EmbQA, an embedding-level008
framework that alleviates these shortcomings009
by enhancing both the retriever and the reader.010
Specifically, we refine query representations011
via lightweight linear layers under an unsuper-012
vised contrastive learning objective, thereby013
reordering retrieved passages to highlight those014
most likely to contain correct answers. Addi-015
tionally, we introduce an exploratory embed-016
ding that broadens the model’s latent semantic017
space to diversify candidate generation and em-018
ploys an entropy-based selection mechanism019
to choose the most confident answer automati-020
cally. Extensive experiments across three open-021
source LLMs, three retrieval methods, and four022
ODQA benchmarks demonstrate that EmbQA023
substantially outperforms recent baselines in024
both accuracy and efficiency.025

1 Introduction026

Recent advances in large language models (LLMs)027

(Achiam et al., 2023; Dubey et al., 2024) have028

propelled Open-Domain Question Answering029

(ODQA) to new heights. A central strategy in030

ODQA involves retrieving relevant knowledge (Lei031

et al., 2023) and then integrating it with LLMs032

acting as readers to synthesize accurate answers.033

This retriever-reader approach has shown promise034

in overcoming the inherent limitations of LLMs035

(Mialon et al., 2023).036

Yet, prevailing retriever-reader architectures face037

two key limitations. First, retrievers (Karpukhin038

et al., 2020; Lei et al., 2023) yield abundant can-039

didate passages, they fail to effectively prioritize040

those containing definitive answers. This is ev- 041

idenced by their low ground truth recall in top- 042

ranked results, where directly retraining retriev- 043

ers or applying prompt-level reranking (Chuang 044

et al., 2023) proves impractical due to prohibitive 045

computational costs (Zhuang et al., 2024a) and 046

inherited inefficiency from multi-turn processes. 047

Second, while reader relies on multi-turn prompt- 048

level strategies such as self-verification (Gao et al., 049

2023), or additional summarization (Kim et al., 050

2024), which requires expensively inference cost 051

by LLM, leads to computational inefficiency and 052

instability in the answer selection. 053

To address these limitations, we propose 054

Embedding-Driven Reranking and Answer Gen- 055

eration Framework for Open Domain QA Driven 056

(EmbQA), which utilizes the embedding strategy 057

to enhance both efficiency and accuracy in both 058

retriever and reader. 059

In retriever, we propose an embedding-level 060

rerank framework that leverages candidate answers 061

generated by LLMs to guide query refinement via 062

unsupervised contrastive learning. Compared with 063

existing LLM prompting-based reranking frame- 064

works (Karpukhin et al., 2020; Lei et al., 2023) 065

which only focus few candidate passages due to the 066

high computational cost of language inference, in 067

our proposed method, we are able to fully explore 068

the whole selected knowledge based on a learn- 069

able embedding layer. By mapping both queries 070

and candidate sentences into the retrieval space 071

and refining the query embedding with only a sim- 072

ple linear combination, our approach effectively 073

reranks retrieved passages to prioritize those most 074

likely to contain the correct answer. 075

In reader, as many existing works suggest that 076

there is a latent presence of prerequisite knowl- 077

edge within the model’s parameter space (Ye et al., 078

2025), and inserting a single compressed token can 079

activate the neural pathways in LLM to generate 080

the correct answer (Cheng et al., 2024). Building 081
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on this, we propose an order-statistic-based mea-082

sure for exploratory embedding generation. This083

method allows us to explore statistically orthog-084

onal directions by inserting only one token-sized085

embedding. It not only enhances diversity but also086

improves efficiency, as it eliminates the need for087

additional prompting rounds for summarization or088

verification. By utilizing perturbed predictive en-089

tropy, we can filter out uncertain answer candidates.090

In summary, our contributions are summarized091

as follows:092

1. We develop an embedding-level rerank frame-093

work that leverages candidate answer guid-094

ance via unsupervised contrastive learning to095

optimize retrieval effectiveness.096

2. We propose an order-statistic-based single-097

token embedding strategy that activates latent098

knowledge within LLMs, reduces multi-turn099

prompting overhead and diversifies candidate100

generation.101

3. Extensive experiments on three state-of-the-102

art open-sourced LLMs, and three retrieval103

methods across four ODQA datasets, demon-104

strate that our framework significantly outper-105

forms existing prompt-level frameworks in106

both efficiency and accuracy.107

2 Related Work108

Rerank of Retriever in Open-Domain QA. Open-109

domain question answering (ODQA) (Voorhees110

et al., 1999) typically adopts a retriever-reader111

framework (Chen et al., 2017), where a retriever112

selects relevant documents from extensive corpora113

and a reader synthesizes them into answers. Re-114

trieval techniques generally fall into two categories:115

lexical methods (e.g., BM25 (Robertson et al.,116

2009)) and dense models leveraging sentence em-117

beddings (e.g., DPR (Karpukhin et al., 2020) and118

Contriever (Lei et al., 2023)). However, existing119

ODQA systems often underutilize retrieval capa-120

bilities, as top-ranked documents frequently lack121

comprehensive answer coverage (Zhuang et al.,122

2024a). Reranking strategies can mitigate this is-123

sue by prioritizing critical documents, thereby im-124

proving answer coverage and accuracy (Zhuang125

et al., 2024b). In the era of large language mod-126

els, these strategies are mostly implemented at the127

prompt level (Meng et al., 2024; Li et al., 2024),128

yet such methods have been found inefficient, time-129

consuming (Zhuang et al., 2024b), and unstable130

(Wu et al., 2024b). While emerging work has be- 131

gun to explore word-level reranking, this area re- 132

mains underexplored. To address these challenges, 133

we propose an embedding-level mechanism that in- 134

tegrates reranking without requiring labelled data, 135

offering a more efficient and stable alternative to 136

prompt-level methods. 137

Prompt-level Framework of Reader in Open- 138

Domain QA. Prompt-level framework of Reader 139

enhances language models by comparing multiple 140

candidate solutions, either by selecting the best 141

option (Kim et al., 2024) or synthesizing several 142

outputs for final prediction (Zhang et al., 2024) and 143

self-verification (Gao et al., 2023). In ODQA, pre- 144

vailing paradigms generate and evaluate candidate 145

answers through summaries of retrieved content 146

(Giorgi et al., 2023; Gao et al., 2023; Kim et al., 147

2024). However, these frameworks rely mainly 148

on prompt-level mechanisms, which require multi- 149

ple rounds of prompting, thus incurring inefficien- 150

cies and sensitivity to answer quality. Recent work 151

has begun exploring word-level framework via key 152

term masking for self-correction (Wu et al., 2024c), 153

yet this line of inquiry remains nascent. In contrast, 154

our approach advances to the embedding level by 155

incorporating diversity information during candi- 156

date generation to steer the model toward candidate 157

sets more likely to contain the correct answer, and 158

an entropy-based candidate filtering mechanism 159

further ensures a more efficient selection process 160

than prompt-level methods. 161

3 Methodology 162

3.1 Overview and Problem Description 163

Overview. We propose EmbQA, a two-stage 164

framework that addresses the aforementioned limi- 165

tations in open-domain QA. As illustrated in Fig- 166

ure 1, EmbQA consists of: (1) Retriever that refines 167

the query through unsupervised contrastive learn- 168

ing, allowing it to effectively re-rank passages so 169

that those potentially containing correct answers 170

are prioritized; and (2) Reader that broadens the 171

semantic space for answer generation by injecting 172

a lightweight exploratory embedding derived from 173

a normal distribution. This exploratory embedding 174

nudges the model to discover a more diverse set of 175

potential answers. Finally, we rely on an entropy- 176

based criterion over the model’s output logits to 177

select the best answer without resorting to multiple 178

rounds of prompts. 179
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Figure 1: Overview of the EmbQA framework. Retriever module constructs a knowledge base by retrieving passages
from a large corpus and then refines the query via an embedding layer under unsupervised contrastive learning to
prioritize passages rich in answer-critical cues. Then Reader module integrates an exploratory embedding into the
query to diversify candidate generation and employs an entropy-based selection mechanism to pick the final answer
with the lowest uncertainty, ultimately enhancing both efficiency and overall performance in ODQA.

Problem Description. Open-domain question180

answering (ODQA) typically relies on external181

knowledge beyond a single context. Following the182

retriever–reader pipeline (Chen et al., 2017; Lee183

et al., 2019), we first form a knowledge base B by184

retrieving relevant passages from the large corpus185

D given a query q, then select the top-N passages186

CN from B for candidate answer generation and187

subsequently refine the query representation eqnew188

to re-rank B, emphasizing passages more likely to189

contain the correct answer. Then, we introduce a190

lightweight exploratory embedding er to diversify191

the candidate answers. Finally, we compute logit-192

based entropy to select the best candidate as the193

final prediction.194

3.2 Retriever: Self-Refinement Driven195

Reranking196

Despite significant progress, existing retrieval197

frameworks still struggle to effectively prioritize198

passages containing definitive answers. To address199

this, we propose a reranking framework that in-200

creases the likelihood of including ground-truth201

passages, thereby improving retrieval quality. Addi-202

tionally, prior prompt-level reranking methods have203

proven inefficient and time-consuming (Zhuang204

et al., 2024b). In contrast, EmbQA adopts an205

embedding-based reranking strategy that is both206

more scalable and more efficient than previous207

prompt-level approaches (Li et al., 2024; Zhuang208

et al., 2024a).209

Candidate Sentence Generation. Given a210

query and its retrieved passages, we use a spe-211

cialized prompt to generate K candidate answers212

y = [y1, . . . , yK ] via an LLM. While prior studies213

(Lazaridou et al., 2022; Weng et al., 2023) employ214

stochastic decoding to enhance diversity, we adopt215

an approach inspired by (Kim et al., 2024), ex- 216

plicitly prompting the LLM to generate K answer 217

candidates. Following the empirical findings of 218

(Kim et al., 2024), which indicate no performance 219

gains with larger K, we set K = 2 in this research. 220

Rerank by Unsupervised Contrastive Learn- 221

ing. Directly tuning a large retriever or relying on 222

multiple rounds of prompt-based reranking can be 223

computationally prohibitive. To address this, we 224

propose a lightweight method that refines the query 225

representation, enabling more precise passage se- 226

lection without retriever-wide fine-tuning. 227

Concretely, let a frozen retriever map the original 228

query q and an LLM-generated candidate answers 229

y into a shared representation space, producing 230

embeddings eq and ey. We then form a new query 231

embedding eqnew via a simple linear combination: 232

eqnew = W1ey +W2eq. (1) 233

where W1 and W2 are the only trainable param- 234

eters. This design is far more efficient than modify- 235

ing the entire retriever, while still capturing critical 236

cues from the candidate sentence. 237

To learn W1 and W2, we adopt an unsupervised 238

contrastive loss (Oord et al., 2018) that encourages 239

eqnew to focus on passages containing the candidate 240

answers from y. Specifically, we treat passages 241

that contain at least one candidate as positive, and 242

those that do not as negative. Because negatives are 243

significantly more abundant, we sample them at a 244

fixed ratio of 5:1 relative to positives in each train- 245

ing batch to maintain balance. Once the parameters 246

are updated, we use eqnew to re-query the retriever, 247

effectively re-ranking the knowledge base B so that 248

passages with correct answers appear more promi- 249

nently. This addresses the inefficiency of multi-turn 250

prompt-level reranking and increases the likelihood 251
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that the subsequent Reader module receives high-252

quality evidence.253

3.3 Reader: Enhancing Generation via254

Exploratory Embedding255

Unlike existing ODQA patterns such as SuRe256

(Kim et al., 2024), which relies on summariza-257

tion and prompt-level candidate selection strate-258

gies, EmbQA removes summarization and replaces259

prompt-level candidate selection with embedding-260

level entropy-based selection. Furthermore, our261

approach diversifies candidate generation via the262

exploratory embedding mechanism with variance263

gate filtering, which guides the model to explore a264

broader semantic space.265

Exploratory Embedding Filtering We intro-266

duce an exploratory embedding to diversify can-267

didate generation. Suppose the LLM M has an em-268

bedding dimension of D. We sample a random vec-269

tor er ∈ RD from a standard normal distribution270

and concatenate it with the query q and retrieved271

context CN at inference time. We then extract the272

hidden representation hr corresponding to er from273

the penultimate layer of M, following the prac-274

tice of Liu et al. (2024) to capture sentence-level275

semantics.276

Inspired by Jain et al. (2014), who shows that277

encouraging orthogonality among a set of vectors278

can be achieved by minimizing their maximum279

inner products, we adopt the inner product as a280

measure of diversity. Our goal is to find an hr that281

is maximally inconsistent (i.e., yields the smallest282

inner product) with the concatenated representation283

E(CN ; q). However, directly optimizing over the284

entire embedding space is computationally expen-285

sive—especially when considering tokens that have286

not yet been decoded. To address this, we assume287

that token embeddings follow a Gaussian distribu-288

tion and derive an analytical approximation using289

order statistics. Specifically, we sort the elements290

of hr in descending order and define ∆i as the gap291

between the i-th and (i+1)-th largest elements. We292

then show that minimizing the expected inner prod-293

uct between hr and a set of Gaussian vectors is ap-294

proximately equivalent to minimizing the squared295

sum of the top-p differences: Ser =
∑p

i=1∆
2
(i).296

(A detailed theoretical discussion justifying this297

approximation in relation to Jain et al. (2014)’s298

claim is provided in Appendix B.) We repeat the299

sampling process until we obtain an er such that300

Ser falls below a preset threshold T .301

Entropy-Based Selection. Once a suitable er 302

is obtained, we regenerate candidate answers ŷ = 303

[ŷ1, . . . , ŷK ] using the LLM with the retrieved con- 304

text CN , the original query q, and the selected ex- 305

ploratory embedding. Rather than relying on multi- 306

turn prompts for candidate refinement, we leverage 307

the LLM’s own output uncertainties. Specifically, 308

for each candidate answer, we compute a logit- 309

based entropy score. Motivated by recent findings 310

(Wu et al., 2024a; Wang et al., 2025) that lower en- 311

tropy correlates with higher confidence, we select 312

the candidate with the lowest entropy: 313

â = argmin
ŷ∈{ŷ1,...,ŷK}

Entropy(ŷ). (2) 314

This embedding-level, entropy-based selection 315

strategy eliminates the need for additional prompt 316

rounds, making the answer generation process both 317

efficient and robust. 318

4 Experiments 319

4.1 Setups 320

Evaluation Datasets. We evaluate EmbQA on 321

zero-shot QA across four ODQA datasets: Hot- 322

potQA (Yang et al., 2018), 2WikiMulti-hopQA 323

(2Wiki) (Ho et al., 2020), Natural Questions 324

(NQ) (Kwiatkowski et al., 2019), and WebQues- 325

tions (WebQ) (Berant et al., 2013). For NQ and 326

WebQ, we use their original test splits with the 21M 327

English Wikipedia dump (Karpukhin et al., 2020) 328

as the retrieval corpus. For all datasets, we adopt 329

the implementation splits provided by Trivedi et al. 330

(2023) and Kim et al. (2024), along with their re- 331

spective document corpora. 332

Metrics. We use exact match (EM) and F1 score 333

as evaluation metrics. Following Rajpurkar et al. 334

(2016), we normalize predictions and gold answers 335

by lowercasing and removing punctuation to ensure 336

consistency. 337

Baselines. We compare EmbQA with the follow- 338

ing methods: (1) No Retrieval generates answers 339

applying an LLM in a closed-book setting without 340

retrieved passages. (2) Retrieval Only appends re- 341

trieved passages to the input prompt. (3) Chain-of- 342

Thoughts (Kojima et al., 2022; Wei et al., 2022) aug- 343

ments the prompt with zero-shot chain-of-thought 344

reasoning. (4) Self-Verification (Weng et al., 2023) 345

generates multiple answer candidates via random 346

sampling and selects the most plausible one by 347

verifying its reasoning using conditional masking. 348

(5) SuRe (Kim et al., 2024) produces candidate 349
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Method/Dataset HotpotQA 2Wiki NQ WebQ Average

EM F1 EM F1 EM F1 EM F1 EM F1

No Retrieval 20.8 29.1 12.2 16.2 20.6 26.6 17.2 25.8 17.7 24.4

Retrieval Only 25.4 37.2 16.6 21.1 26.0 32.8 22.2 31.2 22.6 30.6
Chain-of-Thought 27.0 39.8 15.4 21.8 27.2 33.5 28.8 37.8 24.6 33.2

Self-Verification 32.8 49.5 21.0 23.5 28.0 37.7 27.2 40.2 27.4 38.0
SuRe 38.8 53.5 23.8 31.0 36.6 47.9 34.4 48.5 33.4 45.3

EmbQA (Ours) 42.0 55.8 27.4 36.6 42.2 54.4 38.2 52.1 37.5 49.7

Table 1: Comparison of prompt-level frameworks on four open-domain QA datasets (HotpotQA, 2Wiki, NQ, and
WebQ) using LLaMA 3.1. All methods retrieve the top-10 relevant passages using BM25. The EmbQA framework
outperforms existing prompt-level approaches across all datasets.

answers and selects the most plausible one by con-350

ditional summarization as the final prediction.351

Implementation Details. Our framework requires352

modifications at the embedding level, which ne-353

cessitates the use of open-sourced LLMs. We con-354

duct experiments with three state-of-the-art mod-355

els: LLaMA-3.1-8B-Instruct (Dubey et al., 2024),356

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), and357

Qwen2.5-7B-Instruct (Yang et al., 2024). We set358

the decoding temperature to 0.0 to ensure greedy359

decoding, to eliminate the effect of random sam-360

pling (Sun et al., 2023). For retrieval, we em-361

ploy three approaches: a lexical-based retriever362

(BM25) (Robertson et al., 2009) and two dense re-363

trievers (DPR-multi (Karpukhin et al., 2020) and364

Contriever (Lei et al., 2023)). We use Elasticsearch365

for BM25 and the BEIR toolkit for DPR and Con-366

triever,1 respectively. In our framework, an initial367

retriever retrieves candidate passages, which are368

then reranked based on modifications at the em-369

bedding level. Notably, when BM25 is used as the370

initial retriever—owing to its lexical nature and in-371

ability to generate sentence embeddings—we em-372

ploy Contriever for reranking; in contrast, when373

DPR or Contriever serves as the initial retriever,374

the same model is used throughout. We use con-375

sistent prompts across all datasets (Appendix A)376

and fix K = 2 in all experiments following Kim377

et al. (2024). Although iterative reranking is theo-378

retically possible, we perform only a single rerank-379

ing pass given the limited performance gains rel-380

ative to the increased computational cost. In the381

exploratory embedding stage, a variance gating382

threshold of 0.05 is applied.383

1https://www.elastic.co/, https://github.com/
beir-cellar/beir

4.2 Main Results 384

EmbQA Outperforms Prompt-Level Methods. 385

Table 1 presents the performance of lines of prompt- 386

level frameworks on four open-domain QA datasets 387

using LLaMA 3.1 with BM25-based retrieval of 388

the top-10 passages. Notably, augmenting re- 389

trieved passages with prompting generally im- 390

proves ODQA accuracy over a pure retrieval strat- 391

egy. However, our proposed embedding-level 392

framework consistently outperforms these prompt- 393

level approaches across all datasets. For instance, 394

on HotpotQA, our method achieves an Exact Match 395

(EM) of 42.0 and an F1 score of 55.81, representing 396

improvements of approximately 3.2 and 2.3 points 397

over the best prompt-level baseline (SuRe). Sim- 398

ilar gains are observed on the remaining datasets, 399

underscoring the efficacy of leveraging embedding- 400

level information to enhance LLM performance in 401

open-domain QA tasks. 402

Robust Generality of EmbQA Across Setups. 403

Table 2 further demonstrates the compatibility of 404

our embedding-level framework across three LLMs 405

and four question-answering datasets with three 406

retrieval methods. Our framework consistently out- 407

performs the retrieval-only and SuRe (Kim et al., 408

2024) baselines in nearly every setting. For in- 409

stance, on LLaMA 3.1 with DPR, EmbQA achieves 410

29.8 EM and 36.34 F1 on HotpotQA, substantially 411

exceeding BM25+SuRe’s performance around 4.8 412

on EM and 4.46 on F1. Comparable improvements 413

are observed across different retrievers and models, 414

underscoring the generalizability and robustness 415

of our approach in enhancing open-domain QA 416

performance. 417
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M
od

el Retriever &
Framework

Dataset

HotpotQA 2Wiki NQ WebQ

EM F1 EM F1 EM F1 EM F1

L
L

aM
A

3.
1

8B
-I

ns

BM25 25.4 37.2 16.6 21.1 26.0 32.8 22.2 31.2
+SuRe 38.8 53.5 23.8 31.0 36.6 47.9 34.4 48.5
+EmbQA (ours) 42.0 55.8 27.4 36.6 42.2 54.4 38.2 52.1

DPR 20.6 21.7 10.8 13.5 25.0 34.2 23.8 34.4
+SuRe 25.0 31.9 14.2 16.0 38.8 52.3 36.0 49.6
+EmbQA (ours) 29.8 36.3 16.8 21.0 43.0 54.4 38.0 52.0

Contriever 22.6 35.4 16.6 20.7 25.8 32.8 25.2 34.2
+SuRe 33.8 50.6 21.0 29.3 39.0 52.8 34.4 48.5
+EmbQA (ours) 36.6 52.7 26.4 34.2 42.2 53.6 36.0 49.6

M
is

tr
al

v0
.2

7B
-I

ns

BM25 21.2 29.2 13.8 21.7 18.8 25.3 19.0 26.1
+SuRe 32.2 46.1 17.8 30.1 35.2 45.1 31.6 45.7
+EmbQA (ours) 34.8 44.3 18.6 30.5 35.8 46.0 35.8 48.1

DPR 7.8 11.0 3.8 4.5 22.2 26.7 18.8 27.7
+Sure 15.0 21.8 6.4 8.5 40.0 51.8 32.6 47.7
+EmbQA (ours) 16.2 23.3 7.6 9.6 40.2 49.4 33.4 46.0

Contriever 19.4 28.6 13.6 20.7 21.8 27.4 17.8 24.4
+SuRe 28.0 41.6 17.2 25.4 39.8 51.6 30.2 45.0
+EmbQA (ours) 29.8 42.3 17.4 26.2 40.6 51.8 31.6 43.0

Q
w

en
2.

5
7B

-I
ns

BM25 28.6 37.1 20.2 24.1 24.0 29.4 22.6 31.4
+Sure 43.6 54.7 28.4 34.1 41.6 49.0 36.6 47.3
+EmbQA (ours) 44.6 55.6 28.8 33.8 42.4 49.2 38.2 48.7

DPR 8.8 9.8 5.6 7.1 29.2 32.6 25.6 31.1
+Sure 21.8 27.3 12.2 16.1 45.4 54.6 38.4 49.6
+EmbQA (ours) 22.6 29.1 13.8 17.3 45.8 54.7 38.6 50.1

Contriever 27.0 34.0 17.6 20.0 26.6 31.9 21.0 29.1
+Sure 38.8 50.3 23.8 30.4 44.0 52.9 36.4 48.1
+EmbQA (ours) 39.0 50.2 24.4 30.9 45.2 50.5 37.0 48.6

Table 2: Exact Match (EM %) and F1 score performance
of LLaMA 3.1, Mistral v0.2, and Qwen 2.5 across Hot-
potQA, 2Wiki, NQ, and WebQ datasets. Each model
is evaluated using three retrieval methods: BM25 (lex-
ical retriever), DPR, and Contriever (dense retrievers).
Results are reported for retrieval-only, SuRe, and our
proposed framework. Across all models, retrievers, and
datasets, our framework consistently outperforms both
the SuRe baseline and retrieval-only approaches.

Efficiency. Table 3 compares the execution time418

and output token requirements of SuRe (Kim et al.,419

2024) and our proposed framework across four420

datasets using LLaMA 3.1 with Contriever retrieval.421

Our method consistently reduces both query time422

and output token requirement by a significant mar-423

gin. For instance, on HotpotQA, our framework424

processes a query in 0.53 minutes and only requires425

approximately 0.99k output tokens to generate a426

final prediction, compared to 1.56 minutes and427

3.51k tokens for SuRe (Kim et al., 2024). Similar428

efficiency gains are observed across 2Wiki, NQ,429

and WebQ datasets, underscoring the superior com-430

putational efficiency of our approach.431

Dataset Method Time/query (min) ↓ Tokens /query ↓

HotpotQA
SuRe 1.56 3.51k
EmbQA (ours) 0.53 0.99k

2Wiki
SuRe 1.57 3.43k
EmbQA (ours) 0.54 1.20k

NQ
SuRe 1.43 4.39k
EmbQA (ours) 0.54 0.84k

WebQ
SuRe 1.58 3.91k
EmbQA (ours) 0.56 1.31k

Table 3: Comparison of execution time and output to-
ken requirement per query between SuRe and our pro-
posed framework EmbQA across four open-domain QA
datasets (HotpotQA, 2Wiki, NQ, and WebQ), using
LLaMA 3.1 with Contriever retrieval. Our method sig-
nificantly reduces query time and output token require-
ment in all datasets.

5 Analysis 432

Ablation Studies. We conducted an ablation 433

study to assess the contribution of each component 434

in our overall framework. We evaluated four con- 435

figurations: (1) Retrieval Only, (2) EmbQA (our 436

full framework), (3) EmbQA w/o exploratory em- 437

bedding (without the exploratory embedding mod- 438

ule), and (4) EmbQA w/o exploratory embedding 439

& rerank (without both the exploratory embedding 440

and the reranking module). Figure 2 reports the 441

Exact Match (EM) and F1 scores on HotpotQA, 442

2Wiki, NQ, and WebQ. The results indicate that 443

each component contributes additively to perfor- 444

mance improvements. For example, on HotpotQA, 445

the full EmbQA model achieves 36.6 EM and 52.7 446

F1, which is substantially higher than the 22.6 EM 447

and 35.4 F1 obtained in the Retrieval Only setting. 448

Removing the exploratory embedding module re- 449

sults in a performance drop to 35.2 EM and 50.9 450

F1, and further removing the reranking module de- 451

grades the scores to 33.6 EM and 50.2 F1. Similar 452

trends across all datasets demonstrate a sequential 453

degradation in performance as each module is re- 454

moved, highlighting the additive contributions of 455

each component in our framework. 456

Why Prompt-Level Rerank Framework Fail in 457

Existing ODQA Framework? Existing ODQA 458

systems (Kim et al., 2024) have demonstrated that 459

prompt-level reranking can be ineffective or even 460

detrimental to performance. We posit that this fail- 461

ure stems from the inability of prompt-level rerank- 462

ing to reliably elevate ground-truth passages among 463

the top-10 retrieved results, and in some cases, it 464

may even reduce their presence. Table 4 presents a 465

6



Figure 2: Ablation study on HotpotQA, 2Wiki, NQ, and WebQ datasets using LLaMA 3.1 with Contriever retrieval.
The results compare four settings: (1) Retrieval Only, (2) Full EmbQA, (3) EmbQA without the exploratory
embedding module, and (4) EmbQA without both the exploratory embedding and reranking modules. Each
component contributes crucially to the overall performance, as evidenced by incremental improvements in Exact
Match (EM) and F1 scores.

Retriever&
Rerank Framework

HotpotQA 2Wiki NQ WebQ

Avg. GT
@Top-10

Time
/Query(s)

Avg. GT
@Top-10

Time
/Query(s)

Avg. GT
@Top-10

Time
/Query(s)

Avg. GT
@Top-10

Time
/Query(s)

BM25 1.16 – 0.81 – 1.50 – 1.88 –
+Prompt Level 1.06 12.52 1.09 12.62 1.62 12.65 2.70 12.69
+Embedding Level (Ours) 1.42 1.33 1.21 1.54 2.57 1.90 4.18 2.31

DPR 0.28 – 0.30 – 1.79 – 3.04 –
+Prompt Level 0.64 13.23 0.34 12.52 1.75 12.66 3.68 12.63
+Embedding Level (Ours) 1.01 2.42 1.13 1.27 2.41 2.00 4.25 2.22

Contriever 1.47 – 0.99 – 1.98 – 2.87 –
+Prompt Level 1.37 12.54 1.36 12.95 2.01 13.16 3.02 13.05
+Embedding Level (Ours) 1.87 1.12 1.49 2.93 2.55 2.12 4.31 2.69

Table 4: Retrieval analysis on HotpotQA, 2Wiki, NQ, and WebQ datasets using LLaMA3.1. For each dataset, the
two metrics are: Average Ground Truth Passages in Top-10 (the average number of ground-truth passages present
among the top-10 retrieved results) and Time Consumption Per Query (second) (the time taken for processing
each query in seconds). Higher values in the first metric indicate that our reranking framework surfaces relevant
passages more effectively compared to the BM25 baseline.

comparison between our embedding-level rerank466

framework and a state-of-the-art prompt-level ap-467

proach (Zhuang et al., 2024a) across four datasets468

(HotpotQA, 2Wiki, NQ, and WebQ) using three469

different retrievers (BM25, DPR, and Contriever).470

Two key metrics are reported: (i) the average471

number of ground-truth passages in the top-10 re-472

sults, and (ii) the per-query processing time (in sec-473

onds). Existing prompt-level rerank frameworks474

often struggle to effectively enhance this metric,475

and in some cases, they even weaken it—resulting476

in extremely unstable downstream ODQA perfor-477

mance. For example, on the HotpotQA dataset478

with BM25, the prompt-level method reduces the479

average ground-truth count from 1.16 to 1.06,480

potentially impairing downstream ODQA perfor-481

mance. In contrast, our embedding-level approach 482

increases this count from 1.16 to 1.42. Similar 483

trends are observed with DPR and Contriever, un- 484

derscoring the broad applicability of our approach. 485

Moreover, our experiments reveal that when sub- 486

stituting our embedding-level framework with a 487

prompt-level alternative within the overall sys- 488

tem, performance degrades significantly (see Ap- 489

pendix C.1). In terms of efficiency, our embedding- 490

level framework dramatically reduces query pro- 491

cessing time. For instance, with BM25 on Hot- 492

potQA, the prompt-level rerank requires 12.52 493

seconds per query, whereas our method reduces 494

this to 1.33 seconds. These experimental results 495

across both metrics clearly demonstrate that our 496

embedding-level rerank framework not only more 497

7



effectively promotes relevant passages but also sub-498

stantially enhances system efficiency.499

Figure 3: MLP layer activation rates across Transformer
layers for the first five tokens of generated answers,
sampled 200 times. The curves compare our framework
without exploratory embedding and with exploratory
embedding with variance gating larger than 0.05 or
smaller than 0.05.

Dataset Method BM25 DPR Contriever

Candidates Coverage (%): ↑

HotpotQA
EmbQA 58.0 50.0 51.0
w/o exploratory 55.0 46.0 48.2

2Wiki
EmbQA 51.0 43.6 31.6
w/o exploratory 47.0 40.2 28.2

NQ
EmbQA 46.6 43.6 45.8
w/o exploratory 43.0 41.8 41.2

WebQ
EmbQA 57.8 56.6 51.8
w/o exploratory 54.6 52.0 49.2

Table 5: Candidates coverage analysis on four datasets
(HotpotQA, 2Wiki, NQ, and WebQ) across three retriev-
ers (BM25, DPR, and Contriever). The metric, Candi-
dates coverage (%), represents the proportion of candi-
dates that contain the ground truth answer. We compare
our framework EmbQA with exploratory embedding
injection against the variant without it (- Exploratory
Embedding). The results demonstrate that incorporating
exploratory embedding injection enhances diversity and
increases the likelihood of covering the correct answer.

Effect of Exploration with Exploratory Embed-500

ding. Although we have theoretically demon-501

strated that minimizing the variance allows us to502

filter exploratory embedding that deviate from the503

context and query direction B, this conclusion may504

not be entirely intuitive. A natural question arises:505

why choose 0.05 as the variance gating threshold?506

Following Naik et al. (2024), we investigate this507

from the perspective of neuron activations in the508

Transformer’s MLP layers. Figure 3 illustrates the509

activation rates across Transformer layers for the510

first five tokens of generated answers, sampled 200 511

times. We observe that when exploratory embed- 512

ding is applied with a variance gate lower than 0.05, 513

each layer—particularly from the 5th to the 30th, 514

exhibits an increase in activation rates of roughly 515

3–4%. However, when the variance exceeds 0.05, 516

the activation rates remain nearly unchanged or 517

even slightly lower compared to the setting without 518

exploratory embedding. This phenomenon sug- 519

gests that our exploratory embedding with the vari- 520

ance gate stochastically triggers more diverse neu- 521

ral pathways. 522

At the token level, we further explore whether 523

exploratory embedding enhances the possibility of 524

generating the correct candidates. Table 5 presents 525

the candidate sentence coverage, defined as the per- 526

centage of generated candidate sentences that con- 527

tain the ground truth answer, across four datasets 528

and three retrievers. We compare our full frame- 529

work EmbQA, which incorporates exploratory em- 530

bedding injection, with a variant that excludes this 531

operation (w/o Exploratory). The results consis- 532

tently show that exploratory embedding improves 533

coverage across all settings. For example, on Hot- 534

potQA with BM25, coverage increases from 55.0% 535

without exploratory embedding to 58.0% with it, 536

with similar improvements observed for DPR, Con- 537

triever, and across the other datasets. These find- 538

ings collectively indicate that exploratory embed- 539

ding injection not only promotes more diverse neu- 540

ral activation but also increases the likelihood of 541

including the correct answer in the generated can- 542

didates. 543

6 Conclusion 544

We introduce EmbQA, an embedding-level frame- 545

work for open-domain QA that improves efficiency 546

over multi-turn prompt-based systems. By refining 547

query representations with lightweight linear lay- 548

ers trained via unsupervised contrastive learning, 549

our approach reorders retrieved passages to prior- 550

itize those most likely to contain correct answers. 551

Additionally, an exploratory embedding with an 552

entropy-based selection mechanism enhances can- 553

didate diversity and streamlines self-verification. 554

Experiments across multiple ODQA benchmarks, 555

retrieval methods, and state-of-the-art LLMs show 556

that EmbQA consistently outperforms prompt-level 557

approaches in accuracy and efficiency. 558
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Limitations559

Although EmbQA significantly enhances both effi-560

ciency and accuracy in open-domain QA, it comes561

with several limitations. First, our approach re-562

lies on access to an open-source LLM to modify563

embeddings at the model level, which may not be564

feasible for scenarios where only black-box API-565

based models are available. This constraint limits566

the direct applicability of our method to widely567

used proprietary models such as GPT-4 or Claude.568

Second, while EmbQA reduces the computational569

overhead associated with multi-turn prompt-based570

methods, it introduces an additional embedding-571

level training step. Although this step is lightweight572

compared to full retriever fine-tuning, it still re-573

quires additional computational resources, which574

may not be ideal for resource-constrained environ-575

ments. Lastly, our framework assumes that rerank-576

ing retrieved passages based on learned query re-577

finements will consistently improve answer selec-578

tion. However, its effectiveness depends on the579

quality of the retrieved passages—if the initial re-580

trieval fails to include informative passages, rerank-581

ing alone may not be sufficient to bridge the gap.582

Future work can explore adaptive retrieval mecha-583

nisms to further enhance robustness across diverse584

retrieval conditions.585
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A Prompt Design846

In this section, we present the specific prompts847

used for the experiments in Section 4.1.848

A.1 Answer Candidates Generation849

In Listing 1, we present the prompt pcan which850

is used to generate K answer candidates from the851

given question and N retrieved passages. Here, we852

present the case of K = 2.

Prompt for Answer Candidates Generation

Passage #1 Title: {Passage #1 Title}
Passage #1 Text: {Passage #1 Text}

...

Passage #N Title: {Passage #N Title}
Passage #N Text: {Passage #N Text}

Question: {Question}

Answer: text = f"Below are {n_articles}
passages related to the question at the
end.
After reading the passages, provide two
correct candidates for the answer to the
question.
Each answer should be in the form: (a) xx,
(b) yy, and should not exceed 3 words."

Passage #1 Title: {Passage #1 Title}
Passage #1 Text: {Passage #1 Text}

...

Passage #N Title: {Passage #N Title}
Passage #N Text: {Passage #N Text}

Question: {Question}

Answer:

853

A.2 Prompt Level Rerank Framework854

Implementation (Zhuang et al., 2024a)855

Since Zhuang et al. (2024a) did not release their856

implementation, we re-implemented their prompt-857

level rerank framework based on the key ideas out-858

lined in their work. Listing 2 shows the prompt859

used to rerank passages with LLMs, which includes860

the query and document text, followed by a rele-861

vance judgment instruction on a scale from 0 (Not862

Relevant) to 4 (Perfectly Relevant), with the output863

constrained to an integer.864

Prompt for Passage Relevance Reranking

Document: {doc_text}

From a scale of 0 to 4, judge the relevance
between the query and the document.

0 means ’Not Relevant’, 1 means ’Little Rele-
vant’, 2 means ’Somewhat Relevant’, 3 means
’Highly Relevant’, 4 means ’Perfectly Relevant’.

Return only the integer. Query: {query}

Document: {doc_text}

From a scale of 0 to 4, judge the
relevance between the query and the
document.

0 means ’Not Relevant’, 1 means ’Little
Relevant’, 2 means ’Somewhat Relevant’, 3
means ’Highly Relevant’, 4 means ’Perfectly
Relevant’.

Return only the integer.

B Theoretical Discussion on Embedding 865

Space 866

For a give set of bounded vectors {vi}, the orthog- 867

onality can be guaranteed by minimizing the fol- 868

lowing variable (Jain et al., 2014): 869

ϵ = maxi ̸=j |vi · vj |2 870

In our work, we suppose the vectors sampled 871

from a LLM are v, and the vectors introduced by 872

injecting embeddings to the LLM are u. Since there 873

are multiple tokens, including the input tokens and 874

the token will be generated from the LLM, we 875

mark the tokens’ vectors as vi. Then, we have an 876

equivalent definition under LLM setup: 877

ϵ′ = maxi ̸=j,u{|vi · vj |2, |vi, u|2} 878

If we have ∀vi, |vi, u|2 ≤ maxi,j |vi · vj |2, obvi- 879

ously we have ϵ = ϵ′. Otherwise, we obtain a large 880

ϵ by injecting the embedding. Therefore, we only 881

need to minimize the maxi,u{|vi, u|2}. 882

According to existing theoretical analysis 883

(Geshkovski et al., 2024), we assume that the vi 884

is a k dimensional Gaussian vector with mean µv 885

and variance σv on each dimension. (Empirically, 886

µv → 0 and σv → ε, where ε is a small number.) 887

Then, for any given injected vector u, the orthog- 888

onality should be decided by |vi, u|2. However, 889

the vi contains not only the input tokens’ represen- 890

tation but also the prediction of the future. It is 891
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computationally expensive to pick a reasonable u892

after the whole decoding process. It is also mean-893

ingless to do so since we have already obtained the894

decoding results and no need to discuss whether895

the injected token embedding is efficient or not.896

So, the problem is, how to estimate the potential897

inner product with all possible token embeddings898

for a given vector u. Here, we propose to use order899

statistics to find an equivalent regularization.900

We first sort the values in each dimension of u901

into descending order:902

u′ = {u(1), u(2), u(3), ..., u(k)}903

where904

u(1) ≥ u(2) ≥ u(3) ≥ ... ≥ u(k−1) ≥ u(k)905

Then we duplicate the swapping operation on v,906

which means if we swap the i-th dimension with907

j-th dimension on u, then the same operation will908

be deployed on v as well. Here, we suppose there909

is a general distribution of v on token embeddings910

and we mark the duplicating operation results as:911

v′ = {v(1), v(2), v(3), ..., v(k)}912

Considering the space between two adjacent vari-913

ables in order statistics ∆i = u(i)−u(i+1) with the914

only large half where 1 ≤ i ≤ k/2, we have:915

Σ
k/2
i=1v(i)u(i) = Σ

k/2
i=1Σ

i
j=1∆iv(j)916

According to (Boucheron and Thomas, 2012),917

we have:918

E(∆2
i ) ≤

2

i2
E(e

u2
(i)
2

∫ +∞

u(i)

e−
t2

2 dt)919

Obviously, there are three parts in the expecta-920

tion of space ∆i in the order statistics u(i). With the921

increasing of order index i in u(i), the value of u(i)922

is decreasing. Thus, the 2/i2 will converge to zero923

and the experiential term eu
2
i /2 will decrease to 1924

since most embedding in LLM are around the orig-925

inal point in current popular models like LLama or926

Qwen. For the third term of
∫ +∞
u(i)

e−
t2

2 dt, it is a927

survival function from Gaussian distribution, then928

it should be bounded by 1. (In fact, it should be929

bounded by 0.5 if we only consider the positive u(i)930

from the first half of order statistics)931

Therefore, for ∀s > 0, ∃ε > 0, when i > s, we932

have E(∆2
i ) < ε is true.933

Meanwhile, for the whole inner product term, 934

we have 935

|Σk
i=1v(i)u(i)|2 < |Σ

k
2
i=1v(i)u(i)|2 + |Σk

i= k
2
+1

v(i)u(i)|2 936

where we consider both sides of the order statis- 937

tics which may contain a large absolute value but 938

negative ui. 939

Then, considering the bound of E(∆2
i ), and v(j) 940

follows a Gaussian distribution with 0 mean for all 941

dimensions, then the expectation of inner product 942

highly relies on the first top s element in the ordered 943

statistics, where: 944

|Σk
i=1v(i)u(i)|2 ≤ 4σ2

vΣ
s
i=1∆

2
iE(e

u2
(i)
2 ) + 2sσ2

vε 945

Therefore, in our proposed method, we design a 946

spacing-based method according to the top s order 947

statistics to approximate the orthogonality of the 948

whole embedding space. 949

C Additional Results 950

C.1 EmbQA Performance Comparison 951

between Prompt Level Rerank 952

framework and Embedding Level Rerank 953

Framework 954

Our experiments (Table 6) demonstrate that replac- 955

ing the prompt-level rerank framework with our 956

embedding-level alternative consistently yields su- 957

perior Exact Match and F1 scores across BM25, 958

DPR, and Contriever on HotpotQA, 2Wiki, NQ, 959

and WebQ, thereby confirming the effectiveness 960

and efficiency of our embedding-level rerank ap- 961

proach. 962
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Retriever&
Rerank Framework

HotpotQA 2Wiki NQ WebQ

EM F1 EM F1 EM F1 EM F1

BM25 25.4 37.15 16.6 21.11 26.0 32.81 22.2 31.23
+Prompt Level 39.6 52.35 19.8 28.67 39.8 51.83 36.6 50.05
+Embedding Level (Ours) 42.0 55.81 27.4 36.60 42.2 54.38 38.2 52.08

DPR 20.6 21.67 10.8 13.53 25.0 34.16 23.8 34.44
+Prompt Level 24.6 29.99 11.6 18.84 39.8 52.28 37.6 48.23
+Embedding Level (Ours) 29.8 36.34 16.8 21.03 43.0 54.36 38.0 51.95

Contriever 22.6 35.42 16.6 20.67 25.8 32.83 25.2 34.17
+Prompt Level 30.2 47.26 17.6 25.92 39.8 52.21 34.6 48.67
+Embedding Level (Ours) 36.6 52.68 26.4 34.22 42.2 53.58 36.0 49.60

Table 6: EmbQA Overall Performance on HotpotQA, 2Wiki, NQ, and WebQ datasets using LLaMA3.1.
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