
Test-time Offline Reinforcement Learning on Goal-related Experience

Marco Bagatella * 1 2 Mert Albaba * 1 2 Jonas Hübotter 1 Georg Martius 2 3 Andreas Krause 1

Abstract
Foundation models compress a large amount of in-
formation in a single, large neural network, which
can then be queried for individual tasks. There are
strong parallels between this widespread frame-
work and offline goal-conditioned reinforcement
learning algorithms: a universal value function
is trained on a large number of goals, and the
policy is evaluated on a single goal in each test
episode. Extensive research in foundation models
has shown that performance can be substantially
improved through test-time training, specializing
the model to the current goal. We find similarly
that test-time offline reinforcement learning on
experience related to the test goal can lead to sub-
stantially better policies at minimal compute costs.
We propose a novel self-supervised data selection
criterion, which selects transitions from an offline
dataset according to their relevance to the current
state and quality with respect to the evaluation
goal. We demonstrate across a wide range of high-
dimensional loco-navigation and manipulation
tasks that fine-tuning a policy on the selected data
for a few gradient steps leads to significant perfor-
mance gains over standard offline pre-training.

1 Introduction
Machine learning models are largely static: after a compu-
tationally expensive training phase, inference traditionally
involves a single forward pass (or multiple, in the case
of autoregressive models), without any further parameter
updates. This framework is widely adopted across modal-
ities and domains, from early works on image classification
(LeCun et al., 1998; He et al., 2016) to many modern
vision/language models (Brown et al., 2020; Rombach et al.,

*Equal contribution 1ETH Zürich, Switzerland 2Max Planck
Institute for Intelligent Systems, Germany 3University of
Tübingen, Germany. Correspondence to: Marco Bagatella
<marco.bagatella@inf.ethz.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. We introduce test-time training in the context of offline
goal-conditioned reinforcement learning. The same data used for
pre-training is filtered and leveraged to improve the policy locally
during evaluation. This results in significant performance gains in
standard benchmarks (left) when combined with common offline
RL backbones, GC-BC and GC-IQL.

2022). However, perfectly imitating training data with a
neural network is challenging, and predictions of neural
networks are often noisy and imprecise. As a consequence,
base models are often specialized to down-stream tasks
through fine-tuning (Hu et al., 2022; Kim et al., 2022; Black
et al., 2024). More recently, across (self-)supervised vision
and language tasks, several works improved performance by
specializing the model to an individual task, either through
in-context learning or test-time training (e.g., Brown et al.,
2020; Sun et al., 2020; Hardt & Sun, 2024; Hübotter et al.,
2025). In contrast, in offline reinforcement learning, these
approaches have not yet been much explored. While the
dynamic conditioning of a learned policy at test-time has
been explored in hierarchical methods (Nachum et al., 2018;
Eysenbach et al., 2019; Park et al., 2023), the weights of
the policy itself remain generally frozen during evaluation.

Our work focuses on the test-time training of goal-
conditioned policies. The standard pipeline of offline
goal-conditioned reinforcement learning involves (1) a (pre-
)training phase, in which a policy learns to reach arbitrary
goals, often through relabeling or self-supervision, and (2)
an inference phase, in which the policy is queried to achieve
one specific goal. We show that specializing the policy to
an individual goal at test-time significantly improves its
performance, without leveraging any information beyond
the pre-training dataset and the pre-trained agent.

1

Submission and Formatting Instructions for ICML 2025

We propose goal-conditioned test-time training (GC-TTT),
which fine-tunes the base policy at test-time on goal-related
experience from the pre-training dataset.1 GC-TTT selects
experience according to a natural notion of relevance and
optimality, ensuring that it is (1) related to the agent’s
current state, and (2) optimal with respect to a bootstrapped
value function estimate (i.e., a critic). Based on this
goal-related experience, GC-TTT efficiently updates the
actor through few gradient steps according to standard
policy learning objectives. We repeat this process in a
receding-horizon fashion to periodically and dynamically
adapt the policy to the current trajectory.

We demonstrate how GC-TTT improves performance in
standard offline goal-conditioned benchmarks, suggesting
that existing methods that learn to achieve arbitrary goals
are systematically underfitting with respect to individual
goals. We show that GC-TTT can learn from both expert
and play-like data, and additionally derive a variant,
which does not require a learned critic and retains good
performance on expert data. Both variants are agnostic
to the backbone RL algorithm. Within these settings, we
ablate the frequency of test-time training, and further
investigate the compute allocation at test-time, comparing
the cost of test-time training against increased model sizes.

We thus make the following contributions:

• We propose a test-time training framework for goal-
conditioned policies.

• We develop GC-TTT, a practical algorithm for dynam-
ically training on goal-related experience during evalu-
ation.

• We demonstrate significant performance gains on stan-
dard benchmarks when applying goal-conditioned test-
time training on top of existing algorithms.

• We demonstrate that GC-TTT significantly outper-
forms existing algorithms even when inference FLOPs
are matched by scaling the network sizes of baselines.

We discuss related work in Appendix A and provide back-
ground on offline RL in Appendix B.

2 Goal-conditioned Test-time Training
We propose to fine-tune the policy dynamically during evalu-
ation, leveraging data from the pre-training datasetD, which
is “close” to the agent’s current state s ∈ S and “optimal”
for reaching the agent’s current goal g⋆ ∈ G. We denote this
carefully selected set of relevant and optimal sub-trajectories
as D(s, g⋆). During evaluation, we then dynamically
adapt the policy to the current state-goal pair (s, g⋆) by
fine-tuning it on uniform samples from D(s, g⋆) for a few

1While we propose using the pre-training dataset, leveraging
privileged or auxiliary data is also possible.

gradient steps, using the following objective:

JTTT(θ) = −Es′∼D(s,g⋆) L(s′, g⋆; θ), (1)

where we overload D to represent a uniform distribution
over states in the dataset. Here, L is any standard policy
learning loss, such as behavior cloning or off-policy rein-
forcement learning.2 While test-time training might use a
different loss than pre-training, for simplicity, we use the
same loss for TTT as for pre-training throughout. We set the
goal for policy fine-tuning deterministically to the evaluation
goal g⋆, as the policy will only be queried with this goal.

Figure 3 in the appendix illustrates how GC-TTT fine-tunes
the pre-trained policy at test-time. In the following, we
discuss the two key components of GC-TTT: (1) selecting
relevant and optimal experience from the dataset, and (2)
fine-tuning the policy dynamically during evaluation.

2.1 What to train on? Selecting Relevant and Optimal
Experience

The first step of GC-TTT is to select trajectories which are
relevant to the current state of the agent and optimal for
achieving the target goal. To determine the relevance of
sub-trajectories in D to the agent’s current state s ∈ S, we
leverage a notion of temporal distance. In practice, this
can be estimated by the learned quasimetric −V (s, g) of
a value function estimate (Wang et al., 2023) or by the
locally correct distance function d conventionally exposed
by the goal-conditioned reward function (Andrychowicz
et al., 2017). We consider a sub-trajectory (s1, . . .) ∈ D as
related to the current state s if d(s, s1) < ϵ for some ϵ > 0,
normally also provided by the environment. This results
in a filtered set of sub-trajectories of diverse lengths:

Relevance: Drel(s) = {(s1, . . . sH) ∈ D | d(s, s1) < ϵ}.
(2)

The threshold ϵ may be selected adaptively such that Drel(s)
is of a desired size; however, in our evaluated environments,
fixing ϵ to a constant was sufficient. We note that the
distance function does not need to be globally accurate, but
only locally.

While this operation selects sub-trajectories that are relevant
to the agent’s current state, not all of them might be useful
for reaching the agent’s target goal g⋆ ∈ G. We thus further
filter the data to include only those sub-trajectories which
are most likely to eventually reach g⋆. To measure this,
we estimate the returns of the sub-trajectories if they were
to be extended using the agent’s current policy. We adopt
an H-step return estimate (Sutton & Barto, 2018) which
considers both the rewards along the sub-trajectory and the

2For completeness, we include an overview in Appendix F.

2

Submission and Formatting Instructions for ICML 2025

estimated value of its final state:

V̂ ((s1, . . . , sH) | g⋆)

=

H−1∑
i=1

γi−1R(si, g
⋆) + γH−1V (sH | g⋆).

(3)

In practice, the resulting estimate combines an evaluation
of the behavioral policy inducing (s1, . . . , sH) with a value
estimate of the current policy πθ. We find that H-step
return estimates effectively trade off bias and variance,
providing a reliable signal for data selection. These return
estimates rely on a value estimate (i.e., a critic), which is
a core component across most offline GCRL algorithms.
When a critic is not available, we can use simple trajectory
returns according to the behavioral policy and the reward
function R, as we demonstrate in Section 3. Given the
return estimates V̂ (τ | g⋆), we set the scalar C to their q-th
percentile among all relevant sub-trajectories in Drel(s),
and select the most optimal ones:

Optimality: D(s, g⋆) = {τ ∈ Drel(s) | V̂ (τ | g⋆) ≥ C}.
(4)

2.2 When to train? Receding Horizon Training

It remains to decide when to fine-tune the policy based
on the TTT objective from Equation (1). In principle, we
can update the policy whenever either the agent’s state or
goal change. Since we expect neighboring states to lead
to similar fine-tuned policies, we opt for a natural receding
horizon approach (Morari & Lee, 1999). We describe the
full GC-TTT algorithm in Algorithm 1 in the appendix.

Every K steps, we re-initialize the policy to its pre-training
weights. Considering the current state s and goal g⋆, we
then fine-tune the pre-trained policy on relevant and optimal
data. We then roll out the fine-tuned policy for K steps,
before its weights are once again reset, and the entire
process is repeated. Intuitively, each fine-tuning allows
the agent to focus on actions to be taken in its immediate
future. Crucially, this allows the policy to only focus on
parts of its task, instead of trying to solve it all-at-once.
Furthermore, this framework allows dynamic trajectory
corrections during each rollout: if the agent strays away
from the optimal trajectory, GC-TTT can select helpful data
to correct the direction towards the final goal. From this
perspective, there are clear parallels between this high-level
routine, and model predictive control (MPC, Rawlings et al.,
2017), though importantly, our approach does not require
a model. We remark that the update rule of GC-TTT may
also be applied in different ways than we present here. For
instance, it is possible to just fine-tune the policy once, e.g.,
at the start of the episode or when an error is detected.

3 Experiments
We provide an empirical validation of our contributions
spanning four environments and two algorithmic backbones,
and identify five main insights in the following.

Environments We rely on a suite of goal-conditioned
tasks from OGBench (Park et al., 2025). Namely, we
evaluate three loco-navigation tasks of increasing com-
plexity (pointmaze, antmaze and humanoidmaze),
spanning from 2 to 21 degrees of freedom.

We evaluate all environments in their medium in-
stance, across two datasets of different qualities, namely
navigate and stitch. The former includes full
demonstrations for any evaluation state-goal pair, while
the latter may only be solved by “stitching” different
trajectories together. For ease of interpretation, we refer to
them as expert and play, respectively. We additionally
consider one manipulation task, in which a robotic arm is
tasked with relocating a cube (cubesingle).

Backbones In principle, GC-TTT is applicable across the
broad class of value-based offline goal-conditioned algo-
rithms. We select GC-BC (Yang et al., 2022) and GC-IQL
(Kostrikov et al., 2022) for evaluation, which form a repre-
sentative set of common offline RL algorithms.3

Insight 1: GC-TTT substantially improves the policy
across diverse environments and learning algorithms.
To begin with, we evaluate the performance of GC-TTT
across the described array of environments and algorithms.
We train the backbone algorithm until convergence and
report the average performance at 300k, 350k and 400k
gradient steps, as in the protocol described by (Park
et al., 2025). Performances are computed as the average
success rate across four fixed goals in each environment;
we report mean and standard error across 3 seeds. We
report our results in Table 1 and Figure 6 in the appendix.
We observe that GC-TTT improves the performance of
the backbone for the majority of algorithm-environment
combinations, and does not impact it negatively in the
remaining ones. Interestingly, test-time training is capable
of reliably solving pointmaze with simple techniques
(i.e., GC-BC). This suggests that standard approaches for
offline goal-conditioned RL might systematically underfit
with respect to each specific goal, as a few gradient steps are
sufficient to significantly improve their policies. This sheds
some light on one of the open problems discussed in Park
et al. (2025). Furthermore, as the environment complexity
increases (e.g., antmaze or humanoidmaze), the
improvements induced by GC-TTT remain significant; and
cubesingle confirms that this trend holds in settings
with fundamentally different dynamics.

3See Appendix E for a more extensive discussion.

3

Submission and Formatting Instructions for ICML 2025

pointmaze antmaze humanoidmaze cubesingle avg.
expert play expert play expert play

GC-BC 0.09 (0.01) 0.51 (0.02) 0.32 (0.00) 0.52 (0.03) 0.08 (0.00) 0.28 (0.05) 0.03 (0.00) 0.26 (0.01)

GC-BC + TTT (no critic) 0.70 (0.01) – 0.48 (0.03) – 0.13 (0.01) – – 0.38 (0.01)

GC-BC + TTT 0.86 (0.00) 0.79 (0.00) 0.44 (0.01) 0.51 (0.03) 0.18 (0.03) 0.53 (0.01) 0.10 (0.01) 0.49 (0.01)

GC-IQL 0.16 (0.03) 0.31 (0.07) 0.64 (0.01) 0.36 (0.04) 0.08 (0.02) 0.07 (0.02) 0.53 (0.01) 0.31 (0.01)

GC-IQL + TTT (no critic) 0.73 (0.01) – 0.73 (0.01) – 0.13 (0.02) – – 0.41 (0.01)

GC-IQL + TTT 0.84 (0.01) 0.84 (0.03) 0.67 (0.02) 0.72 (0.03) 0.15 (0.01) 0.28 (0.04) 0.59 (0.02) 0.58 (0.01)

Table 1. Success rates of GC-TTT and its critic-free variant across loco-navigation and manipulation, on top of GC-BC and GC-IQL.
Numbers in parentheses are standard errors across 3 seeds. Bold numbers denote results that are within the standard error of the best.
Underlined numbers denote whether TTT outperforms pre-training.

Insight 2: GC-TTT can be applied without value
estimates if expert data is available. We now turn our
attention to a critic-free variant of GC-TTT. This algorithm
replaces the H-step return estimate (cf. Equation (3)) with
the trajectory returns (i.e., a discounted sum of rewards
along the trajectory). As such, this variant does not require
additionally training a critic network (and thus combines
seamlessly with, e.g., BC). However, this critic-free variant
cannot infer optimality from trajectories that do not reach
the target goal, and is therefore limited to expert data. As
shown in Table 1, on such tasks with expert data, the critic-
free variant retains much of the effectiveness of GC-TTT.
In contrast, in play tasks, all relevant sub-trajectories are
likely to achieve the same trajectory return of 0.

Insight 3: Selecting both relevant and optimal data is
necessary. A core component of GC-TTT is the selection
of relevant and optimal data from the offline dataset (cf. Sec-
tion 2.1). We ablate this design choice in Figure 2 (left)
in the appendix, where we report the average success rates
with GC-IQL as backbone in the pointmaze/antmaze
play environments. We observe that selecting random data
from the dataset is not effective, as the global objective of
the backbone algorithm has already converged. Selecting
relevant but suboptimal data does not improve performance.
Selecting optimal data that may be irrelevant to the agent’s
current state yields a slight increase in success rate. We
attribute this to the relatively small size of the environments,
which means that by chance some selected trajectories
might also be relevant. Remarkably, GC-TTT leads to a sub-
stantial performance gain by combining both relevance to
the agent’s current state and optimality for the agent’s goal.
We additionally plot data selected by GC-TTT over the
course of an evaluation episode in Figure 4 in the appendix.

Insight 4: The frequency of test-time training should
adapt depending on the difficulty of the environment.
We discuss the compute cost of GC-TTT in Appendix C.
The cost of GC-TTT scales linearly in the frequency of
test-time training. Hence, from this perspective, updating

the policy less frequently seems desirable. At the same time,
frequent updates allow the agent to focus on local informa-
tion and to quickly correct when diverging from the optimal
path to the goal. We demonstrate this in Figure 2 (middle) in
the appendix, where we evaluate GC-TTT with GC-IQL in
antmaze play. We find that the value estimates used for
data selection are not accurate over long horizons (> 200
steps in antmaze play), leading to poor performance
if the policy is updated too infrequently. However, as the
frequency of TTT increases, we observe that GC-TTT
leads to significant performance gains until improvement
eventually saturates when fine-tuning every 100 steps.
We repeat the same experiment on pointmaze play,
which is an arguably simpler environment. We observe that
performance already saturates at a lower frequency (i.e.,
1/200), suggesting that test-time training should be applied
at shorter intervals in more complex environments.

Insight 5: GC-TTT scales better than model size.
Having shown that GC-TTT predictably improves when
allocating more compute, we analyze another option to
scale test-time compute, namely by training larger policies,
which are more expensive to evaluate. For this, we compare
the performance of GC-TTT with a given frequency 1/K
to the performance of larger policies that are not trained
at test-time, but which have matched inference FLOPs to
GC-TTT. To match the inference FLOPs of GC-TTT scaling
and model scaling, we assume that compute requirements
scale linearly with TTT frequency, but quadratically in the
width of the policy. In Figure 2 (right) in the appendix, we
find that GC-TTT consistently outperforms model scaling
across a broad range of inference FLOPs.

4 Conclusion
This work introduces a framework of test-time training for
offline goal-conditioned RL. We propose a self-supervised
data selection scheme which chooses relevant and optimal
data for the agent’s current state and goal from an offline

4

Submission and Formatting Instructions for ICML 2025

dataset of trajectories. Our proposed method, GC-TTT,
periodically fine-tunes the pre-trained policy on this data
during evaluation. We find that GC-TTT consistently leads
to significant improvements across several environments
and underlying RL algorithms.

Our work opens up several exciting directions for future
research, which we discuss in Appendix D.

References
Agarwal, S., Durugkar, I., Stone, P., and Zhang, A. f-policy

gradients: A general framework for goal-conditioned rl
using f-divergences. In NeurIPS, 2023.

Akyürek, E., Damani, M., Zweiger, A., Qiu, L., Guo, H.,
Pari, J., Kim, Y., and Andreas, J. The surprising effec-
tiveness of test-time training for few-shot learning. arXiv
preprint arXiv:2411.07279, 2024.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., and
Zaremba, W. Hindsight experience replay. In NeurIPS,
2017.

Atkeson, C. G., Moore, A. W., and Schaal, S. Locally
weighted learning. Lazy learning, 1997.

Bagatella, M., Hübotter, J., Martius, G., and Krause, A.
Active fine-tuning of multi-task policies. In ICML, 2025.

Bertolissi, R., Hübotter, J., Hakimi, I., and Krause, A. Local
mixtures of experts: Essentially free test-time training via
model merging. arXiv preprint arXiv:2505.14136, 2025.

Black, K., Brown, N., Driess, D., Esmail, A., Equi, M., Finn,
C., Fusai, N., Groom, L., Hausman, K., Ichter, B., et al.
π0: A vision-language-action flow model for general
robot control, 2024. arXiv preprint arXiv:2410.24164,
2024.

Bottou, L. and Vapnik, V. Local learning algorithms. Neural
computation, 4(6), 1992.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In NeurIPS, 2020.

Cleveland, W. S. Robust locally weighted regression and
smoothing scatterplots. Journal of the American statisti-
cal association, 74(368), 1979.

Cleveland, W. S. and Devlin, S. J. Locally weighted regres-
sion: an approach to regression analysis by local fitting.
Journal of the American statistical association, 83(403),
1988.

Dalal, K., Koceja, D., Hussein, G., Xu, J., Zhao, Y., Song, Y.,
Han, S., Cheung, K. C., Kautz, J., Guestrin, C., et al. One-
minute video generation with test-time training. arXiv
preprint arXiv:2504.05298, 2025.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. In NeurIPS, 2019.

Eysenbach, B., Zhang, T., Salakhutdinov, R., and Levine, S.
Contrastive learning as goal-conditioned reinforcement
learning. In NeurIPS, 2022.

Ghosh, D., Bhateja, C. A., and Levine, S. Reinforcement
learning from passive data via latent intentions. In ICML,
2023.

Hansen, N., Jangir, R., Sun, Y., Alenyà, G., Abbeel, P.,
Efros, A. A., Pinto, L., and Wang, X. Self-supervised
policy adaptation during deployment. In ICLR, 2021.

Hardt, M. and Sun, Y. Test-time training on nearest neigh-
bors for large language models. In ICLR, 2024.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T.,
and Tassa, Y. Learning continuous control policies by
stochastic value gradients. In NeurIPS, 2015.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,
M., van Hasselt, H., and Silver, D. Distributed prioritized
experience replay. In ICLR, 2018.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation
of large language models. In ICLR, 2022.

Hübotter, J., Sukhija, B., Treven, L., As, Y., and Krause, A.
Transductive active learning: Theory and applications. In
NeurIPS, 2024.

Hübotter, J., Bongni, S., Hakimi, I., and Krause, A. Effi-
ciently learning at test-time: Active fine-tuning of llms.
In ICLR, 2025.

Kim, M. J., Pertsch, K., Karamcheti, S., Xiao, T., Balakr-
ishna, A., Nair, S., Rafailov, R., Foster, E. P., Sanketi,
P. R., Vuong, Q., et al. Openvla: An open-source vision-
language-action model. In CoRL, 2022.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement
learning with implicit q-learning. In ICLR, 2022.

5

Submission and Formatting Instructions for ICML 2025

Krause, B., Kahembwe, E., Murray, I., and Renals, S. Dy-
namic evaluation of neural sequence models. In ICML,
2018.

Krause, B., Kahembwe, E., Murray, I., and Renals, S. Dy-
namic evaluation of transformer language models. arXiv
preprint arXiv:1904.08378, 2019.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11), 1998.

Ma, Y. J., Yan, J., Jayaraman, D., and Bastani, O. Of-
fline goal-conditioned reinforcement learning via f-
advantage regression. In NeurIPS, 2022.

MacKay, D. J. Information-based objective functions for
active data selection. Neural computation, 4(4), 1992.

Morari, M. and Lee, J. H. Model predictive control: past,
present and future. Computers & chemical engineering,
1999.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient
hierarchical reinforcement learning. In NeurIPS, 2018.

Park, S., Ghosh, D., Eysenbach, B., and Levine, S. Hiql:
Offline goal-conditioned rl with latent states as actions.
In NeurIPS, 2023.

Park, S., Frans, K., Eysenbach, B., and Levine, S. Ogbench:
Benchmarking offline goal-conditioned rl. In ICLR, 2025.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Pinneri, C., Sawant, S., Blaes, S., Achterhold, J., Stueckler,
J., Rolinek, M., and Martius, G. Sample-efficient cross-
entropy method for real-time planning. In CoRL, 2020.

Rawlings, J. B., Mayne, D. Q., Diehl, M., et al. Model
predictive control: theory, computation, and design, vol-
ume 2. Nob Hill Publishing Madison, WI, 2017.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, 2022.

Ross, S., Gordon, G., and Bagnell, D. A reduction of
imitation learning and structured prediction to no-regret
online learning. In AISTATS, 2011.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal
value function approximators. In ICML, 2015.

Silver, D., Singh, S., Precup, D., and Sutton, R. S. Reward
is enough. Artificial Intelligence, 299, 2021.

Simonds, T. and Yoshiyama, A. Ladder: Self-improving
llms through recursive problem decomposition. arXiv
preprint arXiv:2503.00735, 2025.

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., and Hardt,
M. Test-time training with self-supervision for general-
ization under distribution shifts. In ICML, 2020.

Sun, Y., Li, X., Dalal, K., Xu, J., Vikram, A., Zhang, G.,
Dubois, Y., Chen, X., Wang, X., Koyejo, S., et al. Learn-
ing to (learn at test time): Rnns with expressive hidden
states. arXiv preprint arXiv:2407.04620, 2024.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

Tian, S., Nair, S., Ebert, F., Dasari, S., Eysenbach, B., Finn,
C., and Levine, S. Model-based visual planning with
self-supervised functional distances. In ICLR, 2021.

Wang, T., Torralba, A., Isola, P., and Zhang, A. Opti-
mal goal-reaching reinforcement learning via quasimetric
learning. In ICML, 2023.

Yang, R., Lu, Y., Li, W., Sun, H., Fang, M., Du, Y., Li,
X., Han, L., and Zhang, C. Rethinking goal-conditioned
supervised learning and its connection to offline RL. In
ICLR, 2022.

Zheng, C., Salakhutdinov, R., and Eysenbach, B. Con-
trastive difference predictive coding. In ICLR, 2024.

Zuo, Y., Zhang, K., Qu, S., Sheng, L., Zhu, X., Qi, B.,
Sun, Y., Cui, G., Ding, N., and Zhou, B. Ttrl: Test-time
reinforcement learning. arXiv preprint arXiv:2504.16084,
2025.

6

Submission and Formatting Instructions for ICML 2025

Pre-
tra

ined

Random

No optim
alit

y

No rel
evance

GC-TTT

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s

ra
te

0.33
0.26

0.34
0.41

0.78

Ablating data selection

1/1000 1/500 1/200 1/100

TTT frequency

0.2

0.4

0.6

0.8

Ablating TTT frequency

Antmaze
Pointmaze

1x 2x 3x 4x
Test-time compute (FLOPs)

0.2

0.4

0.6

0.8
Scaling test-time compute

Model scaling
GC-TTT

Figure 2. Left: Ablation of the data selection criteria. Both relevance and optimality have to be considered to filter the dataset for
test-time training. Middle: Allocating more compute by increasing the frequency of TTT improves performance, and saturates slightly
earlier in simpler environments. Right: We compare scaling test-time compute of GC-TTT (by increasing TTT frequency) to scaling
the policy networks such that inference FLOPs are matched. We find that GC-TTT scales well with increased test-time compute, while
scaling model size does not yield significant improvements. The initial drop of GC-TTT is because value estimates are not accurate over
long-horizons (cf. Insight 4).

Figure 3. GC-TTT specializes the agent to the next steps for achieving its target goal.

A Related Work
Goal-conditioned reinforcement learning Reinforcement learning (RL) research primarily builds upon the framework of
Markov decision processes (MPDs), which define their objective based on a scalar function of states and action, referred to as
a reward function (Sutton & Barto, 2018). While reward functions may be very expressive (Silver et al., 2021), a conditional
reward is more flexible and can model a family of behaviors. One such approach is goal-conditioned reinforcement
learning (GCRL). Here, the agent’s objective is to achieve some specified goal which is modeled by a sparse reward, indicating
whether the goal is achieved (Andrychowicz et al., 2017; Eysenbach et al., 2022; Ma et al., 2022; Agarwal et al., 2023). The
GCRL framework has been remarkably successful when coupled with neural function approximation (Schaul et al., 2015),
which is capable of amortizing the enlarged input space of the policy, compared to individual-task RL. A prominent example
of GCRL is the RL-training of large language models (e.g., DeepSeek-AI, 2025) where the language model learns to achieve
a broad family of goals such as solving math problems. As the reward function is often known, several methods for relabeling
(Andrychowicz et al., 2017) and self-supervision (Tian et al., 2021) have been proposed to allow off-policy learning for
all possible goals from arbitrary experience. Due to the particular structure of the reward function, goal-conditioned RL
allows for specific algorithms beyond TD-learning, including contrastive (Eysenbach et al., 2022; Zheng et al., 2024) and
quasimetric (Wang et al., 2023) formulations. Furthermore, goal-conditioned algorithms can be easily adapted to the offline
setting considered in our work (Ma et al., 2022; Park et al., 2023; 2025). In both offline and online settings, the goal-
conditioned policy is evaluated by commanding a target goal or a subgoal selected by a high-level component (Nachum et al.,

7

Submission and Formatting Instructions for ICML 2025

Figure 4. Visualization of data selection by GC-TTT in antmaze play during one evaluation episode (in orange). A random subset of
trajectories from the dataset is shown in gray.

Algorithm 1 Goal-conditioned Test-time Training
Require: Pre-trained policy parameters θ, dataset D, horizon K, number of gradient steps N , learning rate α, distance d,

goal-conditioned value estimate V̂ , locality threshold ϵ, percentile q.
1: for each evaluation episode do
2: s ∼ µ0, g

⋆ ∼ µg ▷ sample initial state and evaluation goal
3: θ̄ ← θ ▷ store policy parameters
4: while not done do
5: Drel(s)← {(s1, . . .) ∈ D | d(s, s1) < ϵ} ▷ select relevant sub-trajectories (Eq. 2)
6: C ← q-th percentile of {V̂ (τ |g⋆) | τ ∈ Drel(s)}
7: D(s, g⋆)← {τ ∈ Drel(s) | V̂ (τ |g⋆) ≥ C} ▷ filter to optimal sub-trajectories (Eq. 4)
8: for i ∈ [1, . . . , N] do
9: θ ← θ − α∇θEs′∼D(s,g⋆)L(s′, g⋆; θ) ▷ fine-tune policy locally

10: end for
11: for i ∈ [1, . . . ,K] do
12: a ∼ πθ(s | g) ▷ sample action
13: s ∼ P (· | s, a) ▷ execute action
14: end for
15: θ ← θ̄ ▷ reset policy
16: end while
17: end for

8

Submission and Formatting Instructions for ICML 2025

Figure 5. The four envs considered from OGBench (Park et al., 2025): from top left in clockwise order, humanoidmaze, cubesingle,
antmaze, pointmaze.

0.0

0.5

1.0

A
ve

ra
ge

su
cc

es
s

ra
te

Pointmaze
expert

Pointmaze
play

Antmaze
expert

Antmaze
play

Humanoidmaze
expert

Humanoidmaze
play Cubesingle

Pre-trained + GC-TTT (no critic) + GC-TTT

Figure 6. Success rates of GC-TTT within each environment, averaged across RL backbones.

9

Submission and Formatting Instructions for ICML 2025

2018; Park et al., 2023). The policy parameters then remain unchanged throughout evaluation. Our work investigates efficient
training of the policy weights at test-time, and can be combined with any of the abovementioned value-based algorithms.

Test-time training In machine learning, models are traditionally trained on a fixed training set and then kept frozen
during evaluation. While this has been the standard practice in machine learning for decades, early work has also discussed
specializing the model at test-time to each prediction task. First examples of this so-called transductive approach are local
learning (Cleveland, 1979; Cleveland & Devlin, 1988; Atkeson et al., 1997) and local fine-tuning (Bottou & Vapnik, 1992).
More recently, the idea of test-time training (TTT) (Sun et al., 2020) has regained attention in the context of fine-tuning large
foundation models during evaluation (e.g., Krause et al., 2018; 2019; Hardt & Sun, 2024; Sun et al., 2024). TTT on (self-
)supervised signals for few gradient steps has since shown success in domains such as control (Hansen et al., 2021), language
modeling (Hardt & Sun, 2024; Hübotter et al., 2025; Sun et al., 2024; Bertolissi et al., 2025), abstract reasoning (Akyürek
et al., 2024), and video generation (Dalal et al., 2025). Many standard TTT methods train on carefully selected data from the
pre-training dataset (i.e., do not add any new priviledged information; Hardt & Sun, 2024; Hübotter et al., 2025), and several
works studied how to select data for imitation optimally (e.g., MacKay, 1992; Hübotter et al., 2024; Bagatella et al., 2025).

Test-time reinforcement learning In this work, we study test-time offline RL (TTORL), where the offline dataset contains
trajectories from different policies conditioned on different goals. Therefore, unlike in previous work on TTT, this data
should not be imitated directly. Despite this challenge, we show that GC-TTT can substantially improve performance the
performance of standard offline RL algorithms. Our work is closely related to concurrent work, which studies a form of
test-time online RL (abbreviated TTRL) with language models (Zuo et al., 2025; Simonds & Yoshiyama, 2025). Unlike
their work, we propose to dynamically train during evaluation of a single goal, which we identify as crucial for achieving
maximum performance. Intuitively, our work on TTRL combines the pre-training paradigm commonly pursued in GCRL
and the standard RL paradigm of continuously training on experience collected for a single task. In GC-TTT, the pre-trained
model is specialized to each individual task during evaluation.

B Background
We model the dynamical system as a reward-free Markov decision processM = (S,A, P, γ, µ0) (Eysenbach et al., 2022),
where S and A are potentially continuous state and action spaces, P : S ×A → ∆(S) is a stochastic transition function,
γ is a discount factor and µ0 ∈ ∆(S) is an initial state distribution. We introduce a goal space G and identify it with the
state space G = S for simplicity, although goal abstraction remains possible. As standard in goal-conditioned settings, we
assume the existence of a distance function d : S × G → R to determine goal achievement, and define a conditional reward
function as

R(s, g) =

{
−1 if d(s, g) ≥ ϵ
0 otherwise,

(5)

for some small fixed threshold ϵ. In turn, the reward function induces a conditional value function for each policy
π : S × G → ∆(A):

V π(s0 | g) = E
P,π

[∑∞
t=0 γ

tR(st, g)
]

where st+1 ∼ P (st, at), at ∼ π(st | g). (6)

Intuitively, the value function computes the negative, expected, discounted number of steps required to reach
the goal under a given policy. The optimal policy for some goal distribution µG can then be defined as
π⋆ = argmaxπ Eg∼µG ,s0∼µ0V

π(s0; g), and induces a quasi-metric structure in its value function (Wang et al.,
2023). Most practical algorithms optimize over a broad and dense goal distribution µG (see, e.g., Andrychowicz et al.,
2017), but are only deployed to achieve one specific goal during each episode at inference.

Offline policy (pre-)training The standard offline goal-conditioned reinforcement learning pipeline pre-trains a policy
π on an offline dataset D of trajectories (s0, a0, s1, a1, . . .). Most practical methods parameterize the policy as a neural
network πθ, and use stochastic optimization to find

θ⋆pre = argmax
θ

Jpre(θ), (7)

for a given pre-training objective Jpre (e.g., stochastic value gradients (Heess et al., 2015) or behavior cloning (Ross et al.,
2011)). This objective is normally specified as an expectation over the state-goal distribution from the pre-training dataset:

Jpre(θ) = −Es∼ps(·|D), g∼pg(·|s,D) L(s, g, θ), (8)

10

Submission and Formatting Instructions for ICML 2025

where ps and pg are state and goal distributions, respectively. Normally, the loss function L will also depend on actions
sampled from D; however, these actions are naturally those paired with selected states (e.g., when L is a behavior cloning
loss). Except for prioritized sampling schemes (Horgan et al., 2018), ps is generally uniform; pg is instead conditioned
on s, and may sample future goals from the same trajectories, or random ones (Ghosh et al., 2023). L represents an arbitrary
loss function; within offline reinforcement learning, it normally lies on a spectrum between supervised learning (behavior
cloning) and fully off-policy reinforcement learning. At its core, the objective in Equation 8 aims to find a policy that is
optimal on average (w.r.t. the goal distribution pg), which may lead to a locally suboptimal solution for specific goals,
especially in noisy settings or with limited model capacity.

After this training phase, the policy is evaluated on a single goal per episode. We study the problem of fine-tuning the
pre-trained model during test-time using offline RL to specialize the policy locally. We call this setting test-time offline rein-
forcement learning (TTORL). Our method, GC-TTT, specializes the policy to the agent’s current state and goal at test-time.

C Computational Efficiency
While GC-TTT leads to substantial performance gains, it incurs additional computational costs at test-time. This cost scales
with several design choices; in particular, it scales linearly with the TTT frequency 1/K and with the number of gradient
steps N for each iteration. Each gradient update can be as efficient as two forward passes, of which one is required at
each time step for standard evaluation. Moreover, there is an overhead at each fine-tuning iteration due to data selection:
if parallelization is possible (e.g., on graphics accelerators), this can be near-constant in practice, otherwise the overhead
increases linearly with the number of samples |D|. Finally, this cost is not distributed evenly through the evaluation, but
rather at regular intervals, which can result in a non-constant control frequency.

In practice, we find that on modern accelerators GC-TTT completes a single evaluation episode (1000 steps) in∼ 85 seconds,
for an average control frequency > 10 Hz. While performance can be further improved by efficient implementations and
more performant hardware, this number is comparable to the inference speed of methods relying on efficient model-based
planning (Pinneri et al., 2020), or VLAs with diffusion heads (Black et al., 2024). For context, a critic-free version of the
algorithm and the pre-trained policy reach a control frequency of > 75 and ∼ 190 Hz, respectively. For an empirical study
of the trade-off between performance and compute requirements, we refer to Section 3.

D Limitations and Future Work
The main practical limitation of this work arguably lies in its compute requirements, which we discuss in Appendix C.
While our measured average control frequency of GC-TTT is compatible with some robotic applications, high-frequency
control would require development of a lazy variant of GC-TTT. Further, GC-TTT relies on reasonable value estimates
and on available data related to the agent’s current state and goal.

By showing that test-time training can effectively improve policies from off-policy experiential data, our work opens
up several exciting directions for further research. On a practical level, our findings suggest that current offline GCRL
algorithms are unable to accurately fit each of the tasks they are trained on. The reason for this should be investigated,
and might suggest directions for improving offline RL pre-training. Moreover, GC-TTT does not leverage the data that
is freshly collected at test-time, beyond the current state. We believe that leveraging this new experience with a test-time
online RL algorithm is an exciting direction. Finally, the framework proposed in this work can be readily extended beyond
goal-reaching tasks to more general decision-making settings, including other domains such as reasoning in natural language.
We expect that progressively shifting computational resources to test-time training can substantially improve performance
in areas ranging from robotic control to reasoning agents.

E Experiment Details
Backbones GC-TTT is applicable across the broad class of value-based offline goal-conditioned algorithms. We select
a representative subset of algorithms, and focus our evaluation on GC-BC (Yang et al., 2022) and GC-IQL (Kostrikov
et al., 2022). GC-BC (behavior cloning) is a supervised algorithm for goal-conditional imitation, which directly matches
the policy’s output to the actions present in the offline dataset. GC-IQL is an implicit method for offline RL, which bypasses
evaluation on out-of-distribution actions through expectile regression. We adopt the variant using advantage-weighted
regression (AWR, Peng et al., 2019) for policy extraction. We select BC and IQL due to their widespread adoption, and

11

Submission and Formatting Instructions for ICML 2025

their representativeness of on-policy and off-policy learning in offline settings, respectively.

F Discussion of Offline RL Algorithms
The empirical validation of this work builds upon two widespread algorithms fro extracting policies from offline data. This
section provides a concise introduction to them

F.1 Behavior Cloning

Behavior Cloning (Ross et al., 2011) is a standard approach for policy learning, which reduces a control problem to
supervised reconstruction. Given a distribution µ over state-action pairs, a policy πθ may be trained by minimizing

JBC(θ) = − E
(s,a)∼µ

log πθ(a|s). (9)

The resulting policy will maximize the likelihood of actions in the dataset, and thus converge to the behavioral policy, if
there is one.

F.2 Implicit Q-Learning

Implicit Q-Learning (Kostrikov et al., 2022) is an offline RL algorithm which avoids querying the critic on out-of-distribution
actions, and directly estimates a value function through expectile regression. Given a distribution µ of state-action-next state
transitions labeled with a reward, IQL defines the following losses:

LQ(ϕ) = E
(s,a,r,s′)∼µ

(r + γVψ(s
′)−Qϕ(s, a))2, (10)

and
LV (ψ) = E

(s,a,r)∼µ
Lα(Qϕ(s, a)− Vψ) with Lα(x) = |α− 1

x<0
|x2. (11)

As the expectile α approaches one, V approximates the maximum of Q. Thus, IQL is capable of off-policy learning, and
can estimate the value function of the optimal policy (Kostrikov et al., 2022). An optimal policy may then be extracted
through advantage weighted regression (Peng et al., 2019):

Lπ(θ) = E
(s,a,r)∼µ

exp
(
β
(
Qϕ(s, a)− Vψ(s)

))
log πθ(a|s), (12)

where β interpolates between extracting the behavior policy, or the greedy one.

G Additional Experiments

G.1 Ablation on the finetuning learning rate and the number of gradient steps

0 50 100 150 200 250 300

Number of gradient steps

0.3

0.4

0.5

0.6

0.7

0.8

S
u
cc
es
s
R
at
e

Ablating learning rates and gradient steps

LR 3e-4

LR 3e-5

1Figure 7. GC-TTT results for different gradient steps.

Figure 7 presents the success rate of GC-TTT with GC-IQL
on antmaze play as the number of test-time training gradi-
ent steps N changes. We observe that increasing the number
of gradient steps helps initially, as the policy can better fit the
local data. However, an excessive number of gradient steps
may decrease performance, as the policy is trained on a small
dataset, and offline issues such as value overestimation may
arise. Regarding the learning rates, the higher learning rate
facilitates quicker adaptation and shows a slight advantage in
peak performance. While there are differences, both learning
rates yield comparable results as gradient steps increases.

G.2 Value-based relevance criterion

The relevance criterion defined in Equation 2 relies on the re-
ward criterion normally exposed in goal-conditioned settings.

12

Submission and Formatting Instructions for ICML 2025

Reward-based Value-based (C=-14) Value-based (C=-18) Value-based (C=-22)

antmaze play 0.73± 0.01 0.68± 0.04 0.73± 0.01 0.67± 0.03

Table 2. Success rates of GC-TTT with the original relevance criterion and a value-based version, on top of GC-IQL. Numbers in
parentheses are standard errors across 3 seeds.

When this is not available, however, the criterion may be replaced by a proxy based on a value estimate:

Value-based relevance: Drel(s) = {(s1, . . . sH) ∈ D | V (s, s1) > C}. (13)

This time, C is a constant hyperparameter, which, similarly to ϵ, can control the maximum temporal distance between the
current state s and selected trajectories.

We find that, empirically, this modification does not affect performance significantly: we report performance of GC-TTT
with the original and the value-based relvance criterion in antmaze in Table 2.

G.3 Parameter scaling ablation

1x 2x 3x 4x

Test-time compute (FLOPs)

0.0

0.2

0.4

0.6

S
u
cc
es
s
R
at
e

Scaling test-time compute

LR 3e-3

LR 3e-4

LR 3e-5

GC-TTT

1
Figure 8. Model scaling results for different learning
rates.

Figure 2 (right) studies the extent to which performance may be
improved by scaling the parameter count of the policy. In order
to ensure that the absence of improvement does not stem from
hyperparameter choices, we additionally report results for different
learning rates in Figure 8.

H Implementation Details
For environments and backbone algorithms, we adopt the default
hyperparameters presented in OGBench (Park et al., 2025), with the
exception of GC-IQL, which we evaluate in its AWR variant. We set
the BC regularization coefficient α to values of 0.003, 0.3, 0.1 and 1.0
for pointmaze, antmaze, humanoidmaze and cubesingle,
respectively.

GC-TTT introduces some additional hyperparameters: the horizon
K = 100, the number of gradient steps N = 100, and the percentile
q = 0.2.

For further details, we refer to the code released on our anonymous website.

H.1 Estimating FLOPs

Figure 2 (right) presents estimates of test-time compute (FLOPs) in its x-axis. In order to compute these estimates, we make
the following simplifying assumptions:

• The input and output size of the policy is negligible with respect to its witdh w; hence, the number of sum/multiply
operations for one forward pass is C ≈ 2nw2 = 4w2, as the policy is an MLP with n = 2 hidden layers.

• The cost of a forward pass does not depend on the batch size.

• A backward pass requires twice the compute as a forward pass.

Following from these assumptions, the cost for a single evaluation episode with 1000 steps is Cno-TTT ≈ 1000C = 4000w2.
Considering the test-time training frequency f and the number of gradient stepsm = 100, the cost of the same operation with
GC-TTT is CTTT = 1000f(1 + 6Cm) + 1000C. The first term includes the cost of data selection (1 for the single forward
pass required for computing values used in 4) and fine-tuning (6Cm, where we assume that the critic is the same size of the

13

https://sites.google.com/view/gcttt

Submission and Formatting Instructions for ICML 2025

policy, and we need to compute gradients of the policy with respect to the critic’s output). The cost of other operations not
involving the neural network are not considered. Given the default width w = 512 we may then compute the compute cost
without GC-TTT (≈ 109 FLOPs), and for test-time training frequencies [1/1000, 1/500, 1/200] (≈ 1.6 · 109, 2.2 · 109 and
4 · 109 FLOPs, respectively). Given these increased compute budgets, we can finally solve for the values of w necessary for
meeting this compute cost without GC-TTT (≈ 624, 732, 992), which were used to obtain the grey curve in Figure 2 (right).

14

