
Published as a conference paper at ICLR 2024

LIGHT-MILPOPT: SOLVING LARGE-SCALE MIXED
INTEGER LINEAR PROGRAMS WITH LIGHTWEIGHT
OPTIMIZER AND SMALL-SCALE TRAINING DATASET

Huigen Ye, Hua Xu ∗, Hongyan Wang
State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China
Beijing National Research Center for Information Science and Technology(BNRist), Beijing
100084, China
{yhg23, why17}@mails.tsinghua.edu.cn, xuhua@tsinghua.edu.cn

ABSTRACT

Machine Learning (ML)-based optimization approaches emerge as a promising
technique for solving large-scale Mixed Integer Linear Programs (MILPs). How-
ever, existing ML-based frameworks suffer from high model computation com-
plexity, weak problem reduction, and reliance on large-scale optimizers and large
training datasets, resulting in performance bottlenecks for large-scale MILPs.
This paper proposes Light-MILPopt, a lightweight large-scale optimization frame-
work that only uses a lightweight optimizer and small training dataset to solve
large-scale MILPs. Specifically, Light-MILPopt can be divided into four stages:
Problem Formulation for problem division to reduce model computational costs,
Model-based Initial Solution Prediction for predicting and constructing the initial
solution using a small-scale training dataset, Problem Reduction for both variable
and constraint reduction, and Data-driven Optimization for current solution im-
provement employing a lightweight optimizer. Experimental evaluations on four
large-scale benchmark MILPs and a real-world case study demonstrate that Light-
MILPopt, leveraging a lightweight optimizer and small training dataset, outper-
forms the state-of-the-art ML-based optimization framework and advanced large-
scale solvers (e.g. Gurobi, SCIP). The results and further analyses substantiate the
ML-based framework’s feasibility and effectiveness in solving large-scale MILPs.

1 INTRODUCTION

Mixed Integer Linear Programs (MILPs) are linear optimization problems in which some or all de-
cision variables are subject to integer constraints (Wolsey, 2020). They are widely utilized for mod-
eling combinatorial optimization problems such as routing (Li et al., 2018), bin packing (Paquay
et al., 2016) and resource allocation (Kotb et al., 2016). In many scenarios, a large number of ho-
mogeneous MILPs with similar combinatorial structures need to be solved simultaneously. In such
cases, Machine Learning (ML)-based optimization frameworks can explore correlations between
the structure and solution values to enhance solving performance, making ML-based frameworks a
promising direction (Han et al., 2023; Deb et al., 2023).

As the pioneering work using ML-based frameworks to solve MILPs, Gasse et al. (2019) proposed
a lossless graph representation of MILPs using bipartite graphs, and further accelerated MILP solv-
ing by using a Graph Neural Network (GNN) model to learn variable selection policies within the
branch-and-bound method. With the increase in the dimensionality of decision variables in MILPs,
the search space for the branch-and-bound algorithm expands exponentially. This results in pro-
hibitively high computational costs, especially in the case of large-scale MILPs. To mitigate this
challenge, Nair et al. (2020) proposed the Neural Diving approach, which fixes most decision vari-
ables based on the initial solution prediction results obtained through a GNN. Consequently, a large-
scale MILP is transformed into a smaller-scale MILP consisting of the remaining subset of decision

∗Corresponding Author: Hua Xu (xuhua@tsinghua.edu.cn)

1

Published as a conference paper at ICLR 2024

variables, effectively reducing the dimensionality of decision variables in the MILP. Sonnerat et al.
(2021) further introduced NeuralLNS, which trains a Neural Selection policy to select the search
neighborhood in Large Neighborhood Search (LNS) algorithm (Song et al., 2020; Ye et al., 2023a)
to improve the initial solution obtained from Neural Diving. However, Neural Diving cannot fully
exploit the embedding spatial information, and NeuralLNS heavily relies on large-scale solvers,
leading to performance bottlenecks and limitations in solving capabilities constrained by the current
solvers. In light of these limitations, Ye et al. (2023b) proposed a GNN&GBDT-guided optimizing
framework that respectively employs the Multitask GNN to generate the embedding space, the Gra-
dient Boosting Decision Tree (GBDT) to effectively use the embedding spatial information, and the
Neighborhood Optimization to improve the current solution by means of a small-scale optimizer.

While the GNN&GBDT-guided framework has shown promising performance in practical applica-
tions, it still exhibits several noteworthy limitations. Firstly, representing MILPs as an entire graph
poses challenges regarding model training and computational resources, particularly when tackling
large-scale MILPs. Secondly, the GNN requires large-scale MILP instances of a similar size as
training data, leading to significant computational and storage resource demands during the training
phase. Thirdly, the application of problem reduction solely focuses on the decision variable level,
overlooking potential synergies with constraint reduction, resulting in limited effectiveness in prob-
lem reduction. Generally, the performance of this method severely decreases when dealing with
large-scale MILPs with complex constraints.

To address the challenges above, we propose Light-MILPopt, a lightweight optimization framework
explicitly designed for large-scale MILPs, which consists of four stages: 1) Problem Formulation.
Initially, we represent the MILP as a bipartite graph and then employ the FENNEL graph partition
algorithm to divide the problem to reduce computational costs. 2) Model-based Initial Solution Pre-
diction. We leverage the Edge Aggregated Graph Attention Network with half-convolutions, trained
by a small-scale dataset with homogeneous structures, to predict and construct the initial solution for
each divided subproblem. 3) Problem Reduction. We selectively reduce decision variables based on
the generalized confidence threshold while simultaneously reducing constraints using the K-Nearest
Neighbor (KNN) strategy. 4) Data-driven Optimization. Building upon problem division and reduc-
tion, we employ subgraph clustering and active constraint updating to guide neighborhood search
and individual crossover, iteratively enhancing the current solution with a lightweight optimizer.

To validate the effectiveness and efficiency of Light-MILPopt which only uses a lightweight op-
timizer and a small-scale training dataset, we conduct extensive experiments on four large-scale
benchmark MILPs and a real-world case study. The results indicate that, compared with the state-
of-the-art optimization frameworks and large-scale solvers (e.g., Gurobi, SCIP), the proposed frame-
work exhibits significant advantages when solving large-scale MILP. Further analyses show that the
proposed framework can effectively reduce the model’s computational complexity and achieve sub-
stantial problem reduction, which verifies its effectiveness and efficiency.

Our contributions can be summarized as follows.

• We propose the first lightweight framework that solves large-scale MILPs with only
small-scale training datasets and lightweight optimizers, introducing Problem Formulation,
Model-based Initial Solution Prediction, Problem Reduction, and Data-driven Optimization
to reduce the computational complexity and improve the problem reduction capability.

• We demonstrate the effectiveness of the proposed framework in solving large-scale MILPs
with lightweight optimizers and small-scale training datasets through a comparative anal-
ysis with state-of-the-art optimization frameworks and advanced solvers, providing initial
insights into efficiently solving large-scale MILPs with limited computational resources.

2 PRELIMINARIES

2.1 MIXED INTEGER LINEAR PROGRAMS

Mixed Integer Linear Programs (MILPs) are a type of problem in which the objective function is
linear under several linear constraints. In these problems, some or all decision variables are restricted
to take integer values. Formally, an MILP has the form as the following (Achterberg, 2007).

min
x

cTx, subject toAx ≤ b, l ≤ x ≤ u, xi ∈ Z, i ∈ I, (1)

2

Published as a conference paper at ICLR 2024

!!	#! +⋯+ 	 !"	#"
&!!	#! +⋯+ &!" #" ≤ (!

⋮
&$!#! +⋯+ &$"#" ≤ ($

min% 	 &!!

&!"
&$"

#!

&$!

…

⋮⋮⋮

#"
#!

#"

.!

.$.$

.!

.!

#!

(b) GCN with Half Convolutions

Initial Embedding

Initial Embedding

Constraint-side
Convolution

Variable-side
Convolution

Constraint Node

Variable Node

Edge Matrix
Final Embedding

& Sigmoid

(a) Bipartite Graph Representation

Figure 1: (a) Transforming an MILP instance to a bipartite graph. The set of m constraint nodes
{δ1, . . . , δm} and the set of n decision variables nodes {x1, . . . , xn} form the left-side constraint
nodes set and the right-side variable nodes set of the bipartite graph representation. (b) The archi-
tecture of GCN with half-convolutions only has one layer. The layers in GCN can be broken down
into two successive passes, one from variables to constraints and one from constraints to variables.

where x denotes the decision variables whose number is denoted by n ∈ Z, with l, u, c ∈ Rn being
their lower bound, upper bound and coefficient, respectively. A ∈ Rm×n and b ∈ Rm denote the
linear constraints. I ⊆ {1, 2, . . . , n} is the index set of integer variables. A solution is feasible for the
MILP if decision variables x ∈ Rn satisfy all the constraints in Equation (1). A feasible solution is
optimal if it attains the minimum objective function value of the minimized MILP (Schrijver, 1998).
A constraint is an active constraint if the optimal solution of the MILP changes when removing this
constraint, and vice versa for redundancy constraint(Bailey & Gillett, 1980; Murty & Yu, 1988).

2.2 BIPARTITE GRAPH REPRESENTATION

The bipartite graph representation for MILPs proposed by Gasse et al. (2019) achieves a lossless
graphical representation of an MILP as the input of the neural embedding network (Nair et al., 2020),
described in the left side of Figure 1. The n decision variables in the MILP can be represented as the
right-side variable nodes set in the bipartite graph, while the m linear constraints can be represented
as the left-side constraint nodes set. The edge connecting a variable node and a constraint node
represents the corresponding variable that appears in that constraint. The details of the feature
selection policy are shown in Appendix A.1.

2.3 GRAPH CONVOLUTIONAL NETWORK

In MILPs, based on the bipartite graph representation, the Graph Convolutional Network (GCN)
(Kipf & Welling, 2016) is used for learning neural embedding and model-based initial solution
prediction. Formally, let E represent the edges in a bipartite graph, and a k-layer GCN is as follows.

hk
v = fk

2 ({h(k−1)
v , fk

1 ({h(k−1)
u : (u, v) ∈ E})}), (2)

where hk
v represents the hidden state of node v in the k-th layer. The function fk

1 combines the
hidden values of the neighbors from the previous (k−1)-th layer to obtain aggregation information,
while the function fk

2 combines the hidden value of the current node v with the aggregation infor-
mation from its neighbors. For the bipartite graph representation, the GCN with two interleaved
half-convolution layers can achieve better performance (Gasse et al., 2019; Yoon, 2022). Formally,
let Vx denote the set of n variable nodes and Vδ denote the set of m constraint nodes, and a k layer
half-convolutions GCN could be written as the following.

hk
δj = fk

δ ({h
(k−1)
δj

,
∑

(xi,δj)∈E

gkδ ({h(k−1)
x , h

(k−1)
δj

})}), δj ∈ Vδ,

hk
xi

= fk
x ({h(k−1)

xi
,

∑
(xi,δj)∈E

gkx({h(k−1)
xi

, hk
δj})}), xi ∈ Vx,

(3)

where hk
x, hk

δ , gkx and gkδ are aggregation functions. The right side of Figure 1 provides an overview
of the 1-layer GCN with half-convolutions layers.

2.4 EDGE AGGREGATED GRAPH ATTENTION NETWORK

The current GCN model mentioned in Sec. 2.3 faces two significant problems. Firstly, it only
uses a fixed policy to aggregate node information. Secondly, it can not fully incorporate the edge

3

Published as a conference paper at ICLR 2024

Large-scale MILP

Small Training Dataset
with Small-scale

Optimizer
X = [3, 1, 0, ……, -2]

!!	#! +⋯+ 	 !"	#"
	 &!!	#! +⋯+ &!" #"≤ (!

⋮
&$!#! +⋯+ &$"#" ≤ ($

min% 	

...

x1

xn

δ1

δm

Bipartite Graph
Representation

xi

...
...

Graph Partition-based
Problem Division

xn

δ1

δm

xi

...
...

x1

...

EGAT with Half
Convolutions for Every

Subgraph

...
...

...

Neural Prediction

0.3
0.7

0.8

...

...

...

...

...

...

Variables ReductionConstraint Reduction

Optimal
Solution

Model Based Initial Solution Prediction

Dataset
Problem

Formulation
Problem Reduction

0.9

0.6

0.1

variable node

node’s embedding

constraint node

node’s partition

current solution constraint

redundant constraint fixed variable variable to be optimized optimized variable

optimal variable

FENNEL

Trim high-confidence
decision variables

1.2 predict value
0.8 high confidence 0.3 low confidence redundant to be deleted redundant to be added

edge to be deleted

Trim redundant constraints

Neighborhood Partition

………

…

...
...

...

Subgraph Clustering

…
……

Update Constraint Set

.
x .
r

Search with
Fixed Radius

.
x .
r

Neighborhood
Crossover

Initial Solution Search Neighborhood
Search

Search with
Fixed Radius

Update Neighborhood Set

Data-driven Optimization

C
urrent Solution

Updated Constraints & Neighborhood Updated Constraints

Figure 2: An overview of Light-MILPopt,where the blue line indicates that the component is only
used during training. Firstly, the MILP is represented as a bipartite graph, and the FENNEL graph
partitioning algorithm is employed for problem division to reduce model computational costs. Sec-
ondly, given the divided graph representations, the EGAT, trained by a small-scale training dataset,
is used for predicting and constructing the initial solution of the original large-scale MILP. Thirdly,
leveraging the predicted solution, the decision variable’s confidence threshold and constraint’s KNN
strategy are introduced for problem reduction. Finally, based on problem division and reduction,
the subgraph clustering and active constraint updating guide neighborhood search and individual
crossover, iteratively improving the current solution by means of a lightweight optimizer.

features, ultimately resulting in poor performance in graphs with edge weights. To tackle these
problems, Gong & Cheng (2019) proposed the Edge Aggregated Graph Attention Network (EGAT),
which introduces an attention mechanism on graph neighborhoods and adequately exploits edge
information, benefiting the learning neural embedding and model-based initial solution prediction.
Formally, let E represent the edges in the bipartite graph. A k-layer EGAT could be written as below.

hk
v = σ({αk

uv(h
k−1
u , Ek−1

uv) : (u, v) ∈ E}, gk(hk−1
v)), (4)

where hk
v is the hidden state of node v in the k-th layer; Ekuv denotes the hidden state of the edge

connecting u and v in the k-th layer; σ is a non-linear activation; gk is a transformation that maps the
node features from the input space to the output space. The gk is defined as: gk(hk−1

v) = Whk−1
v ,

where W is a transformation parameter matrix. Additionally, αk
uv is the attention coefficient that is

a function of hk−1
u , hk−1

v and Ek−1
uv , and is defined as follows.

αk
uv = DS(exp{L(aT [Whk−1

u ||aT [Whk−1
v])}Ek−1

uv), (5)

where DS is the doubly stochastic normalization operator defined in Appendix A.3; L is the
LeakyReLU activation function (Xu et al., 2020); W is a transformation parameter matrix; and
|| is the concatenation operation. Finally, the attention coefficients are used as new edge features for
the next layer, defined as: Ekuv = αk

uv.

3 THE PROPOSED LIGHT-MILPOPT

This section describes Light-MILPopt, the proposed lightweight optimization framework that solves
large-scale mixed integer linear programs with lightweight optimizer and small-scale training
dataset. Light-MILPopt can be divided into four stages: Problem Formulation (Sec. 3.1), Model-
based Initial Solution Prediction (Sec. 3.2), Problem Reduction (Sec. 3.3), and Data-driven Opti-
mization (Sec. 3.4). We present the overall architecture of the proposed framework in Figure 2.

3.1 PROBLEM FORMULATION

In light-MILPopt, the large-scale MILP is represented in the form of a Bipartite Graph at first. Then,
the FENNEL Graph Partition algorithm (Tsourakakis et al., 2014) is applied to divide the graph into
several blocks. Based on the above steps, all the subgraphs obtained from the graph partition form
the inputs for feature-embedding neural networks.

4

Published as a conference paper at ICLR 2024

Bipartite Graph Representation. Based on the classic bipartite graph representation introduced
in Sec. 2.2, the feature selection policy is further improved to enhance embedding ability. For one
thing, the random feat strategy (Chen et al., 2023) is introduced to get better representation and
embedding capabilities when facing some particular MILPs called ”foldable” (Chen et al., 2023).
Specifically, by adding random features, the predicting of MILP feasibility, optimal objective values,
and optimal solutions becomes more reliable. For another thing, the classic feature selection policy
for categorical features, which only uses a single integer is not sensitive to categorical information,
resulting in weak feature neural embedding in feature-embedding neural networks. Therefore, the
one-hot strategy (Shen et al., 2022) is utilized to represent the categorical features, further enhancing
the impact of categorical information on the neural encoding results. More details of the introduced
new policy are shown in the Appendix A.2.

Graph Partition-based Problem Division. For an MILP, the size of the bipartite graph representa-
tion is linearly correlated with the problem scale (Gasse et al., 2019). Therefore, when dealing with
large-scale MILPs with millions of variables, directly using the entire bipartite graph representation
as the input for feature-embedding neural networks for training or predicting would lead to signif-
icant demands on computational and storage resources. Inspired by the Graph-Bert (Zhang et al.,
2020) subgraph partitioning concept, we use the FENNEL graph partitioning algorithm, described
in Appendix A.4, to divide the original entire bipartite graph into several low-correlation subgraphs,
with each subgraph representing a divided subproblem. The partitioned subgraphs are then sequen-
tially fed into the feature-embedded neural network, thus transforming the solution of a large-scale
optimization problem into the parallel solution of multiple small-scale problems.

3.2 MODEL-BASED INITIAL SOLUTION PREDICTION

Given the graph representation with multiple small-scale subgraphs for the large-scale MILP, EGAT
with Half-convolutions learns the neural embedding for the decision variables. Then the Neural
Prediction network with Multi-Layer Perceptron (MLP) structure predicts the initial value of the
corresponding decision variable in the MILP through the neural embedding. Finally, the predicted
initial solution will guide the subsequent problem reduction in the next stage.

EGAT with Half-convolutions. Based on the GNN with half-convolutions (Yoon, 2022) (Sec.
2.3) and EGAT (Gong & Cheng, 2019) (Sec. 2.4), we propose an EGAT with multi-layer half-
convolutions structure which combines the advantages of the above two methods, intended to further
improve the neural embedding learning of the decision variables for every divided subgraph. For-
mally, based on Equation (3) and (4), letting E represent the edges in the bipartite graph, a k-layer
EGAT with multi-layer half-convolutions structure can be represented as follows.

αk
xiδj = DS(exp{L(aT [Whk−1

xi
||aT [Whk−1

δj
])}Ek−1

xiδj
),

hk
δj = σ({αk

xiδj (h
(k−1)
x , Ek−1

xiδj
) : (xi, δj) ∈ E}, gk(hk−1

δj
)),

hk
xi

= σ({αk
xiδj (h

k
δj , E

k−1
xiδj

) : (xi, δj) ∈ E}, gk(hk−1
xi

)),

Ek
xiδj = αk

xiδj ,

(6)

where hk
δj

and hk
xi

represent the hidden state of constraint node δj and variable node xi in the k-th
layer, respectively; Ekxiδj

and αk
xiδj

denotes the hidden state and attention coefficient of the edge
connecting variable node xi and constraint node δj in the k-th layer, respectively; σ is a non-linear
activation; gk is a transformation that maps the node features from the input space to the output
space. The information transition flow of EGAT with half-convolutions is shown in Figure 3.

Neural Prediction. Based on the neural embedding of the decision variables obtained by the EGAT,
a p-layer MLP is used to predict the initial value of the corresponding decision variable for every
divided small-scale MILPs. For binary variables xi, the neural embedding of the decision variable
only undergoes a single Multi-Layer Perceptron (MLP) transformation, followed by the application
of the Sigmoid activation function to the MLP’s output. This process allows the output to convey
the probability that the respective decision variable equals 1, denoted as p(xi = 1|M). For general
integer variables or even real variables, according to the required accuracy, the neural embedding
of a decision variable needs to pass through multiple independent MLPs with Sigmoid activation
function in parallel. For the i-th decision variable, the output of the j-th MLP can represent the
probability that the j-th binary bit is 1, represented as p(xij = 1|M), and the value of the bit is taken

5

Published as a conference paper at ICLR 2024

⋮⋮

⋮⋮

⋮⋮

⋮⋮

⋮⋮ ⋮⋮ ⋮⋮

Step 1 Step 2 Step 3

Constraint Edge Variable Constraint Edge Variable Constraint Edge Variable

Figure 3: Information transition flow in the EGAT with half-convolutions. The information tran-
sitions run consecutively as follows: Step 1, transforming variable nodes and constraint nodes in-
formation to the edge; Step 2, transforming the variable nodes and edge information to constraint
nodes; Step 3, transforming constraint nodes and edge information to the variable node.

⌊p(xij = 1|M) + 0.5⌋, where Focal Loss (Lin et al., 2017) is used for training. Due to the weak
correlation among the small-scale MILPs obtained by problem division, all the split small-scale
MILP have obtained initial predicted solutions, the initial predicted solutions of the split small-scale
MILP can be concatenated to obtain the initial predicted solutions of the original large-scale MILP.

3.3 PROBLEM REDUCTION

Given the predicted initial solution of the MILP, the generalized confidence threshold method adap-
tively fixes the high-confidence decision variable to achieve Variables Reduction. Then, KNN strat-
egy is used for Constraint Reduction to identify active constraints. The unfixed decision variables
and KNN constraints can jointly guide the initial solution search and iterative optimization.

Variables Reduction. Classic approaches employ SelectiveNet (Geifman & El-Yaniv, 2019) to pre-
dict the initial solution of MILP while simultaneously predicting the variable reduction based on the
target reduction ratio. However, this method requires multiple training runs for different target re-
duction ratios, leading to additional training overhead. Therefore, Light-MILPopt proposes a gener-
alized confidence threshold method based on the confidence threshold method specifically designed
for binary variables (Yoon, 2022), aiming to reduce efficient variable dimensionality. Specifically,
based on the MILP’s initial solution obtained from the model predictions, the confidence value fi of
the decision variable xi which contains c binary bits can be represented as follows.

fi = c

√√√√ c∏
j=1

max[p(xij = 1|M), 1− p(xij = 1|M)]. (7)

Next, the confidence values of the decision variables are sorted in descending order. Based on the
desired reduction ratio of k%, the top k% of the decision variables are fixed to their predicted values.
The remaining decision variables form a new small-scale optimization problem that is fed into the
initial solution search of the next stage, achieving variables reduction for the large-scale MILP.

Constraint Reduction. The constraints in MILP can be classified into redundant constraints and
active constraints as mentioned in Sec. 2.1. Effective removal of redundant constraints simplifies
the solution space and speeds up the process of solving large-scale MILPs, termed as constraints
reduction. When without considering the integer constraints, the feasible domain formed by linear
constraints in MILP possesses the property of convexity. If the optimal solution of the MILP is
known, active constraints are often those that are close to the optimal solution (Runarsson & Yao,
2005). Since the predicted initial solution is the result of fitting a model to the optimal solution,
the predicted initial solution can be treated as an estimation of the optimal solution, utilized for
computing the distance from each constraint hyperplane. Finally, according to the calculation re-
sults, the KNN constraints of the predicted initial solution are selected as the prediction of the active
constraints, and the remaining redundant constraints are deleted to realize constraint reduction.

3.4 DATA-DRIVEN OPTIMIZATION

Based on the predicted initial solution and the problem reduction, we first solve the reduced subprob-
lem to obtain the Initial Solution for the complete MILP. Then, under the guidance of Neighborhood
Set Updating and the active Constraint Set Updating, neighborhood search and individual crossover

6

Published as a conference paper at ICLR 2024

#!
.!

#&

#'

#(

#)

.'

.&

#!

#'

#&

#(

#)

(b) Neighborhood Partition(a) Graph Clustering

#!

#'

#&

#(

#)

#!

#'

#&

#(

#)

(c) Individual Crossover

Figure 4: (a) Apply random-cluster algorithm to the divided subgraphs to group subgraphs into
several clusters. (b) Decision variables in a cluster form a neighborhood block. (c) Employ the
hierarchical crossover strategy for neighborhood merging and corresponding individual crossover.

iteratively improve the current solution. Finally, when a predetermined wall-clock time or condition
is reached, the current solution is output as the final optimization result.

Initial Solution Search. For the large-scale MILP with n decision variables, we first define a coef-
ficient α ∈ (0, 1) to denote that the lightweight optimizer can solve small-scale MILP containing at
most αn decision variables. Following this, an initial solution search method described in Appendix
A.6 is employed for the reduced small-scale MILP obtained from the stage of dimensionality re-
duction. Finally, the optimal solution obtained by the lightweight optimizer is recombined with the
reduced decision variables to form an initial feasible solution.

Neighborhood Set Update. In each iteration of optimization, both the neighborhood search and
individual crossover require a new neighborhood to prevent getting stuck in local optima. Based on
the subgraph partitioning obtained from the FENNEL graph partitioning algorithm, we use random-
cluster algorithm (Grimmett, 2006) to further group the subgraphs into several clusters that are
suitable for the small-scale solver, shown in Figure 4(a) and Appendix A.7. Each cluster contains
decision variables from multiple subgraphs, forming a neighborhood block. The graph cluster cor-
responding to neighborhood set is shown schematically in Figure 4(b).

Constraint Set Update. Due to the potential distance between the initial predicted solution and the
optimal solution, the initial prediction of active constraints is biased. Therefore, after each optimiza-
tion iteration, the current solution gradually approaches the optimal solution, and Light-MILPopt
calculates a new set of KNN constraints to obtain more accurate estimates of active constraints
using the new current solution as the reference point. Furthermore, since the prediction of active
constraints becomes more and more reliable as the optimization proceeds, we adopt a progressive
strategy by choosing a larger value of K in KNN at the beginning and gradually narrowing down the
set of active constraints. Specifically, after each iteration, K is updated to K ∗ η until the predefined
minimum reduction threshold is reached, where η ∈ (0, 1) is the preset descent rate, contributing
to the progressive reduction of constraints. Finally, as the active constraint set changes, the feasible
solution region is also altered. So we employ the REPAIR algorithm described in Appendix A.8 to
”repair” the current solution, which ensures the current solution falls within the new feasible solution
range changes by the new active constraint set.

Iterative Optimization. In each iteration, based on the updated neighborhood set and updated
active constraint set, the neighborhood search is parallelly executed in each neighborhood, utilizing
a lightweight optimizer. Then the results of the neighborhood search are used as individuals for
hierarchical crossover shown in Figure 4(c), allowing the integration and inheritance of strengths
from different neighborhoods, leading to improved solutions efficiently. When the current iteration
ends, the results of the individual crossover update the current solution and simultaneously update
the neighborhood set and the active constraint set. Finally, when meeting the predetermined time or
conditions, the current solution is output as the final optimization result.

4 EXPERIMENTS

To validate the effectiveness and efficiency of the proposed Light-MILPopt for large-scale MILPs,
we compare it with two types of baselines on four widely used large-scale NP-hard standard bench-
mark MILP datasets: Set Covering (SC, Minimize) (Caprara et al., 2000), Minimum Vertex Cover

7

Published as a conference paper at ICLR 2024

Table 1: Comparison of objective value results with baselines under the same running time on differ-
ent large-scale MILPs. Ours-30%S means the proposed framework with the scale-limited versions
of SCIP which limit the variable proportion α to 30%. GBDT-50%G means the GNN&GBDT
framework with the scale-limited versions of Gurobi which limit the variable proportion α to 50%.
↑ means the result is better than the baseline. - means that no feasible solution is found.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2 Case Study
Ours-30%S 17121.5↑ 166756.0↑ 27337.8↑ 273014.6↑ 22621.7↑ 227074.5↑ 35067.8↑ 355887.6↑ 944086.4↑
Ours-30%G 17047.3↑ 163975.9↑ 27223.3↑ 272579.5↑ 22658.0↑ 227305.4↑ 35533.4↑ 357439.5↑ 979797.8↑

GBDT-30%S 17222.2 261174.0 27515.4 276306.9 22389.3 223349.8 - - -
GBDT30%G 18487.6 281021.2 27700.8 281234.5 22115.9 210019.2 - - -
Ours-50%S 16147.2↑ 166966.9↑ 26956.8↑ 269771.3↑ 22963.6↑ 230278.1↑ 36125.5↑ 357483.8↑ 944166.1↑
Ours-50%G 16108.1↑ 160015.5↑ 26950.7↑ 269571.5↑ 22966.5↑ 230432.9↑ 36108.2↑ 362265.1↑ 980688.0↑
GBDT50%S 16728.8 268294.9 27107.9 271777.2 22795.7 227006.4 - - -
GBDT50%G 17503.4 252797.2 27329.9 274600.8 22530.1 215393.6 - - -

SCIP 25191.2 385708.4 31275.4 491042.9 18649.6 9104.3 29974.7 168289.9 924954.5
Gurobi 17934.5 320240.4 28151.3 283555.8 21789.0 216591.3 32960.0 329642.4 -
Time 2000s 12000s 2000s 8000s 2000s 8000s 2000s 6000s 1000s

(MVC, Minimize) (Dinur & Safra, 2005), Maximum Independent Set (MIS, Maximize) (Tarjan &
Trojanowski, 1977), Mixed Integer Knapsack Set (MIKS, Maximize) (Atamtürk, 2003) and one
real-world large-scale MILP in the internet domain (Case Study, Maximize). One type of the base-
lines is the state-of-the-art MILP solvers, including SCIP (Achterberg, 2009) and Gurobi (Achter-
berg, 2019). The other one is the latest state-of-the-art ML-based optimization framework based on
GNN&GBDT(Ye et al., 2023b). In Appendix B, we present more details of the datasets, compre-
hensive experimental setup, and the baselines.

To make fair comparisons, we use multiple evaluation metrics to study the performances of all the
related methods in this paper, including comparisons of solving effectiveness under the same running
time (Sec. 4.1), comparisons of solving efficiency under the same solving results (Sec. 4.2), and
analysis of convergence (Sec. 4.3). Additional experimental results are detailed in Appendix C.
Code for reproducing all the experiments can be found at https://github.com/thuiar/Light-MILPopt.

4.1 COMPARISONS OF SOLVING EFFECTIVENESS

To verify the effectiveness of the proposed Light-MILPopt, we compare the solving results of the
proposed framework with the large-scale solvers SCIP, Gurobi, and the GNN&GBDT frameworks,
at the same runtime. Light-MILPopt only uses a lightweight optimizer which limits the variable
proportion α to 30% and 50%, and using only 1% of the size of large-scale benchmark MILPs
for training data. We present the experimental results in Table 1. On the one hand, compared to
the large-scale baseline solvers SCIP and Gurobi, Light-MILPopt obviously outperforms them only
using a scale-limited version solver with variable proportion α = 30%. On the other hand, the
proposed framework achieves better results than the GNN&GBDT frameworks in integer programs
with the same scale of variable reduction, efficiently solving large-scale MILPs, which cannot be
solved by the GNN&GBDT framework.

It is worth noting that in the SC scenario, Light-MILPopt outperforms all baselines significantly.
Upon in-depth analysis, it becomes apparent that the small-scale subgraphs obtained through prob-
lem division contribute to the improved performance and efficiency of initial solution prediction.
Additionally, SC is a problem characterized by intricate constraints, and constraint reduction de-
creases the time required for each iteration of optimization to 1/5 of the original time. This factor
greatly contributes to the remarkable solving ability of Light-MILPopt for this particular problem.

4.2 COMPARISONS OF SOLVING EFFICIENCY

To further validate the efficiency of the Light-MILPopt, we compare the running time of the pro-
posed framework with the baseline algorithms with fixed-solving results. We represent the experi-
mental results in Table 2. It’s evident that Light-MILPopt significantly reduces the time required to
obtain the same optimization results compared to all the baseline approaches on all MILPs. Specif-
ically, compared to the large-scale baseline solvers, the proposed framework can achieve the same
results in only 0.5% of the time for the benchmark MILPs, including SC1, MVC1, MIS1 and MIKS1.
Even compared to the state-of-the-art ML-based frameworks, our Light-MILPopt can save more than
90% of the solution time on most MILPs to achieve the same results. It is interesting to note that for
MVC1 and MIS1, while there is little difference among all methods in terms of achieving the same

8

https://github.com/thuiar/Light-MILPopt

Published as a conference paper at ICLR 2024

Table 2: Comparison of running time with SCIP, Gurobi and GNN&GBDT framework under the
same target value on different large-scale MILPs. Ours-30%S means the proposed framework with
the scale-limited versions of SCIP which limit the variable proportion α to 30%. GBDT-50%G
means the GNN&GBDT framework with the scale-limited versions of Gurobi which limit the vari-
able proportion α to 50%. ↑ means the result is better than the baseline. > means indicates the
inability to achieve the target value in some instances within the maximum running time.

SC1 SC2 MVC1 MVC2 MIS1 MIS2 MIKS1 MIKS2 Case Study
Ours-30%S 1998.1s↑ 11823.0s↑ 1951.6s↑ 7967.2s↑ 1951.6s↑ 7967.2s↑ 1982.0s↑ 11980.4s↑ 996.4s↑
Ours-30%G 1166.8s↑ 5645.0s↑ 1475.3s↑ 6453.3s↑ 1487.3s↑ 7250.5s↑ 593.9s↑ 7941.9s↑ 511.5s↑

GBDT-30%S >48369.2s >60000s >60000s >60000s >60000s >60000s - - -
GBDT30%G >30347.8s >60000s >60000s >60000s >60000s >60000s - - -
Ours-50%S 352.2s↑ 11441.3s↑ 203.1s↑ 1815.3s↑ 225.9s↑ 1945.7s↑ 194.9s↑ 9576.1s↑ 776.2s↑
Ours-50%G 177.8s↑ 1795.4s↑ 193.8s↑ 1503.3s↑ 223.5s↑ 2062.7s↑ 160.5s↑ 2137.8s↑ 506.9s↑
GBDT50%S 587.6s >60000s 297.6s 7570.5s 348.6s 5920.7s - - -
GBDT50%G 5041.6s >60000s 29320.5s 21397.3s 4227.1s 27952.9s - - -

SCIP >60000s >60000s >60000s >60000s >60000s >60000s >60000s >60000s 3097.0s
Gurobi >60000s >60000s >60000s >60000s >60000s >60000s 45599.4s >60000s 2584.7s
Target 17121.5 166756.0 27337.8 273014.6 22621.7 227074.5 35067.8 355887.6 944086.4

0 2000 4000 6000 8000 10000 12000

Time

160000

180000

200000

220000

240000

260000

280000

300000

320000

Ob
je

ct
iv

e

Ours30%G
Ours50%G
GNN&GBDT30%G
GNN&GBDT50%G
Gurobi

(a)

1000 2000 3000 4000 5000 6000 7000 8000

Time

270000

280000

290000

300000

310000

320000

330000

340000

350000

Ob
je

ct
iv

e

Ours30%G
Ours50%G
GNN&GBDT30%G
GNN&GBDT50%G
Gurobi

(b)

2000 4000 6000 8000

Time

160000

170000

180000

190000

200000

210000

220000

230000

Ob
je

ct
iv

e

Ours30%G
Ours50%G
GNN&GBDT30%G
GNN&GBDT50%G
Gurobi

(c)

Figure 5: Time-objective figure for three of the benchmark MLIPs. (a) The minimized SC problem.
(b) The minimized MVC problem. (c) The maximized MIS problem.

optimization results within a certain time frame, there is a significant difference in running time.
Our analyses demonstrate that the proposed framework can significantly reduce the time required to
achieve the same results as the baseline methods.

4.3 ANALYSIS OF CONVERGENCE

Convergence is an essential metric for evaluating the performance of optimization frameworks. To
analyze the convergence of Light-MILPopt, we record the trend of the objective value with the iter-
ation time of the proposed framework and baseline algorithm on three MILPs that the GNN&GBDT
framework can solve, including SC, MVC and MIS. We visualize the time-objective variation in
Figure 5. We can see that the proposed framework can obtain high-quality solutions for large-scale
MILPs with only small-scale training data and a lightweight optimizer. Figure 5 also demonstrates
that the convergence performance of Light-MILPopt is not weaker than that of the state-of-the-art
solver Gurobi as well as the state-of-the-art ML-based optimization framework.

5 CONCLUSION

This paper proposes Light-MILPopt, a lightweight optimization framework for large-scale MILPs.
Light-MILPopt uses graph partition-based problem division and EGAT with half-convolutions to
efficiently predict initial MILP solutions with only a lightweight training dataset. Through variables
and constraints reduction, Light-MILPopt rapidly updates the current solution with a lightweight
optimizer. Experimental evaluations conducted on four standard large-scale MILPs and a real-world
case study demonstrate that our framework outperforms SCIP, Gurobi, and the GNN&GBDT-based
optimization framework. In the future, we will further improve the proposed framework and explore
its applicability in ultra-large-scale, multi-objective, and nonlinear constraint scenarios.

9

Published as a conference paper at ICLR 2024

REFERENCES

Tobias Achterberg. Constraint integer programming. 2007.

Tobias Achterberg. Scip: Solving constraint integer programs. Mathematical Programming Com-
putation, 1:1–41, 2009.

Tobias Achterberg. What’s new in gurobi 9.0. Webinar Talk url: https://www. gurobi. com/wp-
content/uploads/2019/12/Gurobi-90-Overview-Webinar-Slides-1. pdf, 2019.

Alper Atamtürk. On the facets of the mixed-integer knapsack polyhedron. Mathematical Program-
ming, 98(1-3):145–175, 2003.

Mason Gene Bailey and Billy E Gillett. Parametric integer programming analysis: A contraction
approach. Journal of the Operational Research Society, 31:257–262, 1980.

R. Byrd, A. Goldman, and Miriam Heller. Technical note–recognizing unbounded integer programs.
Operations Research, 35:140–142, 02 1987. doi: 10.1287/opre.35.1.140.

Alberto Caprara, Paolo Toth, and Matteo Fischetti. Algorithms for the set covering problem. Annals
of Operations Research, 98:353–371, 2000.

Ziang Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. On representing linear programs by graph
neural networks. In The Eleventh International Conference on Learning Representations, 2023.

Kalyanmoy Deb, Peter Fleming, Yaochu Jin, Kaisa Miettinen, and Patrick M Reed. Key issues in
real-world applications of many-objective optimisation and decision analysis. In Many-Criteria
Optimization and Decision Analysis: State-of-the-Art, Present Challenges, and Future Perspec-
tives, pp. 29–57. Springer, 2023.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the aaai conference on artificial intelligence, volume 34, pp. 1452–1459, 2020.

Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover. Annals of
mathematics, pp. 439–485, 2005.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. In Advances in Neural Information
Processing Systems 32, 2019.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject
option. In International conference on machine learning, pp. 2151–2159. PMLR, 2019.

Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9211–9219, 2019.

Geoffrey Grimmett. The Random-cluster Model, volume 333. Springer, 2006.

Olivier Guieu and John W Chinneck. Analyzing infeasible mixed-integer and integer linear pro-
grams. INFORMS Journal on Computing, 11(1):63–77, 1999.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi-
aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
arXiv preprint arXiv:2302.05636, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Amir O Kotb, Yao-Chun Shen, Xu Zhu, and Yi Huang. iparker—a new smart car-parking system
based on dynamic resource allocation and pricing. IEEE transactions on intelligent transportation
systems, 17:2637–2647, 2016.

Chunlin Li, Jingpan Bai, Jinguang Gu, Xin Yan, and Youlong Luo. Clustering routing based on
mixed integer programming for heterogeneous wireless sensor networks. Ad Hoc Networks, 72:
81–90, 2018.

10

Published as a conference paper at ICLR 2024

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Katta G Murty and Feng-Tien Yu. Linear Complementarity, Linear and Nonlinear Programming,
volume 3. Citeseer, 1988.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Célia Paquay, Michael Schyns, and Sabine Limbourg. A mixed integer programming formulation for
the three-dimensional bin packing problem deriving from an air cargo application. International
Transactions in Operational Research, 23:187–213, 2016.

Thomas Philip Runarsson and Xin Yao. Search biases in constrained evolutionary optimization.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35:
233–243, 2005.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1998.

Cencheng Shen, Qizhe Wang, and Carey E Priebe. One-hot graph encoder embedding. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012–20023, 2020.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Robert Endre Tarjan and Anthony E Trojanowski. Finding a maximum independent set. SIAM
Journal on Computing, 6(3):537–546, 1977.

Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic. Fennel:
Streaming graph partitioning for massive scale graphs. In Proceedings of the 7th ACM interna-
tional conference on Web search and data mining, pp. 333–342, 2014.

Laurence A Wolsey. Integer Programming. John Wiley & Sons, 2020.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy for
integer programming. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 30075–
30087. Curran Associates, Inc., 2021.

Jin Xu, Zishan Li, Bowen Du, Miaomiao Zhang, and Jing Liu. Reluplex made more practical: Leaky
relu. In 2020 IEEE Symposium on Computers and communications (ISCC), pp. 1–7. IEEE, 2020.

Huigen Ye, Hongyan Wang, Hua Xu, Chengming Wang, and Yu Jiang. Adaptive constraint partition
based optimization framework for large-scale integer linear programming (student abstract). In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 16376–16377,
2023a.

Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. GNN&GBDT-guided fast
optimizing framework for large-scale integer programming. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202, pp. 39864–39878. PMLR, 2023b.

Taehyun Yoon. Confidence threshold neural diving. arXiv preprint arXiv:2202.07506, 2022.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

11

Published as a conference paper at ICLR 2024

APPENDIX

This Appendix contains three sections. Appendix A introduces the details of some algorithms men-
tioned in the main text, elaborating on their implementation details through formulas or pseudo-code.
Appendix B describes the experimental setup, including the standard mathematical form of the stan-
dard benchmark MILP, parameter settings in data generation, and other relevant setup information.
Appendix C shows supplementary experimental results to verify the effectiveness and efficiency of
Light-MILPopt further. Appendix D shows more additional information on mixed-integer linear
programms.

A ADDITIONAL ALGORITHM DETAILS

A.1 FEATURE SELECTION POLICY

In the classical feature selection policy (Gasse et al., 2019; Nair et al., 2020), the feature selection
of nodes and edges usually depends on the coefficients in the formulation of MILP. Formally, let
hi
x, h

i
δ, h(i,j) denote the feature selection of the i-th variable node, j-th constraint node and edge

(i, j), the classical feature selection policy can be written as the following.

hi
x = (ci, li, ui, ti, di),

hj
δ = (bj , oj),

h(i,j) = (aij),

(8)

where ci, ki, ui, ti denotes the coefficient, lower bound and upper bound of the i-th decision variable
respectively; di ∈ {0, 1} represents whether the i-th decision variable restricted to take integer value
or not; bj , oj refers the value and symbol of the j-th constraint; aij denotes the weight of edge (i, j).

A.2 PROPOSED FEATURE SELECTION POLICY

Based on the classic bipartite graph representation introduced in Appendix A.1, the feature selection
policy is further improved to enhance embedding ability.

On one hand, the random feat strategy (Chen et al., 2023) is introduced to achieve better representa-
tion and embedding capabilities when facing some particular MILPs called ”foldable” (Chen et al.,
2023), that can rewrite Equation (8) as the following.

hi
x = (ci, li, ui, di, ti, ξ),

hj
δ = (bj , oj , ξ),

h(i,j) = (aij),

(9)

where ξ ∼ U(0, 1) is the random feat between 0 and 1.Specifically, by adding random features,
the predicting of MILP feasibility, optimal objective values, and optimal solutions becomes more
reliable. On the other hand, in the classical bipartite graph representation, for categorical features
such as the type of decision variables and the type of constraints, a single integer is used to represent
the categorical feature’s type. For example, for the representation of the type of constraints in j-th
constraint node, the feature selection policy is {≥→ 0,≤→ 1,=→ 2}. However, this feature selec-
tion policy is not sensitive to categorical information, resulting in weak feature neural embedding in
feature-embedding neural networks. Therefore, the one-hot strategy that is widely used in the field
of text feature representation is used for representing the categorical features, further enhancing the
impact of categorical information on the neural encoding results. In this feature selection policy, for
the representation of the type of constraints in j-th constraint node, the feature selection policy is
changed to {≥→ [1, 0, 0],≤→ [0, 1, 0],=→ [0, 0, 1]}. So we can rewrite Equation (9) to obtain the
final feature selection policy.

hi
x = (ci, li, ui, di, ti, ξ),

hj
δ = (bj , o

′
j , ξ),

h(i,j) = (aij),

(10)

where o′j is the one-hot representation of the type of constraints in j-th constraint node, and we have
o′j : {≥→ [1, 0, 0],≤→ [0, 1, 0],=→ [0, 0, 1]}.

12

Published as a conference paper at ICLR 2024

A.3 DOUBLY STOCHASTIC NORMALIZATION OPERATOR

In graph convolution operations, we utilize edge feature matrices as filters to perform element-wise
multiplication with the node feature matrix. To prevent an undesired increase in the magnitude of
the output features due to this multiplication, it is essential to normalize the edge features. Let’s
denote the raw edge features as Ê. We can obtain the normalized features, denoted as E, using the
following procedure of doubly stochastic normalization operator.

Ẽijp =
Êijp∑N
k=1 Êikp

, (11)

Eijp =

N∑
k=1

ẼikpẼjkp∑N
v=1 Ẽvkp

, (12)

where E is a tensor representing the edge features of the graph; Eij ∈ RP represents the P -
dimensional feature vector of the edge connecting the i-th and j-th nodes; Eijp denotes the p-th
channel of the edge feature in Eij . In addition, when the i-th and j-th points are not contiguous,
Eijp = 0 for any p. Such kind of normalized edge feature tensor E has the following properties.

Eijp ≥ 0, (13)
N∑
i=1

Eijp =

N∑
j=1

Eijp = 1. (14)

In simpler terms, the edge feature matrices Ê, where p ranges from 1 to P , are square, nonnega-
tive real matrices in which both the rows and columns sum up to 1. This property classifies them
as doubly stochastic matrices, meaning they exhibit both left and right stochastic characteristics.
In mathematical terms, when you have a finite Markov chain with a transition matrix that is dou-
bly stochastic, it will have a uniform stationary distribution. Now, in the context of a multi-layer
graph neural network, these edge feature matrices undergo repeated multiplication across the layers.
Utilizing doubly stochastic normalization can enhance stability in this process.

A.4 FENNEL GRAPH PARTITION ALGORITHM

Algorithm 1 FENNEL-based Graph Partition Algorithm

Input: The number of blocks k, graph G = (V, E), parameters µ, γ
Init: Label F = {}, block P = {{}, . . . , {}}
n← |V|
m← |E|
α←

√
k m
n3/2

load limit← ν n
k

for v = 1 to n do
for i = 1 to k do

if |Pi| < load limit then
N(v)← {u, (u, v) ∈ E}
δg(v,Pi)← |Pi ∩N(v)| − αγ|Pi|γ−1

end if
end for
ind← argmaxiδg(v,Pi)
Add v into Pi

F [v]← ind
end for
Return: F

For graphs at the million-level scale, the streaming graph partitioning algorithm is commonly em-
ployed. There exist two primary heuristics for streaming graph partitioning. On one hand, newly
arrived vertices are placed in the cluster with the greatest number of neighbors. On the other hand,

13

Published as a conference paper at ICLR 2024

they can be placed in the cluster with the fewest non-neighbors. FENNEL, however, introduces an
innovative approach by combining these two heuristics.

Formally, for a graph G = (V, E) comprising n vertices and m edges, to be partitioned into k blocks,
FENNEL aggregates vertices with dense edges into a single block, while segregating vertices with
sparse edges into separate blocks. More specifically, it systematically evaluates each newly arrived
vertex v in the graph, one by one, and computes δg(v,Pi) for each block Pi that satisfies |Pi| < ν n

k ,
as follows:

δg(v,Pi)← |Pi ∩N(v)| − αγ|Pi|γ−1, (15)

where N(v) denotes the neighbor node set of v, ν, γ are preset parameters related to block balancing
and minimum cut, and α =

√
k m
n3/2 denotes the balance of two types of heuristics. The details are

shown in Algorithm 1.

A.5 INITIAL SOLUTION PREDICTION

The initial solution prediction based on machine learning often uses Graph Convolutional Neural
Networks (GNN) to predict the initial solution of the complete problem (Gasse et al., 2019; Nair
et al., 2020; Sonnerat et al., 2021; Ye et al., 2023b). However, this approach faces two major chal-
lenges. On one hand, as the problem scale increases, the required storage resources, especially GPU
memory, steadily rise, making it difficult to solve large-scale or even super-large-scale problems.
On the other hand, GNNs achieve initial solution prediction by learning the distribution mapping of
isomorphic mixed-integer problems to optimal solutions. However, in more complex problems, the
predicted solutions obtained using this method are often infeasible.

To overcome the shortcomings of existing methods, we propose a novel initial solution prediction
strategy. To address the first problem, we propose using the FENNEL graph partitioning algorithm
to decompose large-scale Mixed-Integer Linear Programming (MILP) into several smaller subprob-
lems. We predict the optimal solution for each subproblem and concatenate them to obtain the initial
feasible solution for the complete problem, allowing training and inference to be performed only on
small-scale problems. Regarding the second problem, previous work attempted to predict the prob-
ability of each point being set to 1. Then, for parameters (k0, k1), k0 probabilities with the highest
values are fixed to 1, and k1 probabilities with the lowest values are fixed to 0 (Han et al., 2023).
However, this method requires setting different hyperparameters for different problems. Therefore,
for Mixed-Integer Linear Programming problems, we propose using the Repair algorithm to obtain
a feasible solution from the current solution. This algorithm identifies illegally constrained decision
variables, cancels the predictions for these variables, uses a small-scale solver to solve for the initial
values of the canceled decision variables, and ultimately obtains a feasible solution. See Appendix
Algorithm 5 for details on the Repair algorithm.

It’s worth notice that the framework’s solving approach is designed for problems with the same struc-
ture and mathematical properties. It involves unified training, prediction, and neighborhood search
to obtain optimized solutions. Additionally, it can efficiently handle large-scale problems using only
small-scale training data. For problems with different properties, a secondary training process is
required to construct a new feasible solution prediction model tailored to the specific problem. For
example, problems with different scales of minimum point cover can be trained together. However,
if the goal shifts to solving minimum set cover problems, a new feasible solution prediction model
needs to be retrained.

A.6 INITIAL SOLUTION SEARCH

Given the predicted value ŷi and the prediction loss Pi for each decision variable, the decision vari-
ables are arranged in ascending order based on their prediction losses. For the pre-defined coefficient
α ∈ (0, 1) which denotes that the lightweight optimizer can solve small-scale MILP containing at
most αn decision variables, the first (1 − α)n decision variables are held constant, while the re-
maining variables are explored within a predetermined fixed radius. The specific steps are outlined
in Algorithm 2.

In Algorithm , η ∈ (0, 1) is a reduction coefficient used to expand the fixed proportion, REPAIR ()
is the function shown in Appendix A.8.

14

Published as a conference paper at ICLR 2024

Algorithm 2 Initial Solution Search

Input: The number of decision variables n, predicted value ŷ, prediction loss P , variable propor-
tion α
Init: Initial Solution X = {}
X ← ŷ
Sort the decision variables in ascending order of P
αset = α
repeat
F ← The first (1− αset)n decision variables ▷Fixed
U ← The last αset decision variables ▷Unfixed
F ′,U ′ ← REPAIR(F ,U ,X)
if |U ′| > αn then
αset = η ∗ αset

end if
until |U ′| ≤ αn
X ← SEARCH(F ′,U ′,X)
Return: X

A.7 NEIGHBORHOOD SEARCH AND INDIVIDUAL CROSSOVER

Specifically, for the i-th neighborhood Ni, Algorithm 3 shows the details in neighborhood search.

Algorithm 3 Neighborhood Search

Input: The set of decision variables X , the number of decision variables n, predicted value ŷ,
prediction loss P , variable proportion α, neighborhood Nnow, current solution X
Init: Neighborhood search solution X ′ = {}
Sort the decision variables in Nnow in descending order of Pi ∗ |ϕi − ŷi|
N ← The first αn decision variables in Nnow

F ← {x∥x ∈ X ∧ x /∈ N} ▷Fixed
U ← {x∥x ∈ X ∧ x ∈ N} ▷Unfixed
X ′ ← SEARCH(F ,U ,X)
Return: X ′

where Pi, Xi and ŷi denotes the prediction loss, the value in the current solution and the predicted
value of the i-th decision variable respectively.

Algorithm 4 Neighborhood Crossover

Input: The set of decision variables X , the number of decision variables n, neighborhood N1, N2,
neighborhood search solution X ′

1,X ′
2

Init: Neighborhood crossover solution X = {}
X ′′ ← {}
for i = 1 to n do

if The i-th decision variables in N1 then
X ′′[i]← X ′

1[i]
else
X ′′[i]← X ′

2[i]
end if

end for
F ← X ▷Fixed
U ← ∅ ▷Unfixed
F ′,U ′ ← REPAIR(F ,U ,X ′′)
if |U ′| ≤ αn then
X← SEARCH(F ′,U ′,X ′′)

end if
Return: X

15

Published as a conference paper at ICLR 2024

Given that the size of the neighborhood is constrained to at most αn, there is a heightened risk of
becoming trapped in local optima due to the limited radius of the neighborhood search. Conse-
quently, neighborhood crossover plays a pivotal role. Algorithm 4 outlines the specific procedure
for crossing two neighborhoods, denoted as N1 and N2.

A.8 REPAIR ALGORITHM

Algorithm 5 REPAIR Algorithm

Input: The set of fixed variables F , the set of unfixed variables U , the current solution X
{A, b, l, u} ← The coefficient of the given MILP
n← the number of decision variables
m← the number of constraints
for i = 1 to m do
N ← 0
for j = 1 to n do

if The j-th decision variable ∈ F then
N ← N + Xj ∗Ai,j

else
if Aij > 0 then
N ← N + lj ∗Ai,j

end if
if Aij < 0 then
N ← N + uj ∗Ai,j

end if
end if

end for
if N > bi then

for j = 1 to n do
if The j-th decision variable ∈ F then

Remove the j-th decision variable from F
Append the j-th decision variable into U
N ← N −Xj ∗Ai,j

if Aij > 0 then
N ← N + lj ∗Ai,j

end if
if Aij < 0 then
N ← N + uj ∗Ai,j

end if
if N ≤ bi then

BREAK
end if

end if
end for

end if
end for
Return: F ,U

The initial solution search, neighborhood search and individual crossover with a lightweight opti-
mizer for MILP are widely used in the proposed framework to improve the current solution, which
can be written as the following.

min
x/∈F

cTx

subject toAx ≤ b, l ≤ x ≤ u,

xj ∈ Z, j ∈ I,
xi = x̂i,∀xi ∈ F ,

(16)

where x̂i represents the value of the i-th decision variable in the current solution, and F refers to
the set of decision variables fixed to their current solution values. However, it is worth noting that

16

Published as a conference paper at ICLR 2024

the Mixed-Integer MILP corresponding to Equation (16) may become infeasible, resulting in the
failure of the current solution. To address this issue, we introduce a REPAIR Algorithm designed
to examine and rectify constraints that are inherently infeasible by removing the fixation of certain
illegal variables associated with these infeasible constraints.

In particular, when dealing with a given Mixed-Integer Linear Programming (MILP) problem along-
side a set of fixed variables denoted asF , the REPAIR algorithm systematically iterates through each
constraint within the MILP. For each constraint under consideration, the algorithm assesses whether
it is inevitably infeasible based on the upper and lower bounds of unfixed variables. If the algorithm
determines that the constraint is indeed destined to be infeasible, it proceeds to release the fixation
of specific decision variables associated with the constraint, aiming to restore its feasibility. The
intricate steps of this process are elucidated in Algorithm 5.

A.9 PROBLEM REDUCTION RATE

Regarding the chosen dimension reduction ratio (α), it can indeed only be at an (O(1)) level, and
achieving a final subproblem significantly smaller than the original problem is not feasible. How-
ever, this has crucial practical implications. For mixed-integer programming problems, people typ-
ically resort to solvers. The scalability of solvers depends on both internal algorithmic settings and
the user’s machine configuration. In a given solver environment and computational resource con-
straints, individuals can only solve problems within a specific size limit, for example, those with (k
) decision variables. Previous research on machine learning-based solutions for large-scale mixed-
integer programming problems also often required solvers of the same size as the problem being
tackled(Sonnerat et al., 2021; Wu et al., 2021).

In our work, we introduced a dimension reduction approach that simultaneously operates on the
decision variable and constraint levels. In our test problems, when the number of decision vari-
ables reduces to 30% and the number of constraints reduces to 20% of the original problem, our
framework can still generate high-quality feasible solutions. This implies that within a given solver
environment and computational resource constraints, we can surpass the limits imposed by solving
problems of specific sizes (e.g., with (k) decision variables) and efficiently solve larger-scale mixed-
integer programming problems (e.g., with (2k) or (3k) decision variables). Therefore, proposing the
dimension reduction ratio (α) not only improves the efficiency of problem-solving but also serves
as inspiration for overcoming physical resource constraints in solving even larger-scale problems.

It is worth notice that the choice of the decision variable reduction parameter α (which is set at
approximately 30% based on empirical findings (Nair et al., 2020)) is fixed at the beginning and re-
mains small-scale throughout the run; it does not change during the run to large-scale. For constraint
reduction, to reduce the drawbacks of empirical settings, we adopt a progressive strategy. Initially,
more constraint conditions are retained, and as optimization progresses, redundant constraints are
automatically identified based on the current solution. The number of constraint conditions gradu-
ally decreases through the removal of redundant constraints. Practical experiments have shown that
for most baseline tests, we can achieve a reduction of decision variables to 30% and constraints to
20% of the original problem size. The automatic selection of α is our next research goal, and we
will explore learning algorithms to automatically determine the value of α. It is worth mentioning
that with the variation of α, the final value is generally a unimodal function, effectively achieving
the use of a certain scale of small-scale solvers to solve large-scale problems.

B EXPERIMENTS DETAILS

B.1 EXPERIMENTAL SETTINGS

All experiments are run on a machine with Intel Xeon Platinum 8375C @ 2.90GHz CPU and four
NVIDIA TESLA V100(32G) GPU. Each scale of any Benchmark MILP is tested on five different
instances, and the results shown are the average of the five results.

17

Published as a conference paper at ICLR 2024

B.2 BASELINES

In this paper, two types of baselines are employed. One type of the baselines is the latest ML-based
optimization framework based on GNN&GBDT(Ye et al., 2023b). The other type of baselines
is the state-of-the-art MILP solvers, including SCIP(4.3.0) (Achterberg, 2009) and Gurobi(10.0.1)
(Achterberg, 2019). Their scale-constrained versions are used as the lightweight optimizer for both
the proposed framework and the latest ML-based optimization framework.

In the comparative experiments with the advanced solver Gurobi (or SCIP), Gurobi is utilized in
three instances: first, as the baseline solver; second, within the baseline machine learning frame-
work GNN&GBDT, Gurobi with decision variable scale constraints is employed as a small-scale
optimizer; third, in the proposed framework Light-MILPopt, Gurobi with decision variable scale
constraints is used as a small-scale optimizer. In all these cases, Gurobi is used with default settings,
without any parameter modifications, for reading and solving the problems. This approach of using
solvers with default settings for fair comparisons is a common practice in prior works (Gasse et al.,
2019; Nair et al., 2020; Sonnerat et al., 2021; Ye et al., 2023b; Wu et al., 2021).

B.3 DATASET

For the four widely used NP-hard benchmark MILPs, the existing data set cannot meet such large-
scale data requirements, so we use data generators to generate training and test data sets. Specif-
ically, for the Maximum Independent Set problem (MIS) or Minimum Vertex Covering problem
(MVC) with n decision variables and m constraints, we generate a random graph with n nodes and
m edges to correspond to an MILP that meets the scale requirements. For the Set Covering problem
(SC) with n decision variables and m constraints, we generate a random problem with n items and
m sets where each set bid includes 4 items. For the Mixed Integer Knapsack Set (MIKS) with n
decision variables and m constraints, we generate a random problem with n items and m dimension
where each dimension includes 4 items and at least half of the items are items with integer con-
straints. For the optimal solution in the training data set, we use Gurobi to run for 8 hours to find the
approximate optimal solution.

The decision variables and constraint scale of the one case study in the internet domain and four
widely used NP-hard benchmark MILPs are shown in Table 3.

Table 3: The size of one real-world case study in the internet domain and four widely used NP-
hard benchmark MILPs. SC denotes the Set Covering problem. MVC denotes the Minimum Vertex
Covering problem. MIS denotes the Maximum Independent Set problem. MIKS denotes the Mixed
Integer Knapsack Set problem. Case Study denotes the real-world case study.

Problem Scale Number of
Variables

Number of
Constraints

SC
(Minimize)

SC1 200000 200000
SC2 2000000 2000000

MVC
(Minimize)

MVC1 100000 300000
MVC2 1000000 3000000

MIS
(Maximize)

MIS1 100000 300000
MIS2 1000000 3000000

MIKS
(Maximize)

MIKS1 200000 200000
MIKS2 2000000 2000000

Case Study
(Maximize) Case Study 2040000 100003

C ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSIONS

C.1 COMPARISON OF CONSTRAINTS REDUCTION

To facilitate ablation experiments concerning constrained reduction, a pivotal innovation within
Light-MILPopt, and to validate the efficacy of this technique, we conducted a comparative anal-
ysis. We evaluated the solution outcomes of our proposed frameworks under two conditions: with

18

Published as a conference paper at ICLR 2024

Table 4: Comparison of the solving results of the Light-MILPopt optimization framework with
constrains reduction and without constrains reduction for a fixed runtime. With-30%S means the
proposed framework with the scale-limited versions of SCIP which limit the variable proportion
α to 30% and with constrains reduction. Without-50%S means the proposed framework with the
scale-limited versions of SCIP which limit the variable proportion α to 50% and without constrains
reduction.

SC2 MVC2 MIS2 MIKS2

With-30%S 166756.0 273014.6 227074.5 355887.6
Without-30%S 167169.5 292510.1 174894.4 354614.6

With-50%S 166966.9 269771.3 230278.1 357483.8
Without-50%S 197515.8 284936.2 190243.5 349676.3

Time 12000s 8000s 8000s 12000s

Table 5: The size of three Ultra-large-scale benchmark MILPs. SC represents Set Covering, MVC
represents Minimum Vertex Cover, and MIS represents Maximum Independent Set.

SC3 MVC3 MIS3

Number of Variables 20000000 10000000 10000000
Number of Constraints 20000000 30000000 30000000

and without constrained dimensionality reduction. This evaluation was performed on four standard
large-scale Mixed-Integer Linear Programs (MILPs) under fixed solution time constraints. The re-
sults of these experiments are presented in Table 4. The findings from our experiments demonstrate
that constrained reduction significantly enhances the performance of our framework across all test
problems. It effectively improves the framework’s ability to find solutions and boosts overall solving
efficiency.

C.2 FURTHURE ANALYSIS OF CONVERGENCE

To delve deeper into the solution performance and convergence capabilities of Light-MILPopt across
varying problem sizes, we conducted a comprehensive analysis. We generated time-objective func-
tion plots for our proposed framework as well as baseline algorithms, utilizing Gurobi as a sub-
solver, across a range of standard benchmark MILPs. The experimental results, depicted in Figure 6
and Figure 7, unequivocally demonstrate the superiority of our proposed framework. Regardless of
the problem size, it consistently outperforms the baseline algorithm, producing higher-quality solu-
tions within fixed time constraints. Furthermore, our framework exhibits convergence performance
on par with that of the commercial solver Gurobi.

C.3 COMPARISON ON ULTRA-LARGE-SCALE MILPS

We extend the generalization capabilities of the proposed Light-MILPopt method, trained on small-
scale data with decision variables and constraints in the order of tens of thousands, to solve problems
with decision variables and constraints in the order of tens of millions. The problem scales are
illustrated in the Table 5, where SC represents Set Covering, MVC represents Minimum Vertex
Cover, and MIS represents Maximum Independent Set.

The solution results are presented in the Table 6, where Ours-30%S and Ours-50% represent the re-
sults of the proposed framework using only 30% or 50% of the original problem scale for lightweight
small-scale SCIP solving. SCIP indicates the results obtained directly using the baseline solver
SCIP. It is evident that the proposed Light-MILPopt method maintains a significant advantage over
the baseline solver, even when dealing with problem scales in the order of tens of millions for both
decision variables and constraints.

C.4 ANALYSIS OF GENERALIZATION CAPABILITIES

The proposed solution method for solving large-scale MILPs based on EGAT with half convolutions
structure is notable for its use of the FENNEL-based problem partitioning strategy. This strategy

19

Published as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000 12000

Time

160000

180000

200000

220000

240000

260000

280000

300000

320000

Ob
je

ct
iv

e

Ours30%G
Ours50%G
GNN&GBDT30%G
GNN&GBDT50%G
Gurobi

(a)

1000 2000 3000 4000 5000 6000 7000 8000

Time

270000

280000

290000

300000

310000

320000

330000

340000

350000

Ob
je

ct
iv

e

Ours30%G
Ours50%G
GNN&GBDT30%G
GNN&GBDT50%G
Gurobi

(b)

2000 4000 6000 8000

Time

160000

170000

180000

190000

200000

210000

220000

230000

Ob
je

ct
iv

e

Ours30%G
Ours50%G
GNN&GBDT30%G
GNN&GBDT50%G
Gurobi

(c)

0 2000 4000 6000 8000 10000 12000

Time

175000

200000

225000

250000

275000

300000

325000

350000

Ob
je

ct
iv

e

Ours30%G
Ours50%G
Gurobi

(d)

Figure 6: Time-objective figure for the large-scale benchmark MLIPs. (a) The minimized SC2

problem. (b) The minimized MVC2 problem. (c) The minimized MIS2 problem. (d) The minimized
MIKS2 problem.

Table 6: Comparison of the solving results of the Light-MILPopt optimization framework with SCIP
on three Ultra-large-scale benchmark MILPs. With-30%S means the proposed framework with the
scale-limited versions of SCIP which limit the variable proportion α to 30%. With-50%S means the
proposed framework with the scale-limited versions of SCIP which limit the variable proportion α
to 50%.

SC3 MVC3 MIS3

Ours-30%G 1667157.94 2724414.73 2267990.75
Ours-50%G 1603278.85 2694126.35 2299504.56

Gurobi 3198747.63 2834161.28 2165906.72
Ours-30%S 1672097.50 2731152.61 2256644.32
Ours-50%S 2889696.49 2696953.27 2299950.04

SCIP 9190301.09 4909317.99 90750.01
Time 80000s 80000s 80000s

decomposes large-scale MILPs into several smaller subproblems, predicting the optimal solution
for each subproblem and concatenating them to obtain the initial feasible solution for the complete
problem. This approach allows training and inference to be performed exclusively on smaller-scale
problems. Therefore, for specific new optimization problems, it is not constrained by the decision
variable and constraint quantities of existing training datasets, demonstrating robust generalization
capabilities across different scales of new optimization problems. For instance, while the training
dataset comprises small-scale data with decision variables and constraints in the order of tens of
thousands, the testing dataset includes problems with decision variables and constraints ranging
from hundreds of thousands to millions, as shown in Table 1 and Table 2.

20

Published as a conference paper at ICLR 2024

0 500 1000 1500 2000

Time

16000

18000

20000

22000

24000

26000

28000

30000

32000

Ob
je

ct
iv

e

Ours30%G
Ours50%G
GNN&GBDT30%G
GNN&GBDT50%G
Gurobi

(a)

0 500 1000 1500 2000

Time
27000

28000

29000

30000

31000

32000

33000

34000

35000

Ob
je

ct
iv

e

Ours30%G
Ours50%G
GNN&GBDT30%G
GNN&GBDT50%G
Gurobi

(b)

0 250 500 750 1000 1250 1500 1750 2000

Time
15000

16000

17000

18000

19000

20000

21000

22000

23000

Ob
je

ct
iv

e

Ours30%G
Ours50%G
GNN&GBDT30%G
GNN&GBDT50%G
Gurobi

(c)

0 250 500 750 1000 1250 1500 1750 2000

Time
17500

20000

22500

25000

27500

30000

32500

35000

Ob
je

ct
iv

e
Ours30%G
Ours50%G
Gurobi

(d)

Figure 7: Time-objective figure for the medium-scale benchmark MLIPs. (a) The minimized SC1

problem. (b) The minimized MVC1 problem. (c) The minimized MIS1 problem. (d) The minimized
MIKS1 problem.

Table 7: Comparison of initial solution prediction results applying only small-scale training data
versus using a mixture of small-scale and medium-scale training data. Ours-30% means the pro-
posed framework with variable proportion α to 30% using only small-scale training data. MIX-30%
means the proposed framework with variable proportion α to 50% using a mixture of small-scale
and medium-scale training data.

SC1 SC2 MVC1 MVC2 MIS1 MIS2

Ours-30% 29962.09 295981.16 34634.96 346677.69 15275.82 158352.06
MIX-30% 28882.44 290205.17 31788.13 318258.13 14577.61 152015.11
Ours-50% 30694.93 312419.34 33280.27 333192.51 16384.02 167161.47
MIX-50% 29710.68 300873.89 32424.85 323032.42 16044.14 162911.65

The proposed method also demonstrates adaptability to different scales of training data and uniform
learning capabilities. Even when training data vary in scale, the model can be trained consistently
and coherently. We supplement the results of training using a mixture of small-scale and medium-
scale training data, shown in Table 7. Specifically, Ours represents the results of training with only
small-scale training data, while Mix represents the results of training with the addition of medium-
scale training data on top of small-scale training data. The results indicate that, in the case of SC and
MVC problems, adding medium-scale training data enhances the generalization capability for initial
solution prediction in large-scale data. Meanwhile, for MIS problems, the addition of training data
of different scales yields results comparable to those without further improvement, suggesting satu-
ration in the training data for the specific problem. Thus, even when using training data containing
problems of different scales, the trained model can efficiently solve large-scale problems.

21

Published as a conference paper at ICLR 2024

Table 8: Comparison of initial solution prediction results using confidence threshold versus using
SelectiveNet. Ours-30% represents the initial feasible solution results obtained by reducing deci-
sion variables to 30% of the original problem using confidence threshold-based reduction, while
SelectiveNet-50% represents the results obtained by reducing decision variables to 50% of the orig-
inal problem using SelectiveNet.

SC1 SC2 MVC1 MVC2 MIS1 MIS2

Ours-30% 29962.09 295981.16 34634.96 346677.69 15275.82 158352.06
SelectiveNet-30% 25605.41 261728.93 49993.15 500171.37 13804.92 145147.94

Ours-50% 30694.93 312419.34 33280.27 333192.51 16384.02 167161.47
SelectiveNet-50% 25605.41 261728.93 49993.15 500171.37 13804.92 145147.94

Table 9: Comparison of the selection of network structure in initial feasible solution prediction.
Var-30% represents predicting 70% of decision variables, and the remaining 30% are solved using
a small-scale solver.

GNN&GBDT GAT EGAT
Var-30% 1817.3 1530.7 1872.3
Var-40% 1928.5 1681.8 2002.3
Var-50% 2007.0 1838.2 2067.9
Var-60% 2036.1 1987.8 2096.5

C.5 ABLATION STUDIES

C.5.1 VARIABLE REDUCTION METHODS

For the choice of decision variable reduction strategy, we compare two methods: SelectNet and con-
fidence threshold-based reduction. The experimental results are presented in the Table 8. The results
indicate that SelectiveNet selected in this paper has an advantage in one of the three problems and is
noticeably inferior in the remaining two problems compared to the current method. Considering that
SelectiveNet requires retraining the network for different reduction ratios, whereas the confidence
threshold-based method requires training only once and can be used for different reduction ratios,
we ultimately chose the confidence threshold-based selection method. Furthermore, further analysis
revealed that the fixed selection threshold in SelectiveNet led to conservative model predictions. In
subsequent experiments, we combined the strengths of SelectNet and confidence threshold-based
methods, resulting in better overall results.

C.5.2 NETWORK STRUCTURE SELECTION

In the model-based initial solution prediction module, classical methods often use graph convo-
lutional neural networks (Nair et al., 2020; Gasse et al., 2019). However, these methods do not
consider different correlations between neighborhoods. Therefore, Ding et al. (2020) introduced the
GAT with an attention mechanism to capture correlations between points for better initial solution
prediction. However, this GAT only updates node features and ignores the positive impact of edge
feature updates on neighborhood aggregation. Therefore, we further introduced the EGAT (Gong &
Cheng, 2019) with an edge update mechanism, combined with half convolutions layers for higher
computational efficiency. We also compared the above methods and prediction methods based on
GNN&GBDT (Ye et al., 2023b) in the preliminary exploration.

So we compare the selection of network structure in initial feasible solution prediction. In our earlier
exploration, we tried the GNN&GBDT structure, the integrated GAT structure, and the integrated
EGAT structure with multiple layers of half convolutions layers. We conducted comparative tests
on small-scale maximization MILP problems, where Var-30% represents predicting 70% of decision
variables, and the remaining 30% are solved using a small-scale solver. Higher values indicate better
predictive performance. The results are shown in Table 9. It show that the current method, which
adopts the EGAT method with multiple layers of half convolutions, has a clear advantage.

22

Published as a conference paper at ICLR 2024

Table 10: Comparison of the proposed framework and Gurobi’s initial solution generation. Ours-
30% represents predicting 70% of decision variables, and the remaining 30% are solved using a
scale-limited versions of Gurobi which limit the variable proportion α to 30%.

SC1 SC2 MVC1 MVC2 MIS1 MIS2

Ours-30% 29962.09 295981.16 34634.96 346677.69 15275.82 158352.06
Ours-50% 30694.93 312419.34 33280.27 333192.51 16384.02 167161.47

Gurobi 32040.60 320272.92 33802.45 338198.32 16190.70 161973.05

Table 11: Comparison of initial solution generation time between the proposed framework and
Gurobi.

SC1 SC2 MVC1 MVC2 MIS1 MIS2

Ours-Time 68.88s 655.00s 53.81s 495.38s 49.60s 480.74s
Gurobi-Time 336.77s 3399.88s 375.37s 2702.16s 279.23s 2742.89s

C.5.3 INITIAL SOLUTION GENERATION STRATEGIES

We compare the initial solution generation capabilities of the proposed method with commercial
solver Gurobi on three standard benchmark problems, that is shown in table 10. The results show
that, under the same generation time, the proposed method, aided by initial solution prediction, can
obtain better initial feasible solutions than Gurobi.

Further analysis shown in table 11 reveals that our initial solution prediction method not only obtains
better initial feasible solutions but also significantly improves efficiency compared to Gurobi. It
requires only 20% of the time Gurobi needs to generate feasible solutions and achieves better-quality
initial feasible solutions.

C.6 ADDITIONAL INSTANCES FROM MIPLIB

To further validate the effectiveness of the proposed method in solving initial feasible solutions for
complex real-world problems, we conducted tests on real-world problems SCP from MIPLIB. The
results demonstrate that the proposed framework can effectively predict initial solutions for real-
world problems and efficiently solve them. The table below presents experimental results.

Table 12: Comparison of objective value results with baselines under the same running time on SCP.
Ours-30%S represents the results obtained by the proposed framework using a restricted version of
SCIP with a solution size limited to 30% of the original problem, and Ours-50%G represents the
results obtained using a restricted version of Gurobi with a solution size limited to 50% of the
original problem.

scpm1 scpn2
Ours-30%S 718.0 666.0
Ours-50%S 754.0 700.0

SCIP 807.0 19145.0
Ours-30%G 662.0 665.0
Ours-50%G 676.0 604.0

Gurobi 836.0 793.0
Time 2000s 2000s

D ADDITIONAL INFORMATION ON MILPS

Mixed Integer Linear Programs (MILPs) are a type of problem in which the objective function is
linear under several linear constraints, where some or all decision variables are restricted to take
integer values, and the other decision variables are real numbers. Formally, an MILP has the form
as the following.

min
x

cTx, subject toAx ≤ b, l ≤ x ≤ u, xi ∈ Z, i ∈ I, (17)

23

Published as a conference paper at ICLR 2024

where x are the decision variables whose number is denoted by n ∈ Z, with l, u, c ∈ Rn being their
lower bound, upper bound and coefficient, respectively. A ∈ Rm×n and b ∈ Rm denote the linear
constraints. I ⊆ {1, 2, . . . , n} is the index set of integer variables.

A solution is feasible for the MILP if decision variables x ∈ Rn satisfy all the constraints in Equation
(17). An MILP is infeasible if there exists a feasible solution, while it is infeasible if there exists no
solution that satisfies all of the constraints – in other words, if no feasible solution can be constructed
(Guieu & Chinneck, 1999).

A feasible solution is optimal if it attains the minimum objective function value of the minimized
MILP. An MILP is bounded if there exists an optimal solution, while unbounded if the objective
function may be improved indefinitely without violating the constraints and bounds (Byrd et al.,
1987).

24

	Introduction
	Preliminaries
	Mixed Integer Linear Programs
	Bipartite Graph Representation
	Graph Convolutional Network
	Edge Aggregated Graph Attention Network

	The Proposed Light-MILPopt
	Problem Formulation
	Model-based Initial Solution Prediction
	Problem Reduction
	Data-driven Optimization

	Experiments
	Comparisons of Solving Effectiveness
	Comparisons of Solving Efficiency
	Analysis of Convergence

	Conclusion
	Additional Algorithm Details
	Feature Selection Policy
	Proposed Feature Selection Policy
	Doubly Stochastic Normalization Operator
	FENNEL Graph Partition Algorithm
	Initial Solution Prediction
	Initial Solution Search
	Neighborhood Search and Individual Crossover
	REPAIR Algorithm
	Problem Reduction Rate

	Experiments Details
	Experimental Settings
	Baselines
	Dataset

	Additional Experimental Results and Discussions
	Comparison of Constraints Reduction
	Furthure Analysis Of Convergence
	Comparison on Ultra-large-scale MILPs
	Analysis of Generalization Capabilities
	Ablation Studies
	Variable Reduction Methods
	Network Structure Selection
	Initial Solution Generation Strategies

	Additional Instances from MIPLIB

	Additional Information on MILPs

