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ABSTRACT

Grid cells in the medial entorhinal cortex (MEC) of the mammalian brain exhibit
a strikingly regular hexagonal firing field over space. These cells are learned after
birth and are thought to support spatial navigation but also more abstract computa-
tions. Although various computational models, including those based on artificial
neural networks, have been proposed to explain the formation of grid cells, the
process through which the MEC circuit learns to develop grid cells remains un-
clear. In this study, we argue that predictive coding, a biologically plausible plas-
ticity rule known to learn visual representations, can also train neural networks
to develop hexagonal grid representations from spatial inputs. We demonstrate
that grid cells emerge robustly through predictive coding in both static and dy-
namic environments, and we develop an understanding of this grid cell learning
capability by analytically comparing predictive coding with existing models. Our
work therefore offers a novel and biologically plausible perspective on the learn-
ing mechanisms underlying grid cells. Moreover, it extends the predictive coding
theory to the hippocampal formation, suggesting a unified learning algorithm for
diverse cortical representations.

1 INTRODUCTION

Our brain contains a rich set of neural representations of space that help us navigate in an ever-
changing world. These include hippocampal place cells (O’Keefe, 1976), which fire when an ani-
mal is at a specific spatial position, and grid cells observed in the medial entorhinal cortex (MEC)
(Hafting et al., 2005), which fire when an animal occupies multiple positions on a hexagonal or
triangular grid. Grid cells have been observed across various species (Fyhn et al., 2008; Yartsev
et al., 2011; Doeller et al., 2010), and their remarkable regularity has raised extensive interest in
the computational mechanism underlying their emergence. Earlier models have focused on how
mechanisms, such as membrane potential oscillation (O’Keefe & Burgess, 2005; Hasselmo et al.,
2007) and specialized recurrent connectivity, can generate grid-like firing patterns (Fuhs & Touret-
zky, 2006; Burak & Fiete, 2009). More recently, research has shown that grid cells can emerge in
recurrent neural networks (RNNs) trained using backpropagation through time (BPTT) for path in-
tegration tasks. The models are trained to predict their current location by integrating velocity inputs
(Cueva & Wei, 2018; Banino et al., 2018; Whittington et al., 2020; Sorscher et al., 2023), provid-
ing a normative, task-driven account of the computational problem that the MEC grid cells address.
However, the process by which the MEC circuit acquires, or learns the grid cells in a biologically
plausible way has been largely neglected, despite the fact that grid cells are known to be learned,
rather than hardwired at birth (Langston et al., 2010; Wills et al., 2010). Existing learning mod-
els (e.g. Weber & Sprekeler (2018)) are highly specialized for grid cells, and it is unclear whether
plasticity rules for only one specific cell type exist in the brain.

In this paper, we directly tackle the learning problem underlying the emergence of grid cells using
predictive coding, an algorithm modeling the plasticity rules for a variety of cortical functions and
representations (Rao & Ballard, 1999; Friston, 2005). Our approach to modeling grid cell emergence
through predictive coding is motivated by three key factors: Firstly, the predictive coding algorithm
can be implemented in predictive coding networks (PCNs) with local computations and Hebbian
plasticity (Bogacz, 2017), making it more biologically plausible than learning rules such as back-
propagation. Secondly, PCNs have been successful in replicating representations in other regions of
the brain, such as the visual cortex (Rao & Ballard, 1999; Olshausen & Field, 1996; Millidge et al.,
2024). Thirdly, PCNs have demonstrated the ability to perform hippocampus-related functions, such
as associative and sequential memories (Salvatori et al., 2021; Tang et al., 2023; 2024).
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The primary contribution of this work is to demonstrate for the first time that grid cells naturally
emerge in PCNs trained to represent spatial inputs with biologically plausible plasticity rules. In
this work we:

• show that hexagonal grid cells develop as the latent representations of place cells in classical PCNs
(Rao & Ballard, 1999; Olshausen & Field, 1996) with sparse and non-negative constraints;

• train a dynamical extension of classical PCNs, called temporal predictive coding network (tPCN)
(Millidge et al., 2024), in path integration tasks and observe that the latent activities of the tPCN
develop hexagonal, grid-like representations, similar to what has been discovered in RNNs;

• develop an understanding of grid cell emergence in tPCN, by showing analytically that the Heb-
bian learning rule of tPCN implicitly approximates truncated BPTT (Williams & Peng, 1990);

• show that tPCN can robustly develop grid cells under different architectural choices, and even
without velocity inputs in path integration.

Overall, our results present an effective and plausible learning rule for hexagonal grid cells in the
MEC based on predictive coding. We offer a novel extension of predictive coding theory, which
has traditionally been used to model visual representations (Rao & Ballard, 1999; Olshausen &
Field, 1996), to encompass spatial representations in the MEC. Our findings therefore offer a novel
understanding of how a single, unified learning algorithm can be employed by different brain regions
to represent inputs of various levels of abstraction.

2 RELATED WORK

Computational Models of Grid Cells The periodicity of grid cells inspired early models of grid
cells based on membrane potential oscillations, where the periodic firing of grid cells results nat-
urally from the interference between somatic and dendritic oscillators in MEC pyramidal neurons
(O’Keefe & Burgess, 2005; Hasselmo et al., 2007). These models were subsequently extended to
incorporate multiple networks of oscillatory neurons (Zilli & Hasselmo, 2010). However, these
models lack biological plausibility as they require an unrealistically large number of networks (Gio-
como et al., 2011). Another major family of models leverages the recurrent attractor networks and
obtains grid firing patterns (Fuhs & Touretzky, 2006; Burak & Fiete, 2009; Ocko et al., 2018) by
hand-tuning the recurrent connectivity to form a center-surround structure. These networks perform
robust and accurate path integration (Burak & Fiete, 2009) and can explain experimental observa-
tions such as the deformation of grid cells in irregular environments (Ocko et al., 2018). However,
as pointed out by Sorscher et al. (2023), these models lack an explanation for the underlying spatial
task that gives rise to the specific recurrent connectivity.

To address this gap, recent studies have explored the question ‘If grid cell is the answer, what is
the question?’. Dordek et al. (2016) showed that grid cells emerge as the non-negative principal
components of place cells, while Stachenfeld et al. (2017) proposed that grid cells form a basis for
predicting future observations. Other studies have focused on the multi-modularity of grid cells by
optimizing biologically constrained objective functions (Dorrell et al., 2022; Schaeffer et al., 2024).
Notably, multiple research tracks have found that RNNs trained to perform path integration tasks
will develop hexagonal grid representations in their latent states (Cueva & Wei, 2018; Banino et al.,
2018; Whittington et al., 2020), suggesting that grid cells emerge as a result of successful navigation.
These findings were further reinforced by Sorscher et al. (2023), who analytically demonstrated that
path integration with certain implementation choices, such as non-negativity, is a sufficient condition
for the emergence of grid cells, clarifying earlier controversies (Schaeffer et al., 2022). However,
none of these works have addressed how the MEC/hippocampal network learns the grid cells. The
RNN models are trained by BPTT, a learning rule unlikely to be employed by the brain (Lillicrap
& Santoro, 2019). Even though the principal component model by Dordek et al. (2016) can be
learned with the plausible Sanger’s rule (Sanger, 1989), it has been shown that principal component
analysis (PCA) cannot be applied to other brain regions such as the visual areas (Olshausen &
Field, 1996), and Sanger’s rule cannot be generalized to dynamical tasks such as path integration.
Earlier models of the learning process of grid cells have explored plausible learning rules such as
spike time-dependent plasticity (Widloski & Fiete, 2014) and variants of Hebbian learning rules
(Kropff & Treves, 2008) within networks of excitatory and inhibitory neurons (Weber & Sprekeler,
2018). However, these learning rules are highly specialized, and have not been shown to reproduce
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ReLU

error interneuron excitatory inhibitoryvalue

Entorhinal Cortex Hippocampus
A B C

Figure 1: Architecture and circuit implementation of PCNs. A: Sparse, non-negative PCN as
a generative model. During learning, p is given and the latent g and W are inferred and learned
through a type of EM algorithm. B: Simlar to A, but with dynamic inputs pt and recurrent weights
Wr. The dashed velocity inputs are optional (see Section 4.4). C: Circuit implementation of tPCN,
adapted from Tang et al. (2024) with a mapping to MEC and hippocampus.

representations from other brain regions with non-spatial tasks. Recent works have also modeled the
hippocampal formation using generative models with plausible learning rules similar to predictive
coding (George et al., 2024; Bredenberg et al., 2021), though these studies did not address 2D spatial
learning.

Predictive Coding Predictive coding has been an influential theory in understanding cortical com-
putations (Friston, 2005; Rao & Ballard, 1999; Bogacz, 2017) and has been applied to modeling
various cortical functions (see Millidge et al. (2021) for a review). Specifically, in the visual cor-
tex, PCNs develop realistic visual representations such as Gabor-like receptive fields in response to
both static (Rao & Ballard, 1999; Olshausen & Field, 1996) and moving stimuli (Millidge et al.,
2024). Recently, theories have been developed to describe hippocampo-neocortical interactions us-
ing predictive coding (Barron et al., 2020), and PCNs have demonstrated the ability to memorize
and retrieve static and dynamic visual patterns, a key function of the hippocampus (Salvatori et al.,
2021; Tang et al., 2023; 2024). Our work explores whether the representational learning capabili-
ties of predictive coding can be extended to the hippocampal formation, which has so far only been
functionally modeled by PCNs.

The computations of PCNs use only local neural dynamics and Hebbian plasticity, making it bi-
ologically more plausible than backpropagation (Whittington & Bogacz, 2017). It has also been
shown that predictive coding approximates backpropagation both in theory and practice (Whitting-
ton & Bogacz, 2017; Song et al., 2024; Pinchetti et al., 2024). Unlike many other Hebbian learning
rules, predictive coding can be extended to temporal predictive coding networks (tPCNs), which
use recurrent connections to process dynamic stimuli (Millidge et al., 2024). However, while Mil-
lidge et al. (2024) demonstrated that tPCNs approximate Kalman filtering, the relationships between
tPCNs and RNNs remain unclear. In this work, we train tPCNs for path integration and compare
their performance with RNNs both analytically and experimentally in this context.

3 MODELS

Non-negative Sparse PCN We first investigate the classical PCN (Rao & Ballard, 1999) for its
ability to form grid representations. Assuming a place cell input p ∈ RNp that represents a location
in 2D space as an Np-dimensional vector, a simple 2-layer PCN generates predictions of p using
its latent activities g ∈ RNg (which will develop grid-like representations) and a weight matrix W
(Fig 1A). The generative model minimizes the following loss function subject to two constraints:

LPCN = ∥p−Wg∥22 + ∥g∥22 + 2λ∥g∥1 (1)
where ∥g∥22 constrains the l2 norm of the latent g and λ∥g∥1 enforces sparsity, similar to the sparse
coding model (Olshausen & Field, 1996). This loss function is minimized via an expectation-
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maximization (EM) algorithm, alternating between the optimization over g (inference) and W
(learning) (see Appendix A.1 for the training algorithm):

∆g ∝ −∇gLPCN = −g − λsgn(g) +W⊤ϵϵϵp; g← ReLU(g +∆g) (2)

∆W ∝ −∇WLPCN = ϵϵϵpg⊤ (3)
where ϵϵϵp := p −Wg and we apply a ReLU to the inference dynamics to constrain the latent
activities to be non-negative. The inference and learning dynamics can be implemented in a plausible
circuit (Bogacz, 2017). After convergence, we examine the firing fields of the latent activities g.

Path Integrating tPCN To account for the learning of spatial representations in moving animals,
we also investigate tPCN that extends the classical PCNs to the temporal domain (Millidge et al.,
2024; Tang et al., 2024) in path integration tasks (Fig. 1B). The model receives a series of place cell
activities p1, ...,pT and velocity inputs v1, ...,vT that represent the trajectory of an agent moving
in a 2D space, and minimizes the following loss function at each time step t:

LtPCN,t = ∥pt − f(Woutgt)∥22 + ∥gt − h(Wrĝt−1 +Winvt)∥22 (4)

where f and h are both nonlinear activation functions, and Win, Wr and Wout are weight matrices
projecting the predictions. We define ϵϵϵpt := pt− f(Woutgt), ϵϵϵ

g
t := gt−h(Wrĝt−1+Winvt). The

model learns by first optimizing the loss function with respect to gt via gradient descent:

∆gt ∝ −∇gtLtPCN,t = −ϵϵϵgt +W⊤
outf

′(Woutgt)ϵϵϵ
p
t (5)

and then optimizing weights by:

{∆Wout,∆Wr,∆Win} ∝ −∇{Wout,Wr,Win}LtPCN,t

= {f ′(Woutgt)ϵϵϵ
p
t g

⊤
t , h

′(g̃t)ϵϵϵ
g
t ĝ

⊤
t−1, h

′(g̃t)ϵϵϵ
g
t v

⊤
t }

(6)

where f ′ and h′ are Jacobians of the nonlinear functions f and h, and g̃t := Wrĝt−1 + Winvt.
After the inference (Equation 5) converges, we set ĝt to the converged value of gt, which will be
used for optimizing the objective function at the next time step i.e., LtPCN,t+1. The model is trained
on a large number of trajectories {vt,pt} and after training, a set of velocity inputs from unseen
trajectories is presented to the model. The model then performs a forward pass through time and
layers to predict the positions encoded by place cells (see Appendix A.1 for the training and testing
algorithms of tPCN):

gt = h(Wrgt−1 +Winvt), p̂t = f(Woutgt) (7)

The model is evaluated on 1) the accuracy of path integration position prediction p̂t and 2) the firing
fields of the latent g. When both f and h are linear, these computations can be plausibly imple-
mented in a neural circuit shown in Figure 1C, with local inference computations (Equation 5) and
Hebbian learning rules (Equation 6) (Millidge et al., 2024). When the activation functions involve
only local nonlinearity, such as tanh or ReLU, the Jacobians are diagonal and the inference and
learning rules remain local and Hebbian (Millidge et al., 2022), and additional circuitry components
can be included to plausibly implement the nonlinearities (Whittington & Bogacz, 2017). Within the
context of spatial representation learning, this circuit implementation can be naturally mapped to the
circuitry of the hippocampal formation. We discuss the relationship of this circuit implementation
to existing and potential experimental evidence in the Discussion section.

Input of the Model In models discussed in this work, we assume that grid cells are inferred as
latent representations of place cells. Although previous models have followed the opposite direction
of the relationship, several strands of experimental evidence have suggested the emergence of grid
cells as a result of place cells, including the earlier development of place cells (Bush et al., 2014;
Langston et al., 2010; Wills et al., 2010). In both PCN and tPCN models, the place cell inputs are
constructed as 2D difference-of-softmaxed-Gaussian (DoS) curves flattened into 1D vectors, which
have been shown to yield hexagonal grid representations in RNNs (Schaeffer et al., 2022; Sorscher
et al., 2023). The firing centers of the place cells are uniformly distributed across a 2D environment.
For PCN, the inputs are Nx evenly distributed locations in the environment (Nx large enough to
cover the whole environment) represented by the Np place cells. For tPCN, the trajectories for
the path integration task are obtained by simulating an agent performing a smooth random walk
in the square environment. At each point in time, the Np place cells will be uniquely activated,
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A B

C D
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Figure 2: Grid cells developed in PCN. A: Latent representations of a sparse, non-negative PCN,
resembling hexagonal grid cells in the MEC. Numbers in the title reflect the grid scores. B: Grid
cells obtained via the pattern formation theory/non-negative PCA discussed in Sorscher et al. (2023);
Dordek et al. (2016). C, D: Latent representations without sparsity or non-negativity, respectively.
E: Distribution of grid scores of the representations in A and B.

representing the agent’s current location. The velocity inputs vt are 2D vectors representing the
speed of the simulated agent on the x and y coordinates at time step t. The effect of boundaries
is simulated by slowing down the agent and reverting its moving direction near the borders of the
environment. We sample a large number of trajectories to cover the whole simulated environment
for training.

4 RESULTS

4.1 SPARSE NON-NEGATIVE PCN DEVELOPS LATENT GRID CELLS

Here we examine whether the sparse non-negative PCN can develop hexagonal, grid-like latent rep-
resentations of the space after training, by plotting each latent neuron’s responses to the Nx = 900
locations in the 2D space. We use Np = 512 and Ng = 256. The “gridness” of the 2D latent rep-
resentations is evaluated using the grid score metric, commonly employed in both experimental and
computational studies (Sargolini et al., 2006; Banino et al., 2018) (see A.3 for grid score calculation).
We found that this simple, 2-layer PCN can develop hexagonal grid cells similar to those observed
in the MEC (Figure 2A). For comparison, we reproduce the results from Dordek et al. (2016) and
Sorscher et al. (2023), which show theoretically that performing non-negative PCA on the place cell
inputs is guaranteed to produce hexagonal grid representations as the principal components of the
Nx×Np place cell input matrix. The visual results of the reproduction are shown in Figure 2B, and
we compare the distribution of grid scores of the PCN’s latent neuron firing fields with those of the
non-negative principal components in Figure 2E. The grid scores between our sparse non-negative
PCN and non-negative PCA are similarly distributed.

Why does the sparse, non-negative PCN develop hexagonal grid cells? While a precise analytical
explanation is left for future work, we offer an intuitive hypothesis here. When presented with a
batch Nx of place cell inputs, the objective of PCN (Equation 1) can be written compactly as:

LPCN = ∥P−GW⊤∥2F +
∑Nx

i=1∥gi∥22 + 2λ∥gi∥1 (8)

where P ∈ RNx×Np is the place cell activities across Nx locations, and G ∈ RNx×Ng represents
grid cell responses. On the other hand, the objective function of PCA is:

LPCA = ∥P−GM∥2F s.t. GG⊤ = INx (9)

where M is the Ng × Np readout matrix. The constraint GG⊤ = INx
in Equation 9 enforces

orthonormality of the grid cell matrix G columns, meaning they are orthogonal and have unit norm.
We hypothesize that the constraint ∥gi∥22 + 2λ∥gi∥1 for our sparse PCN achieves this orthonormal-
ity implicitly: while the constraints are imposed on the rows of G, the overall sparsity of entries
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Figure 3: tPCN in path integration. A: Visual demonstration of the performance of tPCN and RNN
in path integration. B: RMSEs between the decoded and ground-truth 2D positions by tPCN and
RNN with different agent moving speed. C: Grid score distributions of tPCN and RNN with different
agent moving speed. D, E: Firing fields of latent neurons in a tPCN and an RNN respectively, when
dt = 0.02. F, G: Firing fields of latent neurons in a tPCN and an RNN respectively, when dt = 0.1.

in G could induce orthogonality among its columns, with the l2 term constraining the norm of the
columns to achieve normality implicitly. Indeed, Figure 2C shows that if we remove the sparsity
constraint, the latent neurons’ firing fields will no longer be hexagonal. Similarly, without ReLU
i.e., non-negativity applied to the inference dynamics, we also could not obtain hexagonal grid cells
(Figure 2D). It is worth noting that although (non-negative) PCA can be learned with the biologically
plausible Sanger’s rule (Sanger, 1989), it lacks PCN’s generalizability to different architectures (Sal-
vatori et al., 2022) and to other brain regions such as the visual cortex (Olshausen & Field, 1996; Rao
& Ballard, 1999). However, it can be noticed that the grid cells by PCN lack the multi-modularity of
the grid cells by non-negative PCA i.e., grid cells with different firing periods. We suspect that al-
though sparse PCNs can approximate the orthonormality of latent variables, they lack PCA’s ability
to extract latent variables ordered by the amount of explained variance in data, with higher variance
naturally corresponding to larger spatial scales and vice versa.

4.2 TPCN DEVELOPS GRID CELLS BY PATH INTEGRATION

Although training a static PCN with a large number of place cell activations can already give rise to
brain-like hexagonal grid cells, the emergence of grid cells is known to rely on dynamic motion of
animals (McNaughton et al., 2006; Winter et al., 2015). Therefore, we investigate tPCN in a path
integration task, where the simulated agent uses dynamic velocity inputs to determine its current
position. As a reference, we compare tPCN with RNNs trained in path integration, which have
been shown to develop hexagonal grid cells (Cueva & Wei, 2018; Banino et al., 2018; Sorscher
et al., 2023) and share the same graphical structure as tPCN (Figure 1B). However, it is important to
note that RNNs are trained with the biologically implausible backpropagation-though-time (BPTT)
algorithm, which requires “unrolling” of the network through time, a process unlikely to occur in
the brain (Lillicrap & Santoro, 2019).

We first evaluate whether tPCN can learn to perform the path integration task using local and Heb-
bian learning rules. We trained a tPCN model with Ng = 2048 latent neurons on trajectories within
a 1.4m × 1.4m environment represented by Np = 512 place cells. After training, we tested the
model on a set of unseen trajectories with velocity input vt, and assessed whether the tPCN and
RNN models could predict the correct positions using Equation 7. As the output of the networks is
the Np-dimensional population activity of the place cells, we calculate the predicted 2D positions
by averaging the center positions of the 3 most active place cells in the output p̂t, and calculate the
root mean square error (RMSE) between the decoded and ground-truth 2D positions. The visual
and numerical results are shown in Figure 3A and B, where we also varied a scaling factor dt of the
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A

Forward propagationDependency

B

C

D

Figure 4: Comparing tPCN and tBPTT. A: Dependencies of latent grid cells in tPCN and RNN
trained with 1-step tBPTT. Black arrows indicate the flow of computations during a forward pass
and red arrows indicate the dependency of latent variables. B: Firing fields of the latent neurons of
an RNN trained by 1-step tBPTT. C, D: Path integration RMSE and grid score distributions of 1-step
tBPTT, BPTT and tPCNs with different inference iterations. “tPCNk” indicates tPCN trained with
k inference iterations.

simulated agent’s speed, sampled from a Rayleigh distribution with mean 1, to test the robustness of
the results. Note that we do not intend to model physiologically realistic speed of animals with these
values. The performance of tPCN is comparable to that of the RNN, though it slightly deteriorates
when the agent moves at higher speeds.

Next, we examine whether the tPCN model develops grid-like representations in its latent layer
during path integration. We plot the firing fields of the 2048 latent neurons given an unseen set
of trajectories covering the entire space. The neurons with the highest grid scores are shown in
Figure 3C, which reveals a grid-like, hexagonal firing pattern with high grid scores. Visually, these
grid cells are similar to those in a trained RNN with the same architecture shown in Figure 3E,
replicating the results from (Sorscher et al., 2023). To systematically compare the grid cells in tPCN
and RNN, we plot the distribution of grid scores in both models as a function of the movement
speed of the agent in the environment in Figure 3C. When the movement is slow, the grid score
distributions are similar between tPCN and RNN. However, as the dt increases to 0.05 and 0.1,
tPCN tends to have higher grid scores than RNN. This is visually reflected in Figure 3F (tPCN) and
G (RNN), which shows the latent representations developed by tPCN largely retain the grid-like
pattern whereas firing centers of many of the RNN neurons no longer form a grid when dt = 0.1.
Interestingly, the band-like representations present in both models in this case are observed in MEC
(Krupic et al., 2012), although their existence is controversial (Navratilova et al., 2016).

4.3 TPCN APPROXIMATES TRUNCATED BPTT

Next, we asked why hexagonal grid representations emerge both when training a tPCN using a
BPTT-free Hebbian learning rule and when training an RNN using BPTT. We provide an ana-
lytical comparison between the learning rules of tPCN and RNN. Assuming a vanilla, sequence-
to-sequence RNN with exactly the same graphical structure as in Figure 1A, its dynamics can be
recursively described as:

gt = h(Wrgt−1 +Winvt); p̂t = f(Woutgt) (10)

The loss that this RNN is trained to minimize is the cumulative prediction error:

LRNN =
∑T

t=1 LRNN,t =
∑T

t=1 ∥pt − p̂t∥22 (11)
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Suppose BPTT is performed at every step t to update weights in this RNN, the learning rule for Wr
at step t can be expressed as (see Appendix A.2 for derivations):

∆WRNN
r =

∑t
k=1

∂gt

∂gk
h′(g̃t)W

⊤
outf

′(Woutgt)ϵϵϵ
p
t g

⊤
k−1 (12)

where ϵϵϵpt denotes the prediction error pt−p̂t and the ∂gt

∂gk
terms correspond to the unrolling in BPTT,

which can be factorized into a chain of partial derivatives (Bellec et al., 2020). On the other hand,
for tPCN, if we assume that the inference dynamics in Equation 5 has fully converged (∆gt = 0)
at the time of weight update, the learning rule of tPCN can be written as (see Appendix A.2 for
derivations):

∆WtPCN
r = h′(g̃t)W

⊤
outf

′(Woutgt)ϵϵϵ
p
t ĝ

⊤
t−1 (13)

Two key differences between these learning rules stand out. First, tPCN does not involve the recur-
sive unrolling term, thereby avoiding the need to maintain a perfect memory of all preceding hidden
states. Second, instead of using the forward-propagated gt−1 as in Equation 10, tPCN employs the
inferred ĝt−1 from Equation 5 (underlined). The first difference suggests an equivalence between
tPCN and RNN trained with truncated BPTT (tBPTT) with a truncation window of size 1 (1-step
tBPTT) (Williams & Peng, 1990), where the RNN does not backpropagate any hidden states through
time when updating the weights. This characteristic could potentially harm the RNN’s performance
as it cannot effectively perform temporal credit assignment. However, the second difference par-
tially solves this problem, as ĝt−1 is inferred following Equation 5, which includes the term ϵϵϵpt−1
that communicates the place cell prediction error at step t − 1. Therefore, when Wr is updated at
step t, the ĝ⊤

t−1 term in ∆WtPCN
r will effectively form an eligibility trace (Bellec et al., 2020) that

allows the model to access historical prediction errors on the place cell level. Figure 4A illustrates
this difference between tPCN and RNN trained by 1-step tBPTT, highlighting the dependency of
tPCN hidden states on past place cell activations. In Appendix A.2 we also discuss the relationship
between the update rules for Win and Wout in these two models.

To verify this theoretical difference, we compare tPCN with RNNs trained by tBPTT in the path in-
tegration task. Since ĝt in tPCN is initialized by a forward pass f(Wrĝt−1) and then updated by the
iterative inference (Appendix A.1), the behavior of 1-step tBPTT, which computes its latent states
via a forward pass at each time step, should be closer to tPCN with fewer inference iterations. There-
fore, we evaluate tPCN with various inference iterations. Figure 4B shows the grid cells learned by
an RNN trained with 1-step tBPTT, which still exhibit hexagonal grid firing fields, though with lower
grid scores than those from full BPTT. This suggests that backpropagating the error through all time
steps is not entirely necessary for RNNs to generate grid cell-like representations. In Figure 4C we
show the path integration performance of RNN by 1-step tBPTT and BPTT, as well as tPCNs with
different inference iterations from 1 to 50. As can be seen, tPCN with a single inference iteration has
identical performance to RNN trained by tBPTT, and its performance will improve as we increase
the number of inference iterations but will saturate around 20 iterations. Overall, this graph suggests
that tPCN with 5 or more inference iterations can effectively perform temporal credit assignment
that improves upon tPCN1 or 1-step tBPTT, potentially due to the eligibility trace. However, this
eligibility trace arises from local inference dynamics (Equation 5) rather than from unrolling the
RNN graph as in Bellec et al. (2020). This improvement is also reflected in the grid scores (Fig-
ure 4D), although increasing the inference iterations does not necessarily result in better grid score
representations. We suspect that although the gridness of latent representations is somewhat related
to path integration performance, their relationship is not linear. It is also worth noting that to fully
evaluate the similarities and differences between BPTT and tPCN, an in-depth comparison is needed
across different tasks and versions of tBPTT. We aim to investigate this question in future works as
it is beyond the scope of this paper.

4.4 ROBUSTNESS OF GRID CELL REPRESENTATIONS IN TPCN

Inspired by Schaeffer et al. (2022), we examine the robustness of our results against different archi-
tectural choices of the tPCN model, to understand what contributes to the emergence of grid cells
within tPCN. Specifically, we vary the following components of the model: 1) Encoding of the
place cell activities; 2) Output nonlinearity f ; 3) Recurrent nonlinearity h; 4) Environment sizes; 5)
Latent sizes and 6) Velocity input to the model. The baseline model has DoS place cell encodings,
h = ReLU, f = softmax, 1.4m× 1.4m environment and latent size 2048 with velocity inputs.
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A
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Figure 5: Robust emergence of grid cells in tPCN. A, B: Path integration RMSE and grid scores
of tPCN in different setups. “Stationary baseline” refers to a model that always predicts the initial
position regardless of movement. C-I: Firing fields of latent neurons in tPCNs with C: Gaussian
place cells; D: f =tanh; E: h =tanh; F: 1.8m×1.8m environment; G: 1.2m×1.2m environment;
H: 256 latent neurons; I: tPCN without velocity input.

We first examine whether replacing the place encoding with Gaussian curves affects the model’s
performance. As shown in Figure 5A, B and C, the Gaussian place cells do not affect the path
integration performance, but the latent representations are no longer hexagonal. This is consistent
with earlier findings that the DoS place cell encoding is necessary for hexagonal grid cells (Dordek
et al., 2016; Sorscher et al., 2023; Schaeffer et al., 2022).

The choices of f and h are particularly interesting: as discovered by earlier works (Dordek et al.,
2016; Sorscher et al., 2023), a choice of h that imposes non-negativity constraint on the latent
activities, such as ReLU, is necessary for the emergence of hexagonal grid cells. In our tPCN
model, the activation functions are also important for biological plausibility: in both Equation 5 and
Equation 6, the multiplication with the Jacobians h′ and f ′ can be reduced to local, element-wise
multiplications if h and f are element-wise nonlinearities such as ReLU and tanh. Although it is
possible to design a circuit to perform the computations in softmax (Snow & Orchard, 2022), it is
unclear how the Jacobian matrix of softmax can be computed in a biological circuit. Therefore,
we first replace f with a tanh function in our tPCN model and evaluate the model’s performance in
both path integration and its latent representations. As shown in Figure 5A, replacing f with tanh
results in slightly worse path integration performance and lower grid scores than the softmax
baseline. However, visually, the latent representations are hexagonal and grid-like (Figure 5D),
suggesting that using a biologically more plausible f would not significantly affect the emergence
of grid cells within tPCN. On the other hand, replacing the non-negative constraint (ReLU) on the
latent activities with h = tanh results in the amorphous latent representations (Figure 5E), which
is consistent with Sorscher et al. (2023).

We next investigate the impact of the size of the environment, by training tPCN within a square
environment of size 1.8m× 1.8m (big) and an environment of size 1.2m× 1.2m (small). Changing
environment sizes does not affect the path integration performance, and does not affect tPCN’s capa-
bility of developing grid cells either (Figure 5F for big environment and G for small environment).
We also vary the number of latent neurons in the model from 256 to 512 and 1024, which does not
affect the grid cell representations (Figure 5H shows the latent representations learned by a tPCN
with 256 latent neurons). However, with fewer latent neurons, the performance in path integration
becomes worse as the model has fewer number of parameters to perform the task (Figure 5A).
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Earlier studies using PCNs to model visual representations have mostly used unsupervised PCNs
(Rao & Ballard, 1999; Olshausen & Field, 1996; Millidge et al., 2024), which corresponds to block-
ing the velocity input vt into tPCN in Figure 1B. Here we asked how removing velocity input would
affect the path integration performance and grid cell emergence of tPCN. Mathematically, this is
achieved simply by re-defining g̃t := Wrĝt−1 without changing any inference or learning dynam-
ics. It can be seen from Figure 5A that the path integration performance is significantly affected
by the absence of velocity input, with an RMSE even higher than the stationary baseline, where the
model does not predict any movement at all. Intriguingly, the latent representations developed by
this unsupervised tPCN are still grid cell-like (Figure 5I) with a similar grid score distribution to
the baseline model. This result demonstrates that grid cells can still emerge even in a model unable
to perform path integration at all. Therefore, our model predicts that path integration is not a suf-
ficient condition for the emergence of grid cells, which resonates with Schaeffer et al. (2022). In
other words, it predicts that animals unable to navigate due to impaired velocity encoding may still
develop grid cells as a result of self-motion.

5 DISCUSSION

Relationship to Experimental Observations Here, we highlight properties of the biologically
plausible circuit in Figure 1C, including those consistent with experimental observations, and those
generating prediction about the hippocampal formation. This circuit can be naturally divided into
a MEC layer and a hippocampal layer. The MEC layer contains velocity-encoding neurons (v)
and grid cells (g), which aligns with experimental findings of the conjunctive representations of
velocity and grids in the entorhinal cortex (Sargolini et al., 2006). In our model, grid cells in the
MEC layer are recurrently connected through a specialized circuit involving interneurons ĝt−1 that
inhibit the output signal from the grid cells, allowing the error neurons ϵϵϵgt to compute the temporal
prediction errors. Experimental evidence suggests that lateral interactions in layer II of the MEC are
predominantly inhibitory (Witter & Moser, 2006) and are mediated by interneurons such as basket
cells (Jones & Bühl, 1993). Our model also predicts that these interneurons encode an eligibility
trace ĝt−1 from the immediate past. While recent studies have reported grid cells representing
prospective locations (Ouchi & Fujisawa, 2024), it remains to be verified whether these cells are
mechanistically supported by such “past” cells. Additionally, neurons in the entorhinal cortex are
known to encode errors (Ku et al., 2021), suggesting a possible error-driven learning mechanism
similar to that in tPCN.

In our model, the MEC and hippocampus are bidirectionally connected, a well-documented charac-
teristic of entorhinal-hippocampal connectivity (Canto et al., 2008). Crucially, the circuit also posits
the existence of error neurons ϵϵϵpt in the hippocampus, which encode the discrepancy between place
cell activities and inputs from MEC grid cells. The CA1 sub-region of the hippocampus has been
shown to serve as a mismatch detector between the hippocampus and cortex (Lisman, 1999; Duncan
et al., 2012). Our model predicts that in spatial navigation, the error neurons ϵϵϵpt in the hippocampus,
whose existence has been supported by Wirth et al. (2009) and Ku et al. (2021), can encode exactly
this mismatch signal between the two regions.

Conclusion In this work, we have demonstrated a biologically plausible learning rule for grid
cells based on predictive coding. We have shown that with sparsity and non-negative constraints,
classical PCNs can develop grid cell-like representations of batched place cell inputs. With inputs
representing trajectories of moving agents, tPCN can also develop grid cell activations while per-
forming path integration. We have developed a theoretical understanding of this property of tPCN
by deriving and comparing its learning dynamics with that of BPTT, showing that unrolling a recur-
rent network is unnecessary for it to learn grid cells, and a more plausible approach with recursive
inference dynamics should suffice. Furthermore, we have examined the robustness of our results
by varying hyper-parameters of the model, and found that grid cells can be learned even without
velocity inputs. Overall, our work demonstrates that predictive coding can serve as an effective and
biologically plausible plasticity rule for neural networks to learn grid cells observed in the MEC.
Importantly, compared with earlier learning rules specialized for grid cells, predictive coding is a
general learning rule able to reproduce many other cortical functions and representations. Thus, our
findings suggest that a single, unified plausible learning rule can be employed by the brain to find
the most appropriate representation of cortical inputs in different regions.
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REPRODUCIBILITY STATEMENT

The code used for the experiments in this paper is provided as a zip file in the supplementary mate-
rials to facilitate reproducibility of our results. All hyperparameters for training are detailed in the
appendix. Additionally, proofs for the theoretical results discussed in the paper are also included in
the appendix for verification.
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A APPENDIX

A.1 ALGORITHMS

Below is the training algorithm for a sparse, non-negative PCN given spatial inputs p. We obtain the
grid cells shown in the main text directly by taking the converged latent activities g after training.

Algorithm 1 Learning latent representations of space with a PCN
1: ▷ Training
2: while W not converged do
3: Initialize g randomly;
4: Input: p
5: while g not converged do
6: g← ReLU(gt +∆gt) (Eq. 2)
7: end while
8: Update W (Eqs. 3)
9: end while

Below is the training algorithm for tPCN in path integration tasks. The testing performance and
grid cells shown in the main text are obtained by performing a forward pass through the model after
training, given an unseen trajectory {vt,pt}.

Algorithm 2 Path integration with tPCN

1: ▷ Training
2: while Wout, Wr, Win not converged do
3: Initialize ĝ0 randomly or from p0 via a

PCN;
4: for t = 1, ..., T do
5: Input: pt, ĝt−1 and optionally vt

6: Initialize gt = f(Wrĝt−1)
7: for k = 1, ...,K do
8: gt ← gt +∆gt (Eq. 5)
9: end for

10: Update Wout, Wr, Win (Eqs. 6)

11: ĝt ← gt

12: end for
13: end while

14: ▷ Testing
15: Initialize g0 randomly or from p0 via a

PCN;
16: for t = 1, ..., T do
17: Input: gt−1 and optionally vt

18: Obtain gt, p̂t via Eq. 7
19: end for
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A.2 DERIVATIONS OF LEARNING DYNAMICS

Here we derive the recurrent weight update rules for WRNN
r (Equation 12) and WtPCN

r (Equation
13). For RNN, we assume that the weights are updated at each time step and therefore WRNN

r is
updated following the chain rule:

∆WRNN
r = −dLRNN,t

dWr
= −dLRNN,t

dgt

dgt

dWr
(14)

We first look at the term dgt

dWr
, which, following the rule of partial derivatives, can be written as:

dgt

dWr
=

∂gt

∂Wr
+

∂gt

∂gt−1

dgt−1

dWr

=
∂gt

∂Wr
+

∂gt

∂gt−1

(
∂gt−1

∂Wr
+

∂gt−1

∂gt−2

dgt−2

dWr

)
= ...

=
t∑

k=1

∂gt

∂gk

∂gk

∂Wr

(15)

due to the recursive and implicit dependency of gt on gt−1 and gt−1 on WRNN
r for all t. Thus, the

update rule can be written as:

∆WRNN
r = −

t∑
k=1

dLRNN,t

dgt

∂gt

∂gk

∂gk

∂Wr
(16)

Since gk = h(g̃k) = h(Wrgk−1 +Winvk), and LRNN,t = ∥pt − f(Woutgt)∥22 the update rule can
be written as:

∆WRNN
r =

t∑
k=1

∂gt

∂gk
h′(g̃t)W

⊤
outf

′(Woutgt)ϵϵϵ
p
t g

⊤
k−1, (17)

concluding our proof for Equation 12. The derivation for WRNN
in is similar:

∆WRNN
in = −dLRNN,t

dWin
= −dLRNN,t

dgt

dgt

dWin
, (18)

and
dgt

dWin
=

∂gt

∂Win
+

∂gt

∂gt−1

dgt−1

dWin

=
∂gt

∂Win
+

∂gt

∂gt−1

(
∂gt−1

∂Win
+

∂gt−1

∂gt−2

dgt−2

dWin

)
= ...

=

t∑
k=1

∂gt

∂gk

∂gk

∂Win

(19)

Therefore, the update rule for Win in an RNN can be written as:

∆WRNN
in =

t∑
k=1

∂gt

∂gk
h′(g̃t)W

⊤
outf

′(Woutgt)ϵϵϵ
p
t v

⊤
k (20)

Finally, the update rule for WRNN
out can be straightforwardly expressed as:

∆WRNN
out = −dLRNN,t

dWout

= −dLRNN,t

dp̂t

dp̂t

dWout

= f ′(Woutgt)ϵϵϵ
p
t g

⊤
t

(21)
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as there is no recursive dependency.

For tPCN, at each time step t the following loss is minimized with respect to Wr:

LtPCN,t = ∥pt − f(Woutgt)∥22 + ∥gt − h(Wrĝt−1 +Winvt)∥22 (22)

Since ĝt−1 is inferred through Equation 5, rather than forward-propagated by Wr, the recursive
dependency on Wr disappears, and thus the update rule for Wr can be locally derived as:

∆WtPCN
r = −dLtPCN,t

dWr
= h′(g̃t)ϵϵϵ

g
t ĝ

⊤
t−1 (23)

If we also assume that the inference dynamics in Equation 5 have converged when the weights are
updated, namely:

∆gt = 0⇒ ϵϵϵgt = W⊤
outf

′(Woutgt)ϵϵϵ
p
t , (24)

the update rule can be written as:

∆WtPCN
r = h′(g̃t)W

⊤
outf

′(Woutgt)ϵϵϵ
p
t ĝ

⊤
t−1, (25)

which concludes our proof for Equation 13. Similarly, following the same assumption of converged
inference and Equation 6, the update rule ∆WtPCN

in can be written as:

∆WtPCN
in = h′(g̃t)W

⊤
outf

′(Woutgt)ϵϵϵ
p
t v

⊤
t (26)

It can be seen that it differs from ∆WRNN
in only in the absence of the unrolling term ∂gt

∂gk
. On the

other hand, the update rules ∆WRNN
out and ∆WtPCN

out are exactly the same.
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A.3 EXPERIMENTAL SETUPS AND HYPERPARAMETERS

Place cell and trajectory parameters We use DoS place cell encodings throughout most of our
experiments. Formally, the activity of the ith place cell with this encoding, given a particular location
x can be written as:

K(x,C, τ) := exp

(
− (x− C)2

τξ2

)
(27)

pi =
K(x,Ci, 2)∑Np

j=1 K(x,Cj , 2)
− K(x,Ci, 4)∑Np

j=1 K(x,Cj , 4)
(28)

where Ci is the center of the place cell’s firing field, and τ and ξ define the width of the firing field’s
center and surround. The table below specifies parameters defining the place cells and trajectories:

ξ Path length Average agent speed Environment size
0.12m 10 steps {0.02, 0.05, 0.1}m/s {1.42, 1.82, 2.02}m2

Specifically, at time step t = 0, a 2D position and a head direction scalar in [0, 2π] are randomly
initialized. At each of the subsequent time steps, a random turn angle is sampled from a normal
distribution and a random speed is sampled from a Rayleigh distribution. Both values are then
multiplied by dt mentioned in the main text. If the simulated agent hits a border wall at this time
step, its speed is slowed and its turn angle is inverted. The position of the agent is updated according
to the speed and turn angle at this time step. The trajectories are simulated using parameters adapted
from the code provided in Sorscher et al. (2023).

Model and training hyperparameters In our experiments, we have used three models: sparsity
and non-negativity constrained PCN, RNN and tPCN. The table below specifies parameters of model
architectures:

Model Np Ng h f
sparse, non-neg. PCN 512 256 N/A N/A

tPCN 512 {256,512,1024,2048} {ReLU,tanh} {softmax,tanh}
RNN 512 2048 ReLU softmax

The table below specifies hyperparameters used in training RNN and tPCN. We use Adam optimizer
for all weight updates, and plain SGD for inference dynamics in tPCN. We found that in general,
RNNs take more epochs to converge in the path integration task.

Model Nx batch size learning rate inference step size epochs inference iters weight decay
tPCN 50000 500 10−4 10−2 150 20 10−4

RNN 50000 500 10−4 N/A 200 N/A 10−4

The table below specifies hyperparameters used in training the sparse, non-negative PCN. We use
Adam optimizer for all weight updates, and plain SGD for inference dynamics.

Nx batch size learning rate inference step size epochs inference iters weight decay λ

900 100 2 × 10−3 10−2 600 20 10−5 0.05

Calculation of grid scores The following grid score calculation process is adapted from Sargolini
et al. (2006) and the code of Sorscher et al. (2023). It is summarized below for completeness and
clarity:

• Get the rate map of latent neurons (potentially hexagonal grid cells);
• Place one copy of the rate map on top of the other, and start moving the top copy by δ ∈ R2.

If the rate maps are hexagonal grids, for particular δ’s that make the firing peaks overlap, the
autocorrelation between the stationary and moved maps will be 1; otherwise, the autocorrelation
will be 0. We will then have a hexagonal autocorrelation map if the rate map itself is hexagonal;
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• We then rotate the autocorrelation map and compute the correlation between each rotated map and
the original map. If the rate maps are hexagonal, the correlation as a function of rotated degrees
will be sinusoidal, with 60 and 120 degrees as peaks and 30, 90 and 150 degrees as troughs.

• Grid score is calculated as the minimum difference between the peak and trough correlation, which
in theory is a real value in range [−2, 2].

All experiments were performed on a single Tesla V100 GPU.
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