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Abstract—Parkinson’s disease (PD) is a progressive neurode- ditional diagnostic methods rely heavily on subjective clinical
generative disorder, affects motor function and is often chal-  evaluations, leading to delays in diagnosis and treatment [2].

lenging to diagnose due to the complex interplay of clinical Machine learning (ML) and deep learning (DL) have shown
features. This study integrates a comparative framework in-

tegrating hybrid Convolutional Neural Networks (PCNN) and promise in automating Parkinson’s disease detection, but tra-
graph-based models (GCN, GAT) to enhance Parkinson’s disease  ditional models like support vector machines and decision
(PD) diagnosis using structured medical data. PD, a progressive trees struggle to capture complex interdependencies between
neurodegenerative disorder affecting motor function, poses di- clinical features like voice patterns. [3] [4]. This limitation
agnostic challenges due to complex clinical feature interactions. is especially critical in medical diagnostics, where accurate

The PCNN employs 1D convolutions to capture local feature o . . . .
patterns, while GCN and GAT model intricate interdependencies predictions depend on understanding intricate relationships

between clinical variables by representing the dataset as a graph.  between features [S]. Despite advances in ML and DL, there
Notably, GAT’s attention mechanism dynamically prioritizes has been limited exploration of comparative deep learning
important features, improving interpretability and diagnostic models—particularly CNNs and GNNs—for Parkinson’s dis-
precision. Through hyperparameter optimization with Optuna .o Getection in structured data. Moreover, the effectiveness

and addressing class imbalance using SMOTE, our approach . . . .
achieved a peak accuracy of 97.44%, surpassing traditional of attention mechanisms (as employed in GAT models) in

methods. The comparative analysis reveals that while PCNN dynamically capturing feature dependencies remains underex-
excels in classification accuracy, GAT’s attention-based feature plored.

selection offers superior interpretability. This makes it a valuable Thls Study introduces a Comparative framework integrating
tool for more precise Parkinson’s disease detection in clinical hybrid convolutional neural networks (PCNN), graph convolu-

applications. The integration of these models provides a com- . .
prehensive framework for PD diagnosis, leveraging both local tional networks (GCN), and graph attention networks (GAT) to

and global feature extraction techniques. This study represents a ¢nhance Parkinson’s disease classification, in comparison with
significant advancement in applying advanced machine learning earlier studies that focus on a single model. The PCNN model

to neurodegenerative disease diagnostics, offering improved early  adapts CNNs for structured data, using 1D convolutions to
X . . X s
detection and personalized treatment potential for Parkinson’s capture local feature patterns. The GCN models global interde-

disease. . .
Index Terms—Graph neural network, Parkinson’s disease, pendencies by representing the dataset as a graph, where nodes

Hyperparameter optimization, Attention-layers, Graph Convo- correspond to features and edges reflect their relationships.The
lutional Networks PCNN excels in extracting local feature interactions, the GCN

models complex feature relationships globally, and the GAT
introduces a novel attention mechanism that prioritizes key
feature interactions dynamically. The GAT extends GCN by

Parkinson’s disease (PD) is a progressive neurodegenerative  incorporating attention mechanisms that dynamically weigh
disorder affecting millions globally. Early diagnosis is crucial the importance of each feature, enhancing both performance
for effective management, but it remains challenging due to and interpretability. We used Optuna for hyperparameter tun-
symptom overlap with other neurological disorders [1]. Tra- ing and SMOTE to address class imbalance, ensuring ro-

I. INTRODUCTION
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bust model evaluation. Using the UCI Parkinson’s dataset,
our results demonstrate how the attention-based GAT model
improves both feature interpretability and diagnostic accuracy,
outperforming traditional models in capturing complex clinical
dependencies [6]. The remainder of this paper is structured as
follow as Section II reviews related work, Section III details
the dataset, Section IV covers the methodology and model
implementation, and Sections V and VI present experimental
results, analysis, and future research directions.

II. LITERATURE REVIEW

Parkinson’s disease (PD) diagnosis has been a widely stud-
ied problem in the field of machine learning, with multiple
approaches leveraging structured datasets, such as the UCI
Parkinson’s dataset, to improve detection accuracy.

Sharma et al. [7] applied classifiers like SVM, J48, and
MPNN on the UCI Parkinson’s dataset, achieving a highest
accuracy of 95.05% with SVM on the non-discretized dataset.
However, the study lacked deep learning models, limiting its
ability to capture complex feature interactions and automate
feature extraction, crucial for structured clinical data. Wu and
Wang [8] proposed a deep-learning model utilizing premotor
features like REM and olfactory loss, achieving 96.45% accu-
racy. However, the study relied on a small dataset (183 healthy,
401 early PD cases) and did not incorporate graph-based
models, limiting its ability to capture complex feature inter-
dependencies effectively. Mounika et al. [9] analyzed various
machine learning and deep learning models for Parkinson’s
disease diagnosis, with Random Forest and CNN achieving
accuracies of 92.5% and 94.3%, respectively. However, the
study lacked graph-based models and attention mechanisms,
restricting its ability to capture feature interdependencies and
enhance model interpretability.

Sharma et al. [10] implemented seven machine learning and
deep learning models, including Random Forest, SVM, and
neural networks, for Parkinson’s disease prediction using a
Kaggle dataset. Random Forest achieved the highest accuracy
of 86.70%.1t achieved comparable results but also noted the
absence of interpretability and feature interdependency mod-
eling. The study relied on traditional methods and lacked
advanced graph-based models, limiting its ability to model
complex feature relationships and improve scalability. Verma
et al. [11] applied machine learning models to identify Parkin-
son’s disease from speech signals, utilizing dimensionality
reduction techniques like PCA. Among their models, SVM
achieved the highest accuracy of 85.12%, while Decision
Tree performed slightly lower with 81.45%. However, the
study’s focus on voice data limited its applicability to broader
clinical datasets. Additionally, the absence of deep learning
and graph-based models hindered feature interaction modeling
and scalability.

Ghosh et al. [12] applied machine learning algorithms to
telemonitor the progression of Parkinson’s disease, focusing
on time-series data. The work provided insights into disease
progression but did not integrate convolutional or graph-based
neural networks, which could have enhanced pattern detection
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and the understanding of feature interactions. Hazan et al.
[13] utilized speech data from the USA and Germany for
early Parkinson’s diagnosis, achieving accuracies of 85% with
separate country-specific models, 80% with pooled models,
and 75% with cross-country training. While effective for early
detection, the study was limited by language-based feature
variability and lacked graph-based models to capture complex
relationships.

Chabathula et al. [14] implemented Principal Component
Analysis (PCA) to reduce high-dimensional network datasets,
testing classification algorithms like SVM, KNN, J48, and
Random Forest for intrusion detection using the KDD99
dataset. TREE algorithms achieved the highest accuracy, but
the study lacked deep learning approaches and advanced
models, limiting scalability and adaptability to modern net-
work attack patterns. Wroge et al. [15] utilized voice-based
biomarkers and supervised classification algorithms, including
deep neural networks, to diagnose Parkinson’s disease, achiev-
ing a peak accuracy of 85%. While the study outperformed
clinical non-experts, its reliance on voice data limited its
generalizability to diverse clinical datasets, and the absence of
graph-based approaches restricted modeling complex feature
relationships.

Building on the limitations of prior studies, this research
introduces a novel hybrid framework that integrates PCNN,
GCN, and GAT to address critical gaps in Parkinson’s disease
diagnosis. Unlike traditional machine learning models, such
as those employed by Sharma et al. [7], which lack the
ability to capture complex feature interactions, or standalone
deep learning models like CNNs used by Mounika et al. [9],
which fail to incorporate graph-based modeling, our approach
bridges these gaps by leveraging 1D convolutions in PCNN
for local feature extraction, GCN for modeling complex fea-
ture interdependencies, and GAT for dynamically prioritizing
clinically relevant features. Furthermore, while prior studies,
such as Wu and Wang [8], were limited by small datasets and
lacked graph-based approaches, our framework addresses these
challenges by incorporating SMOTE to handle class imbalance
and Optuna for robust hyperparameter optimization.It also
enhances interpretability and scalability, addressing the critical
gaps in feature extraction, interdependency modeling, and
clinical applicability highlighted in prior.

I[II. METHODOLOGY

The methodology of this study focuses on implementing
and comparing three distinct deep learning models—Parkinson
Classification Neural Network (PCNN), Graph Convolutional
Network (GCN), and Graph Attention Network (GAT)—to
enhance the classification of Parkinson’s disease using struc-
tured medical data from the UCI Parkinson’s dataset. Figure 1
outlines the process from data preprocessing to model training
and evaluation, using PCNN, GCN, and GAT models with
hyperparameter tuning and SMOTE.
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A. Data Collections

The dataset employed in this research is the UCI Parkin-
son’s Disease dataset, which includes voice recordings from
31 individuals. Of these, 23 are diagnosed with Parkinson’s
disease and 8 are healthy controls. The dataset contains 195
samples, each characterized by 22 acoustic features, includ-
ing fundamental frequency, jitter, shimmer, amplitude, and
harmonic-to-noise ratio (HNR), which are used to capture
changes in voice patterns due to Parkinson’s disease. The
target variable (status) indicates the presence (1) or absence
(0) of Parkinson’s disease. The features are carefully designed
to capture vocal impairments typically seen in Parkinson’s
patients. Each voice sample provides a snapshot of vocal
changes, making it ideal for classification tasks that aim
to differentiate Parkinson’s patients from healthy individuals
based on subtle acoustic changes. The dataset plays a crucial
role as the foundation for training and evaluating the proposed
PCNN, GCN, and GAT models. By leveraging this well-
structured dataset, we aim to explore how different neural
network architectures can improve the detection of Parkinson’s
disease by analyzing the relationships and importance of
the various acoustic features provided. [16] Figure 2: Class
Distribution illustrates the imbalance in the dataset, showing
a greater proportion of Parkinson’s disease-positive samples
compared to negative ones. The class imbalance is addressed
using SMOTE during the preprocessing phase to ensure that
the models do not favor the majority class. Figure 3: Key
Features Distributions presents the distributions of the most
significant acoustic features used for classification, such as
jitter, shimmer, fundamental frequency, and harmonic-to-noise
ratio. These features are key indicators of vocal impairments in
Parkinson’s patients and help differentiate between individuals
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with and without the disease.
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B. Data pre-processing

The dataset was thoroughly checked for any missing or
inconsistent data. Figure 4 shows the correlations between
features, identifying dependencies and redundancies within
the dataset’s acoustic measurements. Due to its structured
nature, no missing values were detected, allowing for seam-
less progression to feature scaling. [17]. StandardScaler was
applied to the features, ensuring normalization across different
ranges. This process is critical to ensure comparability between
features and prevent any feature from disproportionately in-
fluencing the model. The Synthetic Minority Over-sampling
Technique (SMOTE) was employed to resolve class imbal-
ance by generating synthetic samples for the minority class.
This technique enhances model robustness by mitigating bias
toward the majority class, ensuring balanced learning for both
classes.

C. Hyperparameter Optimization

To ensure each model performs optimally, we employ Op-
tuna, an advanced framework for hyperparameter optimization.
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Fig. 4. Correlation HeatMap

Optuna dynamically explores a range of configurations such
as the learning rate, dropout rate, and the number of layers.
This ensures that the best parameter combination is selected
for each model. Specifically:

o For PCNN, the focus is on tuning the number of filters,
kernel size, and dropout rate.

o For GCN and GAT, key hyperparameters include the
number of graph layers, attention heads (for GAT), and
learning rate.

This method enables the models to automatically refine their
performance, balancing accuracy and complexity based on the
dataset’s needs.

D. Overview of Model Architectures & Implementation

1) Parkinson Classification Neural Network (PCNN):
The PCNN uses 1D convolutional layers, which treat each
feature as a temporal sequence. This is particularly useful for
tabular data because it allows the network to extract local
feature patterns and identify relationships between neighbor-
ing features that traditional machine learning methods might
overlook. The architecture includes two convolutional layers,
each followed by ReLU activation and dropout layers to
prevent overfitting. After the convolutions, the data is passed
through a fully connected layer for final classification.The key
advantage of 1D convolutions is that they efficiently capture
local dependencies between features, allowing the model to
understand short-term relationships in structured datasets. The
innovative aspect of this approach lies in the novel application
of convolutional neural network architecture to structured
clinical data, representing a departure from conventional CNN
use cases and expanding the potential utility of these models
in medical informatics. This adaptation demonstrates the ver-
satility of CNNs beyond their traditional domains, offering
new avenues for feature extraction and pattern recognition in
tabular datasets commonly encountered in clinical research.
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The equation defines the components of a 1D convolution:
x[i] represents the input data or feature set, w[k] is the
convolutional filter or kernel, and y[i] is the output feature
produced by the convolution operation. The ReLU function,
defined as max(0, x), is an activation function that introduces
non-linearity by outputting the input directly if it’s positive.

2) Graph Convolutional Network (GCN): The GCN is
designed to represent the features as nodes in a graph, with
edges representing correlations between them. This approach
helps the network learn from both the local and global relation-
ships in the dataset. GCN layers apply convolution operations
across the graph structure, propagating feature information
between connected nodes. This allows the model to learn
representations that reflect interdependencies between features,
which are critical for capturing the complexities of clinical
data, such as in Parkinson’s disease progression. The binary
classification is achieved by aggregating the learned feature
representations in the final output layer. The GCN is more
powerful than traditional models because it is able to handle
the graph-based structure of data, making it particularly useful
for datasets with complex relationships between features.
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The GCN equation describes how information is propagated
through the graph structure. H) represents the features of
all nodes at layer [. The adjacency matrix A includes self-
connections, while D is its corresponding degree matrix. W ()
is the learnable weight matrix for layer [. The equation com-
bines these elements, applying normalization (via D~'/2) and
non-linear activation (o, typically ReLU) to produce the next
layer’s features. This process allows each node to aggregate
and transform information from its neighbors, capturing the
graph’s structure in the learned representations.

3) Graph Attention Network (GAT): The GAT extends
the GCN by incorporating an attention mechanism. This
mechanism assigns dynamic weights to each neighboring node
(feature), allowing the network to focus on the most relevant
features for classification. Instead of treating all connected
nodes equally, the GAT can prioritize certain features, making
the model more interpretable and focused on the key aspects
of the dataset.The attention mechanism improves upon GCN
by selectively weighing the importance of features, which is
particularly advantageous in medical diagnostics, where some
clinical features are more critical than others. After passing
through the attention layers, the data is passed to a fully
connected layer for the final classification. This attention-based
approach is highly novel in medical data processing, where
interpretability and accuracy are paramount.

ei; = LeakyReLU(a” [Wh; || Wh;)) 3)



The GAT equation describes the attention mechanism in
graph neural networks. The attention score e;; measures the
importance of node j’s features to node ¢, calculated using
learnable weights W and attention vector a. These scores are
normalized using softmax to create attention coefficients o,
ensuring they sum to 1 for each node. The final step aggre-
gates neighboring node features, weighted by their attention
coefficients, to update each node’s representation. This process
allows the network to dynamically focus on the most relevant
connections and features for each node, enhancing the model’s
ability to capture complex relationships in the graph structure.

E. Comparison of Models and Uniqueness

PCNN (Parkinson Classification Neural Network): The 1D
convolutional architecture is used to extract local dependencies
from the dataset, which is unconventional for structured data.
This design efficiently captures feature interactions, optimizing
the detection of relevant patterns in the data. GCN (Graph
Convolutional Network) treats the dataset as a graph and mod-
els global feature relationships, making it more suitable for
datasets with complex inter-feature dependencies. GCN learns
representations that traditional models often overlook. GAT
(Graph Attention Network) enhances the GCN by introduc-
ing attention mechanisms, dynamically prioritizing important
features and improving interpretability and performance. The
attention mechanism enables the model to focus on critical
clinical features.

The combination of PCNN, GCN, and GAT for Parkinson’s
disease classification represents a significant advancement, as
these models complement each other by handling both local
feature extraction and global relationships. The use of attention
in GAT further improves the model’s ability to focus on
the most relevant features. This comprehensive framework is
highly innovative, allowing for more accurate and interpretable
medical diagnostics. It directly addresses the intricacies of
Parkinson’s disease detection using structured data, improving
diagnostic outcomes with real-world applications in clinical
environments.

F. Evaluation Metrics

The models are evaluated using key metrics to capture
various aspects of performance. Accuracy provides an overall
measure of correct predictions, while ROC-AUC assesses
the model’s ability to distinguish between classes, offering a
balanced metric for classification. [18] PR-AUC emphasizes
the trade-off between precision and recall, making it ideal for
imbalanced datasets like the one used in this study. Together,
these metrics offer a comprehensive understanding of the
models’ strengths and weaknesses, particularly for binary
classification tasks in medical data.

G. Model Training and Validation

The dataset is divided into 80% for training and 20% for
testing to maintain a fair evaluation. To further validate model
robustness, we perform 5-fold cross-validation, splitting the
training data into five subsets and ensuring that each subset
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serves as a validation set at least once.Throughout training, the
model’s best-performing weights are saved, and final results
are reported on the unseen test set. [19]

Table I provides a summary of the key insights from the
table, highlighting the PCNN’s superior accuracy and recall
while noting the performance of GCN and GAT. Figure 5
compares the accuracy, precision, recall, and Fl-score of
PCNN, GCN, and GAT, with PCNN excelling in accuracy
and GAT offering better interpretability.

TABLE I
PERFORMANCE COMPARISON OF PCNN, GCN, AND GAT MODELS
Model | Accuracy (%) | F1 Score | Precision | Recall
PCNN 97.44 0.9744 0.93 1.00
GCN 92.31 0.9231 0.89 0.97
GAT 92.31 0.9231 0.93 0.97

IV. RESULTS AND DISCUSSION

The results of this study demonstrate the significant impact
of implementing advanced deep learning models—PCNN,
GCN, and GAT—in the detection and classification of Parkin-
son’s disease using structured medical data. The three models
were rigorously evaluated based on their ability to classify
Parkinson’s disease patients and healthy controls, leveraging
both local and global feature extraction techniques.

Model Performance Comparison (Class 1)

100.00% @ 98.00% | W Precision (Class 1)

97.00%
93.00] 35.00% = Recall (Class 1)
) F1 Score (Class 1)

97.00%
93.00 95.00%

(%)

Models (Class 1)

Fig. 5. Model Comparison Analysis

The PCNN model, employing 1D convolutional layers,
achieved an accuracy of 97.44%, demonstrating its ability to
capture local feature interactions in the dataset. This method,
though unconventional for tabular data, allowed the model
to efficiently process clinical features and uncover important
patterns within the data. By capturing these local dependen-
cies, the PCNN effectively differentiates between Parkinson’s
patients and controls, providing a strong baseline for detection.
The model’s success can be attributed to its convolutional
layers, which effectively capture complex patterns and extract
local feature interactions. However, to ensure the generaliz-
ability of these results, validation on larger and more diverse
datasets is essential. The GCN model, which treats the dataset
as a graph, excelled in capturing global relationships between
features by modeling the interdependencies between clinical
variables. This graph-based approach offered an accuracy
comparable to PCNN, but with enhanced understanding of



TABLE II
COMPARISON OF PROPOSED FRAMEWORK WITH TRADITIONAL MACHINE LEARNING MODELS

Model Accuracy (%) Interpretability Feature Interdependencies
Proposed Framework (PCNN, GCN, GAT) 97.44 High (via GAT attention) Strong (via GCN)

SVM (Sharma et al. [7]) 95.05 Low Weak
Random Forest (Mounika et al. [9]) 92.50 Moderate Weak

CNN (Mounika et al. [9]) 94.30 Moderate Moderate
Random Forest (Sharma et al. [10]) 86.70 Low Weak
SVM (Verma et al. [11]) 85.12 Low Weak
Decision Tree (Verma et al. [11]) 81.45 Low Weak
PCA + Random Forest (Chabathula et al. [14]) 85.00 Low Weak

the underlying structure of the data. The graph convolution
mechanism enabled the model to learn from connections
between features, a critical aspect when dealing with complex
datasets like medical records. This method is especially useful
in understanding how different clinical measures influence
each other, enhancing the model’s robustness. The GAT
model outperformed the other models in terms of feature
interpretability, with a PR-AUC of 0.9857, by introducing an
attention mechanism that dynamically prioritized key clinical
features. This mechanism allows GAT to assign weights to
the most important features, enhancing the model’s decision-
making process. In the context of Parkinson’s disease, where
some symptoms and clinical measurements may hold more
diagnostic value than others, the attention-based GAT model
becomes highly beneficial. It offers not only high classifica-
tion accuracy but also insights into which features drive the
diagnosis, making the model more interpretable for clinicians.

All three models demonstrate robust diagnostic capabilities,
each excelling in distinct aspects. Table II explores the pro-
posed framework (PCNN, GCN, GAT) achieves a state-of-the-
art accuracy of 97.44%, significantly outperforming traditional
models such as SVM (95.05%, Sharma et al. [7]), Random
Forest (92.50%, Mounika et al. [9]), and CNN (94.30%,
Mounika et al. [9]). This superior performance is attributed to
its ability to model complex feature interdependencies using
GCN and provide high interpretability through GAT’s attention
mechanisms. Unlike traditional methods like Decision Trees
(81.45%, Verma et al. [11]) or PCA-based Random Forest
(85.00%, Wroge et al [14]), which lack scalability and fail to
capture intricate feature relationships, the proposed framework
integrates SMOTE for class imbalance handling and Optuna
for performance optimization. It achieves a perfect recall
of 1.00 and an F1 score of 0.9744, bridging critical gaps
in feature extraction, interdependency modeling, and clinical
applicability, making it a robust and interpretable diagnostic
tool. Figure 6 illustrates the performance of each model,
highlighting PCNN’s superior accuracy, GAT’s high PR-AUC,
and the comparable ROC-AUC performance of both GCN and
GAT.

CONCLUSION AND FUTURE WORK

This study showcases a major step forward in using machine
learning to diagnose neurodegenerative diseases, particularly
Parkinson’s disease, with structured medical data. By opti-
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mizing model performance with the Optuna tool and address-
ing class imbalance using SMOTE, our approach achieved
an impressive accuracy of 97.44%, outperforming traditional
diagnostic methods. The models we used each brought unique
strengths to the table. The PCNN model excelled at identifying
patterns in the data, leading to its outstanding classification
accuracy. On the other hand, the GAT model stood out for
its ability to highlight the most important features, making
the results easier to interpret and more relevant to clinical
decision-making. Together, these explainable two essential
aspects for real-world use in healthcare provide a well-rounded
and reliable tool for identifying Parkinson’s disease, paving the
way for better early detection and more personalized treatment
options.

Future work will focus on expanding this framework by
incorporating multi-modal data sources such as neuroimaging
and genetic data to further enhance the models’ diagnostic
capabilities.Further developments will also include enhancing
model explainability by integrating techniques like SHAP or
LIME. Moreover, implementing these models in real-world
clinical environments will allow for validation in larger, more
diverse populations. These tools will improve transparency,
helping clinicians better understand model decisions and build
trust in the use of AI for Parkinson’s disease detection.
Ultimately, these advancements aim to contribute to earlier
diagnosis, personalized treatments, and better patient outcomes
in the context of neurodegenerative diseases.
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