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ABSTRACT

Scaling data and compute is critical to the success of modern ML. However, scaling
demands predictability: we want methods to not only perform well with more
compute or data, but also have their performance be predictable from small-scale
runs, without running the large-scale experiment. In this paper, we show that value-
based off-policy RL methods are predictable despite community lore regarding their
pathological behavior. First, we show that data and compute requirements to attain
a given performance level lie on a Pareto frontier, controlled by the updates-to-data
(UTD) ratio. By estimating this frontier, we can predict this data requirement when
given more compute, and this compute requirement when given more data. Second,
we determine the optimal allocation of a total resource budget across data and
compute for a given performance and use it to determine hyperparameters that
maximize performance for a given budget. Third, this scaling is enabled by first
estimating predictable relationships between hyperparameters, which is used to
manage effects of overfitting and plasticity loss unique to RL. We validate our
approach using three algorithms: SAC, BRO, and PQL on DeepMind Control,
OpenAI gym, and IsaacGym, when extrapolating to higher levels of data, compute,
budget, or performance.
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Figure 1: Scaling properties when increasing compute C, data D, budget F , or performance J . Left:
Compute versus data requirements Pareto frontier controlled by the UTD ratio σ. We observe that we can trade
off data for compute and vice versa, and this relationship is predictable. Middle: Extrapolation from low to
high performance. We observe that the optimal resource allocation controlled by σ evolves predictably with
increasing budget, and can be used to extrapolate from low to high performance. Right: Pareto frontiers for
several performance levels J .
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1 INTRODUCTION

Many latest advances in various areas of machine learning have emerged from training big models on
large datasets. Successfully executing even one such training run requires a large amount of data,
compute, and wall-clock time, such as weeks or months (Achiam et al., 2023; Team et al., 2023). To
maximize the success of these large-scale runs, the trend in the machine learning (ML) community
has shifted toward not just performant, but also more predictable algorithms that scale reliably
with more compute and data, such that performance can be predicted from small-scale experiments,
without actually running the large-scale experiment. (McCandlish et al., 2018; Kaplan et al., 2020).

In this paper, we study if deep reinforcement learning (RL) is also amenable to such scaling and
predictability benefits. We focus on value-based methods that train value functions using temporal
difference (TD) learning, which are known to be performant at small scales (Mnih et al., 2015;
Lillicrap et al., 2015; Haarnoja et al., 2018a). Compared to policy gradient (Mnih, 2016; Schulman
et al., 2017) and search methods (Silver et al., 2016), value-based RL can learn from arbitrary data
and require less sampling or search, which is inefficient or infeasible when data collection is costly.

We study scaling properties by predicting relationships between different resources required for
training. Data requirement D is the amount of data needed to attain a certain level of performance.
Likewise, compute requirement C refers to the amount of FLOPs or gradient steps needed to attain
a certain level of performance. In RL uniquely, performance can be improved by increasing either
available data or compute (e.g., training multiple times on the same data), which we capture via a
budget requirement that combines data and compute F = C + δ · D, where δ refers to a constant
multiplier. An additive budget function is representative of practical scenarios where the cost of data
and compute can be expressed in similar units, such as wall-clock time or required finances.

To establish scaling relationships, we first require a way to predict the best hyperparameter settings
at each scale. We find that learning rate η, batch size B, and the updates-to-data (UTD) ratio σ
are most crucial. While supervised learning benefits from abundant theory to set hyperparameters
optimally (Krizhevsky, 2014; McCandlish et al., 2018; Yang et al., 2022), value-based RL often
does not satisfy supervised learning assumptions. Specifically, distribution shift due to policy
changes (Levine et al., 2020) contributes to a form of overfitting of the value function. In addition,
objective shift due to changing target values (Dabney et al., 2020) contributes to “plasticity loss”
(D’Oro et al., 2022; Kumar et al., 2021a). We show that it is possible to account for value-based
RL training dynamics, and find the best hyperparameters by setting the batch size and learning rate
inversely proportional to the UTD ratio. We estimate this dependency using a power law (Kaplan
et al., 2020), and observe this model makes effective predictions.

Using the best predicted hyperparameters, we are now able to establish that data and compute
requirements evolve as a predictable function of the UTD ratio σ. Furthermore, σ defines the tradeoff
between data and compute, which can be visualized as a Pareto frontier (Figure 1, left). Using
this model, we are able to extrapolate the resource requirements from low-compute to high-compute
setting, as well as from low-data to high-data setting as shown in the figure. Using the Pareto frontiers,
we are now able to extrapolate from low to high performance levels. Instead of extrapolating as
a function of return, which can be arbitrary and non-smooth, we extrapolate as a function of the
allowed budget F . We can define an optimal tradeoff between data and compute, and we observe
that such optimal tradeoff value evolves predictably to higher budgets, which also attains higher
performance (Figure 1, middle). Thus we are able to predict optimal hyperparameters, as well as data
and compute allocation, for high-budget runs using only data from low-budget runs.

Our contribution is showing that the behavior of value-based deep RL methods based on TD-learning
is predictable in larger data and compute regimes. Specifically, we:

1. establish predictable rules for dependencies between batch size (B), learning rate (η), and
UTD ratio (σ) in value-based RL, and show that these rules enable more effective scaling.

2. show that data and compute required to attain a given performance level lie on a Pareto
frontier, and are respectively predictable in the higher-compute or higher-data regimes.

3. show the optimal allocation of budget between data and compute, and predict how such
allocation evolves with higher budgets for best performance.

Our findings apply to algorithms such as SAC, BRO, and PQL, and domains such as the DeepMind
Control Suite (DMC), OpenAI Gym, and IsaacGym. The generality of our conclusions challenges
conventional wisdom and community lore that value-based deep RL does not scale predictably.
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2 RL PRELIMINARIES AND NOTATION

We study standard off-policy online RL, which maximizes the agent’s return by training on a replay
buffer and periodically collecting new data (Sutton & Barto, 2018). Value-based deep RL methods
train a Q-network, Qθ, to minimize the temporal difference (TD) error:

L(θ) = E(s,a,s′)∼P,a′∼π(·|s′)

[(
r(s, a) + γQ̄(s′, a′)−Qθ(s, a)

)2]
, (2.1)

where P is the replay buffer, Q̄ is the target Q-network, s denotes a state, and a′ is an action drawn
from a policy π(·|s) that aims to maximize Qθ(s, a). We implement this operation by sampling
a batch of size B from the buffer and taking a gradient step along the gradient of this loss with a
learning rate η. In theory, off-policy algorithms can be made very sample efficient by minimizing
the TD error fully over any data batch, which in practice translates to making more update steps to
the Q-network per environment step, or higher “updates-to-data” ratio (UTD) (Chen et al., 2020).
However, increasing the UTD ratio naı̈vely can lead to worse performance (Nikishin et al., 2022;
Janner et al., 2019). To this end, unlike the standard supervised learning or LLM literature that
considers B and η as two main hyperparameters affecting training (Kaplan et al., 2020; Hoffmann
et al., 2022), our setting presents another hyperparameter, the UTD ratio σ that we also study.

Notation. In this paper, we focus on the following key hyperparameters: the UTD ratio σ, learning
rate η, and the batch size B. We will answer questions pertaining to performance of a policy π
denoted by J(π), the total data utilized by an algorithm to reach a given target level of performance
J (denoted by DJ ), and the total compute budget utilized by the algorithm to reach performance J
(denoted by CJ ), which is measured in terms of FLOPs or wall-clock time taken by the algorithm.

3 PROBLEM STATEMENT AND FORMULATION

To demonstrate that the behavior of value-based RL can be predicted reliably at scale, we first post
multiple resource optimization questions that guide our scaling study. Viewing data and compute as
two resources, we answer questions of the form: what is the minimum value of [resource] needed
to attain a given target performance? And what should the hyperparameters (e.g., B, η, σ) be in such
this training run? We will answer questions of this form by fitting empirical laws from low data
and compute runs to determine relationships between hyperparameters. Doing so, in turn, enables
us to determine how to set hyperparameters and allocate resources to maximize performance when
provided with a larger data and compute budget. Note that we wish to make these hyperparameter
predictions without running the large data and compute budget experiment. While questions of this
form have been studied in supervised learning, answering them is different in the context of online
RL, because online RL requires the algorithm to collect its own data during training, which ties data
and compute in a complex manner and breaks i.i.d. nature of datapoints and induces complexities.

Concretely, we study three resource optimization questions: (1) maximizing sample efficiency (i.e.,
minimize the amount of data D to attain a given target performance under a given compute budget),
(2) conversely, minimizing compute C (e.g., FLOPs or gradient steps, whichever is more appropriate
for the practitioner) to attain a given performance given an upper bound on data that can be collected,
and (3) maximizing performance given a total bound on data and compute.

Problem 3.1 (Resource optimization problems). Find the best configuration (B, η, σ) for al-
gorithm Alg that minimizes either the data D or compute C consumed to obtain performance
J0:

1. Maximal sample efficiency:
(B∗, η∗, σ∗) := arg min

(B,η,σ)
D s.t. J (πAlg(B, η, σ)) ≥ J0, C ≤ C0

2. Maximal compute efficiency:
(B∗, η∗, σ∗) := arg min

(B,η,σ)
C s.t. J (πAlg(B, η, σ)) ≥ J0, D ≤ D0

We solve these problems by fitting empirical models of the minimum data and compute needed to
attain a target performance for different values of J0. Doing so allows us to then solve the third
setting (3) for maximizing performance given a total budget on data and compute as shown below.
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Problem 3.2 (Maximize performance at large data and compute budget). Find the best configura-
tion (B, η, σ) and resource allocations for data D and compute C that enable Alg to maximize
performance at budget F0

(B∗, η∗, σ∗) := arg max
(B,η,σ)

J (πAlg(B, η, σ)) s.t. C + δ · D ≤ F0.

4 SCALING RESULTS FOR VALUE-BASED DEEP RL

We will now present our main results addressing Problem 3.1 under the two settings discussed above.
We will then use these results to solve Problem 3.2. To do so, we run several experiments and estimate
scaling trends from the results. Although this procedure might appear standard from language
modeling, we found that instantiating it for value-based RL requires understanding the interaction of
the various hyperparameters appearing in TD updates, and the data and compute efficiency of the
algorithm. We will formalize these relationships via empirically estimated laws and show that these
laws extrapolate reliably to new settings not used to obtain these empirical laws. Therefore, in this
section, we present empirical and conceptual arguments to build functional forms of relationships
between different hyperparameters. Before doing so, we provide our answers to Problems 3.1 and 3.2.

4.1 MAIN SCALING RESULTS

Figure 2: The data-compute tradeoff on DMC. Left: The minimum
required data DJ scales with the UTD σ as a power law. Right:
The minimum required compute CJ increases with the UTD σ as a
sum of two power laws.

We begin by answering Problem 3.1
where we maximize sample efficiency.
We wish to estimate the minimum
amount of data DJ needed to attain
a given performance, given an upper
bound on compute C ≤ C0. To do
so, we fit DJ needed to attain perfor-
mance J0 parameterized by the UTD
ratio σ (Eq. (4.1)). Intuitively, we
would expect the minimum amount
of data needed to attain a given per-
formance to be low as more updates
are made per datapoint (i.e., when σ
is high), as more “value” could be derived from the same datapoint. In addition, we would expect
that even for the best value of σ, there is a minimum number of datapoints Dmin that are needed to
learn given the “intrinsic” difficulty of the task at hand. Based on these intuitions, we hypothesize a
power law relationship between DJ(σ) and σ, with an offset Dmin and constants αJ and βJ .

DJ(σ) ≈ Dmin
J +

(
βJ

σ

)αJ

(4.1)

We validate the efficacy of this fit on DMC in Figure 2. We emphasize this power law is predictable,
i.e. we can predict DJ for values of σ that outside the range of σ values used to get the fit (Figure 6).

Scaling Observation 1: Data Requirements

The amount of data DJ needed to reach a given return target J0 decreases as a predictable
function of the UTD σ, and is a power law (Eq. (4.1)).

To answer the optimization questions in Problem 3.1, we also need an expression for required compute
until the target return CJ . As σ determines the number of gradient steps run per data point, CJ is a
function of σ. In particular, total compute is equal to the number of gradient steps taken multiplied
by the parameter count of the model. Our study does not optimize over the model size and treats it as
a constant. Thus, we can write the compute CJ as a function of σ as:

CJ(σ) ≈ 10 ·N ·B(σ) · σ · DJ(σ) (4.2)
where N denotes the model size, B(σ) denotes the “best choice” batch size for a given UTD value
σ, and other variables follow definitions from before. Note the additional factor of 10 in Eq. (4.2)
emerges from the use of multiple forward passes to compute the loss function for value-based RL
and the backward pass, through the Q-network (to contrast with language modeling, the typical
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multiplier is 6; the gap in our setting comes from the use of multiple forward passes). We plot CJ(σ)
for different values of σ and J = J0 in Figure 2. Since DJ(σ) is not a constant and depends itself on
σ, we note that this particular relationship between CJ(σ) and σ is not a simple power law unlike
Eq. (4.1). Instead, our derivation in Eq. (A.4) shows that CJ(σ) is given by a sum of two different
power laws in σ. Similarly to DJ , we also observe that the compute utilized is a predictable function
of σ: we are able to accurately estimate the compute at larger values of σ using Eq. (4.2).

Scaling Observation 2: Compute Requirements

The compute CJ to attain a given return target J0 increases as a predictable function of the
UTD ratio σ, and is a sum of two power laws (Eq. (4.2)).

We observe that both required compute and data are controlled by the UTD ratio σ, which allows us
to define a tradeoff between compute and data controlled by σ. We plot this tradeoff as a curve with
compute CJ(σ) as x-axis and DJ(σ) as y-axis in Figure 1 (left). Further, as DJ(σ) is a monotonically
decreasing function of σ, this curve defines a Pareto frontier: we can move left on the curve to
increase data efficiency as the expense of compute and move right to increase compute efficiency at
the expense of data. Interestingly, due to the compute law being a sum of two power laws, in many
environments there is a minimum σ after which compute efficiency no longer improves.

Solving for maximal data efficiency (Problem 3.1, (1)). Our strategy to address setting (1) is to find
the largest σ (say σmax) that satisfies the compute constraint CJ(σ) ≤ C0, and then plug this σmax

into DJ(σ) to obtain the data estimate. This enables us to express DJ directly as a function of the
available compute C0, as we calculate in Eq. (4.2). This can be visualized as finding the value DJ

corresponding to some value C0 on the Pareto frontier (Figure 1, left)

Solving for maximal compute efficiency (Problem 3.1, (2)). Likewise, the solution can be obtained
by finding the smallest value of σ in the range that satisfies the data constraint DJ(σ) ≤ D0, and
computing the corresponding value of CJ(σ). This can similarly be visualized on the Pareto frontier
(Figure 1, left). We summarize our observations in terms of the following takeaway.

Solving Problem 3.1: Defining the Compute-Data Pareto frontier

The UTD ratio σ defines a Pareto frontier between data and compute requirements, and
estimating this frontier yields predictable solutions to resource optimization problems in
settings (1) and (2). Theoretically, the optimal D∗

J for an available compute budget C0 is:

D∗
J(C0) ≈ C0 · (10 ·N ·B(σ∗) · σ∗)

−1
. (4.3)

The optimal CJ for a given data budget D0 is:
C∗
J(D0) ≈ 10 ·N ·B(σ∗) · σ∗ · D0. (4.4)

Above, σ∗ denotes the minimizing UTD value. Calculation details are in Appendix A.

Figure 3: Visualization of the solution to Problem 3.2.
Several Pareto frontiers (Figure 1, left) are shown, to-
gether with lines of iso-budget F , which define optimal
budget points (D∗, C∗). Corresponding optimal UTD
ratios σ∗ are a predictable function of the budgets F0,
trend line shown dashed.

Maximize return within a budget (Prob-
lem 3.2). Finally, we tackle Problem 3.2 in order
to extrapolate from low to high return. Here, we
do not want to minimize resources, but rather
want to maximize performance within a given to-
tal “budget” on data and compute. As discussed
in Section 3, we consider budget functions linear
in both data and compute, i.e., F = C + δ · D,
for a given constant δ. Our estimated Pareto
frontier in Eq. (4.4) will enable answering this
question. To do so, we turn to directly predict-
ing a good UTD value σ∗. This UTD value is
one that not only leads to maximal performance,
but also stays within the total resource budget
F0. Once the UTD value has been identified,
it prescribes a concrete way to partition the to-
tal resource budget into good data and compute
requirements using the solutions to Problem 3.1.
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We plot the data-compute Pareto frontiers for multiple values of J0 in Figure 3 and in Figure 1 (right),
and find that these curves move diagonally to the top-right for larger J0. Intersecting these curves
with iso-budget frontiers over D and C prescribed by the budget function, gives us the largest possible
J0 for which there is still a (D, C) pair that just falls just within the budget F0 but attains performance
J0 (see Figure 3). Since both D and C are explained by σ, we can associate this point with a given σ
value. Hence, we can estimate the best value of σ∗(F0) for a given budget threshold F0. Concretely,
we observe a power law between σ(F0) and F0, with constants βσ and ασ .

σ∗(F0) ≈
(
βσ

F0

)ασ

. (4.5)

Solving Problem 3.2: Maximize return given a total data and compute budget

The best UTD value σ that leads to maximal J is a function of the budget F0 over data and
compute, this relationship follows a power law, and also extrapolates to larger budgets.

This relationship produces the optimal σ, and as a result, the optimal data and compute allocations to
reliably attain maximum performance. As shown in Figure 1, estimating this law from low-budget
experiments is sufficient for predicting good σ values for large budget runs. These predicted σ∗(F0)
values extrapolate reliably to budgets outside the range used to fit this law.

4.2 FITTING RELATIONSHIPS BETWEEN (B, η, σ)

To arrive at these scaling law fits above, we had to set hyperparameters B and η, which we empirically
observed to be important. We fit these hyperparameters as a function of σ, the only variable appearing
in many of the scaling relationships discussed above. In this section, we will now describe how to
estimate good values of B and η in terms of σ. Our analysis here relies crucially on the behavior of
TD-learning that is distinct from supervised learning, where the UTD ratio σ does not exist.

To understand relationships between batch size B, learning rate η, and the UTD ratio σ, we ran an
extensive grid search. We first attempted to explain the relationship between the B and η values with
best data efficiency (denoted B∗, η∗) using tools from supervised learning: when the batch size is
smaller than the critical batch size, B and η are inversely correlated with each other (McCandlish
et al., 2018). However, as shown in Figure 5 (right), we find that best B∗ and η∗ exhibit weak corre-
lation. Further, the critical batch size (McCandlish et al., 2018) does not correlate with empirically
best batch size as we show in Appendix E. Instead, surprisingly, we observe a strong correlation
between B∗ and σ, as well as η∗ and σ, respectively. Since B∗ and η∗ exhibit near zero correlation
among themselves, we can simply omit their dependency and opt for modeling them independently
as a function of the UTD ratio, σ. We conceptually explain relationships between B∗ and σ, and η∗

and σ below and show that models developed from this understanding enable us to reliably predict
good values of B and η, allowing us to fully answer Problem 3.1.

Predicting best choice of B in terms of σ. Our proposed functional form for the best batch size B∗

takes the form of a power law in σ, which we empirically validate in Figure 5 (left). Intuitively, large
batch sizes increase the risk of overfitting because they lead to repetitive training on a fixed set of
data. Furthermore, a small training loss on the distribution of data in the buffer does not necessarily
reflect the behavior policy distribution of a learning agent (Levine et al., 2020). This means that
minimizing the training loss to a large extent can result in poor test performance J(π), as also seen by
prior work (Li et al., 2023a; Nauman et al., 2024a). One way to counteract this form of “overfitting”
from a high UTD value σ is to instead reduce the batch size in the run so that the training process sees
a given sample fewer times. In fact, for a fixed UTD value σ, we empirically validate this hypothesis
that a lower B leads to substantially reduced overfitting on several tasks in Figure 4. Hence, we post
an inverse relationship between the best batch size B∗ and the UTD value σ. We show in Figure 5
that indeed this inverse relationship can be estimated well by a power law, given formally as:

B∗(σ) ≈
(
βB

σ

)αB

. (4.6)

Predicting best choice of learning rate η as a function of σ. Next we turn to understanding the
relationship between η and σ. We start from a simple observation: a large σ can lead to worse
performance not only due to overfitting but also due to plasticity loss (Kumar et al., 2021a; D’Oro
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Figure 4: Hyperparameter effects in supervised learning and TD learning on DMC. Top: Overfitting increases
with UTD while batch size can be used to counteract it. Bottom: Higher UTD leads to poor training dynamics and
plasticity loss (D’Oro et al., 2022). Lower learning rates can be used to counteract it. While these relationships
are not perfectly predictable, we use them to inform our design choices.

et al., 2022; Lyle et al., 2023), defined broadly as the inability of the value network to fit TD targets
appearing later in training. Prior work claims that larger norms of parameters of the Q-network are
indicative of plasticity loss (D’Oro et al., 2022; Lyle et al., 2023). We would expect a larger learning
rate to make higher magnitude updates against the same TD target, and hence move parameters to a
state that suffers from difficulty in fitting subsequent targets (Dabney et al., 2021; Lee et al., 2024).
As shown in Figure 4, the parameter norm indeed increases with a high learning rate. Therefore, we
hypothesize that the best choice of learning rate, η∗(σ) should scale inversely in σ. Empirically we
observe this is indeed the case (Figure 5 (middle)), and we model this relationship:

η∗(σ) ≈
(
βη

σ

)αη

. (4.7)

Scaling Observation 3: Hyperparameter Selection

The best choices for the batch size and learning rate are predictable functions of the UTD σ,
and both of these relationships follow a power law.

4.3 EMPIRICAL WORKFLOW FOR OBTAINING FITS

Our Workflow for Fitting Empirical Relationships

1. Run a sweep for batch size B and learning rate η for several values of UTD σ. Since
the batch size and learning rate are independent for the best σ, we can run these sweeps
independently.

2. Estimate empirically the best of batch size B̃ and learning rate η̃, with statistical bootstrap-
ping.

3. Fit B∗(σ) and η∗(σ) on B̃, η̃ according to Equations (4.6) and (4.7).
4. Using the found fits B∗(σ), η∗(σ), run different values of σ that cover a range spanning an

order of magnitude; we use 16×, i.e., σmax/σmin > 16.
5. Fit DJ(σ) according to Eq. (4.1).
6. Using fits of DJ(σ) for different values of J0, fit σ∗(F0) according to Eq. (4.5).
7. Optimal hyperparameters can now be extrapolated to larger data, larger compute, or larger

budget settings according to Problem 3.1.
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Figure 5: Left, middle: Fitting the best learning rate η∗ and batch size B∗ given UTD σ on DMC. Modeling the
dependency on σ is crucial to obtain good hyperparameters, whereas using constant B, η as is commonly done
leads too poor extrapolation. Right: the best learning rate and batch size are not significantly correlated, a major
difference from supervised learning.
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Figure 6: Extrapolation towards unseen values of σ on OpenAI Gym. Left: We show Pareto frontier extrapolation
towards higher data regime. Middle: We show Pareto frontier extrapolation towards higher compute regime.
Right: We compare the best-performing hyperparameters (red) for σ = 2 to hyperparameters predicted via our
proposed workflow (blue).

Having presented solutions to Problems 3.1 and 3.2, we now present the workflow we utilize to
estimate these empirical fits. Further details are in Section 5 and Appendix D. This workflow can
serve as a useful skeletion for scaling law studies with other value-based algorithms as well.

4.4 EVALUATING EXTRAPOLATION

Evaluating budget extrapolation. Results on all environments are shown in Figure 1 (middle). We
estimate several Pareto frontiers corresponding to points with equal changes in budget. We perform
the σ∗(F0) fit, while holding out two largest budgets. The quality of our fit for these two extrapolated
budgets can be seen in the figure.

Evaluating Pareto frontier extrapolation. Results on OpenAI Gym are shown in Figure 6. We fit
the data efficiency equation DJ(σ) Eq. (4.1) while holding out either two UTD values σ with largest
data requirement (left) or two σ values with largest compute requirement (right). The quality of our
fit for these two extrapolated σ values can be seen in the figure.

Hyperparameter fit extrapolation. Results on OpenAI Gym are shown in Figure 6 (right). We plot
the data efficiency fit when using hyperparameters according to our found dependency B∗(σ), η∗(σ)
(shown in olive). These fits are estimated from σ = 1, · · · , 8 and extrapolated to σ = 0.5. We
compare to the typical approach to tuning hyperparameters, where hyperparameters are tuned for one
setting of σ = 2 and this setting is used for all UTD values (shown in blue). We see that our proposed
hyperparameter fits improve results for values other than σ = 2. Further, this improvement is larger
for larger values of σ, showing that accounting for hyperparameter dependency is critical.

5 EXPERIMENTAL DETAILS

Experimental Setup We focus on 12 tasks from 3 domains in our study. On OpenAI Gym (Brock-
man et al., 2016), we use Soft Actor Critic, a commonly used TD-learning algorithm (Haarnoja et al.,
2018b). We first run a sweep on 5 values of η, then a grid of runs with 4 values of σ and 3 values
of B, and then use hyperparameter fits to run 2 more value of σ with 8 seeds per task. To test our
approach with larger models, we use DMC (Tassa et al., 2018), where, we utilize the state-of-the-art
Bigger, Regularized, Optimistic (BRO) algorithm (Nauman et al., 2024b) that uses a larger and more
modern architecture. We first run 5 values of B, 4 values of η, and 4 σ; and then use hyperparameters
fits to run 2 more values of σ, with 10 seeds per task. Finally, we test our approach with more data on
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IsaacGym (Makoviychuk et al., 2021), where we use the Parallel Q-Learning (PQL) algorithm (Li
et al., 2023b), which was designed to leverage massively parallel simulation like Isaac Gym that can
quickly produce billions of environment samples. Because of computational expense, we only run
one IsaacGym task. We first run 4 values of σ, 3 values of η, as well as 5 values of B, with 5 seeds
per task, after which we run a second round of grid search with 7 values of σ. Further details are in
Appendices B and D and Table 3.

Fitting Functional Forms for Scaling Laws We approximate Eq. (4.1) via brute-force search
followed by LBFG-S with a log-MSE loss following (Hoffmann et al., 2022). For Equations (4.6)
and (4.7), we fit a line in log space using least squares regression following Kaplan et al. (2020).
In our experiments, we run a single fit that is shared across different tasks in a given benchmark.
Specifically, we share the slope αB , αη and use task-specific intercepts σenv

B , σenv
η (as defined in

Equations (4.6) and (4.7)) to be different for separate tasks. This technique is standard in ordinary
least squares modeling and is referred to as fixed effect regression (Bishop & Nasrabadi, 2006).
Sharing this slope serves the goal of variance reduction, which can be important if the granularity of
the grid search over various hyperparameters run is coarse. More details are in Appendices B and D.

6 RELATED WORK

Scaling laws and predictability. Prior work has studied scaling laws in the context of supervised
learning (Kaplan et al., 2020; Hoffmann et al., 2022), primarily to predict the effect of model size and
training data on validation loss, while marginalizing out hyperparameters like batch size (McCandlish
et al., 2018) and learning rate (Kaplan et al., 2020). There are several extensions of such scaling
laws for language models, such as laws for settings with data repetition (Muennighoff et al., 2023)
or mixture-of-experts (Ludziejewski et al., 2024), but most focus on cross-entropy loss, with an
exception of Gadre et al. (2024), which focuses on downstream metrics. While scaling laws have
guided supervised learning experiments, little work explores this for RL. The closest works are:
Hilton et al. (2023) which fits power laws for on-policy RL methods using model size and the number
of environment steps; Jones (2021) which studies the scaling of AlphaZero on board games of
increasing complexity; and Gao et al. (2023) which studies reward model overoptimization in RLHF.
In contrast, we are the first ones to study off-policy value-based RL methods that are trained via
TD-learning. Not only do off-policy methods exhibit training dynamics distinct from supervised
learning and on-policy methods (Kumar et al., 2021b; Lyle et al., 2023), but we show that this
distinction also results in a different functional form for scaling law altogether.

Methods for large-scale deep RL. Recent work has scaled deep RL across three axes: model
size (Kumar et al., 2023; Schwarzer et al., 2023; Nauman et al., 2024b), data (Kumar et al., 2023; Gal-
lici et al., 2024; Singla et al., 2024), and UTD (Chen et al., 2020; D’Oro et al., 2022). Naı̈ve scaling of
model size or UTD often degrades performance or causes divergence (Nikishin et al., 2022; Schwarzer
et al., 2023), mitigated by classification losses (Kumar et al., 2023), layer normalization (Nauman
et al., 2024a), or feature normalization (Kumar et al., 2021b). In on-policy RL, prior works focus
on effective learning from parallelized data streams in a simulator or a world model (Mnih, 2016;
Silver et al., 2016; Schrittwieser et al., 2020). Follow-up works like IMPALA (Espeholt et al., 2018)
and SAPG (Singla et al., 2024) use a centralized learner that collects experience from distributed
workers with importance sampling updates. These works differ substantially from our study as we
focus exclusively on value-based off-policy RL algorithms that use TD-learning and not on-policy
methods. In value-based RL, prior work on data scaling focuses on offline (Yu et al.; Kumar et al.,
2023; Park et al., 2024) and multi-task RL (Hafner et al., 2023). In contrast, we study online RL and
fit scaling laws to answer resource optimization questions.

7 CONCLUSION

In this paper, we show that value-based deep RL algorithms scale predictably. We establish relation-
ships between good values of hyperparameters of value-based RL. We then establish a relationship
between required data and required compute for a certain performance. Finally, this allows us to
determine an optimal allocation of resources to either data and compute. Although only estimated
from small-scale runs, our empirical models reliably extrapolate to large compute, data, budget, or
performance regimes. To the best of our knowledge, this is the first demonstration that it is possible
to predict behavior of value-based off-policy RL algorithms at larger scale using small-scale runs.
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Appendices
A ADDITIONAL DETAILS ON DERIVATIONS

FLOPs calculation. Recall that FLOPs per forward and backward passes are equal to Cforward
J (σ) ≈

2 ·N ·B(σ) · σ · DJ(σ) and Cbackward
J (σ) ≈ 4 ·N ·B(σ) · σ · DJ(σ), with σ denoting the number of

gradient steps per environment steps. Q-learning methods used in our study use MLP and ResNet
architectures, which are well modeled with this approximation. Assuming same size for actor and
critic as an approximation, a training iteration of the critic requires three forward passes and one
backward pass, totaling Ccritic

J (σ) ≈ 10 ·N ·B(σ) ·σ ·DJ(σ). A training iteration of the actor requires
two forward and two backward passes, totaling Cactor

J (σ) ≈ 12 ·N ·B(σ) ·σ · DJ(σ). Here we follow
the standard practice of updating the actor every time a new data point collected, while the critic is
updated according to the UTD ratio σ. Since we expect the critic to be updated more then the actor.
As such, in this study we assume

CJ(σ) ≈ Ccritic
J (σ) ≈ 10 ·N ·B(σ) · σ · DJ(σ). (A.1)

Compute and sample efficiency. Following Eq. (4.1), the number of data points required to achieve
performance J is equal to:

DJ(σ) ≈ Dmin
J +

(
βJ

σ

)αJ

(A.2)

Given the expressions for required data points, practical batch size, and FLOPs Equations (4.1), (4.6)
and (A.1), we can now derive the expression for compute required to reach a particular performance
expressed in terms of σ. First, note that the number of parameter updates is

σ · DJ(σ) ≈ σ · Dmin
J +

βαJ

J

σαJ−1
(A.3)

Combining above, Eq. (4.6) with Eq. (A.1) yields:

CJ(σ) ≈ 10 ·N ·B(σ) ·
(
σ · Dmin

J +
βαJ

J

σαJ−1

)
≈ 10 ·N ·

(
βB

σ

)αB

·
(
σ · Dmin

J +
βαJ

J

σαJ−1

)
≈ 10 ·N ·

(
Dmin

J · βαB

B

σαB−1
+

βαJ

J · βαB

B

σαJ+αB−1

)
.

(A.4)

We observe that the resulting expression is a sum of two power laws. In practice, one of the power
laws will dominate the expression and a simple mental model is that compute increases with UTD as
a power law with a coefficient < 1 (see Figure 2).

Maximal compute efficiency. Here, we solve the compute optimization problem presented in
Section 3. We write the problem:

(B∗, η∗, σ∗) := arg min
(B,η,σ)

C s.t. J (πAlg(B, η, σ)) ≥ J0 ∧ D ≤ D0. (A.5)

Firstly, we formulate the Lagrangian L:

L(σ, λ) = CJ(σ) + λ · (DJ(σ)−D0)

≈ 10 ·N ·B(σ) ·
(
σ · Dmin

J +
βαJ

J

σαJ−1

)
+ λ ·

(
Dmin

J +

(
βJ

σ

)αJ

−D0

)
(A.6)
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Here, the constrained with respect to performance J0 is upheld through the use of CJ(σ) and DJ(σ)
which are defined such that J = J0. We proceed with calculating the derivative with respect to λ to
find the minimal σ that is able to achieve the desired sample efficiency DJ . We denote such such
optimal UTD as σ∗:

∂L
∂λ

= Dmin
J +

(
βJ

σ

)αJ

−D0 = 0 =⇒ σ∗ =
−βJ(

Dmin
J −D0

)1/αJ
(A.7)

Then, we substitute the σ∗ into the expression defining compute, as well as use Eq. (4.6):

CJ(σ∗) ≈ 10 ·N ·
βαB

B

σαB−1
·
(
Dmin

J +
βαJ

J

σαJ

)
≈ 10 ·N ·

βαB

B

(σ∗)αB−1
·

(
Dmin

J +
βαJ

J ·
(
Dmin

J −D0

)
−βαJ

J

)
≈ 10 ·N · βαB

B · (σ∗)1−αB · D0

(A.8)

Maximal sample efficiency. Firstly, we note that we treat B(σ) as a constant and do not optimize
with respect to it. We start with the problem definition:

(B∗, η∗, σ∗) := arg min
(B,η,σ)

D s.t. J (πAlg(B, η, σ)) ≥ J0 ∧ C ≤ C0. (A.9)

Similarly to the maximal compute efficiency problem, we formulate the Lagrangian L:

L(σ, λ) = DJ(σ) + λ · (CJ(σ)− C0)

≈ Dmin
J +

(
βJ

σ

)αJ

+ λ ·
(
10 ·N ·B(σ) · σ ·

(
Dmin

J +
βαJ

J

σαJ

)
− C0

)
(A.10)

Again, we uphold the constraint with respect to the performance through the use of DJ(σ) and CJ(σ).
We calculate the derivative with respect to λ:

∂L
∂λ

= 10 ·N ·B(σ) · σ ·
(
Dmin

J +
βαJ

J

σαJ

)
− C0 = 0 =⇒ Dmin

J +
βαJ

J

σαJ
=

C0
10 ·N ·B(σ) · σ

= DJ

(A.11)

Since DJ is monotonic in σ and does not model impact of B on the sample efficiency, the optimization
problem can be solved via Weierstrass extreme value theorem. As such, we find the biggest σ and
that fulfills the compute constraint, and find the data requirement for such σ.

B EXPERIMENTAL DETAILS

For our experiments, we use a total of 12 tasks from 3 benchmarks (DeepMind Control (Tunyasu-
vunakool et al., 2020), Isaac Gym (Makoviychuk et al., 2021), and OpenAI Gym (Brockman et al.,
2016)). We list all considered tasks in Table 1.

Figure 1. We use all available UTD values for the fits, which is 6 for DMC, 5 for OAI Gym, and 7
for Isaac Gym. Given the dependency of compute and data on UTD, we plot the resulting curve. We
average the data efficiencies across all tasks in each domain, as described in Appendix D.

We calculate compute given the model sizes of N = 4.92e6 for DMC, N = 1.5e5 for OAI Gym, and
N = 2e6 following standard implementations of the respective algorithms.
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Table 1: Tasks used in presented experiments.

Domain Task Optimal π Returns
DeepMind Control Cartpole-Swingup 1000

Cheetah-Run 1000
Dog-Stand 1000
Finger-Spin 1000

Humanoid-Stand 1000
Quadruped-Walk 1000

Walker-Walk 1000

Isaac Gym Franka-Push 0.05

OpenAI Gym HalfCheetah-v4 8500
Walker2d-v4 4500

Ant-v4 6625
Humanoid-v4 6125

For budget extrapolation, we use tradeoff values δ to mimic the wall-clock time of the algorithm.
We use δ = 1e10 for DMC, δ = 5e9 for OAI Gym, and δ = 1e4 for Isaac Gym. We exclude runs
affected by resets (σ = 8) for DMC since the returns right after the reset are lower, which adds noise
to the results.

Figure 2. We use the same data as for DMC in Figure 1 (left).

Figure 3. We use the same data as for DMC in Figure 1 (right).

Figure 5. In the left and central Figures, we evaluate the B∗ and η∗ models. For each DMC task,
we find the best hyperparameters according to our workflow and procedure described in Section 5
and Appendix D. While the intercepts vary across environments, for simplicity we plot data points
and fits from all environments in the same figure by shifting them with the corresponding intercept.
In the right Figure, we marginalize over σ and visualize best performing pairs of B and η.

Figure 4. Left: we show an illustration that reflects our observed empirical results about the
dependencies between hyperparameters.

Right, middle: we investigate the correlations between overfitting, parameter norm of the critic
network, and σ. We observed the same relationships on all tasks. Here, to avoid clutter, we plot 3
tasks from DMC benchmark: cheetah-run, dog-stand, and quadruped-walk. To measure overfitting,
we compare the TD loss calculated on samples randomly sampled from the buffer (corresponding
to training data) to TD loss calculated on 16 newest transitions (corresponding to validation data)
according to:

Overfitting = TDtraining − TDvalidation. (B.1)

We fit the linear curves using ordinary least squares with mean absolute error loss.

Figure 6. Here, we investigate 4 tasks from OpenAI Gym, listed in Table 1, and compare the
extrapolation performance of two hyperparameter sets: the best performing hyperparameters for
σ = 1, found by testing 8 different hyperparameter values listed in Table 3 (we refer to this
configuration as baseline); and hyperparameters predicted by our proposed models of B∗ and η∗.
We fit our models using σ ∈ (1, 2, 4, 8), and extrapolate to σ ∈ (0.5, 16). The graph shows the data
efficiency with threshold as 700, normalized according to the procedure in Appendix D.

Figure 7. The goal of the left Figure is to visualize the effects of isotropic regression fit on a noisy
data. We use the SciPy package (Virtanen et al., 2020) to run the isotropic model. In the right Figure
we visualize the process of best hyperparameter selection using bootstrapped confidence intervals.
We describe the bootstrapping strategy in Appendix D.
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C RESULTING FITS

DMC Refer to Table 2 for environment-specific values.

η∗ = βη · σ−0.26

B∗ = βB · σ−0.47

DJ = Dmin ·
(
1 +

( σ

0.45

)−0.74
)

σ∗ = 1.4e8 · F−0.53
0

(C.1)

OpenAI Gym Refer to Table 2 for environment-specific values.

η∗ = βησ
−0.30

B∗ = βBσ
−0.33

DJ = Dmin ·
(
1 +

( σ

4.02

)−0.69
)

σ∗ = 1.4e8 · F−0.53
0

(C.2)

Isaac Gym

η∗ = 8.77 ·
(
1 +

( σ

2.57e-3

)−0.26
)

B∗ = 38.6 ·
(
1 +

( σ

1.42e-2

)−0.68
)

DJ = 6.8e7 ·
(
1 +

( σ

1.88

)−0.87
)

σ∗ = 11.3 · F−0.57
0

(C.3)

Table 2: Coefficients for DMC and OpenAI Gym fits.

Domain Task βη βB Dmin

DMC cartpole-swingup 7.55e-4 538.2 2.4e4
cheetah-run 6.25e-4 564.9 3.5e5
finger-spin 8.77e-4 608.2 2.9e4
humanoid-stand 3.86e-4 451.8 3.8e5
quadruped-walk 8.46e-4 526.4 6.2e4
walker-walk 9.38e-4 313.3 3.3e4

OpenAI Gym Ant-v4 1.35e-4 447.0 2.7e5
HalfCheetah-v4 1.86e-3 415.4 7.8e4
Humanoid-v4 1.65e-4 351.6 1.8e5
Walker2d-v4 7.85e-4 399.1 1.7e5

Table 3: Tested configurations.

Hyperparameters DeepMind Control Isaac Gym OpenAI Gym

Updates-to-data σ 1, 2, 4, 8 1
1024 ,

1
2048 ,

1
4096 ,

1
8192 ,

1
16384 ,

1
32768 ,

1
65536 1, 2, 4, 8

Batch size B 32, 64, 128, 256, 512 512, 1024, 2048, 4096, 8192 128, 256, 512
Learning rate η 15e-5, 3e-4, 6e-4, 12e-3 1e-4, 2e-4, 3e-4 1e-4, 2e-4, 5e-4, 1e-3, 2e-3

D ADDITIONAL DETAILS ON THE FITTING PROCEDURE

Preprocessing return values. In order to estimate the fits from our laws, we need to track the data
and compute needed by a run to hit a target performance level. Due to stochasticity both in training
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and and evaluation, naı̈ve measurements of this point can exhibit high variance. This in turn would
result in low-quality fits for DJ and CJ . Thus, we preprocess the return values before estimating
the fits by running isotonic regression (Barlow & Brunk, 1972). Isotonic regression transforms
return values to the most aligned monotonic sequence of values that can then be used to estimate DJ .
While in general return values can decrease with more training after reaching a target value, and this
will result in a large deviation between the isotonic fit and true return values, the proposed isotonic
transformation still suffices for us as our goal is to simply fit the minimum number of samples or
compute needed to attain a target return. As we can still make reliable predictions that extrapolate to
larger scales, the downstream impact of this error is clearly not substantial. We also average across
random seeds before running isotonic regression to further reduce noise. We normalize the returns
for all environments to be between 0 and 1000 (Table 1 lists pre-normalized returns), and reserve the
points of 700 and 800 for budget extrapolation in Figure 1.

Uncertainty-adjusted optimal hyperparameters. While averaging across seeds and applying
isotonic regression reduces noise, we observe that the granularity of our grid search on learning rate
and batch size limits the precision of the resulting hyperparameter fits B̃, η̃. Noise due to random seed
generation makes hyperparameter selection harder as some hyperparameters that appear empirically
optimal might simply be so due to noise. We observe that we can correct for this precision loss
by constructing a more precise estimate of B̃, η̃ adjusted for this uncertainty. Specifically, we run
K = 100 bootstrap estimates by sampling n random seeds with replacement out of the original n
random seeds, applying isotonic regression, and selecting the optimal hyperparameters B̃k, η̃k. We
then use the mean of this bootstrapped estimate to improve the precision:

B̃bootstrap =
1

K

∑
k

B̃k

η̃bootstrap =
1

K

∑
k

η̃k

(D.1)

We have also experimented with more precise laws for learning rate and batchsize by adding an
additive offset. In this case, we follow Hoffmann et al. (2022) and fit the data using brute-force search
followed by LBFG-S. We use MSE in log space as the error: MSElog(a, b) = (log a− log b)

2.

B∗(σ) ≈ Bmin +
σB

σαB
(D.2)

η∗(σ) ≈ ηmin +
ση

σαη
. (D.3)

However, we found that this more complex fit did not validate the decrease of degrees of freedom
given a limited sweep range, resulting in accuracy of extrapolation.

Independence of B and η. Whereas the optimal choice of B and η is often intertwined as UTD
changes, we observe in our experiments that the correlation between them is relatively low (Figure 5).
If we ran a cross-product grid search with hyperparameter space {B1, . . . , BnB

} × {η1, . . . , ηnη
},

we can use this fact to further improve the results by averaging the estimate B̃ over different values of
η. That is, we produce the estimate B̃[η=ηi] (respectively η̃[B=Bi]) by only looking at the runs where
η = ηi, and averaging such estimates.

B̃mean =
1

nη

∑
i

B̃[η=ηi]

η̃mean =
1

nB

∑
i

η̃[B=Bi]
(D.4)

Data efficiency. We fit data efficiency of the runs with our found practical hyperparameters B∗, η∗

according to Eq. (4.1). We follow Hoffmann et al. (2022) and fit the data using brute-force search
followed by LBFG-S. We use MSE in log space as the error: MSElog(a, b) = (log a− log b)

2.

In DeepMind Control Suite, we would like to share the data efficiency fit across different environments
env. We normalize the data efficiency D by the intra-environment median data efficiency medians
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Figure 7: Left: Determining performance via isotonic regression on DMC. Right: improving hyperparameter
selection with uncertainty adjustment on DMC. Further details are in Appendix D.

Figure 8: An approximation of the critical batch size over training. Further details are in Appendix E.

Denv
med = median{Denv

[σ=σi]
|i = 1..nσ}. For interpretability, we further re-normalize D with the overall

median Dmed: Dnorm = D · Dmed/Denv
med. We will need to express the data efficiency law alternatively

as:

DJ(σ) ≈ Dmin
J

(
1 +

(
βJ

σ

)αJ
)
. (D.5)

This is equivalent to Eq. (4.1) because the coefficient βJ absorbs Dmin
J . However, this expression

makes explicit an overall multiplicative offset1 Dmin
J . Our median normalization is then equivalent to

fitting per-environment coefficients Dmin
J , following our procedure for environment-shared hyperpa-

rameter fits. However, we further improve robustness by fixing the per-environment coefficients to be
the median data efficiency and do not require fitting them.

E CRITICAL BATCH SIZE ANALYSIS

Previous work has argued that there is a critical batch size Bcrit for neural network training in
image classification, generative modeling, and reinforcement learning with policy gradient algo-
rithms (McCandlish et al., 2018) — a transition point at which increasing the batch size begins to
yield diminishing returns. We follow this work and compute an estimate of the gradient noise scale
Bnoise ≈ Bcrit according to the following procedure: throughout training, we compute the gradient

1This form enforces that Dmin
J is positive.
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Figure 9: B̃final vs. B̃crit, grouped by task and UTD.

norm |GB | of the critic network for batches of size B = Bsmall := 64 and B = Bbig := 1024. Then,
we evaluate

|G|2 :=
1

Bbig −Bsmall

(
Bbig|GBbig |2 −Bsmall|GBsmall |2

)
S :=

1

1/Bsmall − 1/Bbig

(
|GBsmall |2 − |GBbig |2

)
and take B̃crit := S/|G|2. In practice, to account for the noisiness of |G|2, we first take rolling
averages of |GBsmall | and |GBbig | over training, and tune the window size so that the estimates for |G|2
and S are stable.

We show the values of B̃crit over training in Figure 8. Unlike policy gradient methods, we find that
the critical batch size (averaged over training) has little correlation with the optimal batch size, as
shown in Figure 9.

Table 4: Batch size values predicted by the proposed model on DMC.

Task σ = 0.25 σ = 0.5 σ = 1 σ = 2 σ = 4 σ = 8

cartpole-swingup 1040 752 544 384 288 208
cheetah-run 1088 784 560 400 288 208
dog-stand 240 176 128 96 64 48
finger-spin 1168 848 608 432 320 224
humanoid-stand 864 624 448 320 240 176
quadruped-walk 1008 736 528 384 272 192
walker-walk 608 432 320 224 160 112

Table 5: Learning rate values predicted by the proposed model on DMC.

Task σ = 0.25 σ = 0.5 σ = 1 σ = 2 σ = 4 σ = 8

cartpole-swingup .00108 .000902 .000755 .000631 .000528 .000442
cheetah-run .000893 .000747 .000625 .000523 .000438 .000366
dog-stand .000664 .000555 .000465 .000389 .000325 .000272
finger-spin .00125 .00105 .000877 .000734 .000614 .000514
humanoid-stand .000551 .000461 .000386 .000323 .00027 .000226
quadruped-walk .00121 .00101 .000846 .000708 .000592 .000496
walker-walk .00134 .00112 .000938 .000785 .000657 .000549
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Table 6: Batch size values predicted by the proposed model on OpenAI Gym.

Task σ = 0.25 σ = 0.5 σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

Ant-v4 704 560 448 352 288 224 176
HalfCheetah-v4 672 528 416 336 256 208 160
Humanoid-v4 560 432 352 272 224 176 144
Walker2d-v4 640 496 400 320 256 192 160

Table 7: Learning rate values predicted by the proposed model on OpenAI Gym.

Task σ = 0.25 σ = 0.5 σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

Ant-v4 .000206 .000167 .000138 .000109 .000087 .000070 .000060
HalfCheetah-v4 .002820 .002280 .001900 .001510 .001210 .000972 .000827
Humanoid-v4 .000251 .000203 .000169 .000134 .000107 .000086 .000073
Walker2d-v4 .001180 .000958 .000806 .000640 .000512 .000412 .000347
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