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ABSTRACT

Diffusion models have been achieving excellent performance for real-world image
super-resolution (Real-ISR) with considerable computational costs. Current ap-
proaches are trying to derive one-step diffusion models from multi-step counterparts
through knowledge distillation. However, these methods incur substantial training
costs and may constrain the performance of the student model by the teacher’s lim-
itations. To tackle these issues, we propose DFOSD, a Distillation-Free One-Step
Diffusion model. Specifically, we propose a noise-aware discriminator (NAD) to
participate in adversarial training, further enhancing the authenticity of the gener-
ated content. Additionally, we improve the perceptual loss with edge-aware DISTS
(EA-DISTS) to enhance the model’s ability to generate fine details. Our experi-
ments demonstrate that, compared with previous diffusion-based methods requiring
dozens or even hundreds of steps, our DFOSD attains comparable or even superior
results in both quantitative metrics and qualitative evaluations. Our DFOSD also
abtains higher performance and efficiency compared with other one-step diffusion
methods. We will release code and models.

1 INTRODUCTION

Real-world image super-resolution (Real-ISR) is a challenging task that aims to reconstruct high-
resolution (HR) images from their low-resolution (LR) counterparts in real-world settings (Wang
et al., 2020). Most image super-resolution (SR) methods (Kim et al., 2016; Johnson et al., 2016;
Ledig et al., 2017; Chen et al., 2022; 2023) use Bicubic downsampling of HR images to generate
LR samples for training and testing models. These methods achieve good results in reconstructing
simple degraded images. However, they struggle with the complex and unknown degradations
widely existing in real-world scenarios. Moreover, these methods often amplify the noise in LR
images during reconstruction. Previous research has predominantly employed generative adversarial
networks (GANs) (Goodfellow et al., 2020) architectures for image SR tasks (Wang et al., 2021a;
Zhang et al., 2021; Liang et al., 2021). However, these approaches often struggle to train models that
accurately capture real-world data distributions, leading to suboptimal generated content. Diffusion
models (DMs), known for their strong denoising capabilities and ability to model data distributions,
have been widely adopted in the field of image generation in recent years. Recently, numerous
super-resolution (SR) methods based on pre-trained diffusion models have exhibited outstanding
performance by leveraging their powerful priors and generative capabilities.

Specifically, recent real-world image super-resolution (Real-ISR) models have predominantly lever-
aged powerful pre-trained diffusion models, such as large-scale text-to-image (T2I) models like
Stable Diffusion (Wu et al., 2024b; Yang et al., 2024; Lin et al., 2024). With training on billions of
image-text pairs and a strong capacity to model complex data distributions, these pre-trained T2I
models provide extensive priors and powerful generative abilities. Most diffusion model (DM)-based
methods generate high-resolution (HR) images by employing ControlNet models (Zhang et al., 2023),
conditioning on the low-resolution (LR) inputs. However, these methods typically require tens to
hundreds of diffusion steps to produce high-quality HR images. The introduction of ControlNet
not only increases the number of model parameters but also further exacerbates inference latency.
Consequently, DM-based multi-step diffusion methods often incur delays of tens of seconds when
processing a single image, which significantly limits their practical application in real-world scenarios
for low-level image reconstruction tasks, such as Real-ISR.

To accelerate the generation process of diffusion models, recent research has introduced numerous one-
step diffusion methods, known as diffusion distillation, which distill multi-step pre-trained diffusion
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Canon 040
# Steps / MACs (G)
Inference Time (s)
Distillation-Free

LR StableSR DiffBIR ResShift SinSR OSEDiff DFOSD (ours)
- / - 200 / 75,812 50 / 24,528 15 / 4,903 1 / 2,095 1 / 2,269 1 / 2,120

- 11.50 7.79 0.71 0.16 0.35 0.11
- N/A N/A N/A ˆ ˆ ✓

Figure 1: Visual comparisons (ˆ4) of different DM-based Real-ISR methods, including their inference
times and MACs (Multiply-Accumulate Operations), for an output size of 512ˆ512. The inference
times are measured on an A100 GPU. StableSR (Wang et al., 2024a), DiffBIR (Lin et al., 2024), and
ResShift (Yue et al., 2024) are multi-step DM-based methods, performing 200, 50, and 15 sampling
steps respectively. Our DFOSD is distillation-free when compared with other one-step diffusion
models, like SinSR (Wang et al., 2024b) and OSEDiff (Wu et al., 2024a). Our DFOSD generates
realistic details and achieves the lowest inference latency and MACs.

models into one-step counterparts. Most of these approaches employ a knowledge distillation strategy,
using the multi-step diffusion model as a teacher to train a one-step diffusion student model. These
methods significantly reduce inference latency, and the quality of the generated images can be
comparable to that of multi-step diffusion models. Real-ISR methods based on one-step diffusion
models have become an increasingly popular research direction, with representative methods such as
SinSR (Wang et al., 2024b) and OSEDiff (Wu et al., 2024a). While these methods achieve promising
visual results, the inclusion of the teacher network increases training overhead. The performance of
the student network is often constrained by the teacher network.

To overcome the aforementioned challenges, we propose DFOSD, a novel approach that generates
HR images from their corresponding LR inputs in a single sampling step. Unlike previous one-
step diffusion SR models, we do not employ knowledge distillation to train our one-step diffusion
generator. Our approach eliminates the need to leverage outputs or corresponding noise from multi-
step diffusion models, allowing us to train solely on real-world datasets. This significantly reduces
training overhead and overcomes the limitations imposed by teacher models. Furthermore, we do
not utilize models like CLIP (Radford et al., 2021) to encode prompts as conditional inputs for the
diffusion model. Instead, we train a learnable text embedding. This further reduces the model’s
inference time without compromising performance. As shown in Fig. 1, DFOSD not only achieves
the best visual results but also attains the fastest inference speed.

To better leverage the prior knowledge of pre-trained multi-step models and enhance the authenticity
of the generated images, we propose a noise-aware discriminator (NAD) initialized with parameters
from the pre-trained stable diffusion (SD) UNet, which is trained adversarially alongside the generator.
Specifically, our NAD takes the forward diffusion results of the latent features at various time steps,
ensuring that its performance remains robust across different noise levels. NAD capitalizes on the
prior knowledge of the pre-trained diffusion model, enhancing the reconstruction quality (see Fig. 1).
Additionally, we propose edge-aware DISTS (EA-DISTS) loss to improve the authenticity of fine
details in the generated content. Our comprehensive experiments indicate that DFOSD achieves
superior performance and less inference time among one-step diffusion model (DM)-based Real-ISR
models. When compared with multi-step DM-based models, DFOSD obtains comparable or even
better performance with over 7ˆ speedup in inference time (see Fig. 1).

Our main contributions are summarized as follows:
• We propose DFOSD, a Distillation-Free One-Step Diffusion SR model training paradigm.

Our DFOSD significantly enhances the details and visual quality of generated images,
achieving remarkable results in both evaluation metrics and visual assessments.

• We propose a noise-aware discriminator (NAD), which capitalizes on the prior knowledge
from the pre-trained SD UNet and engages in adversarial training with the generator. Our
NAD effectively enhances the realism and details of the reconstructed images.

• We improve the perceptual loss used in image SR model training by proposing the edge-
aware DISTS (EA-DISTS) loss. Our EA-DISTS leverages image edges to enhance the
model’s ability and improve the authenticity of reconstructed details.
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2 RELATED WORKS

2.1 REAL-WORLD IMAGE SUPER-RESOLUTION

Real-world image super-resolution (Real-ISR) aims to recover high-resolution (HR) images from
low-resolution (LR) observations in real-world scenarios. The complex and unknown degradation
patterns in such scenarios make Real-ISR a challenging problem (Ignatov et al., 2017; Liu et al.,
2022a; Ji et al., 2020; Wei et al., 2020). To address this problem, models continuously evolve. Early
image super-resolution models (Kim et al., 2016; Zhang et al., 2018c;b; Chen et al., 2022; 2023)
typically rely on simple synthetic degradations like Bicubic downsampling for generating LR-HR
pairs, resulting in subpar performance on real-world datasets. Later, GAN-based methods such as
BSRGAN (Zhang et al., 2021), Real-ESRGAN (Wang et al., 2021a), and SwinIR-GAN (Liang et al.,
2021) introduce more complex degradation processes. These methods achieve promising perceptual
quality but encounter issues such as training instability. Additionally, they have limitations in
preserving fine natural details. Recently, Stable Diffusion (SD) (Rombach et al., 2022b) is considered
for addressing Real-ISR tasks due to its strong ability to capture complex data distributions and
provide robust generative priors. Approaches such as StableSR (Wang et al., 2024a), DiffBIR (Lin
et al., 2024), and SeeSR (Wu et al., 2024b) leverage pre-trained diffusion priors and ControlNet
models (Zhang et al., 2023) to enhance HR image generation. While these methods significantly
improve perceptual quality, the multi-step nature of diffusion models introduces latency issues,
making them less practical for real-time applications in low-level image reconstruction tasks.

2.2 ACCELERATION OF DIFFUSION MODELS

Acceleration of diffusion models can reduce computational costs and inference time. Therefore,
various strategies have been developed to enhance the efficiency of diffusion models in image
generation tasks. Fast diffusion samplers (Song et al., 2021; Karras et al., 2022; Liu et al., 2022b;
Lu et al., 2022a;b; Zhao et al., 2024) have significantly reduced the number of sampling steps from
1,000 to 15„100 without requiring model retraining. However, further reducing the steps below 10
often leads to a performance drop. Under these circumstances, distillation techniques have made
considerable progress in speeding up inference (Berthelot et al., 2023; Liu et al., 2022c; Meng et al.,
2023; Salimans & Ho, 2022; Song et al., 2023; Zheng et al., 2023; Yin et al., 2024b; Liu et al., 2023;
Geng et al., 2024). For instance, Progressive Distillation (PD) methods (Meng et al., 2023; Salimans
& Ho, 2022) have distilled pre-trained diffusion models to under 10 steps. Consistency models (Song
et al., 2023) have further reduced the steps to 2„4 with promising results. Instaflow (Liu et al., 2023)
further achieves one-step generation through reflow (Liu et al., 2022c) and distillation. Recent score
distillation-based methods, such as Distribution Matching Distillation (DMD) (Yin et al., 2024c;a)
and Variational Score Distillation (VSD) (Wang et al., 2024c; Nguyen & Tran, 2024), aim to achieve
one-step text-to-image generation. They minimize the Kullback–Leibler (KL) divergence between
the generated data distribution and the real data distribution. Although these approaches have made
notable progress, they still face challenges, like high training costs and dependence on teacher models.

3 DISTILLATION-FREE ONE-STEP DIFFUSION (DFOSD)
In this section, we detail our Distillation-Free One-Step Diffusion (DFOSD) image super-resolution
(SR) model. First, in Section 3.1, we review the fundamentals of diffusion models and introduce
the principles underlying the DFOSD generator. Subsequently, we propose two key techniques for
training our one-step diffusion SR model. In Section 3.2, we propose the noise-aware discriminator
(NAD), which assesses image realism using the results of random forward diffusion applied to
their latent representations. Then, in Section 3.3, we propose an improved perceptual loss function,
edge-aware DISTS (EA-DISTS), designed to enhance the quality of image texture details. Finally,
in Section 3.4, we outline the complete training process of the model.

3.1 PRELIMINARIES: DIFFUSION

Diffusion models include forward and reverse processes. During the forward diffusion process,
Gaussian noise with variance βt P p0, 1q is gradually injected into the latent variable z: zt “
?
ᾱt z `

?
1 ´ ᾱt ϵ, where ϵ„N p0, Iq, αt “ 1 ´ βt, and ᾱt “

śt
s“1 αs. In the reverse process, we

can directly predict the clean latent variable ẑ0 from the model’s predicted noise ϵ̂: ẑ0 “
zt´

?
1´ᾱt ϵ̂?
ᾱt

,
where ϵ̂ is the prediction of the network ϵθ given zt and t: ϵ̂ “ ϵθpzt; tq.

As illustrated in Fig. 2, we first employ the encoder Eθ to map the low-resolution (LR) image xL

into the latent space, yielding zL: zL “ EθpxLq. Next, we perform a single denoising step to obtain
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Figure 2: Training framework of DFOSD. The left side represents the generator Gθ, which includes
the pre-trained VAE and UNet from Stable Diffusion. Only the UNet is fine-tuned using LoRA,
while other parameters remain frozen. The right side depicts the noise-aware discriminator (NAD),
which guides the training process without participating in inference. The NAD extracts the UNet
Mid-block outputs and processes them through an MLP to generate realism votes for different image
regions. Both the downsampling and middle blocks of the UNet in the discriminator are fine-tuned
with LoRA, whereas the MLP is randomly initialized.

the predicted noise ϵ̂ and compute the high-resolution (HR) latent representation ẑH :

ẑH “
zL ´

?
1 ´ ᾱTL

ϵθpzL;TLq
?
ᾱTL

, (1)

where ϵθ denotes the denoising network parameterized by θ, and TL is the diffusion time step. Unlike
one-step text-to-image (T2I) diffusion models (Song et al., 2023; Yin et al., 2024c), the input to the
UNet of the Real-ISR diffusion models is not pure Gaussian noise. We set TL to an intermediate time
step within the range [0, T ], where T is the total number of diffusion time steps. In Stable Diffusion
(SD), T “ 1, 000. Finally, we decode ẑH using the decoder Dθ to reconstruct the HR image x̂H :
x̂H “ DθpẑHq. The entire computation process of the generator can be expressed as x̂H “ GθpxLq.

3.2 NOISE-AWARE DISCRIMINATOR (NAD)
In an ideal scenario, we seek to achieve image restoration results that are almost indistinguishable
from real images. Yet, training the generator directly without distillation often falls short of this
goal. To improve the realism of generated images, we incorporate a discriminator. Training a
discriminator from scratch, however, may result in unstable training dynamics, and converting
the generator’s latent outputs to pixel space for evaluation introduces considerable computational
overhead. Stable Diffusion (SD), a robust pre-trained generative model with strong priors and a
UNet-based architecture, provides a promising solution to these challenges. This inspires us to
initialize the discriminator with pre-trained UNet parameters, perform operations directly in the
latent space, and leverage the UNet bottleneck layer’s robust information filtering and semantic
condensation capabilities to construct the discriminator.

Figure 3 illustrates the visualization results of the latent representations of both generated and real
images during the early stages of training. After undergoing forward diffusion at various random
time steps, the UNet middle block outputs are visualized using dimensionality reduction techniques
such as PCA, supervised UMAP, and LLE. The feature distributions of the generated images and
real images exhibit distinct differences, thereby highlighting the Stable Diffusion (SD) UNet’s robust
information filtering and semantic condensation capabilities.

Based on these observations, we propose a noise-aware discriminator (NAD). To better leverage the
diffusion model’s ability to perceive noise at various levels and maintain the gap between generated
and real images under different noise intensities, we feed the latent representations with randomly
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Figure 3: Visualization of features dimensionality reduction for the first 100 channels from the middle
block outputs of the Stable Diffusion (SD) UNet. Notably, there is a significant difference in the
feature distributions at the UNet’s intermediate layers between real images and those generated by the
one-step diffusion model during early training stages. This observation suggests that the intermediate
layer features of the UNet are a robust basis for assessing image realism.

injected noise levels as inputs to the NAD. In Fig. 2, the NAD Dθ consists of the UNet downsampling
blocks (i.e., UNet Down-block in Fig. 2) and middle block (i.e., UNet Mid-block in Fig. 2), along
with a MLP mapping the features into realism scores for different regions. Dθ is initialized with the
corresponding parameters of the SD UNet at the beginning of training. During training, we feed into
the discriminator the forward diffusion results of both the latents predicted by the generator (i.e., ẑH
as mentioned in Eq. 1) and the corresponding ground truth latent vectors zH “ EθpxHq.

The adversarial losses for updating the generator and discriminator are defined as:
LG “ ´ExL„pdata, t„r0,T s rlogDθ pF pẑH , tqqs , (2)

LD “ ´ExL„pdata, t„r0,T s rlog p1 ´ Dθ pF pẑH , tqqqs

´ ExH„pdata, t„r0,T s rlogDθ pF pzH , tqqs , (3)

where ẑH is computed as: ẑH “
zL´

?
1´ᾱT ϵθpzL;T q

?
ᾱT

, and F p¨, tq denotes the forward diffusion
process of ¨ at time step t P r0, T s, specifically,

F pz, tq “
?
ᾱt z `

?
1 ´ ᾱt ϵ,with ϵ„N p0, Iq. (4)

3.3 EDGE-AWARE DISTS
To further enhance the quality of the generated images, we aim to incorporate perceptual loss. Most
image reconstruction methods utilize LPIPS (Learned Perceptual Image Patch Similarity) (Zhang
et al., 2018a) as the perceptual loss. However, to better preserve image texture details and alleviate
pseudo-textures in the reconstruction under higher noise levels, we need to focus on the textures on
HR images. DISTS (Deep Image Structure and Texture Similarity) (Ding et al., 2020) can compute
the structural and textural similarity of images, aligning with human subjective perception of image
quality. Furthermore, regions with rich textures or details often exhibit strong edge information.
Leveraging image edge information effectively enhances texture quality. Based on this, we propose a
novel perceptual loss, termed Edge-Aware DISTS (EA-DISTS). This perceptual loss simultaneously
evaluates the structure and texture similarity of the reconstructed and HR images and their edges,
thereby enhancing texture detail restoration.

Our proposed EA-DISTS is defined as:
LEA-DISTSpGθpxLq, xHq “ LDISTSpGθpxLq, xHq ` LDISTSpSpGθpxLqq,SpxHqq, (5)

where Sp¨q represents the Sobel operator used to extract edge information from the images. It consists
of two convolution kernels, Gx and Gy , which detect horizontal and vertical edges, respectively:

Gx “

«

´1 0 1
´2 0 2
´1 0 1

ff

, Gy “

«

´1 ´2 ´1
0 0 0
1 2 1

ff

. (6)

The Sobel operator is applied to an image x as follows:

Spxq “

b

pGx ˚ xq2 ` pGy ˚ xq2, (7)

where ˚ denotes the convolution operation. This computation results in an edge map that highlights
the structural and textural details of the image.
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Multi-step Diffusion One-step DiffusionDatasets Metrics StableSR-s200 DiffBIR-s50 SeeSR-s50 ResShift-s15 SinSR-s1 OSEDiff-s1 DFOSD-s1
NIQE↓ 4.8927 3.9472 4.5403 7.3495 5.7467 4.3443 3.9255
MUSIQ↑ 60.53 68.02 66.37 56.18 61.62 67.31 69.21
ManIQA↑ 0.5570 0.6309 0.6118 0.5004 0.5362 0.6148 0.6402RealSR

ClipIQA↑ 0.5140 0.7295 0.6822 0.5848 0.6927 0.6827 0.6683
NIQE↓ 4.9852 4.1218 4.6891 6.7303 5.6642 4.2245 3.9580
MUSIQ↑ 58.89 71.23 69.79 59.36 64.22 69.04 69.69
ManIQA↑ 0.5269 0.6371 0.6018 0.5071 0.5338 0.6024 0.6215RealSet65

ClipIQA↑ 0.5609 0.7734 0.7004 0.6331 0.7263 0.6874 0.6843
NIQE↓ 5.3139 3.0885 4.1390 7.0159 5.5639 4.3661 4.1682
MUSIQ↑ 34.68 36.18 34.51 30.52 32.79 37.22 40.30
ManIQA↑ 0.4675 0.5985 0.5758 0.4210 0.4755 0.5797 0.5703DRealSR

ClipIQA↑ 0.5208 0.7568 0.6746 0.5884 0.7231 0.7540 0.6914

Table 1: Quantitative no-reference (NR) metrics comparison with state-of-the-art DM-based methods
for Real-ISR (ˆ4). The best and second-best results of each metric within both multi-step and
one-step diffusion-based methods are highlighted in red and blue, respectively.

0.0

0.2

1.0

0.8

0.6

0.4

(a) DISTS (b) EA-DISTS
Figure 4: Feature visualization associated with DISTS
and EA-DISTS. Our EA-DISTS captures more high-
frequency information, like texture and edges.

To intuitively demonstrate the effective-
ness of EA-DISTS, we visualize the fea-
ture maps during the DISTS computation
process. Figure 4 presents the visualization
results of VGG-16 feature maps. As shown
in Fig. 4, in areas rich with image details,
such as the building windows, the feature
maps associated with EA-DISTS exhibit
more high-frequency information. Com-
pared to DISTS, EA-DISTS demonstrates
higher contrast in textured and smooth re-
gions, further emphasizing the textural details within the images. Our EA-DISTS places greater
emphasis on texture details within images, guiding the model to generate realistic and rich details.

3.4 DISTILLATION-FREE TRAINING

Here, we summarize the whole distillation-free one-step diffusion model training process. As
described in Section 3.1, within the generator component, DFOSD obtains ẑH and the decoded
high-resolution image x̂H through one-step sampling. The generator then updates its parameters by
computing the spatial loss Lspatial in pixel space between the generated image and the ground truth, as
well as the adversarial loss LG derived from the discriminator in the latent space (Eq. 2). The loss
function for updating the generator is defined as Lspatial ` λ1LG . Specifically, we employ a weighted
sum of Mean Squared Error (MSE) loss and perceptual loss to define the spatial loss:

LspatialpGθpxLq, xHq “ LMSEpGθpxLq, xHq ` λ2LEA-DISTSpGθpxLq, xHq, (8)
where λ1 and λ2 are hyperparameters used to balance the contributions of each loss component.

For discriminator training, we utilize paired training features, where each pair consists of a negative
sample feature ẑH (generated by the generator) and the corresponding real image’s latent repre-
sentation zH as a positive one. Using Eq. 3, we compute the adversarial loss LD to update the
discriminator’s parameters. Furthermore, the discriminator can be initialized with weights from more
powerful pre-trained models, such as SDXL (Podell et al., 2023), to achieve superior performance.

This distillation-free training approach allows our DFOSD to overcome the limitations imposed by
multi-step diffusion models, enhancing generator performance without increasing its parameter count
or compromising efficiency. Additionally, the integration of a robust discriminator initialized with
advanced pre-trained models ensures that the generator receives high-quality feedback, facilitating
the production of more realistic and detailed high-resolution images.

4 EXPERIMENTS

We conduct comprehensive experiments to validate the effectiveness of DFOSD in real-world
image super-resolution (Real-ISR). We provide a detailed introduction of our experimental setup
in Section 4.1. In Section 4.2, we evaluate our method on three challenging real-world datasets:
RealSR (Cai et al., 2019), RealSet65 (Yue et al., 2024), and DRealSR (Wei et al., 2020), and compare
it against the current state-of-the-art methods. In Section 4.3, We carry out comprehensive ablation
studies to validate the effectiveness and robustness of our proposed approach.
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Non-Diffusion Multi-step Diffusion One-step DiffusionDatasets Metrics Real-ESRGAN SwinIR StableSR-s50 DiffBIR-s50 SeeSR-s50 ResShift-s15 SinSR-s1 OSEDiff-s1 DFOSD-s1
PSNR↑ 30.55 28.31 30.31 25.91 28.35 26.42 27.33 24.20 26.47
SSIM↑ 0.8571 0.8273 0.8394 0.6190 0.8052 0.7310 0.7237 0.7355 0.7838
LPIPS↓ 0.3843 0.2736 0.2818 0.5347 0.3031 0.4582 0.4444 0.3429 0.3149DRealSR

DISTS↓ 0.2034 0.1387 0.1428 0.2387 0.1665 0.2382 0.2262 0.1763 0.1547
PSNR↑ 27.57 27.34 26.28 24.87 26.20 25.45 25.83 24.57 24.60
SSIM↑ 0.7741 0.7862 0.7733 0.6486 0.7555 0.7246 0.7183 0.7202 0.7221
LPIPS↓ 0.2729 0.2515 0.2622 0.3834 0.2806 0.3727 0.3641 0.3036 0.3031RealSR

DISTS↓ 0.1542 0.1583 0.2147 0.2015 0.1784 0.2344 0.2193 0.1808 0.1775

Table 2: Quantitative FR metrics comparison for Real-ISR (ˆ4). The best and second-best results
within both multi-step and one-step diffusion-based methods are highlighted in red, blue, respectively.

Canon 001
PSNR / SSIM

Bicubic BSRGAN Real-ESRGAN RealSR JPEG SwinIR DFOSD (ours)
29.21 / 0.8687 29.15 / 0.8940 28.16 / 0.8862 29.58 / 0.8635 28.85 / 0.9028 26.48 / 0.8254

Canon 018
PSNR / SSIM

Bicubic BSRGAN Real-ESRGAN RealSR JPEG SwinIR DFOSD (ours)
29.43 / 0.8456 28.31 / 0.8389 26.68 / 0.8318 29.31 / 0.8321 27.72 / 0.8428 24.46 / 0.7749

Figure 5: Visual comparison (ˆ4) of DFOSD with GAN-based and Transformer-based methods.
Cannon 001 contains the letters ‘eḋu’. Cannon 018 contains the structures of tower windows.
Although GAN-based approaches achieve higher PSNR and SSIM scores, their generated images
exhibit less realistic and detailed textures compared to DFOSD. Those quantitative and visual
comparisons indicate that higher PSNR and SSIM values do not mean better visual quality.

4.1 EXPERIMENTAL SETTINGS

Datasets. We train DFOSD on a self-collected dataset comprising 200K high-quality images. During
training, we randomly crop patches of size 512ˆ512 pixels from these images. To generate low-
resolution (LR) and high-resolution (HR) pairs for training, we apply the Real-ESRGAN degradation
pipeline. We conduct extensive evaluations of DFOSD on multiple real-world datasets, including
RealSR (Cai et al., 2019), RealSet65 (Yue et al., 2024), and DRealSR (Wei et al., 2020). To avoid
potential biases and ensure a fair comparison, we evaluate our model and all other methods by using
the whole images from each dataset. We assess image quality without any cropping (e.g., random
crop, central crop) that might make the evaluation results randomly and hard to reproduce.
Implementation Details. We adopt Stable Diffusion (SD) 2.1-base as the backbone for training
DFOSD, setting both the rank and scaling factor α of LoRA to 16 in the generator and discriminator.
The model is trained using the AdamW optimizer with learning rates of 5ˆ10´5 for both generator
and discriminator. We utilize a learnable text embedding as the conditional input for the SD UNet,
without any prompts, and remove the text encoder. Training is performed with a batch size of 16 over
100K iterations with 4 NVIDIA A100-40GB GPUs.
Compared Methods. We compare our DFOSD with state-of-the-art diffusion model (DM)-based
methods for real image super-resolution (Real-ISR), as well as other prominent approaches, including
GAN-based and Transformer-based methods. The DM-based methods encompass multi-step diffusion
models, such as StableSR (Wang et al., 2024a), ResShift (Yue et al., 2024), DiffBIR (Lin et al.,
2024), and SeeSR (Wu et al., 2024b), alongside recently proposed one-step diffusion models like
SinSR (Wang et al., 2024b) and OSEDiff (Wu et al., 2024a). OSEDiff is the current top-performing
one-step diffusion Real-ISR method. Other methods include GAN-based approaches, such as
BSRGAN (Zhang et al., 2021), RealSR-JPEG (Ji et al., 2020), and Real-ESRGAN (Wang et al.,
2021b), as well as Transformer-based method SwinIR (Liang et al., 2021).
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StableSR DiffBIR SeeSR ResShift SinSR OSEDiff DFOSD (ours)

# Step 200 50 50 15 1 1 1
Inference Time / s 11.50 7.79 5.93 0.71 0.16 0.35 0.11
# Total Param / M 1.4ˆ103 1.6ˆ103 2.0ˆ103 173.8 173.8 1.4ˆ103 966.3
# MACs / G 75,812 24,528 32,336 4,903 2,059 2,269 2,132

Table 3: Complexity comparison (ˆ4) among different methods, including sampling steps during
inference, inference time, parameter count, and MACs. Inference time and MACs are tested for an
output size of 512ˆ512 with a single A100-40GB GPU.

Dataset NIQE↓ MUSIQ↑ ManIQA↑ ClipIQA↑

LSDIR + 10K FFHQ 3.9264 67.26 0.6140 0.6397
Our Dataset 3.9255 69.21 0.6402 0.6683

Table 4: Quantitative comparison (ˆ4) on RealSR. Our DFOSD is trained on different datasets.

Evaluation Metrics. To comprehensively assess the performance of each method, we employ four
full-reference (FR) and four no-reference (NR) image quality metrics. The FR metrics consists of
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Learned Perceptual
Image Patch Similarity (LPIPS) (Zhang et al., 2018a), and Deep Image Structure and Texture
Similarity (DISTS) (Ding et al., 2020). PSNR measures pixel-wise differences, while SSIM evaluates
structural similarity. Both PSNR and SSIM are computed on the Y channel in the YCbCr color
space. LPIPS assesses perceptual similarity using deep neural network features. DISTS combines
structural and textural comparisons. The NR metrics include Naturalness Image Quality Evaluator
(NIQE) (Zhang et al., 2015), Multi-scale Image Quality Transformer (MUSIQ) (Ke et al., 2021), Multi-
scale Attention-based Image Quality Assessment (ManIQA) (Yang et al., 2022), and ClipIQA (Wang
et al., 2023a). NIQE evaluates image quality based on statistical features. MUSIQ captures multi-
scale distortions using Transformers. ManIQA employs attention mechanisms to assess quality.
ClipIQA leverages pre-trained models like CLIP to align quality assessments with human perception.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Quantitative Results. Tables 1 and 2 provide quantitative comparisons of the methods across the
three datasets. DFOSD achieves either the best or second-best performance on the majority of metrics
across all datasets when compared with other one-step diffusion methods. Although GAN-based
methods outperform diffusion-based methods in terms of PSNR and SSIM, they generally exhibit
poorer performance on NR metrics. Detailed comparisons of NR metrics and visual results for
non-diffusion-based methods are provided in the supplementary material. Despite the higher FR
metrics achieved by GAN-based and Transformer-based methods, their visual results are significantly
inferior to those of DFOSD. Figure 5 illustrates several examples, further highlighting the limitations
of full-reference metrics in accurately evaluating image quality. This underscores the necessity for
more effective approaches to assess the quality of generated images.

Visual Results. Figure 6 presents a visual comparison of various diffusion-based Real-ISR methods.
As observed, most existing methods struggle to generate realistic details and often produce incorrect
content in certain regions of the image due to noise artifacts. Notably, our DFOSD demonstrates a
significant advantage over others, particularly in the restoration of textual content. Additional visual
comparison results are provided in the supplementary material.

Complexity Analysis. Table 3 presents a complexity comparison of DM-based Real-ISR methods,
including the number of inference steps, inference time, parameter numbers, and MACs (Multiply-
Accumulate Operations). All methods are evaluated on an NVIDIA A100 GPU. DFOSD achieves the
fastest inference speed among all DM-based methods. Furthermore, since we do not employ a text
encoder or other additional modules (such as DAPE used by OSEDiff and SeeSR, and ControlNet
used by DiffBIR), our DFOSD has the smallest number of model parameters during inference among
Stable Diffusion (SD)-based methods, reducing the parameters by 33% compared to OSEDiff.

4.3 ABLATION STUDY

Training Data Scaling. We train DFOSD on the LSDIR (Li et al., 2023) combined with the 10K
FFHQ (Karras et al., 2024) dataset and our own collected high-quality dataset, respectively. We
provide quantitative results in Table 4 and visual comparisons in Fig. 7. Our collected high-quality
dataset provides rich priors, enhancing the authenticity and details.
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Bicubic Real-ESRGAN SwinIR StableSR DiffBIR

ResShift SeeSR SinSR OSEDiff DFOSD (ours)

Bicubic Real-ESRGAN SwinIR StableSR DiffBIR

ResShift SeeSR SinSR OSEDiff DFOSD (ours)

Bicubic Real-ESRGAN SwinIR StableSR DiffBIR

ResShift SeeSR SinSR OSEDiff DFOSD (ours)

Bicubic Real-ESRGAN SwinIR StableSR DiffBIR

ResShift SeeSR SinSR OSEDiff DFOSD (ours)

Figure 6: Visual comparisons (ˆ4) on Real-ISR task.

LPIPS DISTS

EA-LPIPS EA-DISTS

LPIPS DISTS

EA-LPIPS EA-DISTS
Figure 8: Visual results (ˆ4) of DFOSD with different perceptual losses. The left side shows a
comparison of the checkerboard. The right one shows content about some numbers, i.e., ‘24, 26, 28’.

LR Bicubic LSDIR+FFHQ Our Data

Figure 7: Visual comparison of DFOSD trained on
LSDIR+10K FFHQ versus our high-quality dataset.

Perceptual Loss. Table 5 presents the im-
pact of different perceptual loss functions,
as well as the scenario where only Mean
Squared Error (MSE) is applied as the spa-
tial loss. Figure 8 showcases the visual
outcomes of these experiments. The results
indicate that incorporating perceptual loss
is crucial for training SR models, as it facili-
tates the generation of more realistic details
and enhances overall visual quality. Our
proposed edge-aware DISTS (EA-DISTS)
achieves the best performance across var-
ious image quality metrics and visual as-
sessments. As shown in Fig. 8, EA-DISTS excels in producing highly realistic details, demonstrating
its advantage in perceptual quality. This highlights the effectiveness of EA-DISTS in accurately
restoring image textures and details, thereby significantly improving the visual quality.
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Loss Function NIQE↓ MUSIQ↑ ManIQA↑ ClipIQA↑

MSE 4.4463 65.35 0.5457 0.5833
LPIPS 4.3331 68.42 0.5914 0.6534
EA-LPIPS 4.1958 68.81 0.6077 0.6519
DISTS 4.2018 69.08 0.6223 0.6555
EA-DISTS 3.9255 69.21 0.6402 0.6683

Table 5: Impact of different perceptual loss functions on DFOSD performance.
Discriminator Base Model NIQE↓ MUSIQ↑ ManIQA↑ ClipIQA↑

None N/A 6.9621 62.36 0.5597 0.5833
Vanilla Discriminator SD 2.1-base 6.1392 64.36 0.5666 0.6059
Diffusion-GAN Discriminator SD 2.1-base 4.5183 67.51 0.5800 0.6246
NAD SD 2.1-base 3.9255 69.21 0.6402 0.6683
NAD SDXL 1.0-base 4.0613 69.86 0.6870 0.6731

Table 6: Performance comparison of DFOSD with different discriminators. The best and second best
results of each metric are highlighted in red and blue, respectively.

Noise-Aware Discriminator (NAD). We evaluate the impact of various discriminator modules on
the training of DFOSD, including NAD, vanilla discriminator, diffusion-GAN (Wang et al., 2023b)
style discriminator, and training without any discriminator. Both the vanilla and diffusion-GAN style
discriminators are initialized with weights from the Stable Diffusion (SD) 2.1-base model (Rombach
et al., 2022a), similar to the NAD described in Section 3.2. The experimental results, detailed in
Table 6, indicate that the generator trained with NAD consistently outperform those utilizing other
discriminators that are also initialized with SD 2.1-base. Specifically, NAD demonstrates superior
capability in effectively guiding the generator, leading to improved image quality. This demonstrates
the advantages of NAD in training distillation-free one-step diffusion models.

Additionally, we conduct experiments where the NAD is initialized with weights from the
SDXL (Podell et al., 2023) model to further validate the effectiveness of our approach. As shown
in the last two rows of Table 6, the NAD initialized with SDXL 1.0-base weights achieves superior
performance compared to its counterparts, without requiring any modifications to the generator’s
architecture. This suggests that DFOSD can effectively leverage the strengths of more powerful
pre-trained models, and enhance the performance of generator without compromising its efficiency.

5 DIFFERENCES WITH OTHER ONE-STEP DIFFUSION SR MODELS

We further discuss the difference between our DFOSD and representative one-step diffusion image
SR methods, SinSR (Wang et al., 2024b) and OSEDiff (Wu et al., 2024a).
Difference with SinSR. First, SinSR requires performing multi-step deterministic sampling during
training to obtain noise-image pairs, which greatly increases the training time. DFOSD does not rely
on the results generated by the muti-step pre-trained diffusion models. Second, the involvement of
a teacher model during training further escalates memory consumption. In contrast, each training
iteration of DFOSD takes a lower latency than SinSR.
Difference with OSEDiff. First, OSEDiff leverages Variational Score Distillation (VSD) to optimize
generated images, which necessitates the participation of 3 SD UNets during training, resulting in
increased memory usage and prolonged training time. In comparison, our DFOSD requires only 1.5
SD UNets, reducing the training model size by at least 50%. Second, OSEDiff extracts prompts from
LR images with DAPE, and encoding them into conditional input for SD UNet. DFOSD only uses
learnable text embedding as the conditional input, which further reduce computational cost.

6 CONCLUSION

In this work, we propose DFOSD, a Distillation-Free One-Step Diffusion model, for Real-ISR.
Departing from the diffusion distillation strategies commonly employed in previous studies, our
approach effectively reduces training overhead. Specifically, we design a noise-aware discriminator
(NAD) that capitalizes on the aggregation capabilities of intermediate features from a pre-trained
SD UNet. NAD makes it hard for the generator to distinguish reconstruction from real images.
Additionally, we propose the edge-aware DISTS (EA-DISTS) perceptual loss, which significantly
enhances the texture realism and visual quality of the generated images. Our distillation-free strategy
enables DFOSD to outperform pre-trained multi-step diffusion models in terms of visual results.
Comprehensive experiments confirm that DFOSD achieves superior performance and substantially
improves the realism of the generated images. These advancements highlight the potential of our
method for more efficient and effective image restoration tasks.
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