

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON THE GEOMETRY AND TOPOLOGY OF REPRESENTATIONS: THE MANIFOLDS OF MODULAR ADDITION

Anonymous authors

Paper under double-blind review

ABSTRACT

The Clock and Pizza interpretations, associated with architectures differing in either uniform or learnable attention, were introduced to argue that different architectural designs can yield distinct circuits for modular addition. In this work, we show that this is not the case, and that both **uniform attention** and **trainable attention architectures** implement the same algorithm via topologically and geometrically equivalent representations. Our methodology goes beyond the interpretation of individual neurons and weights. Instead, we identify all of the neurons corresponding to each learned representation and then study the collective group of neurons as one entity. This method reveals that each learned representation is a manifold that we can study utilizing tools from topology. Based on this insight, we can statistically analyze the learned representations across hundreds of circuits to demonstrate the similarity between learned modular addition circuits that arise naturally from common deep learning paradigms.

1 INTRODUCTION

As deep neural networks (DNNs) scale and begin to be deployed in increasingly high-stakes settings, it will be imperative to develop a concrete understanding of how these models perform computations and ultimately make decisions. Towards this end, research in mechanistic interpretability has focused on identifying sub-structures of these models—referred to as *circuits*—and understanding the function and formation of these circuits on the subtasks that they are responsible for. In order to extract a generalizable understanding of circuits, researchers have formulated a key hypothesis **universality** (Li et al., 2015; Olah et al., 2020), which suggests that similar networks trained on similar data will form similar circuits. On the other hand, the **manifold** hypothesis (Bengio et al., 2013; Goodfellow et al., 2016), suggests that representation learning consists of finding a lower-dimensional manifold for the data. If these hypotheses were to be false, the task of interpreting large scale models becomes dire—there would be little hope of identifying common patterns across initializations, architectures, and datasets.

Yet, recent work **claimed** totally disparate and disjoint circuits were learned by DNNs trained on the **exact same data** using modular addition $(a + b) \bmod n = c$ (Zhong et al., 2023). Their results seemingly provide a counter-example to the universality hypothesis, thus suggesting the pursuit of learning interpretable principles that generalize across tasks may be doomed. In fact, this suggests that the identification of simple circuits in larger neural networks could be combinatorially difficult—if different small-scale models trained on one task can learn totally different circuits with no commonality, then large language models (LLMs) may learn many disjoint circuits for a task within their weights simultaneously.

Our primary contribution to interpreting modular addition, *i.e.* the dataset $(a + b) \bmod n = c$ is the resolution of the *seemingly* disparate circuits found by Zhong et al. (2023).

1. We show that, under certain conditions on the structure of learned embeddings, all networks studied by Zhong et al. (2023) and McCracken et al. (2025) learn preactivations having equivalent geometry and topology, which can be expressed in closed form;
2. These closed-form equations allow us to rigorously claim that all architectures we study universally make use of the same class of manifolds;

054 3. We introduce new tools, leveraging topological data analysis, to empirically validate these
 055 aforementioned conditions, providing extensive empirical evidence of shared representa-
 056 tion geometry across networks.
 057

059 Altogether, our results restore the possibility that the universality hypothesis is true, as Zhong et al.
 060 (2023)'s architectures are no longer shown to be a counter-example.
 061
 062
 063

064 2 RELATED WORK

067 Deep learning (DL) research increasingly turns to mathematical tasks as controlled settings for in-
 068 vestigating learning phenomena and studying the fundamentals of DL (Ghosh, 2025). Such tasks
 069 provide opportunities to (i) derive exact functional forms that yield theoretical insights beyond em-
 070 pirical studies (McCracken, 2021), (ii) analyze how agents discover novel algorithms such as matrix
 071 multiplication or sorting (Fawzi et al., 2022; Mankowitz et al., 2023), and (iii) develop methods to
 072 better interpret learned policies (Raghu et al., 2018). From toy models that capture superposition
 073 (Elhage et al., 2022) to formal analyses of in-context learning (Lu et al., 2024; 2025), training on
 074 math tasks has become a productive way to study DL fundamentals. Within this agenda, mechanistic
 075 interpretability has produced especially influential results. By reverse-engineering networks trained
 076 on group-theoretic problems—such as modular addition (Nanda et al., 2023; Chughtai et al., 2023;
 077 Gromov, 2023; Morwani et al., 2024; McCracken et al., 2025; Yip et al., 2024; He et al., 2024;
 078 Tao et al., 2025; Doshi et al., 2023), permutations (Stander et al., 2024), and dihedral multiplication
 079 McCracken et al. — researchers have uncovered mechanisms that speak to core hypotheses about
 080 representations (Huh et al., 2024), universality (Olah et al., 2020; Li et al., 2015), and algorithmic
 081 structure in DL (Eberle et al., 2025).

082 As the datasets of group multiplication aren't linearly separable and modular addition (Cyclic group
 083 multiplication) is very well studied, it has become a standard testbed for toy interpretability research.
 084 It is ideal for asking: “*What exactly do neural networks learn, and how is that computation repre-
 085 sented internally?*”. Two influential works stand out. First, Nanda et al. (2023) reverse-engineered
 086 transformers trained on modular addition and described their internal computations to illuminate the
 087 *grokking* phenomenon (Power et al., 2022), giving progress measures to predict it. Building on this,
 088 Chughtai et al. (2023) claimed that the algorithm generalized to all group multiplications. Second,
 089 Zhong et al. (2023) modified the transformer from Nanda et al. (2023) by interpolating between
 090 uniform and learnable attention. They claimed their networks learned two distinct circuits, either a
 091 *Pizza* or a *Clock* (described by Nanda et al. (2023)), proposing metrics to separate the two disjoint
 092 circuits.

093 Recently however, McCracken et al. (2025) showed via abstraction, that across both MLPs and
 094 transformers, models converge to one unifying divide-and-conquer algorithm that approximates the
 095 *Chinese Remainder Theorem* and matches its logarithmic feature efficiency. They found first-layer
 096 neurons are best fit by degree-1 trigonometric polynomials, with later layers requiring degree-2, in
 097 contrast to the interpretation of Nanda et al. (2023) which modeled neurons as degree-2 trigonometric
 098 polynomials in all layers.

099 While many works have focused on reverse-engineering specific algorithms in modular addition, rel-
 100 atively little has been done to systematically compare neural representations themselves. Tools from
 101 other domains—such as distributional hypothesis testing and topological data analysis (TDA)—offer
 102 complementary ways to characterize representations and may enrich mechanistic interpretability.
 103 For instance, distributional methods such as maximum mean discrepancy (MMD) Gretton et al.
 104 (2012) are rarely used in mechanistic interpretability, though widely applied elsewhere to quantita-
 105 tively measure similarity, align domains Ghifary et al. (2014); Zhao et al. (2019), and test fairness
 106 Deka & Sutherland (2023); Kong et al. (2025). Topological data analysis (TDA) offers a comple-
 107 mentary view: Shahidullah (2022) used persistent homology to track how network layers preserve or
 108 distort input topology, and Ballester et al. (2024) surveyed TDA tools such as persistent homology
 109 and Mapper for analyzing architectures, decision boundaries, representations, and training dynam-
 110 ics.

108 **3 SETUP AND BACKGROUND**
 109

110 The learning task we are interested in is the operation of the cyclic group, modular addition $(a, b) \mapsto$
 111 $a + b \bmod n$ for $a, b \in \mathbb{Z}_n$. In our experiments we have used $n = 59$. We consider various
 112 neural network architectures but we will mostly refer to them by the name that was given to an
 113 interpretation of their neuronal operations. All architectures begin by embedding the inputs a, b to
 114 vectors $\mathbf{E}_a, \mathbf{E}_b \in \mathbb{R}^{128}$ using a shared (learnable) embedding matrix. The architectures differ in how
 115 the embeddings are then processed: **MLP-Add** immediately passes $\mathbf{E}_a + \mathbf{E}_b$ through an MLP, **MLP-**
 116 **Concat** immediately passes the concatenation $\mathbf{E}_a \oplus \mathbf{E}_b \in \mathbb{R}^{256}$ through an MLP. **Learnable attention**
 117 ([claimed to learn Clocks](#)) and **uniform attention** ([claimed to learn Pizzas](#)) transformers, introduced
 118 by Zhong et al. (2023), pass $\mathbf{E}_a, \mathbf{E}_b$ through a self-attention layer before the MLP. **Specifically:**
 119 uniform attention is a constant attention matrix, and trainable attention (Nanda et al., 2023) uses the
 120 standard learnable softmax attention. We refer to trainable attention architectures as **Attention 1.0**
 121 and constant attention architectures as **Attention 0.0** since Zhong et al. (2023) used a parameter to
 122 switch between them.

123 **3.1 PREVIOUS INTERPRETATIONS OF MODULAR ADDITION IN NEURAL NETWORKS**
 124

125 Prior works have all reported disjoint circuits of different “frequencies” f are learned. We adopt the
 126 notation of Zhong et al. (2023), each frequency f is associated with a circuit, and an abstraction can
 127 be given for the values in the embedding vectors \mathbf{E}_a and \mathbf{E}_b associated with that frequency,

$$\mathbf{E}_a = [\cos(2\pi fa/n), \sin(2\pi fa/n)], \quad \mathbf{E}_b = [\cos(2\pi fb/n), \sin(2\pi fb/n)]. \quad (1)$$

128 What distinguishes them is how the embeddings are *transformed* post-
 129 attention. Treating the attention as a blackbox and looking at its output
 130 \mathbf{E}_{ab} , Zhong et al. (2023) make the following two claims. **Clock circuits**
 131 compute the *angle sum* (Figure 1),
 132

$$\mathbf{E}_{ab} = [\cos(2\pi f(a+b)/n), \sin(2\pi f(a+b)/n)], \quad (2)$$

133 encoding the modular sum on the unit circle, which needs second-order
 134 interactions (e.g., multiplying embedding components via sigmoidal at-
 135 tention). In **Pizza circuits**, \mathbf{E}_{ab} adds the embeddings directly as $\mathbf{E}_a + \mathbf{E}_b$,

$$\mathbf{E}_{ab} = [\cos(2\pi fa/n) + \cos(2\pi fb/n), \sin(2\pi fa/n) + \sin(2\pi fb/n)], \quad (3)$$

136 yielding *vector addition* on the circle (Figure 1), which is entirely linear
 137 in the embeddings. Zhong et al. (2023) gave metrics distance irrelevance
 138 and gradient symmetricity to distinguish networks having learned the
 139 clock vs. pizza circuit (see Appendix E).

140 **Definition 3.1** (Simple Neurons). For $(a, b) \in \mathbb{Z}_p \times \mathbb{Z}_p$, a *simple neuron*
 141 is a neuron that has pre-activation

$$N(a, b) = \cos(2\pi fa/n + \phi^L) + \cos(2\pi fb/n + \phi^R), \quad (4)$$

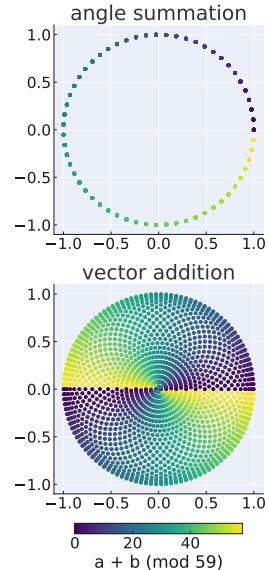
142 where $f \in \mathbb{Z}_p$ is a frequency and $\phi^L, \phi^R \in [0, 2\pi)$ are phase shifts.

143 This form of the neurons as being a linear superposition of a sinusoid in
 144 a and a sinusoid in b is corroborated in Gromov (2023); Morwani et al.
 145 (2024); Doshi et al. (2023); McCracken et al. (2025); Li et al. (2025).

146 **Empirical Fact 3.2** (McCracken et al. (2025)). For **Attention 0**, **At-**
 147 **tention 1**, and **MLPs** (with learnable or one-hot encoded embeddings)
 148 architectures, first layer neurons are well approximated by *simple neu-*
 149 *rons*. Later layers can encode combinations of degree-1 and 2 sinusoids.

150 **3.2 TOPOLOGICAL DATA ANALYSIS**
 151

152 We use **Betti numbers** from algebraic topology to distinguish the structure of different stages of
 153 circuits across layers. The k -th Betti number β_k counts k dimensional holes: β_0 counts connected
 154 components, β_1 counts loops, β_2 counts voids enclosed by surfaces. For reference, a disc has Betti
 155 numbers $(\beta_0, \beta_1, \beta_2) = (1, 0, 0)$, a circle has $(1, 1, 0)$, and a 2-torus has $(1, 2, 1)$.



156 Figure 1: Clock and Pizza’s analytical forms visualized,
 157 with frequency assumed to
 158 be $f = 1$ for simplicity.
 159 Each point corresponds to a
 160 pair (a, b) after being trans-
 161 formed by the correspond-
 162 ing analytical form and is
 163 colored by its sum $(a + b)$
 164 mod 59.

162 4 CANONICAL MANIFOLDS

164 We will now focus on networks with a single learnable embedding matrix, matching the setups of
 165 Nanda et al. (2023); Zhong et al. (2023); McCracken et al. (2025). Our analysis will center on the
 166 *representation manifolds* in a frequency cluster f coming from the preactivations $h_{\ell,f}^{\text{pre}}(a, b)$ at layer
 167 ℓ and the logits $l_f(a, b)$. The corresponding representation manifolds are, explicitly,
 168

$$169 \quad \mathcal{M}_{\ell,f}^{\text{pre}} := \left\{ h_{\ell,f}^{\text{pre}}(a, b) : (a, b) \in \mathbb{Z}_n^2 \right\} \subset \mathbb{R}^{d_{\ell,f}}; \quad \text{and} \quad \mathcal{M}_f^{\text{logit}} := \left\{ l_f(a, b) : (a, b) \in \mathbb{Z}_n^2 \right\} \subset \mathbb{R}^n,$$

171 where $d_{\ell,f}$ is the number of neuron in the frequency cluster f at layer ℓ . Our thesis is that under the
 172 simple neuron model of equation 4 introduced by McCracken et al. (2025) and a simple application
 173 of symmetry corresponding to the interchangeability of a, b in $a + b \bmod n$, the exact structure of
 174 the $\mathcal{M}_{1,f}^{\text{pre}}$ manifolds and how they are mapped from inputs a, b can be revealed. Particularly, we will
 175 show that under this model, $\mathcal{M}_{1,f}^{\text{pre}}$ always encodes the torus \mathbb{T}^2 or vector addition disk of Figure
 176 1—that is, the pizza.

177 The remainder of this section will proceed by formalizing this result in §4.1.
 178

179 4.1 SIMPLE NEURON PHASE DISTRIBUTION DICTATES REPRESENTATION MANIFOLD

181 Under the simple neuron model, for any frequency cluster f , the only degrees of freedom in the
 182 resulting preactivations lie in the maps $(a, b) \mapsto (\phi^L, \phi^R)$ for $a, b \in \mathbb{Z}_n$ learned by neural net-
 183 works. Given that modular addition is commutative, one might expect to see a form of symmetry
 184 with respect to ϕ^L, ϕ^R . Particularly, one might expect that $\phi^L \equiv \phi^R$ for all a, b (since swapping the
 185 inputs should have no effect on the output), or at the very least that the random variables ϕ^L, ϕ^R are
 186 identically distributed for $A, B \sim \text{Uniform}(\mathbb{Z}_n)$. It turns out, as we show in the following theorem
 187 (whose proof is given in Appendix B), that the resulting manifold $\mathcal{M}_{1,f}^{\text{pre}}$ takes an easily characteriz-
 188 able form *almost surely* in this event. We devote §6 to validating that the phase maps indeed satisfy
 189 these properties in practice—allowing us to easily analyze the geometry of representations across
 190 thousands of trained neural networks.

191 Before stating the theorem, let us introduce some notation that will be useful. Under the simple
 192 neuron model, a neuron indexed i belonging to a neuron cluster with frequency f maps $(a, b) \in \mathbb{Z}_p^2$
 193 to $\cos(\theta_a + \Phi_i^L) + \cos(\theta_b + \Phi_i^R)$, where $\theta_a = 2\pi f a / p$. The notation Φ_i is meant to evoke that we
 194 model these phases as random variables; these are random due to random initialization and random
 195 gradient updates. The joint distribution of (Φ_i^L, Φ_i^R) is denoted $\mu_i^{a,b} \in \Delta([0, 2\pi]^2)$.

196 **Theorem 4.1.** *Let $f \in \mathbb{Z}_p$ for $p \geq 3$, and consider the frequency cluster at layer 1. Let m denote
 197 the number of neurons in this cluster, and assume $m \geq 2$. Define the matrix $X \in \mathbb{R}^{p^2 \times m}$ according
 198 to $X_{(a,b),i} = \cos(\theta_a + \phi_i^L) + \cos(\theta_b + \phi_i^R)$, denoting the simple neuron preactivations. Assume
 199 $\phi_i^L, \Phi_i^{L,b}$ are identically distributed for each neuron $i \in \{1, \dots, m\}$ in this cluster, and that the
 200 support of $\mu_i^{a,b}$ has positive (Lebesgue) measure. Then the following hold almost surely:*

202 1. (Perfect phase correlation) *If $\Phi_i^{L,a}$ and $\Phi_i^{R,b}$ are perfectly correlated, in the sense that
 203 $\Phi_i^{L,b} \equiv \Phi_i^{R,b}$, then X has a rank-2 factorization $X = V^{\text{disc}} W$ with $V^{\text{disc}} \in \mathbb{R}^{p^2 \times 2}$
 204 satisfying*

$$205 \quad V_{(a,b)}^{\text{disc}} = (\cos \theta_a + \cos \theta_b, \sin \theta_a + \sin \theta_b)^\top. \quad (5)$$

207 2. (Phase independence) *Otherwise, X has a rank-4 factorization $X = V^{\text{torus}} W$ with
 208 $V^{\text{torus}} \in \mathbb{R}^{p^2 \times 4}$ given by*

$$210 \quad V_{(a,b)}^{\text{torus}} = (\cos \theta_a, \sin \theta_a, \cos \theta_b, \sin \theta_b)^\top. \quad (6)$$

212 Geometrically, the disc can be viewed as a projection of the torus: $(x_1, x_2, x_3, x_4) \mapsto (x_1 + x_3, x_2 +$
 213 $x_4)$. Thus, the torus structure generalizes the vector-addition disc.

215 Having established this theorem, it is worth stepping back to contextualize its consequences. As
 shown by McCracken et al. (2025), first layer preactivations are dominantly simple neurons. Theo-

216 rem 4.1 shows that, under the symmetry properties of $\Phi_i^{L,a}$ and $\Phi_i^{R,b}$ posited above, the preactivations have simple, low-dimensional structures: in the case of perfect phase correlation, the representation manifold can be compressed to V^{disc} , which is precisely the vector addition disc of Figure 1. In the case of phase independence, the representation manifold can be compressed to V^{torus} , which exactly encodes the torus \mathbb{T}^2 .

217 **Remark 4.2.** It is noteworthy that the Clock representation from Zhong et al. (2023) *cannot* occur under the hypotheses of Theorem 4.1. The remainder of the paper demonstrates that these hypotheses are satisfied empirically with overwhelming probability. Thus, while the Clock circuit of Zhong et al. (2023) is theoretically plausible, it does not occur naturally in practice. On the other hand, the possibility of the *torus* representation has not previously been identified in the literature.

221 A notable consequence of this result is that the geometry and topology of representation manifolds
222 can be characterized by simply investigating the distributions $\mu_i^{a,b}$ of the learned phases. As we
223 describe in §5, this can be done quantitatively, allowing us to derive statistical likelihoods of neural
224 circuits arising over thousands of initializations across architectures.

231 4.2 QUALITATIVE ANALYSIS OF INTERMEDIATE REPRESENTATIONS

233 This section presents the experimental observations that support the predictions of section 4.1. Given
234 that learned embeddings are expected to be points on a circle, we consider two MLP-models as
235 simple baselines capturing the closed form of the above manifolds: MLP-Add should add two points
236 on a circle, giving the vector addition disc (Figure 1) and MLP-Concat should concatenate two points
237 on a circle, giving the torus \mathbb{T}^2 .

238 In all networks, we cluster neurons together and study the entire cluster at once. This is done by
239 constructing an $n \times n$ matrix, with the value in entry (a, b) corresponding to the preactivation value
240 on datum (a, b) . A 2D Discrete Fourier Transform (DFT) of the matrix gives the key frequency f
241 for the neuron. The cluster of preactivations of all neurons with key frequency f is the $n^2 \times |\text{cluster } f|$
242 matrix, made by flattening each neurons preactivation matrix and stacking the resulting vector for
243 every neuron with the same key frequency. We call this matrix the neuron-cluster of preactivations
244 matrix.

245 **Principal component analysis (PCA).** To probe the representational geometry of the first-layer
246 neurons, we perform PCA on the neuron-cluster matrix of pre-activations. This layer is where dif-
247 ferences between Clock and Pizza architectures are expected to emerge, since their outputs diverge
248 only after attention.

249 Figure 2 shows the PCA embeddings for MLP-Add, MLP-Concat, Pizza, and Clock models. Each
250 input pair (a, b) has been remapped following (McCracken et al., 2025) and coloured by $a+b \bmod n$,
251 so that points close with respect to the modular addition task are visually grouped.

252 The results align strikingly with the predictions of Theorem 4.1. For MLP-Add, Pizza, and Clock,
253 the first two principal components explain more than 99% of the variance, yielding a 2D disc-
254 like structure (matching the vector addition geometry of Figure 1). For MLP-Concat, the first four
255 principal components each explain about 25% of the variance, producing a toroidal structure.

256 Surprisingly, the Clock network—never previously described as having a “pizza disc” exhibits the
257 same 2D disc structure as Pizza and MLP-Add.

258 **Distribution of post-ReLU activations.** We next examine the strength of activations across neu-
259 rons within a cluster. For each neuron, we construct an $n \times n$ heatmap of its post-ReLU activation
260 values over all input pairs (a, b) , after applying the remapping procedure of (McCracken et al.,
261 2025). Each heatmap thus reflects the activation profile of a single neuron across the input space.

262 To summarize activation patterns at the cluster level, we sum the heatmaps of all neurons in the
263 cluster. Although the network never performs this sum directly, it provides a compact visualization
264 of where activation strength is concentrated across the input domain.

265 Figure 3 shows that in MLP-Add, Clock, and Pizza, activations are sharply concentrated along the
266 $a = b$ diagonal. This indicates that cosine responses peak when $a = b$, consistent with neurons
267 having equal phases. Moreover, the smooth falloff of activations away from the diagonal implies

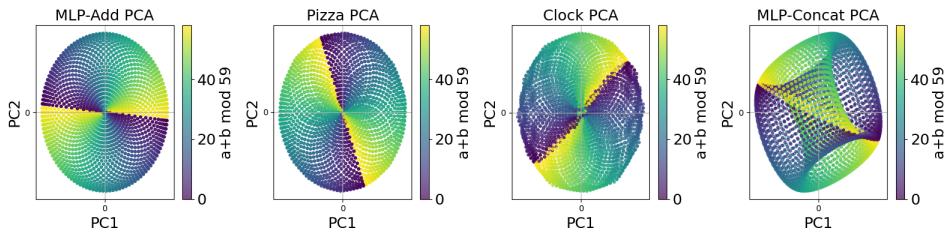


Figure 2: PCA of neuron pre-activations for a single frequency cluster across architectures: MLP-Add ($f = 27$), Pizza ($f = 17$), Clock ($f = 21$), MLP-Concat ($f = 22$). Each point is an input (a, b) , colored by $(d \cdot a + d \cdot b) \bmod 59$ corresponding to the network’s output (see Section 3.1). Pizza and Clock are nearly identical to each other and to MLP-Add, but differ strongly from MLP-Concat. Note that the trained pizza and clock models being PCA’d are downloaded directly from Zhong et al. (2023)’s Github: [model_p99zdpze51.pt](#) and [model_l8k1hzciux.pt](#).

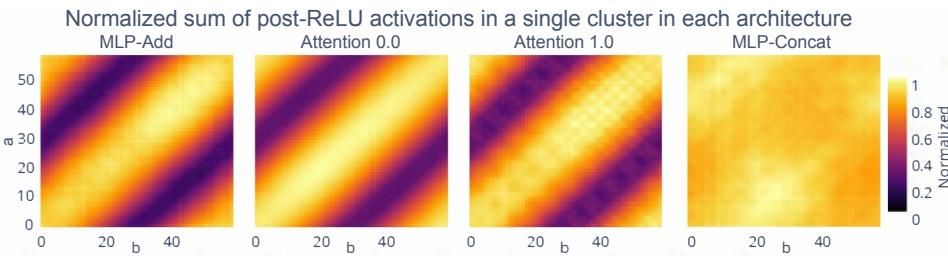


Figure 3: MLP-Add($f=27$), Pizza($f=17$), Clock($f=21$), MLP-Concat($f=22$). Normalized sum of post-activations in clusters in each architecture over all (a, b) . Clusters in MLP vector add, Attention 0.0 and 1.0 activate strongest on (a, b) with a close to b : the activation strength decreases with distance from $a = b$. Clusters in MLP-Concat activate almost equivariantly.

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

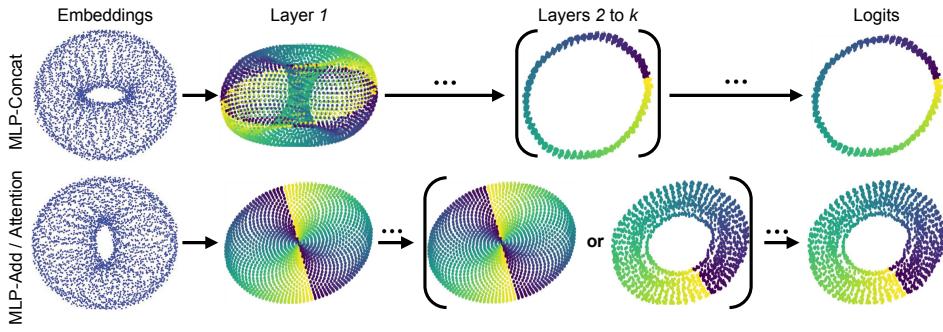
that representations also encode the distance $|a - b|$. Because downstream weights from neurons to logits are fixed across inputs, this structure implies that logits systematically depend both on (a, b) and on the separation $a - b$.

Surprisingly, this diagonal dependence—previously claimed by Zhong et al. (2023) to be the defining characteristic of Pizza—appears not only in Pizza networks but also in MLP-Add and Clock. We return to this point in the experiments section.

Linking PCA geometry and activation distributions. The PCA results and activation heatmaps reflect the same underlying phenomenon: principal components encode activation strength. In Figure 2, MLP-Add, Pizza, and Clock show negligible activation near the origin $(0, 0)$ of the PCA plane, since neither principal component contributes strongly there. By contrast, for MLP-Concat the 4D embedding contains no datapoints near $(0, 0, 0, 0)$, indicating that the cluster activates roughly equally across all inputs. This observation supports the view that the torus-to-circle map is the natural map for MLP-Concat (Appendix H).

More generally, these findings suggest that activation strength determines how inputs are arranged in PCA space. For MLP-Add, Pizza, and Clock, the dependence on $a - b$ produces an annular geometry at the logits rather than a perfect circle (Figure 4). For MLP-Concat, the absence of $a - b$ dependence yields a representation closer to a true circle, consistent with the circular structure given in the torus-to-circle map (Appendix H) and illustrated in Figure 1. Figure 4 confirms this distinction: MLP-Concat exhibits a torus with a nearly uniform circular projection, while MLP-Add, Pizza, and Clock exhibit a vector addition disc (pizza) with an annular structure at the logits.

Finally, Figure 4 shows the possible manifolds we see in networks across layers.



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 4: Different factorizations of the torus-to-circle map. We find first-layer intermediate representations to be either a torus or a disc (resembling vector addition on the circle). Later layers can construct a circle, and the logits approximate a circle. See Appendix H regarding the torus-to-circle factorization.

5 METHODOLOGY

Phase Alignment Distributions. Given Theorem 4.1, we can classify representation manifolds from phase statistics. Thus, we propose yet another representation: the Phase Alignment Distribution (PAD). To a given architecture, a PAD is a distribution over $\mathbb{Z}_n \times \mathbb{Z}_n$. Samples of this distribution are drawn as follows:

1. Sample a random initialization (e.g., random seed) and train the network.
2. From the resulting trained network, sample a neuron uniformly.
3. Return the pair $(a, b) \in \mathbb{Z}_n \times \mathbb{Z}_n$ that achieves the largest activation in the resulting neuron.

A PAD illustrates, across independent training runs and neuron clusters, how often activations are maximized on the $a = b$ diagonal—that is, it depicts how often learned phases align. Even beyond inspecting the proximity of samples to this diagonal, we propose to compare the PADs of architectures according to a metric on the space of distributions over $\mathbb{Z}_n \times \mathbb{Z}_n$, giving an even more precise comparison. In the following section, we will provide estimates of the PADs for the aforementioned architectures, as well as PAD distances under the *maximum mean discrepancy* (Gretton et al., 2012, MMD)—a family of metrics with tractable unbiased sample estimators.

Following prior work on one-layer networks (Nanda et al., 2023; Zhong et al., 2023), and building on the empirical validation of the simple neuron model (Eq. 4) in McCracken et al. (2025), we restrict our PAD analysis to single-hidden-layer architectures. In practice, raw activations are often noisy, which makes direct sinusoid fitting unreliable. Instead, we assume the simple neuron model and extract the learned phase pair (ϕ^L, ϕ^R) using one of two procedures: (i) by taking the point of maximal activation, or (ii) by computing the activation’s center of mass. Both estimators yield qualitatively similar PADs; we report any differences between them in the Results section.

Betti number distribution. Now we turn to multi-layer networks. We estimate the distribution over Betti number vectors corresponding to the set of neurons within a cluster in a given layer (or logits) to distinguish the structure of the layers: that is $\mathcal{M}_{\ell, f}$ and $\mathcal{M}_{\text{logits}, f}$. This helps us identify when the underlying structure resembles a disc, torus, or circle. We compute these using **persistent homology** with the Ripser library (Bauer, 2021; de Silva et al., 2011; Tralie et al., 2018). For more details see Appendix A.3.

6 RESULTS

6.1 MLP-ADD, ATTENTION 0.0 AND 1.0 (PIZZA AND CLOCK) ARE *nearly* THE SAME

PAD results. We study 703 trained one-hidden-layer networks drawn from our four architectures: MLP-Add, Attention 0.0 (Pizza), Attention 1.0 (Clock) and MLP-Concat.

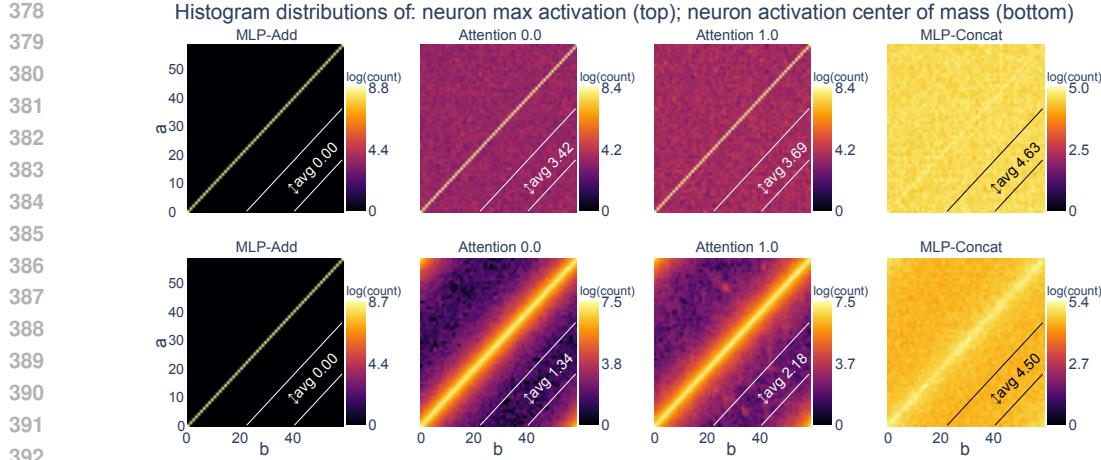


Figure 5: Log-density heatmaps for the distribution of neuron maximum activations (top) and activation center of mass (bottom) across 703 trained models. Attention 0.0 and 1.0 architectures exhibit modest off-diagonal spread compared to MLP-Add, but remain constrained by architectural bias toward diagonal alignment. The maximum mean discrepancy scores between Attention 0.0 and 1.0 are 0.0237 and 0.0181 in rows 1 and 2 respectively, indicating they are very similar distributions.

Figure 5 shows PAD plots across architectures. We note that MLP-Add, Attention 0.0, Attention 1.0 are very concentrated on the diagonal, while MLP-Concat is not. To further quantify this, we propose the torus distance, which is the discrete graph distance from a point (a, b) on the torus to the $a = b$ line. Figure 7 quantifies this with a histogram of torus distances to the $a = b$ line. We see that Attention 0.0 and 1.0 are almost indistinguishable and both very similar to MLP-Add; moreover, our metric successfully discerns these models from MLP-Concat.

Table 2 shows the PAD distances under the MMD distance. All comparisons are statistically significant (p -values ≈ 0). We see that Attention 0.0 and 1.0 are extremely close to each other, MLP-Add lies moderately close to both, and MLP-Concat is strongly separated from all others. We also introduce and study the *torus distance* metric in Appendix D.

Previous metrics. In Appendix E (particularly E.2) we evaluate the metrics gradient symmetry and distance irrelevance of Zhong et al. (2023).

Betti number results. It's the case that the homology of what networks learn gives that MLP-Add, Attention 0.0 and Attention 1.0 architectures are all making topologically equivalent computations. While the MLP-Concat model appears to be different, it's in fact just more efficient, which results from the torus already having the holes necessary to accurately project the correct answer onto the logits after just one non-linearity (see Fig. 6). It's worth noting that while discs appear to be learned in the logits, in all the cases checked by hand the discs were caused by limitations of persistent homology, which struggles to find a hole of small radius.

7 DISCUSSION, LIMITATIONS, AND CONCLUSION

This work introduces a new lens under which circuits for modular addition may be compared. We argue that networks trained on modular addition tend to learn a common logit manifold, and that representations at intermediate layers are dictated by the alignment of learned phases for the two inputs in the first layer preactivations. Studying the distribution over phases, we identify that networks learn torus or vector-addition disc manifolds (known colloquially as *pizzas*) in the first layer, and proceed by iteratively applying rotations and linear projections to these manifolds before ultimately arriving at a logit annulus. We argue our work recovers the universality hypothesis by showing that the counter-example architectures of Zhong et al. (2023), and even our torus-learning MLP-Concat architecture all use the same torus to logits map. The transformers and MLP-Add architecture simply learn lower rank manifolds of the same class of torus manifolds. This follows rigorously and

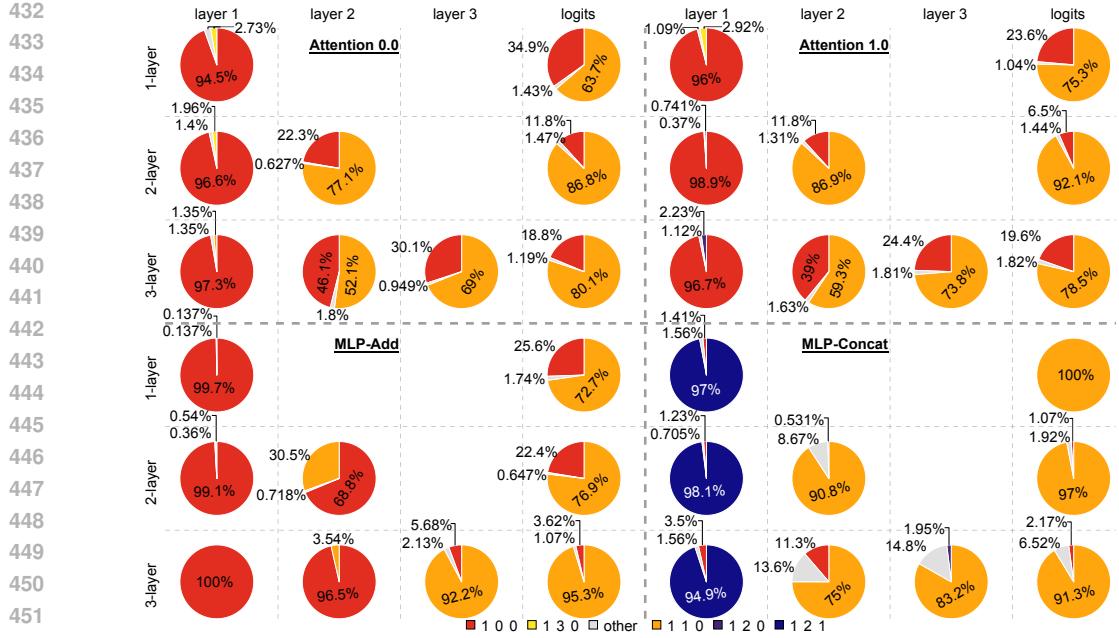


Figure 6: Betti number distributions across layers for 1-, 2-, and 3-layer models (100 seeds for each model). In layer 1, MLP-Add, Attention 0.0, and Attention 1.0 mostly yield disc-like representations, while MLP-Concat produces a torus. From the second layer onward, MLP-Add and both Attention variants converge to either a disc or a circle: the circle reflects the logits topology (correct answer), while the disc is an intermediate that can persist in later layers. MLP-Concat instead transitions directly to the circle. Across depth, Attention 0.0 and 1.0 are nearly identical with the latter having fewer transient discs.

directly from our closed-form equations for the torus and pizza discs: [the pizza discs are a linear projection of the torus. Thus, we posit “is the nature of universality that DNNs recover either a universal manifold, or linear projections of it in order to fit data?](#)

Notably, this conclusion was reached by examining networks from a different perspective, which allowed us to mathematically predict the structure of representations, and also to test these predictions precisely at large scale using tools from topological data analysis. In particular, our work identifies that the joint distribution over simple neuron phases both determines the geometry of representations, and permits efficient quantitative evaluation.

A notable limitation of our work is that, in its present form, it treats only circuits in modular addition. To interpret large-scale neural networks, it will be necessary to derive strategies for characterizing circuits across domains. While our precise methodology is particular to the analysis of modular addition networks, we believe the underlying strategy of isolating the degrees of freedom in the geometry of hidden representations and estimating the statistics of their corresponding learned values can be a generalizable approach to characterize circuits in more complex domains.

Beyond this, our results also suggest that the universality property is likely to hold in modular addition. It also draws connections between universality and the manifold hypothesis, given the correspondence we see between the low-dimensional representations formed throughout the layers of the networks we observed. Ultimately, we believe the tools we introduced in this work can inform formal hypotheses about universality and manifold continuity that can be assessed quantitatively.

REPRODUCIBILITY STATEMENT

We have provided our code in a `supplementary.zip` and experimental settings in Appendix A. We have also provided GPU optimized procedures for all computations we perform including the reproduction of Zhong et al. (2023)’s metrics to make repeating our tests more accessible.

486 REFERENCES
487

488 Rubén Ballester, Carles Casacuberta, and Sergio Escalera. Topological data analysis for neural net-
489 work analysis: A comprehensive survey, 2024. URL <https://arxiv.org/abs/2312.05840>.

490 Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes. *J. Appl. Comput.
491 Topol.*, 5(3):391–423, 2021. ISSN 2367-1726. doi: 10.1007/s41468-021-00071-5. URL <https://doi.org/10.1007/s41468-021-00071-5>.

492

493 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
494 perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828,
495 2013.

496

497 Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineering
498 how networks learn group operations. In *International Conference on Machine Learning*, pp.
499 6243–6267. PMLR, 2023.

500

501 Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent
502 (co)homology. *Inverse Problems*, 27(12):124003, November 2011. ISSN 1361-6420. doi:
503 10.1088/0266-5611/27/12/124003. URL <http://dx.doi.org/10.1088/0266-5611/27/12/124003>.

504

505 Namrata Deka and Danica J Sutherland. Mmd-b-fair: Learning fair representations with statisti-
506 cal testing. In *International Conference on Artificial Intelligence and Statistics*, pp. 9564–9576.
507 PMLR, 2023.

508

509 Darshil Doshi, Aritra Das, Tianyu He, and Andrey Gromov. To grok or not to grok: Disen-
510 tangling generalization and memorization on corrupted algorithmic datasets. *arXiv preprint
arXiv:2310.13061*, 2023.

511

512 Oliver Eberle, Thomas McGee, Hamza Giaffar, Taylor Webb, and Ida Momennejad. Position: We
513 need an algorithmic understanding of generative ai. *arXiv preprint arXiv:2507.07544*, 2025.

514

515 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
516 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
517 tion. *arXiv preprint arXiv:2209.10652*, 2022.

518

519 Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
520 madamin Barekatain, Alexander Novikov, Francisco J R. Ruiz, Julian Schrittweis, Grzegorz
521 Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
522 *Nature*, 610(7930):47–53, 2022.

523

524 Muhammad Ghifary, W Bastiaan Kleijn, and Mengjie Zhang. Domain adaptive neural networks for
525 object recognition. In *Pacific Rim international conference on artificial intelligence*, pp. 898–904.
526 Springer, 2014.

527

528 Sourangshu Ghosh. Mathematical foundations of deep learning. 2025.

529

530 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
531 MIT press Cambridge, 2016.

532

533 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
534 A kernel two-sample test. *The Journal of Machine Learning Research*, 13(1):723–773, 2012.

535

536 Andrey Gromov. Grokking modular arithmetic. *arXiv preprint arXiv:2301.02679*, 2023.

537

538 Tianyu He, Darshil Doshi, Aritra Das, and Andrey Gromov. Learning to grok: Emergence
539 of in-context learning and skill composition in modular arithmetic tasks. *arXiv preprint
arXiv:2406.02550*, 2024.

540

541 Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
542 hypothesis, 2024. URL <https://arxiv.org/abs/2405.07987>.

543

544 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
arXiv:1412.6980*, 2014.

540 Insung Kong, Kunwoong Kim, and Yongdai Kim. Fair representation learning for continuous sen-
 541 sitive attributes using expectation of integral probability metrics. *IEEE transactions on pattern*
 542 *analysis and machine intelligence*, 2025.

543

544 Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neural
 545 networks and transformers: A case study of modular arithmetic with multiple inputs, 2025. URL
 546 <https://arxiv.org/abs/2402.09469>.

547 Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning: Do
 548 different neural networks learn the same representations? *arXiv preprint arXiv:1511.07543*, 2015.

549

550 Yue Lu, Mary Letey, Jacob A Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan. In-context
 551 learning by linear attention: Exact asymptotics and experiments. In *NeurIPS 2024 Workshop on*
 552 *Mathematics of Modern Machine Learning*, 2024.

553 Yue M Lu, Mary Letey, Jacob A Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan. Asymp-
 554 totic theory of in-context learning by linear attention. *Proceedings of the National Academy of*
 555 *Sciences*, 122(28):e2502599122, 2025.

556

557 Daniel J Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru,
 558 Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, et al. Faster sorting algorithms
 559 discovered using deep reinforcement learning. *Nature*, 618(7964):257–263, 2023.

560 Gavin McCracken. *Using Exact Models to Analyze Policy Gradient Algorithms*. McGill University
 561 (Canada), 2021.

562

563 Gavin McCracken, Sihui Wei, Gabriela Moisescu-Pareja, Harley Wiltzer, and Jonathan Love. The
 564 representations of deep neural networks trained on dihedral group multiplication. In *NeurIPS*
 565 *2025 Workshop on Symmetry and Geometry in Neural Representations*.

566

567 Gavin McCracken, Gabriela Moisescu-Pareja, Vincent Letourneau, Doina Precup, and Jonathan
 568 Love. Uncovering a universal abstract algorithm for modular addition in neural networks, 2025.
 569 URL <https://arxiv.org/abs/2505.18266>.

570

571 Depen Morwani, Benjamin L. Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham M. Kakade.
 572 Feature emergence via margin maximization: case studies in algebraic tasks. In *The Twelfth In-
 573 ternational Conference on Learning Representations*, 2024. URL [https://openreview.net/
 574 forum?id=i9wDX850jR](https://openreview.net/forum?id=i9wDX850jR).

575

576 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress mea-
 577 sures for grokking via mechanistic interpretability. In *The Eleventh International Conference on*
 578 *Learning Representations*, 2023. URL <https://openreview.net/forum?id=9XFSbDPmdW>.

579

580 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 581 Zoom in: An introduction to circuits. *Distill*, 5(3):e00024–001, 2020.

582

583 Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
 584 eralization beyond overfitting on small algorithmic datasets, 2022. URL [https://arxiv.org/
 585 abs/2201.02177](https://arxiv.org/abs/2201.02177).

586

587 Maithra Raghu, Alex Irpan, Jacob Andreas, Bobby Kleinberg, Quoc Le, and Jon Kleinberg. Can
 588 deep reinforcement learning solve erdos-selfridge-spencer games? In *International Conference*
 589 *on Machine Learning*, pp. 4238–4246. PMLR, 2018.

590

591 Archie Shahidullah. Topological data analysis of neural network layer representations, 2022. URL
 592 <https://arxiv.org/abs/2208.06438>.

593

594 Dashiell Stander, Qinan Yu, Honglu Fan, and Stella Biderman. Grokking group multiplication with
 595 cosets. In *Forty-first International Conference on Machine Learning*, 2024.

596

597 Tao Tao, Darshit Doshi, Dayal Singh Kalra, Tianyu He, and Maissam Barkeshli. (how) can trans-
 598 formers predict pseudo-random numbers? In *Forty-second International Conference on Machine*
 599 *Learning*, 2025. URL <https://openreview.net/forum?id=asDx9sPAUN>.

594 Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser.py: A lean persistent homology library
 595 for python. *The Journal of Open Source Software*, 3(29):925, Sep 2018. doi: 10.21105/joss.
 596 00925. URL <https://doi.org/10.21105/joss.00925>.

598 Chun Hei Yip, Rajashree Agrawal, Lawrence Chan, and Jason Gross. Modular addition without
 599 black-boxes: Compressing explanations of mlps that compute numerical integration, 2024. URL
 600 <https://arxiv.org/abs/2412.03773>.

601 Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant
 602 representations for domain adaptation. In *International conference on machine learning*, pp.
 603 7523–7532. PMLR, 2019.

605 Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories
 606 in mechanistic explanation of neural networks. In *Thirty-seventh Conference on Neural Infor-
 607 mation Processing Systems*, 2023. URL <https://openreview.net/forum?id=S5wmbQc1We>.

610 A ADDITIONAL EXPERIMENTAL SETUP DETAILS

612 A.1 TRAINING HYPERPARAMETERS.

614 All models are trained with the Adam optimizer Kingma & Ba (2014). Number of neurons per layer
 615 in all models is 1024. Batch size is 59. Train/test split: 90%/10%.

616 Attention 1.0

- 618 Learning rate: 0.00075
- 619 L2 weight decay penalty: 0.000025

621 Attention 0.0

- 623 Learning rate: 0.00025
- 624 L2 weight decay penalty: 0.000001

626 MLP-Add and MLP-Concat

- 628 Learning rate: 0.0005
- 629 L2 weight decay penalty: 0.0001

631 A.2 CONSTRUCTING REPRESENTATIONS

633 In all networks, we cluster neurons together and study the entire cluster at once McCracken et al.
 634 (2025). This is done by constructing an $n \times n$ matrix, with the value in entry (a, b) corresponding to
 635 the preactivation value on datum (a, b) . A 2D Discrete Fourier Transform (DFT) of the matrix gives
 636 the key frequency f for the neuron. The cluster of preactivations of all neurons with key frequency
 637 f is the $n^2 \times |\text{cluster } f|$ matrix, made by flattening each neurons preactivation matrix and stacking
 638 the resulting vector for every neuron with the same key frequency.

640 A.3 PERSISTENT HOMOLOGY

641 We compute these using **persistent homology**, applied to point clouds constructed from interme-
 642 diate representations at different stages of the circuit, as well as the final logits. This yields a compact
 643 topological signature that captures how the geometry of these representations evolves across layers,
 644 helping us identify when the underlying structure resembles a disc, torus, or circle. We use the
 645 Ripser library for these computations Bauer (2021); de Silva et al. (2011); Tralie et al. (2018).

647 For our persistent homology computations, we set the k -nearest neighbour hyperparameter to 250.
 Our point cloud consists of $59^2 = 3481$ points.

648 A.4 REMAPPING PROCEDURE
649650 **Neuron remapping (McCracken et al., 2025).** For a simple neuron of frequency f , we define a
651 canonical coordinate system via the mapping:

652
$$(a, b) \mapsto (a \cdot d, b \cdot d), \quad \text{where } d := \left(\frac{f}{\gcd(f, n)} \right)^{-1} \bmod \frac{n}{\gcd(f, n)}. \quad (7)$$

653

654 This inverse is the modular multiplicative inverse, i.e. for any \mathbb{Z}_k let $x \in \mathbb{Z}_k$. Its inverse x^{-1} exists
655 if $\gcd(x, k) = 1$ and gives $x \cdot x^{-1} \equiv 1 \pmod{k}$. This normalizes inputs relative to the neuron's
656 periodicity and allows for qualitative and quantitative comparisons.
657658 B PROOF OF THEOREM 4.1
659660 The proofs of both cases of Theorem 4.1 follow the same pattern: apply an angle sum formula to the
661 entries of the pre-activation matrix, realize this matrix as a product of 2 low-rank matrices and use
662 the assumption of uniformity of the phase variables to deduce full rank of the composition.
663664 For integers $p \geq 3$ and $m \geq 2$, consider the $p^2 \times m$ data matrix of the pre-activations of the model
665 network with simple neurons (see equation 4 and 1).

666
$$X_{(a,b),i} = \cos(\theta_a + \Phi_i^{L,a}) + \cos(\theta_b + \Phi_i^{R,b}), \quad \theta_t := \frac{2\pi t}{p}, \quad (a, b) \in \{0, \dots, p-1\}^2.$$

667

668 and using the identity $\cos(x + y) = \cos x \cos y - \sin x \sin y$, we have
669

670
$$X_{(a,b),i} = \cos(\theta_a) \cos(\Phi_i^{L,a}) - \sin(\theta_a) \sin(\Phi_i^{L,a}) + \cos(\theta_b) \cos(\Phi_i^{R,b}) - \sin(\theta_b) \sin(\Phi_i^{R,b}) \quad (8)$$

671

672 Next, we show the details specific to each of the cases: disc and torus.
673674 **Proof of Theorem 4.1 (Disc)**
675676 *Proof.* By assumption, $\Phi_i^{L,a} = \Phi_i^{R,b} = \phi_i$ for all i . Then, equation 8 becomes
677

678
$$X_{(a,b),i} = (\cos \theta_a + \cos \theta_b) \cos \phi_i - (\sin \theta_a + \sin \theta_b) \sin \phi_i \quad (9)$$

679

680 Notice then that $X = VW$ for the matrices V and W defined by the following row and column
681 vectors respectively
682

683
$$V_{(a,b),:} := [\cos(\theta_a) + \cos(\theta_b), \sin(\theta_a) + \sin(\theta_b)] \quad (10)$$

684

685
$$W_{:,i} := \begin{bmatrix} \cos(\phi_i) \\ -\sin(\phi_i) \end{bmatrix}. \quad (11)$$

686

687 Now we show they both have rank 2 and the kernel of W intersect the image of V trivially. The
688 rank 2 of V follows from the independence of cos and sin and the rank 2 of W is true almost
689 surely following the the independence of cos and sin and the hypothesis that $\Phi_i^{L,a}$ and $\Phi_i^{R,b}$ have
690 uncountable support.691 Suppose $\langle V_{(a,b),:}, W_{:,i} \rangle = 0$ for some (a, b) and all i , that means $\cos(\theta_a + \phi_i) = -\cos(\theta_b + \phi_i)$
692 for all i . From the assumption the random variables ϕ^L and ϕ^R are not discrete, this event has
693 probability 0, so the kernel of W intersects the image of V trivially and $X = VW$ has rank 2.
694695 **Proof of Theorem 4.1 (Torus)**
696697 Equation 8 shows $X = VW$ for the matrices V, W defined by rows and columns respectively
698

699
$$V_{(a,b),:} = [\cos(\theta_a), \sin(\theta_a), \cos(\theta_b), \sin(\theta_b)] \quad (12)$$

700

701
$$W_{:,i} = \begin{bmatrix} \cos(\Phi_i^{L,a}) \\ -\sin(\Phi_i^{L,a}) \\ \cos(\Phi_i^{R,b}) \\ -\sin(\Phi_i^{R,b}) \end{bmatrix}. \quad (13)$$

702 The proof that X has rank 4 is the same as the one for the respective statement in theorem 1 (uni-
703 formity of phases give the rank of V and W and the independence of the image of V and kernel of
704 W).
705

□

702
703 C STATISTICAL SIGNIFICANCE OF MAIN RESULTS704
705 C.1 FIGURE 5706
707 We trained 703 models of each architecture, being MLP vec add, Attention 0.0 and 1.0, and MLP
708 concat, and recorded the locations of the max activations of all neurons across all (a, b) inputs to the
709 network. We also computed the center of mass of each neuron as this doesn't always align with the
710 max preactivation (though it tends to be close).

Description	MMD	p-value	Interpretation
MLP vec add vs Attention 0.0	0.0968	0.0000	Moderate difference; highly significant
MLP vec add vs Attention 1.0	0.1239	0.0000	Clear difference; highly significant
MLP vec add vs MLP concat	0.2889	0.0000	Very strong difference; highly significant
Attention 0.0 vs Attention 1.0	0.0338	0.0000	Subtle difference; highly significant
Attention 0.0 vs MLP concat	0.1987	0.0000	Strong difference; highly significant
Attention 1.0 vs MLP concat	0.1723	0.0000	Strong difference; highly significant

711
712 (a) Row 1: Max activation

Description	MMD	p-value	Interpretation
MLP vec add vs Attention 0.0	0.0583	0.0000	Small difference; highly significant
MLP vec add vs Attention 1.0	0.0689	0.0000	Moderate difference; highly significant
MLP vec add vs MLP concat	0.2614	0.0000	Very strong difference; highly significant
Attention 0.0 vs Attention 1.0	0.0210	0.0084	Subtle difference; highly significant
Attention 0.0 vs MLP concat	0.2126	0.0000	Strong difference; highly significant
Attention 1.0 vs MLP concat	0.1947	0.0000	Strong difference; highly significant

713
714 (b) Row 2: Center of mass715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162

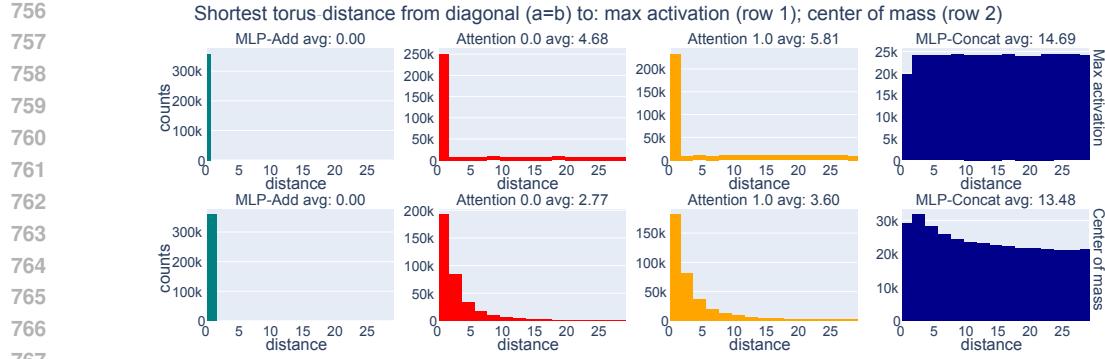


Figure 7: Histograms of torus-distance from each neuron’s phase to the diagonal $a = b$, across 703 trained models. MLP-Add neurons align perfectly with the diagonal, Attention 0.0 and 1.0 show increasing off-diagonal spread, and MLP-Concat exhibits broadly distributed activations on the torus.

Table 2: Gaussian-kernel Maximum Mean Discrepancies (MMD) Gretton et al. (2012) and permutation p-values between the empirical distributions shown in Figure 7. For each architecture comparison, we sampled 2000 points from each empirical distribution (derived from histogram-based neuron statistics), then computed the unbiased Gaussian-kernel MMD with a bandwidth chosen via the pooled median heuristic. Significance was assessed using 5000 permutation tests per comparison.

(a) Row 1: Max activation

Description	MMD	p-value	Interpretation
MLP vec add vs Attention 0.0	0.3032	0.0000	Strong difference; highly significant
MLP vec add vs Attention 1.0	0.3888	0.0000	Very strong difference; highly significant
MLP vec add vs MLP concat	0.9508	0.0000	Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0	0.0705	0.0000	Moderate difference; highly significant
Attention 0.0 vs MLP concat	0.6323	0.0000	Very strong difference; highly significant
Attention 1.0 vs MLP concat	0.5695	0.0000	Very strong difference; highly significant

(b) Row 2: Center of mass

Description	MMD	p-value	Interpretation
MLP vec add vs Attention 0.0	0.7727	0.0000	Extremely strong difference; highly significant
MLP vec add vs Attention 1.0	0.7517	0.0000	Extremely strong difference; highly significant
MLP vec add vs MLP concat	0.9148	0.0000	Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0	0.0520	0.0006	Moderate difference; highly significant
Attention 0.0 vs MLP concat	0.7022	0.0000	Very strong difference; highly significant
Attention 1.0 vs MLP concat	0.6391	0.0000	Very strong difference; highly significant

Distance irrelevance quantifies how much the model's outputs depend on the distance between a and b . For each distance d , we compute the standard deviation of correct logits over all (a, b) pairs where $a - b = d$ and average over all distances. It's normalized by the standard deviation over all data.

Formally, let $L_{i,j} = Q_{ij,i+j}$ be the correct logit matrix. The distance irrelevance q is defined as:

$$q = \frac{\frac{1}{p} \sum_{d \in \mathbb{Z}_p} \text{std}(\{L_{i, i+d} \mid i \in \mathbb{Z}_p\})}{\text{std}(\{L_{i, j} \mid i, j \in \mathbb{Z}_p\})}$$

where $q \in [0, 1]$, with higher values indicating greater irrelevance to input distance.

E.2 EVALUATING GRADIENT SYMMETRICITY AND DISTANCE IRRELEVANCE METRICS

Figure 8 shows the mean and standard deviation of the gradient symmetricity and distance irrelevance metrics from Zhong et al. (2023). Unlike Zhong et al. (2023), who report gradient symmetricity results over a randomly selected subset of 100 input-output triples $(a, b, c) \in \mathbb{Z}_n^3$, we compute

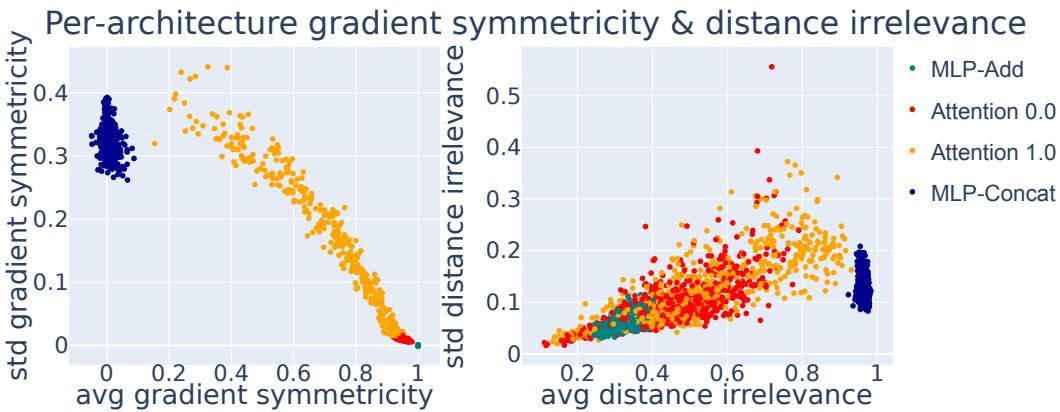


Figure 8: Evaluation of gradient symmetry (left) and distance irrelevance (right). Each point shows the average (avg) and standard deviation (std) of one trained network. MLP-Add and MLP-Concat lie at nearly opposite extremes, while attention 0.0 and 1.0 overlap substantially. Gradient symmetry separates Attention 1.0 better, but neither metric **always** distinguishes between Attention 1.0 and 0.0.

the metric exhaustively across **all** $59^3 = 205,370$ triples to add accuracy. See Appendix G for the GPU-optimized procedure.

MLP-Add and MLP-Concat cluster on opposite extremes, implying the metrics just identify whether neurons have phases $\phi^L \neq \phi^R$. MLP-Add models have high gradient symmetry and low distance irrelevance and MLP-Concat models have low gradient symmetry and high distance irrelevance. Attention 1.0 models span a wide range between these extremes depending on two factors: 1) how well the frequencies they learned intersect and 2) how well neurons are able to get their activation center of mass away from the $\phi^L = \phi^R$ line. Attention 0.0 is closer to MLP-Add than Attention 1.0 because it's harder for this architecture to learn $\phi^L \neq \phi^R$. Notably, failure cases exist using both: **neither metric distinguishes between Attention 1.0 and 0.0 models**.

MMD results for these two metrics are reported below, again showing that the distance between attention 0.0 and attention 1.0 models is small. This is the case even though these metrics were chosen to differentiate between the two architectures.

Using just the x-axis (since the y-axis on those plots is the std dev) MMD results are presented next.

We can conclude that the attention transformers are far from vector addition, and very close to each other under all metrics.

864

[h]

865

866 Table 3: Permutation-test MMDs on the empirical gradient symmetricity and distance irrelevance distributions
867 across all architectures. All p-values are $\leq 10^{-6}$ (reported as 0.0000).

868

869 (a) Gradient symmetricity (2-D: *avg* and *std*)

Description	MMD	p-value	Interpretation
MLP vec add vs Attention 0.0	1.2725	0.0000	Extremely strong difference; highly significant
MLP vec add vs Attention 1.0	0.9688	0.0000	Extremely strong difference; highly significant
MLP vec add vs MLP concat	1.3471	0.0000	Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0	0.7750	0.0000	Very strong difference; highly significant
Attention 0.0 vs MLP concat	1.3503	0.0000	Extremely strong difference; highly significant
Attention 1.0 vs MLP concat	1.2360	0.0000	Extremely strong difference; highly significant

870

871 (b) Distance irrelevance (2-D: *avg* and *std*)

Description	MMD	p-value	Interpretation
MLP vec add vs Attention 0.0	0.7534	0.0000	Very strong difference; highly significant
MLP vec add vs Attention 1.0	0.7079	0.0000	Very strong difference; highly significant
MLP vec add vs MLP concat	1.2488	0.0000	Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0	0.2078	0.0000	Moderate difference; highly significant
Attention 0.0 vs MLP concat	1.2255	0.0000	Extremely strong difference; highly significant
Attention 1.0 vs MLP concat	1.0990	0.0000	Extremely strong difference; highly significant

872

873

[h]

874

875 Table 4: Permutation-test MMDs on scatter-plot averages only (1-D). All p -values are $\leq 10^{-6}$, so every
876 difference is “highly significant.” Note that the distance between attention 0.0, attention 1.0, and MLP vec add
877 is large, implying they are not performing vector addition.

878

879 (a) Row 3: Gradient symmetricity (avg only)

Description	MMD	p-value	Interpretation
MLP vec add vs Attention 0.0	1.2755	0.0000	Extremely strong difference; highly significant
MLP vec add vs Attention 1.0	0.9842	0.0000	Extremely strong difference; highly significant
MLP vec add vs MLP concat	1.3833	0.0000	Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0	0.7726	0.0000	Extremely strong difference; highly significant
Attention 0.0 vs MLP concat	1.3802	0.0000	Extremely strong difference; highly significant
Attention 1.0 vs MLP concat	1.2559	0.0000	Extremely strong difference; highly significant

880

881

882 (b) Row 4: Distance irrelevance (avg only)

Description	MMD	p-value	Interpretation
MLP vec add vs Attention 0.0	0.7739	0.0000	Extremely strong difference; highly significant
MLP vec add vs Attention 1.0	0.7268	0.0000	Very strong difference; highly significant
MLP vec add vs MLP concat	1.2501	0.0000	Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0	0.2109	0.0000	Strong difference; highly significant
Attention 0.0 vs MLP concat	1.2443	0.0000	Extremely strong difference; highly significant
Attention 1.0 vs MLP concat	1.1093	0.0000	Extremely strong difference; highly significant

883

884

885 F ADDITIONAL COMMENTARY ON THE RESULTS

886

887 F.1 THE ATTENTION 1.0 MODEL IS USING ATTENTION AS A WEAK NON-LINEARITY.

888

889 It’s noteworthy that some neurons in the first MLP layer of transformers have learned one frequency
890 f , and a sum of two different sinusoidal features (*i.e.* a *superposition via linear combination*). These

918 are of one first-order sinusoidal feature (the simple neuron model) $\sin(\frac{2\pi fa}{n}) + \sin(\frac{2\pi fb}{n})$ and also
 919 a second term, being second order and $\cos(\frac{f(a+b-c)}{n})$, with both terms having the same f value.
 920

921 This is why the sum of neuron-cluster post-activations plot (Figure 3) has a bit of “off diagonal
 922 patchy-spread” that runs from the top left to the bottom right at 45 degrees in only the attention 1.0
 923 model. These small cloudy patches are caused by a few neurons activating on $\cos(\frac{f(a+b-c)}{n})$.
 924

925 Thus, it’s the case that for modular addition, the attention layer and its sigmoidal non-linearity is
 926 being used like a weak non-linear layer. Sigmoidal attention isn’t a strong enough non-linearity
 927 for the network to have all neurons with frequency f learn the second order $\cos(\frac{f(a+b-c)}{n})$ that’s
 928 typically seen in the second and third layers. Indeed, a past work, McCracken et al. (2025), utilized
 929 a rigorous empirical framework to inspect this over layers, learning rates, and l2 weight decay
 930 hyperparameters. They showed that across these settings, the best fit in the first layer in all neurons in
 931 transformers still comes from the simple neuron model.
 932

G GPU-OPTIMIZED COMPUTATIONS

G.1 GPU-OPTIMIZED CENTER-OF-MASS IN CIRCULAR COORDINATES

936 Let p be the grid size and for each neuron $n = 1, \dots, N$ we have a pre-activation map
 937

$$938 x_{i,j}^{(n)}, \quad (i, j = 0, \dots, p-1).$$

939 Define nonnegative weights
 940

$$941 w_{i,j}^{(n)} = |x_{i,j}^{(n)}|.$$

942 Let $f_n \in \{1, \dots, \lfloor p/2 \rfloor\}$ be the dominant frequency for neuron n , and let
 943

$$944 f_n^{-1} \text{ be the modular inverse of } f_n \text{ modulo } p, \quad f_n f_n^{-1} \equiv 1 \pmod{p}.$$

945 Convert the row index i and column index j into angles (“un-wrapping” by f_n^{-1}):
 946

$$947 \theta_i^{(n)} = \frac{2\pi}{p} f_n^{-1} i, \quad \phi_j^{(n)} = \frac{2\pi}{p} f_n^{-1} j.$$

949 Form the two complex phasor sums
 950

$$951 S_a^{(n)} = \sum_{i=0}^{p-1} \sum_{j=0}^{p-1} w_{i,j}^{(n)} \exp(i \theta_i^{(n)}),$$

$$952 S_b^{(n)} = \sum_{i=0}^{p-1} \sum_{j=0}^{p-1} w_{i,j}^{(n)} \exp(i \phi_j^{(n)}).$$

957 The arguments of these sums give the circular means of each axis:
 958

$$959 \mu_a^{(n)} = \arg(S_a^{(n)}), \quad \mu_b^{(n)} = \arg(S_b^{(n)}),$$

960 where \arg returns an angle in $(-\pi, \pi]$. To ensure a nonnegative result, normalize into $[0, 2\pi]$:
 961

$$962 \mu^+ = (\mu + 2\pi) \bmod 2\pi.$$

963 Finally, map back from the angular domain to grid coordinates:
 964

$$965 \text{CoM}_a^{(n)} = \frac{p}{2\pi} \mu_a^{(n)+}, \quad \text{CoM}_b^{(n)} = \frac{p}{2\pi} \mu_b^{(n)+}.$$

967 This handles wrap-around at the boundaries automatically and weights each location (i, j) by $|x_{i,j}^{(n)}|$,
 968 producing a smooth, circularly-aware center of mass. All tensor operations—angle computation,
 969 complex exponentials, and weighted sums—are expressed as parallel array primitives that JAX can
 970 JIT-compile and fuse into a single GPU kernel launch, eliminating Python-level overhead. By pre-
 971 computing the angle grids and performing the phasor sums inside one jitted function, this imple-
 972 mentation fully exploits GPU parallelism and memory coalescing for maximal throughput.
 973

972 G.2 GPU-VECTORIZED DISTANCE IRRELEVANCE OVER ALL n^2 INPUT PAIRS (a, b)
973

974 Let

975
$$\mathcal{I} = \{(a, b) \mid a, b \in \{0, \dots, n-1\}\},$$

976 and order its elements lexicographically:
977

978
$$X = [(a_0, b_0), (a_1, b_1), \dots, (a_{n^2-1}, b_{n^2-1})] \in \mathbb{Z}^{n^2 \times 2}.$$

979

980 A n^2 single batched forward pass on the GPU computes

981
$$\text{Logits} = \text{Transformer}(X) \in \mathbb{R}^{n^2 \times n},$$

982

983 producing all $n^2 \cdot n$ output logits in parallel. We then extract the “correct-class” logit for each input:
984

985
$$y_k = \text{Logits}_{k, (a_k+b_k) \bmod n}, \quad k = 0, \dots, n^2 - 1.$$

986

987 Next we reshape y into an $n \times n$ matrix L by

988
$$L_{i,j} = y_k \quad \text{where } i = (a_k + b_k) \bmod n, \quad j = (a_k - b_k) \bmod n.$$

989

990 All of the above: embedding lookup, attention, MLP, softmax and the advanced indexing is implemented as two large vectorized kernels (the batched forward pass and the gather), so each of the n^2 inputs is handled in $O(1)$ time but fully in parallel on the GPU.
991

992 Finally, define

993
$$\sigma_{\text{global}} = \sqrt{\frac{1}{n^2} \sum_{i,j} (L_{i,j} - \mu)^2}, \quad \mu = \frac{1}{n^2} \sum_{i,j} L_{i,j},$$

994

995 and for each “distance” j

996
$$\sigma_j = \sqrt{\frac{1}{n} \sum_i (L_{i,j} - \bar{L}_{\cdot j})^2}, \quad \bar{L}_{\cdot j} = \frac{1}{n} \sum_i L_{i,j}, \quad q_j = \frac{\sigma_j}{\sigma_{\text{global}}}.$$

997

1001 We report

1002
$$\bar{q} = \frac{1}{n} \sum_{j=0}^{n-1} q_j, \quad \text{std}(q) = \sqrt{\frac{1}{n} \sum_{j=0}^{n-1} (q_j - \bar{q})^2}.$$

1003

1006 G.3 GPU-OPTIMIZED GRADIENT SYMMETRICITY OVER ALL n^3 TRIPLETS (a, b, c)
1007

1008 Let

1009
$$E \in \mathbb{R}^{n \times d} \quad \text{with } d = 128$$

1010

1011 be the learned embedding matrix, and denote by

1012
$$Q(E_a, E_b)_c$$

1013

1014 the scalar logit for class c obtained by feeding the pair of embeddings (E_a, E_b) into the model. We
1015 define the per-triplet gradient cosine-similarity as
1016

1017
$$S(a, b, c) = \frac{\langle \nabla_{E_a} Q(E_a, E_b)_c, \nabla_{E_b} Q(E_a, E_b)_c \rangle}{\| \nabla_{E_a} Q(E_a, E_b)_c \| \| \nabla_{E_b} Q(E_a, E_b)_c \|},$$

1018

1019 for all $(a, b, c) \in \{0, \dots, n-1\}^3$.
10201021 To compute $\{S(a, b, c)\}$ over the full n^3 grid in one fused GPU kernel, we first form three index
1022 tensors

1023
$$A_{i,j,k} = i, \quad B_{i,j,k} = j, \quad C_{i,j,k} = k, \quad i, j, k = 0, \dots, n-1,$$

1024

1025 then flatten to vectors $a = \text{vec}(A)$, $b = \text{vec}(B)$, $c = \text{vec}(C) \in \{0, \dots, n-1\}^{n^3}$. We gather the
1026 embeddings
1027

1028
$$\text{emb}_a = E[a] \in \mathbb{R}^{n^3 \times d}, \quad \text{emb}_b = E[b] \in \mathbb{R}^{n^3 \times d},$$

1029

1026 and in JAX compute

1027

$$\mathbf{g}_a = \text{vmap}((e_a, e_b, c) \mapsto \nabla_{E_a} Q(e_a, e_b)_c)(\mathbf{emb}_a, \mathbf{emb}_b, c),$$

$$\mathbf{g}_b = \text{vmap}((e_a, e_b, c) \mapsto \nabla_{E_b} Q(e_a, e_b)_c)(\mathbf{emb}_a, \mathbf{emb}_b, c),$$

1031 each producing an $(n^3 \times d)$ -shaped array. Finally the similarity vector is

1032

1033

1034

1035 and we report

1036

1037

1038

1039

$$\mathbf{S} = \frac{\mathbf{g}_a \odot \mathbf{g}_b}{\|\mathbf{g}_a\| \|\mathbf{g}_b\|} \in \mathbb{R}^{n^3},$$

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

Runtime. Because we express $\mathbf{g}_a, \mathbf{g}_b$ and the subsequent dot-and-norm entirely inside a single `@jax.jit+ vmap` invocation, XLA lowers it to one GPU kernel that processes all n^3 triplets in parallel. The kernel dispatch cost is therefore $O(1)$, and each triplet’s gradient and cosine computations are fused into vectorized instructions with constant per-element overhead. Although the total arithmetic work is $O(n^3)$, the full data-parallel execution means the wall-clock latency grows sub-linearly in n^3 and the per-triplet overhead remains effectively constant.

H HYPOTHESIS: MODULAR ADDITION AS A FACTORED MAP FROM THE TORUS TO THE CIRCLE

1050

1051

1052

Modular addition is the function $\mathbb{Z}_n \times \mathbb{Z}_n \rightarrow \mathbb{Z}_n$ sending the pair (a, b) to $c = a + b \pmod n$. Geometrically, we may embed $a \in \mathbb{Z}_n$ on the unit circle \mathbb{R}^2 via $\mathbf{E}_a = (\cos(2\pi a/n), \sin(2\pi a/n))$. So the product space $\mathbb{Z}_n \times \mathbb{Z}_n$ embeds into \mathbb{R}^4 as a discretized torus, parameterized by

1053

1054

$$(a, b) \mapsto (\cos u, \sin u, \cos v, \sin v), \quad u = 2\pi a/n, \quad v = 2\pi b/n.$$

1055

In this embedding, modular addition corresponds to the following map from the torus to the circle:

1056

1057

$$(x_1, x_2, x_3, x_4) \mapsto (x_1 x_3 - x_2 x_4, x_1 x_4 + x_2 x_3).$$

1058

Parameterizing by angles, this becomes the familiar trigonometric identity

1059

1060

$$(\cos u, \sin u, \cos v, \sin v) \mapsto (\cos(u + v), \sin(u + v)).$$

1061

1062

1063

1064

1065

1066

We claim that networks we study are approximating this specific geometric map from a torus in \mathbb{R}^4 to a circle in \mathbb{R}^2 . In Section 3.1 we saw that the “clock” and “pizza” interpretations included learned embeddings of the form of \mathbf{E}_a . Taken together, these embeddings define a torus \mathbf{T}^2 as the input representation space. **Our hypothesis** is that architectures (MLP-Add, Attention 0.0 and 1.0, MLP-Concat) do not learn fundamentally different solutions; rather they factor the same torus-to-circle map via different intermediate representations. Fig. 4 shows factorizations of this map.

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079