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ABSTRACT

The Clock and Pizza interpretations, associated with architectures differing in ei-
ther uniform or learnable attention, were introduced to argue that different archi-
tectural designs can yield distinct circuits for modular addition. In this work, we
show that this is not the case, and that both uniform attention and trainable atten-
tion architectures implement the same algorithm via topologically and geometri-
cally equivalent representations. Our methodology goes beyond the interpretation
of individual neurons and weights. Instead, we identify all of the neurons cor-
responding to each learned representation and then study the collective group of
neurons as one entity. This method reveals that each learned representation is a
manifold that we can study utilizing tools from topology. Based on this insight,
we can statistically analyze the learned representations across hundreds of circuits
to demonstrate the similarity between learned modular addition circuits that arise
naturally from common deep learning paradigms.

1 INTRODUCTION

As deep neural networks (DNNs) scale and begin to be deployed in increasingly high-stakes settings,
it will be imperative to develop a concrete understanding of how these models perform computa-
tions and ultimately make decisions. Towards this end, research in mechanistic interpretability has
focused on identifying sub-structures of these models—referred to as circuits—and understanding
the function and formation of these circuits on the subtasks that they are responsible for. In order
to extract a generalizable understanding of circuits, researchers have formulated a key hypothesis
universality (Li et al., 2015; Olah et al., 2020), which suggests that similar networks trained on
similar data will form similar circuits. On the other hand, the manifold hypothesis (Bengio et al.,
2013; Goodfellow et al., 2016), suggests that representation learning consists of finding a lower-
dimensional manifold for the data. If these hypotheses were to be false, the task of interpreting
large scale models becomes dire—there would be little hope of identifying common patterns across
initializations, architectures, and datasets.

Yet, recent work claimed totally disparate and disjoint circuits were learned by DNNs trained on
the exact same data using modular addition (a + b) mod n = c (Zhong et al., 2023). Their re-
sults seemingly provide a counter-example to the universality hypothesis, thus suggesting the pursuit
of learning interpretable principles that generalize across tasks may be doomed. In fact, this sug-
gests that the identification of simple circuits in larger neural networks could be combinatorially
difficult—if different small-scale models trained on one task can learn totally different circuits with
no commonality, then large language models (LLMs) may learn many disjoint circuits for a task
within their weights simultaneously.

Our primary contribution to interpreting modular addition, i.e. the dataset (a+ b) mod n = c is the
resolution of the seemingly disparate circuits found by Zhong et al. (2023).

1. We show that, under certain conditions on the structure of learned embeddings, all networks
studied by Zhong et al. (2023) and McCracken et al. (2025) learn preactivations having
equivalent geometry and topology, which can be expressed in closed form;

2. These closed-form equations allow us to rigorously claim that all architectures we study
universally make use of the same class of manifolds;
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3. We introduce new tools, leveraging topological data analysis, to empirically validate these
aforementioned conditions, providing extensive empirical evidence of shared representa-
tion geometry across networks.

Altogether, our results restore the possibility that the universality hypothesis is true, as Zhong et al.
(2023)’s architectures are no longer shown to be a counter-example.

2 RELATED WORK

Deep learning (DL) research increasingly turns to mathematical tasks as controlled settings for in-
vestigating learning phenomena and studying the fundamentals of DL (Ghosh, 2025). Such tasks
provide opportunities to (i) derive exact functional forms that yield theoretical insights beyond em-
pirical studies (McCracken, 2021), (ii) analyze how agents discover novel algorithms such as matrix
multiplication or sorting (Fawzi et al., 2022; Mankowitz et al., 2023), and (iii) develop methods to
better interpret learned policies (Raghu et al., 2018). From toy models that capture superposition
(Elhage et al., 2022) to formal analyses of in-context learning (Lu et al., 2024; 2025), training on
math tasks has become a productive way to study DL fundamentals. Within this agenda, mechanistic
interpretability has produced especially influential results. By reverse-engineering networks trained
on group-theoretic problems—such as modular addition (Nanda et al., 2023; Chughtai et al., 2023;
Gromov, 2023; Morwani et al., 2024; McCracken et al., 2025; Yip et al., 2024; He et al., 2024;
Tao et al., 2025; Doshi et al., 2023), permutations (Stander et al., 2024), and dihedral multiplication
McCracken et al. — researchers have uncovered mechanisms that speak to core hypotheses about
representations (Huh et al., 2024), universality (Olah et al., 2020; Li et al., 2015), and algorithmic
structure in DL (Eberle et al., 2025).

As the datasets of group multiplication aren’t linearly separable and modular addition (Cyclic group
multiplication) is very well studied, it has become a standard testbed for toy interpretability research.
It is ideal for asking: “What exactly do neural networks learn, and how is that computation repre-
sented internally?”. Two influential works stand out. First, Nanda et al. (2023) reverse-engineered
transformers trained on modular addition and described their internal computations to illuminate the
grokking phenomenon (Power et al., 2022), giving progress measures to predict it. Building on this,
Chughtai et al. (2023) claimed that the algorithm generalized to all group multiplications. Second,
Zhong et al. (2023) modified the transformer from Nanda et al. (2023) by interpolating between
uniform and learnable attention. They claimed their networks learned two distinct circuits, either a
Pizza or a Clock (described by Nanda et al. (2023)), proposing metrics to separate the two disjoint
circuits.

Recently however, McCracken et al. (2025) showed via abstraction, that across both MLPs and
transformers, models converge to one unifying divide-and-conquer algorithm that approximates the
Chinese Remainder Theorem and matches its logarithmic feature efficiency. They found first-layer
neurons are best fit by degree-1 trigonometric polynomials, with later layers requiring degree-2, in
contrast to the interpretation of Nanda et al. (2023) which modeled neurons as degree-2 trigonomet-
ric polynomials in all layers.

While many works have focused on reverse-engineering specific algorithms in modular addition, rel-
atively little has been done to systematically compare neural representations themselves. Tools from
other domains–such as distributional hypothesis testing and topological data analysis (TDA)—offer
complementary ways to characterize representations and may enrich mechanistic interpretability.
For instance, distributional methods such as maximum mean discrepancy (MMD) Gretton et al.
(2012) are rarely used in mechanistic interpretability, though widely applied elsewhere to quantita-
tively measure similarity, align domains Ghifary et al. (2014); Zhao et al. (2019), and test fairness
Deka & Sutherland (2023); Kong et al. (2025). Topological data analysis (TDA) offers a comple-
mentary view: Shahidullah (2022) used persistent homology to track how network layers preserve or
distort input topology, and Ballester et al. (2024) surveyed TDA tools such as persistent homology
and Mapper for analyzing architectures, decision boundaries, representations, and training dynam-
ics.
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3 SETUP AND BACKGROUND

The learning task we are interested in is the operation of the cyclic group, modular addition (a, b) 7→
a + b mod n for a, b ∈ Zn. In our experiments we have used n = 59. We consider various
neural network architectures but we will mostly refer to them by the name that was given to an
interpretation of their neuronal operations. All architectures begin by embedding the inputs a, b to
vectors Ea,Eb ∈ R128 using a shared (learnable) embedding matrix. The architectures differ in how
the embeddings are then processed: MLP-Add immediately passes Ea+Eb through an MLP, MLP-
Concat immediately passes the concatenation Ea⊕Eb ∈ R256 through an MLP. Learnable attention
(claimed to learn Clocks) and uniform attention (claimed to learn Pizzas) transformers, introduced
by Zhong et al. (2023), pass Ea,Eb through a self-attention layer before the MLP. Specifically:
uniform attention is a constant attention matrix, and trainable attention (Nanda et al., 2023) uses the
standard learnable softmax attention. We refer to trainable attention architectures as Attention 1.0
and constant attention architectures as Attention 0.0 since Zhong et al. (2023) used a parameter to
switch between them.

3.1 PREVIOUS INTERPRETATIONS OF MODULAR ADDITION IN NEURAL NETWORKS

Prior works have all reported disjoint circuits of different “frequencies” f are learned. We adopt the
notation of Zhong et al. (2023), each frequency f is associated with a circuit, and an abstraction can
be given for the values in the embedding vectors Ea and Eb associated with that frequency,

Ea = [cos(2πfa/n), sin(2πfa/n)], Eb = [cos(2πfb/n), sin(2πfb/n)]. (1)

1.0 0.5 0.0 0.5 1.0
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1.0 0.5 0.0 0.5 1.0
1.0
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0 20 40
a + b (mod 59)

Figure 1: Clock and Pizza’s
analytical forms visualized,
with frequency assumed to
be f = 1 for simplicity.
Each point corresponds to a
pair (a, b) after being trans-
formed by the correspond-
ing analytical form and is
colored by its sum (a + b)
mod 59.

What distinguishes them is how the embeddings are transformed post-
attention. Treating the attention as a blackbox and looking at its output
Eab, Zhong et al. (2023) make the following two claims. Clock circuits
compute the angle sum (Figure 1),

Eab = [cos(2πf(a+ b)/n), sin(2πf(a+ b)/n)], (2)
encoding the modular sum on the unit circle, which needs second-order
interactions (e.g., multiplying embedding components via sigmoidal at-
tention). In Pizza circuits, Eab adds the embeddings directly as Ea+Eb,
Eab = [cos(2πfa/n) + cos(2πfb/n), sin(2πfa/n) + sin(2πfb/n)],

(3)

yielding vector addition on the circle (Figure 1), which is entirely linear
in the embeddings. Zhong et al. (2023) gave metrics distance irrelevance
and gradient symmetricity to distinguish networks having learned the
clock vs. pizza circuit (see Appendix E).
Definition 3.1 (Simple Neurons). For (a, b) ∈ Zp×Zp, a simple neuron
is a neuron that has pre-activation

N(a, b) = cos(2πfa/n+ ϕL) + cos(2πfb/n+ ϕR), (4)
where f ∈ Zp is a frequency and ϕL, ϕR ∈ [0, 2π) are phase shifts.

This form of the neurons as being a linear superposition of a sinusoid in
a and a sinusoid in b is corroborated in Gromov (2023); Morwani et al.
(2024); Doshi et al. (2023); McCracken et al. (2025); Li et al. (2025).
Empirical Fact 3.2 (McCracken et al. (2025)). For Attention 0, At-
tention 1, and MLPs (with learnable or one-hot encoded embeddings)
architectures, first layer neurons are well approximated by simple neu-
rons. Later layers can encode combinations of degree-1 and 2 sinusoids.

3.2 TOPOLOGICAL DATA ANALYSIS

We use Betti numbers from algebraic topology to distinguish the structure of different stages of
circuits across layers. The k-th Betti number βk counts k dimensional holes: β0 counts connected
components, β1 counts loops, β2 counts voids enclosed by surfaces. For reference, a disc has Betti
numbers (β0, β1, β2) = (1, 0, 0), a circle has (1, 1, 0), and a 2-torus has (1, 2, 1).
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4 CANONICAL MANIFOLDS

We will now focus on networks with a single learnable embedding matrix, matching the setups of
Nanda et al. (2023); Zhong et al. (2023); McCracken et al. (2025). Our analysis will center on the
representation manifolds in a frequency cluster f coming from the preactivations hpre

ℓ,f (a, b) at layer
ℓ and the logits lf (a, b). The corresponding representation manifolds are, explicitly,

Mpre
ℓ,f :=

{
hpre
ℓ,f (a, b) : (a, b) ∈ Z2

n

}
⊂ Rdℓ,f ; and Mlogit

f :=
{
lf (a, b) : (a, b) ∈ Z2

n

}
⊂ Rn,

where dℓ,f is the number of neuron in the frequency cluster f at layer ℓ. Our thesis is that under the
simple neuron model of equation 4 introduced by McCracken et al. (2025) and a simple application
of symmetry corresponding to the interchangeability of a, b in a+ b mod n, the exact structure of
the Mpre

1,f manifolds and how they are mapped from inputs a, b can be revealed. Particularly, we will
show that under this model, Mpre

1,f always encodes the torus T2 or vector addition disk of Figure
1—that is, the pizza.

The remainder of this section will proceed by formalizing this result in §4.1.

4.1 SIMPLE NEURON PHASE DISTRIBUTION DICTATES REPRESENTATION MANIFOLD

Under the simple neuron model, for any frequency cluster f , the only degrees of freedom in the
resulting preactivations lie in the maps (a, b) 7→ (ϕL, ϕR) for a, b ∈ Zn learned by neural net-
works. Given that modular addition is commutative, one might expect to see a form of symmetry
with respect to ϕL, ϕR. Particularly, one might expect that ϕL ≡ ϕR for all a, b (since swapping the
inputs should have no effect on the output), or at the very least that the random variables ϕL, ϕR are
identically distributed for A,B ∼ Uniform(Zn). It turns out, as we show in the following theorem
(whose proof is given in Appendix B), that the resulting manifold Mpre

1,f takes an easily characteriz-
able form almost surely in this event. We devote §6 to validating that the phase maps indeed satisfy
these properties in practice—allowing us to easily analyze the geometry of representations across
thousands of trained neural networks.

Before stating the theorem, let us introduce some notation that will be useful. Under the simple
neuron model, a neuron indexed i belonging to a neuron cluster with frequency f maps (a, b) ∈ Z2

p

to cos(θa + ΦL
i ) + cos(θb + ΦR

i ), where θa = 2πfa/p. The notation Φi is meant to evoke that we
model these phases as random variables; these are random due to random initialization and random
gradient updates. The joint distribution of (ΦL

i ,Φ
R
i ) is denoted µa,b

i ∈ ∆([0, 2π]2).

Theorem 4.1. Let f ∈ Zp for p ≥ 3, and consider the frequency cluster at layer 1. Let m denote
the number of neurons in this cluster, and assume m ≥ 2. Define the matrix X ∈ Rp2×m according
to X(a,b),i = cos(θa + ϕL

i ) + cos(θb + ϕR
i ), denoting the simple neuron preactivations. Assume

ϕL
i ,Φ

L,b
i are identically distributed for each neuron i ∈ {1, . . . ,m} in this cluster, and that the

support of µa,b
i has positive (Lebesgue) measure. Then the following hold almost surely:

1. (Perfect phase correlation) If ΦL,a
i and ΦR,b

i are perfectly correlated, in the sense that
ΦL,b

i ≡ ΦR,b
i , then X has a rank-2 factorization X = V discW with V disc ∈ Rp2×2

satisfying
V disc
(a,b) = (cos θa + cos θb, sin θa + sin θb)

⊤. (5)

2. (Phase independence) Otherwise, X has a rank-4 factorization X = V torusW with
V torus ∈ Rp2×4 given by

V torus
(a,b) = (cos θa, sin θa, cos θb, sin θb)

⊤. (6)

Geometrically, the disc can be viewed as a projection of the torus: (x1, x2, x3, x4) 7→ (x1+x3, x2+
x4). Thus, the torus structure generalizes the vector-addition disc.

Having established this theorem, it is worth stepping back to contextualize its consequences. As
shown by McCracken et al. (2025), first layer preactivations are dominantly simple neurons. Theo-
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rem 4.1 shows that, under the symmetry properties of ΦL,a
i and ΦR,b

I posited above, the preactiva-
tions have simple, low-dimensional structures: in the case of perfect phase correlation, the represen-
tation manifold can be compressed to V disc, which is precisely the vector addition disc of Figure 1.
In the case of phase independence, the representation manifold can be compressed to V torus, which
exactly encodes the torus T2.
Remark 4.2. It is noteworthy that the Clock representation from Zhong et al. (2023) cannot occur
under the hypotheses of Theorem 4.1. The remainder of the paper demonstrates that these hypothe-
ses are satisfied empirically with overwhelming probability. Thus, while the Clock circuit of Zhong
et al. (2023) is theoretically plausible, it does not occur naturally in practice. On the other hand, the
possibility of the torus representation has not previously been identified in the literature.

A notable consequence of this result is that the geometry and topology of representation manifolds
can be characterized by simply investigating the distributions µa,b

i of the learned phases. As we
describe in §5, this can be done quantitatively, allowing us to derive statistical likelihoods of neural
circuits arising over thousands of initializations across architectures.

4.2 QUALITATIVE ANALYSIS OF INTERMEDIATE REPRESENTATIONS

This section presents the experimental observations that support the predictions of section 4.1. Given
that learned embeddings are expected to be points on a circle, we consider two MLP-models as
simple baselines capturing the closed form of the above manifolds: MLP-Add should add two points
on a circle, giving the vector addition disc (Figure 1) and MLP-Concat should concatenate two points
on a circle, giving the torus T2.

In all networks, we cluster neurons together and study the entire cluster at once. This is done by
constructing an n× n matrix, with the value in entry (a, b) corresponding to the preactivation value
on datum (a, b). A 2D Discrete Fourier Transform (DFT) of the matrix gives the key frequency f
for the neuron. The cluster of preactivations of all neurons with key frequency f is the n2 × |cluster
f | matrix, made by flattening each neurons preactivation matrix and stacking the resulting vector for
every neuron with the same key frequency. We call this matrix the neuron-cluster of preactivations
matrix.

Principal component analysis (PCA). To probe the representational geometry of the first-layer
neurons, we perform PCA on the neuron-cluster matrix of pre-activations. This layer is where dif-
ferences between Clock and Pizza architectures are expected to emerge, since their outputs diverge
only after attention.

Figure 2 shows the PCA embeddings for MLP-Add, MLP-Concat, Pizza, and Clock models. Each
input pair (a, b) has been remapped following (McCracken et al., 2025) and coloured by a+b mod n,
so that points close with respect to the modular addition task are visually grouped.

The results align strikingly with the predictions of Theorem 4.1. For MLP-Add, Pizza, and Clock,
the first two principal components explain more than 99% of the variance, yielding a 2D disc-
like structure (matching the vector addition geometry of Figure 1). For MLP-Concat, the first four
principal components each explain about 25% of the variance, producing a toroidal structure.

Surprisingly, the Clock network—never previously described as having a “pizza disc” exhibits the
same 2D disc structure as Pizza and MLP-Add.

Distribution of post-ReLU activations. We next examine the strength of activations across neu-
rons within a cluster. For each neuron, we construct an n × n heatmap of its post-ReLU activation
values over all input pairs (a, b), after applying the remapping procedure of (McCracken et al.,
2025). Each heatmap thus reflects the activation profile of a single neuron across the input space.

To summarize activation patterns at the cluster level, we sum the heatmaps of all neurons in the
cluster. Although the network never performs this sum directly, it provides a compact visualization
of where activation strength is concentrated across the input domain.

Figure 3 shows that in MLP-Add, Clock, and Pizza, activations are sharply concentrated along the
a = b diagonal. This indicates that cosine responses peak when a = b, consistent with neurons
having equal phases. Moreover, the smooth falloff of activations away from the diagonal implies

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: PCA of neuron pre-activations for a single frequency cluster across architectures: MLP-Add (f =
27), Pizza (f = 17), Clock (f = 21), MLP-Concat (f = 22). Each point is an input (a, b), colored by
(d · a + d · b) mod 59 corresponding to the network’s output (see Section 3.1). Pizza and Clock are nearly
identical to each other and to MLP-Add, but differ strongly from MLP-Concat. Note that the trained pizza and
clock models being PCA’d are downloaded directly from Zhong et al. (2023)’s Github: model p99zdpze5l.pt
and model l8k1hzciux.pt.
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Figure 3: MLP-Add(f=27), Pizza(f=17), Clock(f=21), MLP-Concat(f=22). Normalized sum of post-activations
in clusters in each architecture over all (a, b). Clusters in MLP vector add, Attention 0.0 and 1.0 activate
strongest on (a, b) with a close to b: the activation strength decreases with distance from a = b. Clusters in
MLP-Concat activate almost equivariantly.

that representations also encode the distance |a− b|. Because downstream weights from neurons to
logits are fixed across inputs, this structure implies that logits systematically depend both on (a, b)
and on the separation a− b.

Surprisingly, this diagonal dependence—previously claimed by Zhong et al. (2023) to be the defin-
ing characteristic of Pizza—appears not only in Pizza networks but also in MLP-Add and Clock.
We return to this point in the experiments section.

Linking PCA geometry and activation distributions. The PCA results and activation heatmaps
reflect the same underlying phenomenon: principal components encode activation strength. In Fig-
ure 2, MLP-Add, Pizza, and Clock show negligible activation near the origin (0, 0) of the PCA plane,
since neither principal component contributes strongly there. By contrast, for MLP-Concat the
4D embedding contains no datapoints near (0, 0, 0, 0), indicating that the cluster activates roughly
equally across all inputs. This observation supports the view that the torus-to-circle map is the
natural map for MLP-Concat (Appendix H).

More generally, these findings suggest that activation strength determines how inputs are arranged
in PCA space. For MLP-Add, Pizza, and Clock, the dependence on a − b produces an annular
geometry at the logits rather than a perfect circle (Figure 4). For MLP-Concat, the absence of
a− b dependence yields a representation closer to a true circle, consistent with the circular structure
given in the torus-to-circle map (Appendix H) and illustrated in Figure 1. Figure 4 confirms this
distinction: MLP-Concat exhibits a torus with a nearly uniform circular projection, while MLP-
Add, Pizza, and Clock exhibit a vector addition disc (pizza) with an annular structure at the logits.

Finally, Figure 4 shows the possible manifolds we see in networks across layers.

6
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Figure 4: Different factorizations of the torus-to-circle map. We find first-layer intermediate representations to
be either a torus or a disc (resembling vector addition on the circle). Later layers can construct a circle, and the
logits approximate a circle. See Appendix H regarding the torus-to-circle factorization.

5 METHODOLOGY

Phase Alignment Distributions. Given Theorem 4.1, we can classify representation manifolds
from phase statistics. Thus, we propose yet another representation: the Phase Alignment Distri-
bution (PAD). To a given architecture, a PAD is a distribution over Zn × Zn. Samples of this
distribution are drawn as follows:

1. Sample a random initialization (e.g., random seed) and train the network.

2. From the resulting trained network, sample a neuron uniformly.

3. Return the pair (a, b) ∈ Zn×Zn that achieves the largest activation in the resulting neuron.

A PAD illustrates, across independent training runs and neuron clusters, how often activations are
maximized on the a = b diagonal—that is, it depicts how often learned phases align. Even beyond
inspecting the proximity of samples to this diagonal, we propose to compare the PADs of architec-
tures according to a metric on the space of distributions over Zn × Zn, giving an even more precise
comparison. In the following section, we will provide estimates of the PADs for the aforementioned
architectures, as well as PAD distances under the maximum mean discrepancy (Gretton et al., 2012,
MMD)—a family of metrics with tractable unbiased sample estimators.

Following prior work on one-layer networks (Nanda et al., 2023; Zhong et al., 2023), and building
on the empirical validation of the simple neuron model (Eq. 4) in McCracken et al. (2025), we
restrict our PAD analysis to single-hidden-layer architectures. In practice, raw activations are often
noisy, which makes direct sinusoid fitting unreliable. Instead, we assume the simple neuron model
and extract the learned phase pair (ϕL, ϕR) using one of two procedures: (i) by taking the point
of maximal activation, or (ii) by computing the activation’s center of mass. Both estimators yield
qualitatively similar PADs; we report any differences between them in the Results section.

Betti number distribution. Now we turn to multi-layer networks. We estimate the distribution
over Betti number vectors corresponding to the set of neurons within a cluster in a given layer (or
logits) to distinguish the structure of the layers: that is Mℓ,f and Mlogitsf . This helps us identify
when the underlying structure resembles a disc, torus, or circle. We compute these using persistent
homology with the Ripser library (Bauer, 2021; de Silva et al., 2011; Tralie et al., 2018). For more
details see Appendix A.3.

6 RESULTS

6.1 MLP-ADD, ATTENTION 0.0 AND 1.0 (PIZZA AND CLOCK) ARE nearly THE SAME

PAD results. We study 703 trained one-hidden-layer networks drawn from our four architectures:
MLP-Add, Attention 0.0 (Pizza), Attention 1.0 (Clock) and MLP-Concat.

7
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Figure 5: Log-density heatmaps for the distribution of neuron maximum activations (top) and activation center
of mass (bottom) across 703 trained models. Attention 0.0 and 1.0 architectures exhibit modest off-diagonal
spread compared to MLP-Add, but remain constrained by architectural bias toward diagonal alignment. The
maximum mean discrepancy scores between Attention 0.0 and 1.0 are 0.0237 and 0.0181 in rows 1 and 2
respectively, indicating they are very similar distributions.

Figure 5 shows PAD plots across architectures. We note that MLP-Add, Attention 0.0, Attention
1.0 are very concentrated on the diagonal, while MLP-Concat is not. To further quantify this, we
propose the torus distance, which is the discrete graph distance from a point (a, b) on the torus to the
a = b line. Figure 7 quantifies this with a histogram of torus distances to the a = b line. We see that
Attention 0.0 and 1.0 are almost indistinguishable and both very similar to MLP-Add; moreover,
our metric successfully discerns these models from MLP-Concat.

Table 2 shows the PAD distances under the MMD distance. All comparisons are statistically signif-
icant (p-values ≈ 0). We see that Attention 0.0 and 1.0 are extremely close to each other, MLP-Add
lies moderately close to both, and MLP-Concat is strongly separated from all others. We also intro-
duce and study the torus distance metric in Appendix D.

Previous metrics. In Appendix E (particularly E.2) we evaluate the metrics gradient symmetricity
and distance irrelevance of Zhong et al. (2023).

Betti number results. It’s the case that the homology of what networks learn gives that MLP-Add,
Attention 0.0 and Attention 1.0 architectures are all making topologically equivalent computations.
While the MLP-Concat model appears to be different, it’s in fact just more efficient, which results
from the torus already having the holes necessary to accurately project the correct answer onto the
logits after just one non-linearity (see Fig. 6). It’s worth noting that while discs appear to be learned
in the logits, in all the cases checked by hand the discs were caused by limitations of persistent
homology, which struggles to find a hole of small radius .

7 DISCUSSION, LIMITATIONS, AND CONCLUSION

This work introduces a new lens under which circuits for modular addition may be compared. We
argue that networks trained on modular addition tend to learn a common logit manifold, and that
representations at intermediate layers are dictated by the alignment of learned phases for the two in-
puts in the first layer preactivations. Studying the distribution over phases, we identify that networks
learn torus or vector-addition disc manifolds (known colloquially as pizzas) in the first layer, and
proceed by iteratively applying rotations and linear projections to these manifolds before ultimately
arriving at a logit annulus. We argue our work recovers the universality hypothesis by showing that
the counter-example architectures of Zhong et al. (2023), and even our torus-learning MLP-Concat
architecture all use the same torus to logits map. The transformers and MLP-Add architecture sim-
ply learn lower rank manifolds of the same class of torus manifolds. This follows rigorously and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

94.5%

63
.7

%

34.9%

1.43%

96.6%

1.96%
1.4%

77.1%

22.3%

86.8%

11.8%
1.47%

97.3%

1.35%
1.35%

52
.1

%

46
.1

%
1.8%

69
%

30.1%

0.949% 80.1%

18.8%
1.19%

96%
75

.3%

23.6%

1.04%

0.741%
0.37%

86.9%

11.8%
1.31%

92.1%

6.5%
1.44%

96.7%

59
.3

%

39
%

1.63%

73
.8%

24.4%

1.81%
78.5%

19.6%

99.7%

0.137%
0.137%

72
.7%

25.6%

1.74%

99.1%

0.54%
0.36%

68
.8

%

30.5%

0.718% 76
.9%

0.647%

100%
96.5%

3.54%

92.2%

5.68%
2.13%

95.3%

3.62%
1.07%

97%

98.9%

1.41%

98.1%

1.23%
0.705%

90.8%

0.531%
8.67%

97%

100%

1.07%
1.92%

94.9%

3.5%
1.56%

75
%

11.3%

83.2%

1.95%
14.8%

91.3%

2.17%
6.52%

1 0 0 1 3 0 other 1 1 0 1 2 0 1 2 1

MLP-Add MLP-Concat

layer 2 layer 3 logits layer 2 layer 3 logits

1-
la

ye
r

2-
la

ye
r

3-
la

ye
r

1-
la

ye
r

2-
la

ye
r

3-
la

ye
r

2.92%
layer 1layer 1

1.09%2.73%

1.56%

1.12%
2.23%

22.4%

1.82%

0.627%

13.6%

Attention 1.0Attention 0.0

Figure 6: Betti number distributions across layers for 1-, 2-, and 3-layer models (100 seeds for each model). In
layer 1, MLP-Add, Attention 0.0, and Attention 1.0 mostly yield disc-like representations, while MLP-Concat
produces a torus. From the second layer onward, MLP-Add and both Attention variants converge to either a
disc or a circle: the circle reflects the logits topology (correct answer), while the disc is an intermediate that can
persist in later layers. MLP-Concat instead transitions directly to the circle. Across depth, Attention 0.0 and
1.0 are nearly identical with the latter having fewer transient discs.

directly from our closed-form equations for the torus and pizza discs: the pizza discs are a linear
projection of the torus. Thus, we posit “is the nature of universality that DNNs recover either a
universal manifold, or linear projections of it in order to fit data?

Notably, this conclusion was reached by examining networks from a different perspective, which al-
lowed us to mathematically predict the structure of representations, and also to test these predictions
precisely at large scale using tools from topological data analysis. In particular, our work identifies
that the joint distribution over simple neuron phases both determines the geometry of representa-
tions, and permits efficient quantitative evaluation.

A notable limitation of our work is that, in its present form, it treats only circuits in modular addition.
To interpret large-scale neural networks, it will be necessary to derive strategies for characterizing
circuits across domains. While our precise methodology is particular to the analysis of modular
addition networks, we believe the underlying strategy of isolating the degrees of freedom in the ge-
ometry of hidden representations and estimating the statistics of their corresponding learned values
can be a generalizable approach to characterize circuits in more complex domains.

Beyond this, our results also suggest that the universality property is likely to hold in modular
addition. It also draws connections between universality and the manifold hypothesis, given the
correspondence we see between the low-dimensional representations formed throughout the layers
of the networks we observed. Ultimately, we believe the tools we introduced in this work can inform
formal hypotheses about universality and manifold continuity that can be assessed quantitatively.

REPRODUCIBILITY STATEMENT

We have provided our code in a supplementary.zip and experimental settings in Appendix A. We
have also provided GPU optimized procedures for all computations we perform including the repro-
duction of Zhong et al. (2023)’s metrics to make repeating our tests more accessible.
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A ADDITIONAL EXPERIMENTAL SETUP DETAILS

A.1 TRAINING HYPERPARAMETERS.

All models are trained with the Adam optimizer Kingma & Ba (2014). Number of neurons per layer
in all models is 1024. Batch size is 59. Train/test split: 90%/10%.

Attention 1.0

• Learning rate: 0.00075

• L2 weight decay penalty: 0.000025

Attention 0.0

• Learning rate: 0.00025

• L2 weight decay penalty: 0.000001

MLP-Add and MLP-Concat

• Learning rate: 0.0005

• L2 weight decay penalty: 0.0001

A.2 CONSTRUCTING REPRESENTATIONS

In all networks, we cluster neurons together and study the entire cluster at once McCracken et al.
(2025). This is done by constructing an n×n matrix, with the value in entry (a, b) corresponding to
the preactivation value on datum (a, b). A 2D Discrete Fourier Transform (DFT) of the matrix gives
the key frequency f for the neuron. The cluster of preactivations of all neurons with key frequency
f is the n2 × |cluster f | matrix, made by flattening each neurons preactivation matrix and stacking
the resulting vector for every neuron with the same key frequency.

A.3 PERSISTENT HOMOLOGY

We compute these using persistent homology, applied to point clouds constructed from intermedi-
ate representations at different stages of the circuit, as well as the final logits. This yields a compact
topological signature that captures how the geometry of these representations evolves across layers,
helping us identify when the underlying structure resembles a disc, torus, or circle. We use the
Ripser library for these computations Bauer (2021); de Silva et al. (2011); Tralie et al. (2018).

For our persistent homology computations, we set the k-nearest neighbour hyperparameter to 250.
Our point cloud consists of 592 = 3481 points.
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A.4 REMAPPING PROCEDURE

Neuron remapping (McCracken et al., 2025). For a simple neuron of frequency f , we define a
canonical coordinate system via the mapping:

(a, b) 7→ (a · d, b · d), where d :=

(
f

gcd(f, n)

)−1

mod
n

gcd(f, n)
. (7)

This inverse is the modular multiplicative inverse, i.e. for any Zk let x ∈ Zk. Its inverse x−1 exists
if gcd(x, k) = 1 and gives x · x−1 ≡ 1 mod k. This normalizes inputs relative to the neuron’s
periodicity and allows for qualitative and quantitative comparisons.

B PROOF OF THEOREM 4.1

The proofs of both cases of Theorem 4.1 follow the same pattern: apply an angle sum formula to the
entries of the pre-activation matrix, realize this matrix as a product of 2 low-rank matrices and use
the assumption of uniformity of the phase variables to deduce full rank of the composition.

For integers p ≥ 3 and m ≥ 2, consider the p2 ×m data matrix of the pre-activations of the model
network with simple neurons (seee equation 4 and 1).

X(a,b),i = cos(θa +ΦL,a
i ) + cos(θb +ΦR,b

i ), θt :=
2πt

p
, (a, b) ∈ {0, . . . , p− 1}2.

and using the identity cos(x+ y) = cosx cos y − sinx sin y, we have

X(a,b),i = cos(θa) cos(Φ
L,a
i )− sin(θa) sin(Φ

L,a
i ) + cos(θb) cos(Φ

R,b
i )− sin(θb) sin(Φ

R,b
i ) (8)

Next, we show the details specific to each of the cases: disc and torus.

Proof of Theorem 4.1 (Disc)

Proof. By assumption, ΦL,a
i = ΦR,b

i = ϕi for all i. Then, equation 8 becomes
X(a,b),i = (cos θa + cos θb) cosϕi − (sin θa + sin θb) sinϕi (9)

Notice then that X = VW for the matrices V and W defined by the following row and column
vectors respectively

V(a,b),: := [cos(θa) + cos(θb), sin(θa) + sin(θb)] (10)

W:,i :=

[
cos(ϕi)
− sin(ϕi)

]
. (11)

Now we show they both have rank 2 and the kernel of W intersect the image of V trivially. The
rank 2 of V follows from the independence of cos and sin and the rank 2 of W is true almost
surely following the the independence of cos and sin and the hypothesis that ΦL,a

i and ΦR,b have
uncountable support.

Suppose ⟨V(a,b),:,W:,i⟩ = 0 for some (a, b) and all i, that means cos(θa + ϕi) = − cos(θb + ϕi)

for all i. From the assumption the random variables ϕL and ϕR are not discrete, this event has
probability 0, so the kernel of W intersects the image of V trivially and X = VW has rank 2.

Proof of Theorem 4.1 (Torus)
Equation 8 shows X = VW for the matrices V,W defined by rows and columns respectively

V(a,b),: = [cos(θa), sin(θa), cos(θb), sin(θb)] (12)

W:,i =


cos(ΦL,a

i )

− sin(ΦL,a
i )

cos(ΦR,b
i )

− sin(ΦR,b
i )

 . (13)

The proof that X has rank 4 is the same as the one for the respective statement in theorem 1 (uni-
formity of phases give the rank of V and W and the independence of the image of V and kernel of
W ).
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C STATISTICAL SIGNIFICANCE OF MAIN RESULTS

C.1 FIGURE 5

We trained 703 models of each architecture, being MLP vec add, Attention 0.0 and 1.0, and MLP
concat, and recorded the locations of the max activations of all neurons across all (a, b) inputs to the
network. We also computed the center of mass of each neuron as this doesn’t always align with the
max preactivation (though it tends to be close).

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.0968 0.0000 Moderate difference; highly significant
MLP vec add vs Attention 1.0 0.1239 0.0000 Clear difference; highly significant
MLP vec add vs MLP concat 0.2889 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0338 0.0000 Subtle difference; highly significant
Attention 0.0 vs MLP concat 0.1987 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP concat 0.1723 0.0000 Strong difference; highly significant

(a) Row 1: Max activation

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.0583 0.0000 Small difference; highly significant
MLP vec add vs Attention 1.0 0.0689 0.0000 Moderate difference; highly significant
MLP vec add vs MLP concat 0.2614 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0210 0.0084 Subtle difference; highly significant
Attention 0.0 vs MLP concat 0.2126 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP concat 0.1947 0.0000 Strong difference; highly significant

(b) Row 2: Center of mass

Table 1: Gaussian-kernel Maximum Mean Discrepancies (MMD) Gretton et al. (2012) and permutation p-
values between the empirical distributions shown in Figure 5. For each architecture comparison, we sampled
20,000 points from each empirical distribution (derived from histogram-based neuron statistics), then computed
the unbiased Gaussian-kernel MMD with a bandwidth chosen via the pooled median heuristic. Significance
was assessed using 50,000 permutation tests per comparison.

D TORUS DISTANCE METRIC

We introduce and study the torus distance metric.

Figure 7. We trained 703 models of each architecture with 512 neurons in its hidden layer (MLP vec
add, Attention 0.0 and 1.0, and MLP concat), and recorded the a, b value of where the max activation
of a neuron takes place across all (a, b) inputs to the network and all neurons. We also computed the
(a, b) values for the location of the center of mass of each neuron as this doesn’t always align with
the max preactivation (though it tends to be close). Then we compute the shortest torus distance
from the point of the max activation or the center of mass, to the line a = b.

E PREVIOUS INTERPRETABILITY METRICS (ZHONG ET AL., 2023)

E.1 DEFINITIONS OF GRADIENT SYMMETRICITY AND DISTANCE IRRELEVANCE

Gradient symmetricity measures, over some subset of input-output triples (a, b, c), the average co-
sine similarity between the gradient of the output logit Q(a,b,c) with respect to the input embeddings
of a and b. For a network with embedding layer E and a set S ⊆ Z3

p of input-output triples:

sg =
1

|S|
∑

(a,b,c)∈S

sim

(
∂Qabc

∂Ea
,
∂Qabc

∂Eb

)
where sim(u, v) = u·v

∥u∥∥v∥ is the cosine similarity. It is evident that sg ∈ [−1, 1].
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Figure 7: Histograms of torus-distance from each neuron’s phase to the diagonal a = b, across 703 trained mod-
els. MLP-Add neurons align perfectly with the diagonal, Attention 0.0 and 1.0 show increasing off-diagonal
spread, and MLP-Concat exhibits broadly distributed activations on the torus.

Table 2: Gaussian-kernel Maximum Mean Discrepancies (MMD) Gretton et al. (2012) and permutation p-
values between the empirical distributions shown in Figure 7. For each architecture comparison, we sampled
2000 points from each empirical distribution (derived from histogram-based neuron statistics), then computed
the unbiased Gaussian-kernel MMD with a bandwidth chosen via the pooled median heuristic. Significance
was assessed using 5000 permutation tests per comparison.

(a) Row 1: Max activation

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.3032 0.0000 Strong difference; highly significant
MLP vec add vs Attention 1.0 0.3888 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 0.9508 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0705 0.0000 Moderate difference; highly significant
Attention 0.0 vs MLP concat 0.6323 0.0000 Very strong difference; highly significant
Attention 1.0 vs MLP concat 0.5695 0.0000 Very strong difference; highly significant

(b) Row 2: Center of mass

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7727 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.7517 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 0.9148 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0520 0.0006 Moderate difference; highly significant
Attention 0.0 vs MLP concat 0.7022 0.0000 Very strong difference; highly significant
Attention 1.0 vs MLP concat 0.6391 0.0000 Very strong difference; highly significant

Distance irrelevance quantifies how much the model’s outputs depend on the distance between a
and b. For each distance d, we compute the standard deviation of correct logits over all (a, b) pairs
where a − b = d and average over all distances. It’s normalized by the standard deviation over all
data.

Formally, let Li,j = Qij,i+j be the correct logit matrix. The distance irrelevance q is defined as:

q =

1
p

∑
d∈Zp

std({Li,i+d|i ∈ Zp})
std({Li,j |i, j ∈ Zp})

where q ∈ [0, 1], with higher values indicating greater irrelevance to input distance.

E.2 EVALUATING GRADIENT SYMMETRICITY AND DISTANCE IRRELEVANCE METRICS

Figure 8 shows the mean and standard deviation of the gradient symmetricity and distance irrele-
vance metrics from Zhong et al. (2023). Unlike Zhong et al. (2023), who report gradient symmetric-
ity results over a randomly selected subset of 100 input-output triples (a, b, c) ∈ Z3

p, we compute
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Figure 8: Evaluation of gradient symmetricity (left) and distance irrelevance (right). Each point shows the
average (avg) and standard deviation (std) of one trained network. MLP-Add and MLP-Concat lie at nearly
opposite extremes, while attention 0.0 and 1.0 overlap substantially. Gradient symmetricity separates Attention
1.0 better, but neither metric always distinguishes between Attention 1.0 and 0.0.

the metric exhaustively across all 593 = 205, 370 triples to add accuracy. See Appendix G for the
GPU-optimized procedure.

MLP-Add and MLP-Concat cluster on opposite extremes, implying the metrics just identify whether
neurons have phases ϕL ̸= ϕR. MLP-Add models have high gradient symmetricity and low distance
irrelevance and MLP-Concat models have low gradient symmetricity and high distance irrelevance.
Attention 1.0 models span a wide range between these extremes depending on two factors: 1) how
well the frequencies they learned intersect and 2) how well neurons are able to get their activation
center of mass away from the ϕL = ϕR line. Attention 0.0 is closer to MLP-Add than Attention 1.0
because it’s harder for this architecture to learn ϕL ̸= ϕR. Notably, failure cases exist using both:
neither metric distinguishes between Attention 1.0 and 0.0 models.

MMD results for these two metrics are reported below, again showing that the distance between
attention 0.0 and attention 1.0 models is small. This is the case even those these metrics were
chosen to differentiate between the two architectures.

Using just the x-axis (since the y-axis on those plots is the std dev) MMD results are presented next.

We can conclude that the attention transformers are far from vector addition, and very close to each
other under all metrics.
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[h]

Table 3: Permutation–test MMDs on the empirical gradient symmetricity and distance irrelevance distributions
across all architectures. All p-values are ≤ 10−6 (reported as 0.0000).

(a) Gradient symmetricity (2-D: avg and std)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 1.2725 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.9688 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 1.3471 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.7750 0.0000 Very strong difference; highly significant
Attention 0.0 vs MLP concat 1.3503 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.2360 0.0000 Extremely strong difference; highly significant

(b) Distance irrelevance (2-D: avg and std)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7534 0.0000 Very strong difference; highly significant
MLP vec add vs Attention 1.0 0.7079 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 1.2488 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.2078 0.0000 Moderate difference; highly significant
Attention 0.0 vs MLP concat 1.2255 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.0990 0.0000 Extremely strong difference; highly significant

[h]

Table 4: Permutation-test MMDs on scatter-plot averages only (1-D). All p–values are ≤ 10−6, so every
difference is “highly significant.” Note that the distance between attention 0.0, attention 1.0, and MLP vec add
is large, implying they are not performing vector addition.

(a) Row 3: Gradient symmetricity (avg only)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 1.2755 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.9842 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 1.3833 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.7726 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs MLP concat 1.3802 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.2559 0.0000 Extremely strong difference; highly significant

(b) Row 4: Distance irrelevance (avg only)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7739 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.7268 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 1.2501 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.2109 0.0000 Strong difference; highly significant
Attention 0.0 vs MLP concat 1.2443 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.1093 0.0000 Extremely strong difference; highly significant

F ADDITIONAL COMMENTARY ON THE RESULTS

F.1 THE ATTENTION 1.0 MODEL IS USING ATTENTION AS A WEAK NON-LINEARITY.

It’s noteworthy that some neurons in the first MLP layer of transformers have learned one frequency
f , and a sum of two different sinusoidal features (i.e. a superposition via linear combination). These
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are of one first-order sinusoidal feature (the simple neuron model) sin( 2πfan ) + sin( 2πfbn ) and also
a second term, being second order and cos( f(a+b−c)

n ), with both terms having the same f value.

This is why the sum of neuron-cluster post-activations plot (Figure 3) has a bit of “off diagonal
patchy-spread” that runs from the top left to the bottom right at 45 degrees in only the attention 1.0
model. These small cloudy patches are caused by a few neurons activating on cos( f(a+b−c)

n ).

Thus, it’s the case that for modular addition, the attention layer and its sigmoidal non-linearity is
being used like a weak non-linear layer. Sigmoidal attention isn’t a strong enough non-linearity
for the network to have all neurons with frequency f learn the second order cos( f(a+b−c)

n ) that’s
typically seen in the second and third layers. Indeed, a past work, McCracken et al. (2025), utilized
a rigorous empirical framework to inspect this over layers, learning rates, and l2 weight decay hy-
perparameters. They showed that across these settings, the best fit in the first layer in all neurons in
transformers still comes from the simple neuron model.

G GPU-OPTIMIZED COMPUTATIONS

G.1 GPU-OPTIMIZED CENTER-OF-MASS IN CIRCULAR COORDINATES

Let p be the grid size and for each neuron n = 1, . . . , N we have a pre-activation map

x
(n)
i,j , (i, j = 0, . . . , p− 1).

Define nonnegative weights
w

(n)
i,j =

∣∣x(n)
i,j

∣∣.
Let fn ∈ {1, . . . , ⌊p/2⌋} be the dominant frequency for neuron n, and let

f−1
n be the modular inverse of fn modulo p, fn f

−1
n ≡ 1 (mod p).

Convert the row index i and column index j into angles (“un-wrapping” by f−1
n ):

θ
(n)
i =

2π

p
f−1
n i, ϕ

(n)
j =

2π

p
f−1
n j.

Form the two complex phasor sums

S(n)
a =

p−1∑
i=0

p−1∑
j=0

w
(n)
i,j exp

(
i θ

(n)
i

)
,

S
(n)
b =

p−1∑
i=0

p−1∑
j=0

w
(n)
i,j exp

(
i ϕ

(n)
j

)
.

The arguments of these sums give the circular means of each axis:

µ(n)
a = arg

(
S(n)
a

)
, µ

(n)
b = arg

(
S
(n)
b

)
,

where arg returns an angle in (−π, π]. To ensure a nonnegative result, normalize into [0, 2π):

µ+ =
(
µ+ 2π

)
mod 2π.

Finally, map back from the angular domain to grid coordinates:

CoM(n)
a =

p

2π
µ(n)+
a , CoM

(n)
b =

p

2π
µ
(n)+
b .

This handles wrap-around at the boundaries automatically and weights each location (i, j) by |x(n)
i,j |,

producing a smooth, circularly-aware center of mass. All tensor operations—angle computation,
complex exponentials, and weighted sums—are expressed as parallel array primitives that JAX can
JIT-compile and fuse into a single GPU kernel launch, eliminating Python-level overhead. By pre-
computing the angle grids and performing the phasor sums inside one jitted function, this imple-
mentation fully exploits GPU parallelism and memory coalescing for maximal throughput.
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G.2 GPU-VECTORIZED DISTANCE IRRELEVANCE OVER ALL n2 INPUT PAIRS (a, b)

Let
I =

{
(a, b) | a, b ∈ {0, . . . , n− 1}

}
,

and order its elements lexicographically:

X =
[
(a0, b0), (a1, b1), . . . , (an2−1, bn2−1)

]
∈ Zn2×2.

A n2 single batched forward pass on the GPU computes

Logits = Transformer
(
X
)

∈ Rn2×n,

producing all n2 ·n output logits in parallel. We then extract the “correct-class” logit for each input:

yk = Logits k, (ak+bk) mod n, k = 0, . . . , n2 − 1.

Next we reshape y into an n× n matrix L by

L i,j = yk where i = (ak + bk) mod n, j = (ak − bk) mod n.

All of the above: embedding lookup, attention, MLP, softmax and the advanced indexing is imple-
mented as two large vectorized kernels (the batched forward pass and the gather), so each of the n2

inputs is handled in O(1) time but fully in parallel on the GPU.

Finally, define

σglobal =

√
1

n2

∑
i,j

(
Li,j − µ

)2

, µ =
1

n2

∑
i,j

Li,j ,

and for each “distance” j

σj =

√
1

n

∑
i

(
Li,j − L̄·j

)2

, L̄·j =
1

n

∑
i

Li,j , qj =
σj

σglobal
.

We report

q =
1

n

n−1∑
j=0

qj , std(q) =

√√√√ 1

n

n−1∑
j=0

(
qj − q

)2
.

G.3 GPU-OPTIMIZED GRADIENT SYMMETRICITY OVER ALL n3 TRIPLETS (a, b, c)

Let
E ∈ Rn×d with d = 128

be the learned embedding matrix, and denote by

Q
(
Ea, Eb

)
c

the scalar logit for class c obtained by feeding the pair of embeddings (Ea, Eb) into the model. We
define the per-triplet gradient cosine-similarity as

S(a, b, c) =

〈
∇Ea

Q(Ea, Eb)c, ∇Eb
Q(Ea, Eb)c

〉∥∥∇Ea
Q(Ea, Eb)c

∥∥ ∥∥∇Eb
Q(Ea, Eb)c

∥∥ ,

for all (a, b, c) ∈ {0, . . . , n− 1}3.

To compute {S(a, b, c)} over the full n3 grid in one fused GPU kernel, we first form three index
tensors

Ai,j,k = i, Bi,j,k = j, Ci,j,k = k, i, j, k = 0, . . . , n− 1,

then flatten to vectors a = vec(A), b = vec(B), c = vec(C) ∈ {0, . . . , n − 1}n
3

. We gather the
embeddings

emba = E[a] ∈ Rn3×d, embb = E[b] ∈ Rn3×d,
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and in JAX compute

ga = vmap
(
(ea, eb, c) 7→ ∇Ea

Q(ea, eb)c
)
(emba, embb, c),

gb = vmap
(
(ea, eb, c) 7→ ∇Eb

Q(ea, eb)c
)
(emba, embb, c),

each producing an (n3 × d)-shaped array. Finally the similarity vector is

S =
ga ⊙ gb

∥ga∥ ∥gb∥
∈ Rn3

,

and we report

S =
1

n3

n3∑
i=1

Si, σS =

√√√√ 1

n3

n3∑
i=1

(
Si − S

)2
.

Runtime. Because we express ga,gb and the subsequent dot-and-norm entirely inside a single
@jax.jit+ vmap invocation, XLA lowers it to one GPU kernel that processes all n3 triplets in
parallel. The kernel dispatch cost is therefore O(1), and each triplet’s gradient and cosine com-
putations are fused into vectorized instructions with constant per-element overhead. Although the
total arithmetic work is O(n3), the full data-parallel execution means the wall-clock latency grows
sub-linearly in n3 and the per-triplet overhead remains effectively constant.

H HYPOTHESIS: MODULAR ADDITION AS A FACTORED MAP FROM THE
TORUS TO THE CIRCLE

Modular addition is the function Zn × Zn → Zn sending the pair (a, b) to c = a + b mod n.
Geometrically, we may embed a ∈ Zn on the unit circle R2 via Ea = (cos(2πa/n), sin(2πa/n)).
So the product space Zn × Zn embeds into R4 as a discretized torus, parameterized by

(a, b) 7→ (cosu, sinu, cos v, sin v), u = 2πa/n, v = 2πb/n.

In this embedding, modular addition corresponds to the following map from the torus to the circle:

(x1, x2, x3, x4) 7→ (x1x3 − x2x4, x1x4 + x2x3).

Parameterizing by angles, this becomes the familiar trigonometric identity

(cosu, sinu, cos v, sin v) 7→ (cos(u+ v), sin(u+ v)).

We claim that networks we study are approximating this specific geometric map from a torus in R4

to a circle in R2. In Section 3.1 we saw that the “clock” and “pizza” interpretations included learned
embeddings of the form of Ea. Taken together, these embeddings define a torus T2 as the input
representation space. Our hypothesis is that architectures (MLP-Add, Attention 0.0 and 1.0, MLP-
Concat) do not learn fundamentally different solutions; rather they factor the same torus-to-circle
map via different intermediate representations. Fig. 4 shows factorizations of this map.
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