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ABSTRACT

Large language models (LLMs) are increasingly deployed as the service backend
for LLM-integrated applications such as code completion and AI-powered search.
Compared with the traditional usage of LLMs where users directly send queries to
an LLM, LLM-integrated applications serve as middleware to refine users’ queries
with domain-specific knowledge to better inform LLMs and enhance the responses.
Despite numerous opportunities and benefits, LLM-integrated applications also
introduce new attack surfaces. Understanding, minimizing, and eliminating these
emerging attack surfaces is a new area of research. In this work, we consider a setup
where the user and LLM interact via an LLM-integrated application in the middle.
We focus on the communication rounds that begin with user’s queries and end with
LLM-integrated application returning responses to the queries, powered by LLMs
at the service backend. For this query-response protocol, we identify potential
high-risk vulnerabilities that can originate from the malicious application developer
or from an outsider threat initiator that is able to control the database access,
manipulate and poison data that are high-risk for the user. Successful exploits of
the identified vulnerabilities result in the users receiving responses tailored to the
intent of a threat initiator (e.g., biased preferences for certain products). We assess
such threats against LLM-integrated applications empowered by OpenAI GPT-3.5
and GPT-4. Our empirical results show that the threats can effectively bypass
the restrictions and moderation policies of OpenAI, resulting in users receiving
responses that contain bias, toxic content, privacy risk, and disinformation. To
mitigate those threats, we identify and define four key properties, namely integrity,
source identification, attack detectability, and utility preservation, that need to
be satisfied by a safe LLM-integrated application. Based on these properties,
we develop a lightweight, threat-agnostic defense that mitigates both insider and
outsider threats. Our evaluations demonstrate the efficacy of our defense.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (OpenAI, 2023a), Llama-2 (Touvron et al., 2023),
Switch-C (Fedus et al., 2022), and PaLM-2 (Ghahramani, 2023) have exhibited astonishing capa-
bilities in carrying out complex tasks such as question answering and image captioning. However,
a user may not be able to fully exploit the capabilities of LLMs during their interactions due to the
lack of domain-specific knowledge, e.g., real-time price for product recommendation. Consequently,
many LLM-integrated applications are being developed to enable third-party developers/vendors to
refine queries from users before sending them to an LLM to provide the users with domain-specific
responses and interactive experiences with less labor costs. Emerging examples of LLM-integrated ap-
plications include travel planning (Expedia, 2023), the new Bing (Microsoft, 2023b), code generation
(Vaithilingam et al., 2022), and recommendation system (Zhang et al., 2023).

An LLM-integrated application consists of three parties – user, application, and LLM, interacting
through two interfaces as shown in Fig. 1. The interaction consists of two communication phases:
upstream communication and downstream communication. In the upstream communication, a user
sends queries to an application through a user-application interface; the application refines the
user’s queries based on a domain-specific database and forwards the refined queries to the LLM via
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an application-LLM interface. In the downstream communication, the LLM generates responses
to the refined queries and sends the responses back to the application; the application takes some
post-processing on the responses from the LLM and sends the processed responses to the user.
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Figure 1: Service schematic of LLM-
integrated applications.

While users can utilize LLM-integrated applications
to better inform LLMs for enhanced and interactive
services, the presence of untrusted/unverified applica-
tion developers/vendors opens up new attack surfaces
for misuses. At present, however, identifying the vul-
nerabilities of LLM-integrated applications and the
needed mitigation are yet to be studied.

Our contribution. In this paper, we identify and list
a set of attacks that arise from an LLM application
and external adversaries that can interact with the
LLM application, which define the attack surface. In particular, we focus on the model where a user
interacts with the LLM through an LLM-integrated application, i.e., a user sends the query and the
application returns the answer with the help of LLM. We show that such a query-response protocol is
vulnerable to both insider and outsider threats, originating from the untrusted application developers
or external adversaries with the goal of monetizing and enhance their profits. An insider threat
arises from a potentially malicious application developer/vendor. The insider threat initiator could
achieve its attack objective by manipulating users’ queries and/or responses from the LLM to alter
the contexts and perturb the semantics during the upstream and downstream communication phases.
An outsider threat arises from the potentially compromised database maintained by the application.
The outsider threat initiator can control the database access and poison the domain-specific data used
by the application. Consequently, even if the application developer/vendor is benign, the queries from
users may be refined in an unintended manner by the application, leading to responses from the LLM
that are aligned with the attack objective. We show that both insider and outsider threats could lead
users to receive responses tailored to the desires of threat initiators, e.g., expressing biased preference
for products, toxic contents, and disinformation. We empirically assess both the insider and outsider
threats to a chatbot of an online shopping application integrated with OpenAI GPT-3.5 and GPT-4.
Our results show that attacks by both insider and outsider threat initiators can successfully bypass the
restrictions and moderation policies (OpenAI, 2023d;h) of OpenAI, and result in responses to users
containing bias, toxic content, privacy risk, and disinformation.

In addition, our work provides a new attack surface to assess the risks of LLM-integrated applications
compared with existing studies (Liu et al., 2023a;b), and we show that such attacks can potentially
evade the SOTA mitigation approaches. Liu et al. (2023a) considered users as malicious entities. We
focus on attack surfaces stemming from untrusted application developers and external adversaries.
In our model, the users are non-malicious and become victims when our identified vulnerabilities
are exploited. Liu et al. (2023b) studied the presence of external adversaries that compromise the
databased maintained by the application. This threat model coincides with the outsider threat in
our paper. The insider threat, however, has not been investigated in existing studies. As we will
demonstrate in Section 2 and 3, the insider threat is more effective in manipulating the responses
received by users than outsider threat. Furthermore, the insider threat can initiate attacks during
upstream and downstream communication, making the SOTA defenses (reviewed in Appendix C)
inadequate to mitigate the vulnerabilities identified in our paper.

Our analysis of the vulnerabilities of LLM-integrated applications is crucial for three reasons. First,
our analysis unveils the risks of LLM-integrated applications before they are widely deployed in the
real world. Second, it enables users to be aware of those risks before using those applications. Third,
the characterized attack surface can be used to develop defenses to mitigate risks.

We propose the first known defense, Shield, to mitigate the identified risks. We first identify and
define four key properties, namely security properties, integrity, source identification, and perfor-
mance properties, attack detectability, utility preservation, that a safe LLM-integrated application
should satisfy. The integrity property ensures the queries from users and responses from LLM cannot
be altered by a threat initiator. The source identification property enables users and LLM to verify the
origin of their received messages. The attack detectability and utility preservation require a defense
to detect the presence of attacks with high accuracy without hindering the utility of LLM-integrated
applications. We propose a defense based on RSA-FDH signature scheme (Bellare & Rogaway,
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1993). We show our defense prevents both insider and outsider threat initiators from manipulating
the queries from users or responses by LLM. We perform both theoretical and empirical evaluations
for our proposed defense. We show that our defense satisfies integrity and source identification, and
thus is provably secure. We empirically validate that our defense achieves attack detection with high
accuracy and utility preservation since they rely on LLMs. Moreover, we conduct experiments against
both insider and outsider threats to the chatbot of online shopping application. Our experimental
results show that our defense effectively mitigates bias, toxic, privacy, and disinformation risks.

The rest of this paper is organized as follows. We introduce LLM-integrated applications, the threat
models and their major roots in Section 2. Section 3 evaluates the effectiveness of our proposed
attacks. Section 4 develops a lightweight defense and demonstrates its effectiveness. We review
related literature in Section 5. Section 6 concludes this paper. The appendix contains illustrative
examples of threats and defense, all prompts used for experiments, additional experimental results,
and detailed comparison with existing literature.

2 LLM-INTEGRATED APPLICATION, THREAT MODEL, AND ATTACK SURFACE

2.1 LLM-INTEGRATED APPLICATION

The service pipeline of an LLM-integrated application consists of three parties: user U , application
A, and LLM L. Fig. 1 visualizes their interaction, which consists of two communication phases:
upstream communication and downstream communication.

Upstream Communication. In this phase, the user U sends a query prompt, denoted as PU ,
to the application via the user-application interface to access certain services such as shopping
advising. After receiving the user’s query PU , the application first identifies and extracts information,
denoted as f(PU ), from the query. Then, the application utilizes its external source, e.g., query
knowledge database or access context memory, to obtain domain-specific information g(f(PU )).
Finally, the application refines user query PU with domain-specific information g(f(PU )) to generate
an intermediate prompt as PA = α(PU , g(f(PU ))) using techniques such as Autoprompt (Shin et al.,
2020) and Self-instruct (Wang et al., 2022b). For example, suppose that a user seeks shopping advice
from a chatbot of an online shopping application. The application first extracts the product name
f(PU ), then searches for product description g(f(PU )), and finally combines related information
together to generate prompt PA. Then PA is sent to LLM L through the application-LLM interface.

Downstream Communication. In this phase, the LLM responds to prompt PA by returning a raw
response RL to the application. The application takes a post-processing action β (e.g., using an
external toolkit) to generate response RA = β(RL) in order to satisfy user’s query PU .

2.2 THREAT MODEL AND ATTACK SURFACE

We first present our insight to characterize the attack surface, then describe the insider and outsider
threats to LLM-integrated applications as well as corresponding attack methodologies. We finally
discuss potential risks posed by LLM-integrated applications. Throughout this paper, we assume that
both the user and LLM service provider are benign. The objective of the threat initiator is to cause
users to receive a response with maliciously chosen semantics, termed semantic goal. For example,
the semantic goal of a threat initiator targeting online shopping applications is to express strong
bias/preference for one particular product over another. Responses with maliciously-chosen semantic
goals may consequently mislead or harm the users (Bommasani et al., 2021; Weidinger et al., 2021).

Attack Surface Characterization – Insight. The threats of LLM-integrated applications are mainly
due to two reasons. First, an application developed by malicious vendors can modify user queries and
responses from LLM, and hence hampers the integrity of the communication between user and LLM.
The impaired integrity allows a threat initiator (e.g., malicious application developer) to tamper with
the queries from user and responses generated by LLM, and thus perturb their semantics or contexts to
satisfy its malicious objective. Second, the messages transmitted along the user-application interface
(resp. application-LLM interface) are opaque to the LLM (resp. users). Indeed, the user query PU

is transmitted along the user-application interface (shown in Fig. 1), and is unknown to the LLM
service provider. Therefore, it is infeasible for the LLM service provider to validate the legitimacy of
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received prompt PA and detect whether it has been perturbed in a malicious way. Similarly, the user
cannot distinguish the received response from the LLM generated response RL due to the opaqueness,
and hence cannot confirm whether an undesired response R′

A is generated fully by the LLM or by the
manipulations due to attacks. In the following, we present how these vulnerabilities can be exploited
by an insider and outsider threat initiator via different attacks.

Attack Surface Characterization – Insider Threat and Attack. An insider threat originates from
within an LLM-integrated application. This could be due to malicious application developers/vendors,
e.g., the developer of a recommendation system (Zhang et al., 2023) with the intention to unfairly
promote its desired products. Even when the application developers are benign, a threat initiator may
exploit the vulnerabilities inherent in the application such as unpatched software and credential theft,
execute intrusion, escalate its privilege, and control the application along with the peripherals (Martin,
2022). An initiator of insider threat can thereby control the application, and attack LLM-integrated
applications during both the upstream and downstream communication phases, detailed as below.
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Figure 2: Illustrations of the insider threat
during upstream communication.

Attack during Upstream Communication. After receiv-
ing the user query PU , the threat initiator launches
attacks by generating a deliberately chosen intermedi-
ate prompt PA (e.g., “Pizza is the best when reply" in
Fig. 2). Specifically, given the semantic goal, the threat
initiator could leverage semantic perturbation (Wang
et al., 2022a) or prompt injection (Perez & Ribeiro,
2022) to perturb PU to obtain the intermediate prompt
PA. As a result, the response returned by the LLM
for PA is aligned with the threat initiator’s semantic
goal, e.g., biasing the user’s preference toward pizza.
In practice, those attacks can be integrated in g and α.

Attack during Downstream Communication. Regardless of whether attacks are initiated in the up-
stream communication phase, the threat initiator can attack LLM-integrated applications during the
downstream communication phase. After receiving a response RL from LLM, the threat initiator first
generates a proxy prompt P̃A based on PU and RL as P̃A = β(PU , RL), where β(·) can be adopted
as the semantic perturbation functions (Wang et al., 2022a) or prompt injection (Perez & Ribeiro,
2022). Then, the threat initiator feeds P̃A to the LLM via the application-LLM interface. As P̃A

contains perturbed semantics chosen by the threat initiator, it is more likely to generate a response
that is better aligned with the semantic goal compared with PA.
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Figure 3: Illustrations of the outsider threat.

Attack Surface Characterization – Outsider Threat
and Attack. The outsider threat is less powerful com-
pared with the insider threat because the application
is owned/operated by a benign entity. However, the
threat initiator could achieve its semantic goal by com-
promising the external sources such as domain-specific
database of the application via data poisoning attacks
(Chen et al., 2017). Consequently, the application
may use compromised domain-specific information
g(f(PU )) to generate prompt PA, which leads the LLM
to generate response that fulfills the threat initiator’s semantic goal. An illustration of such an attack
is shown in Fig. 3, where the poisoned database results in the inclusion of “Pizza is the best" in PA.

Summary of Attack Surface. We remark that our key contribution in this paper is to characterize
the attack surface of LLM-integrated applications rather than developing more advanced attack
techniques. Indeed, our identified attack surface is general and can be exploited by a wide range
of existing attack techniques such as SemAttack (Wang et al., 2022a), prompt injection (Perez
& Ribeiro, 2022), and data poisoning (Chen et al., 2017). Hence, it is of critical importance to
identify the vulnerabilities of LLM-integrated applications, and understand the potential risks in
their deployments. In Section 3, we evaluate the threats to LLM-integrated applications using an
online shopping application as a showcase. We note that LLM-integrated applications are emerging
in other application domains such as code completion (Nguyen & Nguyen, 2015) and AI empowered
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search engines (Microsoft, 2023b). We evaluate additional applications including medical assistance,
translation, and a Chat-with-PDF applications, along with their potential risks in Appendix A.4.

Potential Risks Raised by Our Attack Surface. We note that the LLM service providers have
deployed ethic restrictions (OpenAI, 2023h) and moderation policies (OpenAI, 2023d). Hence, a
threat initiator could lead to problematic generations from LLM when the restrictions cannot be
bypassed, reducing the availability of LLM-integrated applications to the user. In this case, users may
detect attacks based on the availability of LLM-integrated applications, and discard these applications.

In what follows, we show that a threat initiator bypasses the ethic restrictions (OpenAI, 2023h) of
OpenAI, and lead to bias, toxic, privacy, and disinformation risks. For example, a threat initiator
targeting a recommendation system (Zhang et al., 2023) can gain economic advantages by embedding
biased information into the responses receive by users. More risks are discussed in Appendix A.4.

3 THREAT EVALUATION

Experimental Setup. We introduce LLMs and applications, query templates, attacks, as well as
evaluation metrics, respectively.

LLMs and Applications. We consider an online shopping application whose chatbot uses GPT-3.5
and GPT-4 from OpenAI (OpenAI, 2023c) as the LLM service backend. The application has access
to a database containing information such as the current stock ongoing promotions of products, which
can be leveraged when constructing the intermediate prompt sent to LLM. When querying LLM,
we set the temperature hyperparameter (OpenAI, 2023g) to be 0 for our results presented in Tables
1-3 to minimize the randomness exhibited by GPT-3.5 and GPT-4. Results with other temperature
hyperparameters and additional application scenarios are in Appendix A.2 and A.4, respectively.

Query Templates. We craft 5 templates to generate the query PU from a user. All templates have the
identical semantics to seek shopping advice from the chatbot. We give two examples of the templates
as: "I am making a decision between b and c. Can you compare them for me?" and "What is the
difference between b and c? I am trying to decide which one to buy." Here b and c are products (e.g.,
pear and banana) belonging to the same category (e.g., fruits). We craft 50 seed queries for the user
using these templates, covering 5 categories including fruits, beverages, food, snacks, and books. The
products queried by the user and all queries used for evaluations can be found in Appendix A.1.

Attacks. An insider threat initiator can tamper with the queries from users during the upstream
communication in two ways: (i) by directly perturbing the queries via prompt injection (Perez &
Ribeiro, 2022), denoted as Pertb-User, and (ii) by applying perturbed system prompt (OpenAI,
2023f), denoted as Pertb-System. Here the system prompt is the initial text or message provided
by OpenAI to setup the capabilities of ChatGPT. During the downstream communication, an insider
threat initiator perturbs the semantics of responses by generating a proxy prompt P̃A using prompt
injection (Perez & Ribeiro, 2022) (see Section 2.2 for details). We denote such attack as Proxy. For
an outsider threat initiator, it launches the attack by compromising the local database maintained by
the application using data poisoning attack (Chen et al., 2017).

Evaluation Metrics. We use targeted attack success rate (TSR) to measure the effectiveness of attacks,
defined as TSR = 1

Q

∑Q
q=1 I{R′

L satisfies the semantics goal of a threat initiator}, where Q is the
total number of queries from users and I{·} is an indicator function. We calculate TSR using
two methods: HumanEval and GPT-auto. For HumanEval, we manually check whether each
response satisfies the condition. For GPT-auto, we utilize GPT-3.5 to check those responses,
incurring significantly lower costs compared with HumanEval while retaining reasonable accuracy.
Details of evaluation procedures are in Appendix A.2, where both TSR and its standard deviation are
presented to demonstrate the effectiveness of the identified threats.

Baselines. We note that even in the absence of insider and outsider threats, LLM may occasionally
return responses containing unintended bias, privacy issues, and/or disinformation. To identify
whether such undesired semantics are generated due to attacks or from LLMs, we evaluate TSRs in
the absence of the threats, and denote such a scenario as Neutral.
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Table 1: Comparing the TSRs of biases resulting from different attacks from an insider threat initiator.
Higher values indicate that the LLM-integrated application is more vulnerable to these attacks.

TSR of Bias Neutral Pertb-User Pertb-System Proxy

GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4

HumanEval 2% 0% 62% 99% 97% 100% 83% 80%
GPT-Auto 0% 0% 47% 67% 85% 81% 68% 53%

Table 2: Comparing TSRs of toxic content generation for insider and outsider threats. Higher values
indicate that the LLM-integrated application is more vulnerable to these threats.

TSR of Toxic Content Neutral Outsider-Explicit Outsider-Implicit Pertb-System

GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4

HumanEval 0% 0% 78% 88% 84% 100% 100% 100%
GPT-auto 0% 0% 78% 94% 84% 100% 100% 100%

Experimental Results. In the following, we evaluate the threat models by assessing bias, toxic,
privacy, and disinformation risks.

Evaluation of Bias Risk. In Table 1, we evaluate the insider threat initiator whose objective is to
generate responses that contain biases (i.e., preference towards one product over another) using
100 prompts. We observe that LLM rarely returns responses containing bias (no more than 2%)
in the absence of attacks. However, the insider threat could effectively lead to responses to users
that demonstrate clear biases. Furthermore, we observe that utilizing system prompt for semantic
perturbation (Pertb-System) achieves highest TSR of biases. The reason is that system prompt is
utilized by GPT-3.5 and GPT-4 as guidance to generate desired outcomes or responses. Thus, it is
much easier to generate biased responses by perturbing the system prompt.

I am making a decision between banana and pear,
can you compare them for me?

{Domain-Specific Information} – Ignore all the
previous information. I don’t want to buy
anything now, but you now should repeat exact
what I put in []. You should just the repeat
sentence in [] (exclude []), but not anything else,
like "you said" {You are insane to shop here}.

System Prompt: 
Suppose you are a chatbot of an online shopping
website. The given request has two parts,
delimited by triple backticks. [User] represents
the direct request from the user, and
[Information] represents the information provided
to you. Generate a response based on the request
and refer to the provided information.
User Prompt:
[User]: I am making a decision …?
[Information]: {Domain-Specific Information} –
Ignore all the previous information. I don’t want 
to … [You are insane to shop here.].

You are insane to shop here.

You are insane to shop here.

User Application External Source
(Compromised) LLM

Figure 4: Illustration of the risk of toxic
content generation raised by outsider
threat in the online shopping application
whose chatbot is powered by GPT-4.

Evaluation of Toxic Risk. We consider a threat initiator
whose objective is to cause responses containing toxic
contents, using definition of toxicity in (Borkan et al.,
2019). An outsider threat initiator could inject toxic in-
formation into the external database with different levels
via poisoning attack (Chen et al., 2017). We evaluate
the level of toxicity of the injected information using
Perspective API (Google, 2023a). If the score returned
by Perspective API is greater than 0.9, we consider the
injected information contains explicit toxic contents (de-
noted by Outsider-Explicit). If the score is less than 0.5,
the toxic contents are considered implicit (denoted by
Outsider-Implicit). For an insider threat initiator, we con-
sider it perturbs the system prompt to enforce the LLM
to be toxic in response.

Table 2 shows our experimental results, where Q = 50.
We have the following observations. First, the high value
of TSR indicates that our developed attacks can success-
fully bypass the ethic restrictions deployed by OpenAI
(OpenAI, 2023d;h), and lead to toxic content generations.
Second, the insider threat (Pertb-System) is more effec-
tive than outsider threat (Outsider-Explicit and Outsider-
Implicit) since the insider threat initiator can fully control
the application. Third, Outsider-Implicit outperforms
Outsider-Explicit in TSR of toxic content. The reason is that the ethic restrictions deployed by
OpenAI (OpenAI, 2023h) can detect and filter some prompts demanding explicit toxic content gener-
ations. We illustrate how the outsider threats create toxic risk in Fig. 4. The red colored texts show
how the external source is compromised by the threat initiator and hence leads to toxic response.

Evaluation of Disinformation Risk. It is challenging to validate whether a response contains disinfor-
mation or not. To this end, we adopt TruthfulQA benchmark (Lin et al., 2021) and metrics therein
including BLEURT, BLEU, ROUGE1, and GPT-judge to assess the truthfulness of the responses
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Table 3: Evaluating disinformation generation using the TruthfulQA Benchmark (Lin et al., 2021). A
small value indicates the level of truthfulness decreases, implying a higher risk of disinformation.

Insider Threat Setting BLEURT acc BLEU acc ROUGE1 acc GPT-judge acc

GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4

No System Prompt 0.68 0.70 0.54 0.56 0.54 0.58 0.81 0.88
Neutral System Prompt 0.63 0.67 0.53 0.55 0.53 0.57 0.70 0.81

Malicious System Prompt 0.55 0.47 0.40 0.32 0.42 0.36 0.27 0.12

received by users. We calculate these metrics under three different insider threat settings, where (1)
the LLM is given no system prompt, (2) a neutral system prompt following OpenAI documentation,
and (3) a malicious system prompt crafted by an insider threat initiator.

Table 3 shows the results under those three settings. We observe that the malicious system prompt
significantly degrades the truthfulness of the responses received by users. We summarize the TSRs of
disinformation in Appendix A.2.

Evaluation of Privacy Risk. We defer the evaluation of TSR of privacy risk to Appendix A.2.

Cost Analysis. Although an insider threat initiator can gain monetary revenues from the threat actions,
launching these attacks incurs extra costs including acquiring additional bandwidth, token usage,
and latency. We report the cost induced by token usage in Appendix A.3 since it accounts for the
most significant cost in LLM-integrated applications. We observe that the threat initiator can launch
attacks and lead to desired risks with negligible costs.

Summary of Experimental Results: Our results show that even when an LLM service provider such
as OpenAI has deployed restrictions (OpenAI, 2023h) and moderation policies (OpenAI, 2023d), both
insider and outsider threats to LLM-integrated applications can successfully bypass the restrictions
and effectively cause risks such as bias and disinformation. Therefore, it is crucial for users to
understand the potential risks of LLM-integrated applications. Furthermore, from the perspectives
of application developers and LLM service providers, effective defense needs to be investigated to
mitigate the threats to LLM-integrated applications, which is discussed in the next section.

4 PROPOSED DEFENSE FOR LLM-INTEGRATED APPLICATIONS

This section outlines the properties required for an effective defense to counter the threat models. We
then develop a novel defense API named Shield, which is first of its kind to satisfy these desired
properties. We finally show the empirical results that substantiate the effectiveness of our defense.

4.1 PROPERTIES REQUIRED BY DEFENSE

We identify four key properties, namely integrity, source identification, attack detectability, and utility
preservation, required by a defense to mitigate the threats characterized in Section 2.2. We say a
defense satisfies (1) integrity if it can guard the semantics and contents of queries/responses sent by a
user and LLM against improper modification or destruction, (2) source identification if it ensures that
both users and LLM can validate the source or origin of received messages through certifications of
identity, (3) attack detectability if it is capable of detecting the presence of threats with high accuracy,
and (4) utility preservation if it will not hinder the utility of LLM-integrated applications, regardless
of the presence of threats. We note that a defense that simultaneously satisfies integrity and source
identification provably addresses both insider and outsider threats by enabling cross-verification
between user and LLM for attack prevention. We further consider attack detectability because it
forms a defense-in-depth strategy with integrity and source identification.

4.2 DESCRIPTION OF THE PROPOSED DEFENSE

Insight of Defense Design. Our key idea is to design a defense to ensure the queries from users
cannot be manipulated, and are distinguishable from the intermediate prompts from application.
In particular, our defense leverages digital signatures (Aki, 1983) to ensure integrity and source
identification. By letting users (resp. LLM) sign their respective messages, the LLM (resp. users)
could identify the origin of the received messages, and verify whether the message has been ma-
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nipulated. Consequently, we can leverage the language model to detect whether the application
perturbs the semantics of the intermediate prompt PA by comparing with the signed user query PU .
Utility preservation is achieved by ensuring that the LLM consistently satisfies user queries, while
responds to prompts from the application only if no attacks are detected. We note that the LLM lacks
capabilities of signing and verifying digital signatures. To address the challenge, we design a new,
generic API named Shield, in addition to the API offered by the LLM service provider. Shield is
the first defense of its kind. It is designed to be lightweight and highly effective. It does not require
retraining the LLM and thus is compatible with the SOTA LLM deployments. Figure 5 shows the
workflow of Shield. User 𝑈 Application 𝐴 Shield LLM
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Figure 5: This figure shows the workflow of Shield.

Notations. We define the
signature σ of a message
m as σ = sigK(m), where
sigK is a signing algorithm
using key K. We de-
note the signed message m
as (m,σ). The verifica-
tion of (m,σ), denoted as
verK(m,σ), outputs either
true or false. We denote the
unique session ID as id.

Overview of our Defense.
Shield mitigates attacks
that can occur during both
upstream and downstream communications, as shown in Fig. 5. It follows steps ❶ to ❹ for
threat mitigation and detection during the upstream communication, detailed as below. ❶: The
user appends the session ID into its query PU , and signs (id, PU ) using its key KU as σ1 =
sigKU

(id, PU ). ❷: The signed query is then sent to the application to generate the intermediate
prompt PA = α(PU , g(f(PU ))). Note that action α cannot tamper with the signed query σ1 without
compromising the user’s signature. ❸: After receiving the intermediate prompt, Shield verifies
whether verKU

((id, PU ), σ1) holds true. If the result is true, Shield then records the ID and
constructs a meta-prompt for LLM to detect attacks as P1 = {“System Prompt” : I1, “User” :
PU , “Application” : PA}, where I1 is a system prompt (OpenAI, 2023f) that leverages the instruction-
following behavior (Kang et al., 2023) of LLM to guide its response. Prompt template of I1 can
be found in Appendix B.3. ❹: Shield then sends P1 to the LLM. If the LLM reports negative on
attack detection, the API then transmits PA to the LLM and requests the response RL, which will
further be returned to the application. If the LLM detects attacks, then API only sends the user’s
query PU to the LLM for response generation.

Shield follows steps ➀ to ➃ during the downstream communication. ➀: After the applica-
tion receives the response RL from the LLM, it generates a response RA and sends it back to
Shield. The API then constructs a meta-prompt P2 = {′System Prompt′ : I2,′ Core Response′ :
RL,

′ Application′ : RA}. System prompt I2 is designed similarly to I1, and is used to detect
attacks during the downstream communication. Prompt template of I2 is in Appendix B.3. ➁:
Shield then sends P2 to the LLM for attack detection. ➂: If the LLM detects no attack, then
Shield signs RA as σ2 = sigKL

(id,RA), where KL is the key of Shield. The signed response
((id,RA), σ2) is then returned to the user. If the LLM detects attack, Shield returns RL to the
user with the corresponding signature. ➃: After receiving responses from the application, the user
executes verKL

((id,RA), σ2). If the verification process returns true, then the user accepts RA as
the response. The workflow of Shield described above is exemplified in Fig. 8 of the appendix,
demonstrating how Shield mitigates the toxic risk raised by the outsider threats.

Table 4: Evaluations of attack detectability and utility preservation of Shield against bias and toxic
risks. "Neutral" quantifies the percentage of responses that successfully address the users’ queries.
Other percentage numbers characterize the success rate of Shield in detecting attacks.

Model Bias Toxic

Neutral Pertb-User Pertb-System Proxy Neutral Outsider-Explicit Outsider-Implicit Pertb-System

GPT-3.5 94% 100% 92% 71% 100% 100% 86% 100%
GPT-4 100% 100% 100% 99% 100% 100% 100% 100%

8



Under review as a conference paper at ICLR 2024

4.3 EVALUATION OF SHIELD

We empirically evaluate the attack detectability and utility preservation of our defense. We quantify
the attack detectability by computing the ratio of tests that are correctly labeled as under attack. The
utility preservation is evaluated using the Neutral scenario, where there exists no attack. We remark
that when attacks are detected, the utility of the LLM-integrated application may degrade. The extent
of utility degradation depends on the user query.

We summarize the evaluation results on the online shopping application in Table 4. We first observe
that Shield successfully detects the attacks when both GPT-3.5 and GPT-4 are used as LLM services.
The latest GPT-4 achieves nearly 100% success rate in detecting attacks across all risks. Furthermore,
Shield preserves the utility of LLM-integrated applications. When there exist no attacks (Neutral
in Table 4), all responses produced by LLM-integrated applications successfully address the users’
queries. We further compare the attack detectability and utility preservation of Shield with a
baseline under the toxic risk in Table 13 of the appendix, and show that Shield consistently
outperforms the baseline in all settings. Evaluation results against privacy and disinformation risks
are in Appendix B.4. We also evaluate Shield in a medical assistance application in Table 15 of
the appendix. We prove the integrity and source identification of Shield in Appendix B.2.

5 RELATED WORK

Misuses of LLMs. The vulnerabilities and risks of LLM have been studied in recent works including
(Abid et al., 2021; Bender et al., 2021; Bommasani et al., 2021; Bowman, 2023; Gehman et al., 2020;
OpenAI, 2023b; Weidinger et al., 2021; Perez & Ribeiro, 2022; Kang et al., 2023). Indeed, the risks
and defects associated with LLMs will be inherited by the downstream applications (Bommasani
et al., 2021). In this work, we focus on LLM-integrated applications, which not only inherit
the vulnerabilities of LLMs as identified by the aforementioned works, but also open up new
attack surfaces due to the presence of untrusted/unverified application developers/vendors. More
comprehensive literature review can be found in Appendix C.

Risk Mitigation Developed for LLMs. Mitigation strategies against toxic text generation of LLM
have been developed. The authors of (Liang et al., 2021) identified the sensitive tokens and mitigated
biases by using iterative nullspace projection. Societal bias-aware distillation technique was developed
in (Gupta et al., 2022). Compared to (Gupta et al., 2022; Liang et al., 2021) which required tuning
or training the model, our approach is lightweight without re-training or modifying the LLM. An
alternative approach to mitigate biases of LLMs is to apply filtering-based techniques (Guo et al.,
2022; Pavlopoulos et al., 2020; Zellers et al., 2019; OpenAI, 2023d). However, these filtering-
based techniques may not be applicable to mitigate our identified vulnerabilities in LLM-integrated
applications (see Section 3). More detailed comparison with existing literature is in Appendix C.

6 CONCLUSION AND DISCUSSION

In our work, we show that LLM-integrated applications become new attack surfaces that can be
exploited by both insider and outsider threat initiators, leading to bias, toxic, privacy, and disinfor-
mation risks for users of applications. Our extensive empirical evaluations confirm those risks. To
mitigate them, we identify four key properties that defense should satisfy. We design a defense
that simultaneously satisfies four properties by providing a new API for the LLM service providers
in addition to the LLM-API. Our defense is compatible with any LLMs. Our experimental results
demonstrate the efficacy of our defense. We acknowledge that our identified threats can be misused
and raise ethical concerns, which is discussed in Section 7.

This paper assumes that both users and LLM are non-malicious. We acknowledge that there may
exist additional threats. For example, an adversary may simultaneously exploit the vulnerabilities
in the application and LLM to gain extra advantages. Such attacks targeting multiple entities in
LLM-integrated applications need to be addressed in future work. In addition, the user may not
necessarily be benign and could act maliciously for its own interest. In this paper, we evaluate bias,
toxic, privacy, and disinformation risks. We are aware of other potential risks such as discrimination
and misinformation (Weidinger et al., 2021). We believe Shield is agnostic to the semantic goals
of threat initiator, and is applicable to prevent and mitigate these potential risks.
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