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Abstract
Graph convolutional networks (GCNs) are a001
powerful architecture for representation learn-002
ing on documents that naturally occur as003
graphs, e.g., citation or social networks. How-004
ever, sensitive personal information, such as005
documents with people’s profiles or relation-006
ships as edges, are prone to privacy leaks,007
as the trained model might reveal the orig-008
inal input. Although differential privacy009
(DP) offers a well-founded privacy-preserving010
framework, GCNs pose theoretical and prac-011
tical challenges due to their training specifics.012
We address these challenges by adapting013
differentially-private gradient-based training014
to GCNs and conduct experiments using two015
optimizers on five NLP datasets in two lan-016
guages. We propose a simple yet efficient017
method based on random graph splits that not018
only improves the baseline privacy bounds by019
a factor of 2.7 while retaining competitive F1020
scores, but also provides strong privacy guar-021
antees of ε = 1.0. We show that, under certain022
modeling choices, privacy-preserving GCNs023
perform up to 90% of their non-private vari-024
ants, while formally guaranteeing strong pri-025
vacy measures.026

1 Introduction027

Many text classification tasks naturally occur in the028

form of graphs where nodes represent text docu-029

ments and edges are task specific, such as articles030

citing each other or health records belonging to the031

same patient. When learning node representations032

and predicting their categories, models benefit from033

exploiting information from the neighborhood of034

each node, as shown in graph neural networks, and035

graph convolutional networks (GCNs) in particular036

(Kipf and Welling, 2017), making them superior to037

other models (Xu et al., 2019; De Cao et al., 2019).038

While GCNs are powerful for a variety of NLP039

problems, like other neural models they are prone040

to privacy attacks. Adversaries with extensive back-041

ground knowledge and computational power might042

reveal sensitive information about the training data 043

from the model, such as reconstructing information 044

about the original classes of a model (Hitaj et al., 045

2017) or even auditing membership of an individ- 046

ual’s data in a model (Song and Shmatikov, 2019). 047

In order to preserve privacy for graph NLP data, 048

models have to protect both the textual nodes and 049

the graph structure, as both sources carry poten- 050

tially sensitive information. 051

Privacy-preserving techniques, such as differen- 052

tial privacy (DP) (Dwork and Roth, 2013), prevent 053

information leaks by adding ‘just enough’ noise 054

during model training while attaining acceptable 055

performance. Recent approaches to DP in neural 056

models attempt to trade off between noise and util- 057

ity, with differentially private stochastic gradient 058

descent (SGD-DP) (Abadi et al., 2016) being a 059

prominent example. However, SGD-DP’s design 060

expects i.i.d. data examples to form batches and 061

‘lots’ (see §4.2), therefore its suitability for graph 062

neural networks remains an open question. 063

In this work, we propose a methodology for ap- 064

plying differentially private stochastic gradient de- 065

scent and its variants to GCNs, allowing to main- 066

tain strict privacy guarantees and performance. 067

Our approach consists of applying an easy-to- 068

implement graph splitting algorithm to GCNs in the 069

DP setting, partitioning a graph into mini-batches 070

while avoiding additional queries on the original 071

data. We adapt SGD-DP (Abadi et al., 2016) to 072

GCNs as well as propose a differentially-private 073

version of Adam (Kingma and Ba, 2015), Adam- 074

DP. We hypothesize that Adam’s advantages, i.e. 075

fewer training epochs, would lead to a better pri- 076

vacy/utility trade-off as opposed to SGD-DP. 077

We conduct experiments on five datasets in two 078

languages (English and Slovak) covering a variety 079

of NLP tasks, including research article classifica- 080

tion in citation networks, Reddit post classification, 081

and user interest classification in social networks, 082

where the latter ones inherently carry potentially 083
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sensitive information calling for privacy-preserving084

models. Our main contributions are twofold. First,085

we show that DP training can be applied to the case086

of GCNs, with graph splitting and proper optimiza-087

tion recovering a lot of the dropped performance088

due to DP noise. Second, we show that more so-089

phisticated text representations further mitigates090

the performance drop due to DP noise, resulting in091

a relative performance of 90% of the non-private092

variant, while keeping strict privacy (ε = 1 when093

using graph splits). To the best of our knowledge,094

this is the first study that brings differentially pri-095

vate gradient-based training to graph neural net-096

works.1097

2 Theoretical background in DP098

As DP does not belong to the mainstream methods099

in NLP, here we shortly outline the principles and100

present the basic terminology from the NLP per-101

spective. Foundations can be found in (Dwork and102

Roth, 2013; Desfontaines and Pejó, 2020).103

The main idea of DP is that if we query a104

database of N individuals, the result of the query105

will be almost indistinguishable from the result of106

querying a database of N − 1 individuals, thus pre-107

venting each single individual’s privacy to a certain108

degree. The difference of results obtained from109

querying any two databases that differ in one indi-110

vidual has a probabilistic interpretation.111

DatasetD consists of |D| documents where each112

document is associated with an individual whose113

privacy we want to preserve.2 Let D′ differ from114

D by one document, so either |D′| = |D| ± 1, or115

|D′| = |D| with i-th document replaced. D and116

D′ are called neighboring datasets.117

Let A : D 7→ y ∈ R be a function applied to a118

dataset D; for example a function returning the av-119

erage document length or the number of documents120

in the dataset. This function is also called a query121

which is not to be confused with queries in NLP,122

such as search queries.3 In DP, this query function123

is a continuous random variable associated with a124

probability density pt(A(D) = y). Once the func-125

tion A(D) is applied on the dataset D, the result126

is a single draw from this probability distribution.127

This process is also known as a randomized algo-128

1Our code and data are available at [redacted]
2A document can be any arbitrary natural language text,

such as a letter, medical record, tweet, personal plain text
passwords, or a paper review.

3In general, the query output is multidimensional Rk; here
we keep it scalar for the sake of simplicity.

rithm. For example, a randomized algorithm for 129

the average document length can be a Laplace den- 130

sity such that pt(A(D) = y) = 1
2b exp

(
− |µ−y|b

)
, 131

where µ is the true average document length and 132

b is the scale (the ‘noisiness’ parameter). By ap- 133

plying this query to D, we obtain y ∈ R, a single 134

draw from this distribution. 135

Now we can formalize the backbone idea of DP. 136

Having two neighboring datasets D, D′, privacy 137

loss is defined as 138

ln
p(A(D) = y)

p(A(D′) = y)
. (1) 139

DP bounds this privacy loss by design. Given 140

ε ∈ R : ε ≥ 0 (the privacy budget hyper-parame- 141

ter), all values of y, and all neighboring datasets D 142

and D′, we must ensure that 143

max
∀y

∣∣∣∣ln p(A(D) = y)

p(A(D′) = y)

∣∣∣∣ ≤ ε . (2) 144

In other words, the allowed privacy loss of any 145

two neighboring datasets is upper-bounded by ε, 146

also denoted as (ε, 0)-DP.4 The privacy budget ε 147

controls the amount of preserved privacy. If ε→ 0, 148

the query outputs of any two datasets become in- 149

distinguishable, which guarantees almost perfect 150

privacy but provides very little utility. Similarly, 151

higher ε values provide less privacy but better util- 152

ity. Finding the sweet spot is thus the main chal- 153

lenge in determining the privacy budget for a partic- 154

ular application (Lee and Clifton, 2011; Hsu et al., 155

2014). An important feature of (ε, δ)-DP is that 156

once we obtain the result y of the query A(D) = y, 157

any further computations with t cannot weaken the 158

privacy guaranteed by ε and δ. 159

The desired behavior of the randomized algo- 160

rithm is therefore adding as little noise as possible 161

to maximize utility while keeping the privacy guar- 162

antees given by Eq. 2. The amount of noise is 163

determined for each particular setup by the sensitiv- 164

ity of the query ∆A, such that for any neighboring 165

datasets D,D′ we have 166

∆A = max
∀D,D′

(
|A(D)−A(D′)|

)
. (3) 167

The sensitivity corresponds to the ‘worst case’ 168

range of a particular query A, i.e., what is the maxi- 169

mum impact of changing one individual. The larger 170

4(ε, 0)-DP is a simplification of more general (ε, δ)-DP
where δ is a negligible constant allowing relaxation of the
privacy bounds (Dwork and Roth, 2013, p. 18).
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the sensitivity, the more noise must be added to171

fulfill the privacy requirements of ε (Eq. 2). For ex-172

ample, in order to be (ε, 0)-DP, the Laplace mech-173

anism must add noise b = (∆A)−1 (Dwork and174

Roth, 2013, p. 32). As the query sensitivity di-175

rectly influences the required amount of noise, it is176

desirable to design queries with low sensitivity.177

The so far described mechanisms consider a sce-178

nario when we apply the query only once. To en-179

sure (ε, δ)-DP with multiple queries5 on the same180

datasets, proportionally more noise has to be added.181

3 Related work182

A wide range of NLP tasks have been utilizing183

graph neural networks, specifically graph con-184

volutional networks (GCNs), including text sum-185

marization (Xu et al., 2020), machine translation186

(Marcheggiani et al., 2018) and semantic role la-187

beling (Zheng and Kordjamshidi, 2020). Recent188

end-to-end approaches combine pre-trained trans-189

former models with GNNs to learn graph repre-190

sentations for syntactic trees (Sachan et al., 2020).191

Rahimi et al. (2018) demonstrated the strength of192

GCNs on predicting geo-location of Twitter users193

where nodes are represented by users’ tweets and194

edges by social connections, i.e. mentions of other195

Twitter users. However, for protecting user-level196

privacy, the overall social graph has to be taken197

into account.198

Several recent works in the NLP area deal with199

privacy using arbitrary definitions. Li et al. (2018)200

propose an adversarial-based approach to learning201

latent text representation for sentiment analysis and202

POS tagging. Although their privacy-preserving203

model performs on par with non-private models,204

they admit the lack of formal privacy guarantees.205

Similarly, Coavoux et al. (2018) train an adversarial206

model to predict private information on sentiment207

analysis and topic classification. The adversary’s208

model performance served as a proxy for privacy209

strength but, despite its strengths, comes with no210

formal privacy guarantees. Similar potential pri-211

vacy weaknesses can be found in a recent work212

by Abdalla et al. (2020) who replaced personal213

health information by semantically similar words214

while keeping acceptable accuracy of downstream215

classification tasks.216

Abadi et al. (2016) pioneered the connection of217

5Queries might be different, for example querying the
average document length first and then querying the number
of documents in the dataset.

DP and deep learning by proposing SGD-DP that 218

bounds the query sensitivity using gradient clip- 219

ping and formally guarantees the overall privacy 220

budget (see App. A). While originally tested on im- 221

age recognition, they inspired subsequent work in 222

language modeling using LSTM (McMahan et al., 223

2018). However, to the best of our knowledge, 224

training graph-based architectures with SGD-DP 225

has not yet been explored.6 226

As GCNs typically treat the entire graph as a 227

single training example, Chiang et al. (2019) pro- 228

posed a more efficient training using mini-batching 229

methods. Despite the NP-hardness of the general 230

graph splitting problem (Bui and Jones, 1992), they 231

experimented with random partitioning and other 232

clustering methods that take advantage of the graph 233

structure (Karypis and Kumar, 1998). It remains 234

an open question whether splitting the graph into 235

disjoint i.i.d. examples would positively affect our 236

DP-approach where mini-batches parametrize the 237

required amount of noise. 238

4 Models 239

4.1 GCN as the underlying architecture 240

We employ the GCN architecture (Kipf and 241

Welling, 2017) for enabling DP in the domain of 242

graph-based NLP. GCN is a common and simpler 243

variant to more complex types of GNNs which al- 244

lows us to focus primarily on a comparison of the 245

DP and non-DP models. 246

Let G = (V, E) model our graph data where each 247

node vi ∈ V contains a feature vector of dimension- 248

ality d. GCN aims to learn a node representation 249

by integrating information from each node’s neigh- 250

borhood. The features of each neighboring node of 251

vi pass through a ‘message passing function’ (usu- 252

ally a transformation by a weight matrix Φ) and 253

are then aggregated and combined with the current 254

state of the node hli to form the next state hl+1
i . 255

Edges are represented using an adjacency matrix 256

A ∈ Rn×n. A is then multiplied by the matrix 257

H ∈ Rn×f , f being the hidden dimension, as well 258

as the weight matrix Φ responsible for message 259

passing. Additional tweaks by Kipf and Welling 260

(2017) include adding the identity matrix toA to in- 261

clude self-loops in the computation Â = A+ I, as 262

6Two recent approaches utilize local DP, that is adding
noise to each node before passing it to graph model training
(Sajadmanesh and Gatica-Perez, 2020; Lyu et al., 2020), yet it
is unclear whether it prevents leaking knowledge about edges.
Our setup is different as we have access to the full dataset and
preserve privacy of the entire graph.
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well as normalizing matrix A by the degree matrix263

D, specifically using a symmetric normalization264

D−
1
2AD−

1
2 . This results in the following equation265

for calculating the next state of the GCN for a given266

layer l, passing through a non-linearity function σ:267

H l+1 = σ
(
D̂−

1
2 ÂD̂−

1
2H(l)Φ(l)

)
(4)268

The final layer states for each node are then used269

for node-level classification, given output labels.270

4.2 Baseline model: SGD-DP271

SGD-DP (Abadi et al., 2016) modifies the standard272

stochastic gradient descent algorithm to be differen-273

tially private. The DP ‘query’ is the gradient com-274

putation at time step t: gt(xi) ← ∇θtL(θt, xi),275

for each i in the training set. To ensure DP, the276

output of this query is distorted by random noise277

proportional to the sensitivity of the query, which278

is the range of values that the gradient can take. As279

gradient range is unconstrained, possibly leading280

to extremely large noise, Abadi et al. (2016) clip281

the gradient vector by its `2 norm, replacing each282

vector g with ḡ = g/max(1, ||g||2C ), C being the283

clipping threshold. This clipped gradient is altered284

by a draw from a Gaussian: ḡt(xi)+N (0, σ2C2I).285

Instead of running this process on individual ex-286

amples, Abadi et al. (2016) actually break up the287

training set into ‘lots’ of size L, being a slightly288

separate concept from that of ‘batches’. Whereas289

the gradient computation is performed in batches,290

SGD-DP groups several batches together into lots291

for the DP calculation itself, which consists of292

adding noise, taking the average over a lot and293

performing the descent θt+1 ← θt − ηtg̃t.294

Incorporating this concept, we obtain the overall295

core mechanism of SGD-DP:296

g̃t = 1
L

(∑
i∈L

gt(xi)

max
(
1,

||gt(xi)||2
C

) +N (0, σ2C2I)

)
(5)297

4.3 Our DP extension: Differentially-private298

Adam299

In this paper, we also propose a DP version of300

Adam (Kingma and Ba, 2015), a widely-used de-301

fault optimizer in NLP (Ruder, 2016). As Adam302

shares the core principle of gradient computing303

within SGD, to make it differentialy private we304

add noise to the gradient following Eq. 5, prior to305

Adam’s moment estimates and parameter update.306

Adam-DP thus guarantees privacy like SGD-DP307

does, namely (1) by DP privatizing the query, that 308

is the gradient, and (2) by a composition theorem, 309

that is a sequence of DP mechanisms remains DP. 310

Despite their conceptual simplicity, both SGD- 311

DP and Adam-DP have to determine the amount 312

of noise to guarantee (ε, δ) privacy. Abadi et al. 313

(2016) proposed the moments accountant which 314

we present in detail in the Appendix. 315

4.4 Our approach: Graph cuts for improved 316

DP performance 317

We propose a simple yet effective treatment of the 318

discrepancy between GCN training (that is, taking 319

the entire graph as a single example to maximally 320

utilize the contextual information of each node) 321

and DP-version of SGD and Adam (which requires 322

a set of i.i.d. examples to form batches and ‘lots’ in 323

order to distribute DP noise effectively). 324

DP operates with the notion of ‘neighboring 325

datasets’ (Sec. 2). Training a GCN privately on 326

the full graph means that any other graph is neigh- 327

boring. It also implies that each individual’s pri- 328

vacy in that graph is protected, which is the goal 329

of differential privacy. The other extreme would be 330

to completely ignore the graph structure and train 331

GCN on individual nodes; using DP, it would again 332

protect each individual’s privacy, but any advantage 333

of graph structure would be ignored. 334

We thus propose a sweet-spot approach, that is 335

splitting the graph into disconnected sub-graphs. 336

We experiment with different numbers of sub- 337

graphs to find the best trade-off. In order to avoid 338

any further dataset queries that might lead to an 339

increased privacy budget, we utilize random mask- 340

ing of the adjacency matrix so no additional DP 341

mechanism is required. 342

Our algorithm creates a random index tensor for 343

all nodes in the training set, which is then split into 344

s groups, corresponding to the number of desired 345

subgraphs. These indexes are then used to mask 346

the original graph during training. 347

Each subgraph thus acts as a mini-batch, with all 348

nodes not belonging to the subgraph masked out 349

during the loss calculation. Due to the nature of the 350

GCN computation shown in Eq. 4, this automati- 351

cally masks out all of the irrelevant edges without 352

any additional queries on the data. This method 353

is thus easy to implement, does not require much 354

computational overhead and fits very well into the 355

DP scenario. We extensively compare our results 356

using different subgraphs sizes in the non-private 357
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and private settings in Section 6.358

5 Experiments359

5.1 Datasets360

We are interested in a text classification use-case361

where documents are connected via undirected362

edges, forming a graph. While structurally limiting,363

this definition covers a whole range of applications.364

We perform experiments on five single-label multi-365

class classification tasks. The Cora, Citeseer, and366

PubMed datasets (Yang et al., 2016; Sen et al.,367

2008; McCallum et al., 2000; Giles et al., 1998) are368

widely used citation networks of research papers369

where citing a paper i from paper j creates an edge370

i − j. The task is to predict the category of the371

particular paper.372

The Reddit dataset (Hamilton et al., 2017) treats373

the ‘original post’ as a graph node and connects two374

posts by an edge if any user commented on both375

posts. Given the large size of this dataset (230k376

nodes; all posts from Sept. 2014) causing severe377

computational challenges, we sub-sampled 10% of378

posts (only few days of Sept. 2014). The gold label379

corresponds to one of the top Reddit communities380

to which the post belongs to.381

Unlike the previous English data sets, the Pokec382

dataset (Takac and Zabovsky, 2012; Leskovec and383

Krevl, 2014) contains an anonymized social net-384

work in Slovak. Nodes represent users and edges385

their friendship relations. User-level information386

contains many attributes in natural language (e.g.,387

‘music’, ‘perfect evening’). We set up the follow-388

ing binary task: Given the textual attributes, predict389

whether a user prefers dogs or cats.7 Pokec’s per-390

sonal information including friendship connections391

shows the importance of privacy-preserving meth-392

ods to protect this potentially sensitive information.393

For the preparation details see Appendix C.394

The four English datasets adapted from the pre-395

vious work are only available in their encoded form.396

For the citation networks, each document is rep-397

resented by a bag-of-words encoding. The Red-398

dit dataset combines GloVe vectors (Pennington399

et al., 2014) averaged over the post and its com-400

ments. Only the Pokec dataset is available as raw401

texts, so we opted for multilingual BERT (Devlin402

et al., 2019) and averaged all contextualized word403

7We decided against user profiling, namely age prediction
for ad targeting (Perozzi and Skiena, 2015), for ethical reasons.
Our task still serves well the demonstration purposes of text
classification of social network data.

embeddings over each users’ textual attributes.8 404

The variety of languages, sizes, and different in- 405

put encoding allows us to compare non-private and 406

private GCNs under different conditions. Table 1 407

summarizes data sizes and number of classes. 408

Dataset Classes Test size Training size
CiteSeer 6 1,000 1,827
Cora 7 1,000 1,208
PubMed 3 1,000 18,217
Pokec 2 2,000 16,000
Reddit 41 5,643 15,252

Table 1: Dataset statistics; size is number of nodes.

5.2 Experiment setup 409

We operate with three bench-marking scenarios. 410

Experiment A is vanilla GCN without DP: The 411

aim is to train the GCN without any privacy mech- 412

anism, evaluating also influence on performance 413

with less training data. Experiment B is GCN with 414

DP: We evaluate performance varying the amount 415

of privacy budget as well as data size.9 The lat- 416

ter allows us to see the effects on performance of 417

both adding noise and reducing training data. Ex- 418

periment C is GCN with graph splits: Evaluating 419

performance varying the number of graph splits in 420

the non-DP and DP settings. 421

Implementation details. As the δ privacy pa- 422

rameter is typically kept ‘cryptographically small’ 423

(Dwork and Roth, 2013) and, unlike the main pri- 424

vacy budget ε, has a limited impact on accuracy 425

(Abadi et al., 2016, Fig. 4), we fixed its value to 426

10−5 for all experiments. The clipping threshold 427

is set at 1. We validated our PyTorch implementa- 428

tion by fully reproducing the MNIST results from 429

Abadi et al. (2016). We perform all experiments 430

five times with different random seeds and report 431

the mean and standard deviation. Early stopping is 432

determined using the validation set. See Appendix 433

B for more details on other hyperparameters. 434

6 Results and analysis 435

6.1 Experiment A: Non-private GCN 436

Table 2 shows the results on the left-hand side un- 437

der ‘Non-DP’. When trained with SGD, all datasets 438

8Sentence-BERT (Reimers and Gurevych, 2019) resulted
in lower performance. Users fill in the attributes such that the
text resembles a list of keywords rather than actual discourse.

9We randomly sub-sample a certain percentage of nodes
that then form a single training graph, as in standard GCN.
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Figure 1: Experiment A: F1 wrt. training data size (in %), without DP.

Non-DP DP DP split
SGD† Adam† ε SGD† Adam SGD Adam
CiteSeer 1 - - 0.35 0.36
0.77 0.79 2 0.36 0.36 0.35 0.36
Cora 1 - - 0.55 0.56
0.77 0.88 2 0.39 0.52 0.55 0.57
PubMed 1 - - 0.54 0.52
0.49 0.79 2 0.38 0.54 0.54 0.51
Pokec 1 - - 0.62 0.72
0.83 0.83 2 0.75 0.66 0.64 0.73
Reddit 1 - - 0.65 0.79
0.68 0.88 2 0.46 0.72 0.67 0.82

Table 2: F1 results for experiments A, B and C: full
dataset without DP (first and second columns), with DP
and varying ε (middle two columns), with DP using
graph splits (right-most two columns). Best DP results
are bold. † denotes baseline approaches for ε = 2.0;
lower ε corresponds to better privacy.

achieve fairly good results with the exception of439

PubMed, possibly due to PubMed having a much440

larger graph. The best of these is for Pokec, which441

could be due to its more expressive representations442

(BERT) and a simpler task (binary classification).443

In comparison, in line with previous research444

(Ruder, 2016), Adam outperforms SGD in all cases,445

with Pokec showing the smallest gap (0.826 and446

0.832 for SGD and Adam, respectively).447

Figure 1 shows the non-DP results with increas-448

ing training data. We observe two contrasting pat-449

terns. First, there is a clear improvement as training450

data increases (e.g. CiteSeer, with 0.70 F1 score451

at 10% vs. 0.77 at 100%). Second, we observe452

the exact opposite pattern, with PubMed dropping453

from 0.57 at 10% to 0.49 at 100%, with a simi-454

lar pattern for Pokec, or an early saturation effect455

for Reddit and Cora (at 20-30% for Reddit with456

approximately 0.69 F1 score, 50% for Cora at a457

score of 0.77), where results do not increase be-458

yond a certain point. We speculate that, with a459

larger training size, a vanilla GCN has a harder 460

time to learn the more complex input representa- 461

tions. In particular, for PubMed and Pokec, the 462

increasing number of training nodes only partially 463

increases the graph degree, so the model fails to 464

learn expressive node representations when limited 465

information from the node’s neighborhood is avail- 466

able. By contrast, Reddit graph degree grows much 467

faster, thus advantaging GCNs. 468

6.2 Experiment B: GCN with DP 469

The middle columns of Table 2 show results for 470

two particular privacy budget values ε = 1.0 and 471

2.0; we do not report larger ε values as their privacy 472

protection diminishes exponentially. We note four 473

main patterns in this experiment. 474

First, SGD-DP results stay the same, regard- 475

less of the noise value added. This is quite unex- 476

pected, since higher added noise values would be 477

anticipated to lead to lower results. One explana- 478

tion for this pattern is that the gradients in vanilla 479

SGD are already quite noisy, which may even help 480

in generalization for the model, so the additional 481

DP noise does not pose much difficulty beyond the 482

initial drop in performance. 483

Second, Adam-DP results outperform SGD- 484

DP and can reach results close to the non-DP 485

settings. It is worth noting that, when using default 486

hyperparameters with a moderate learning rate of 487

0.01, Adam-DP results are very low, usually worse 488

than SGD-DP. It is only when optimizing this learn- 489

ing rate that we see substantial improvements, with 490

the best-performing learning rates being very large, 491

in the case of Reddit as high as 100. In contrast, 492

SGD-DP does not see much benefit from additional 493

hyperparameter optimization. 494

Third, we see bigger drops in performance 495

in the DP setting for datasets with simpler in- 496

put representations. Datasets of simpler input 497

features can have results drop by more than half 498
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Figure 2: Experiment B: F1 with varying training data size (in %) wrt. privacy budget ε, with DP.

in comparison to the non-DP implementation. In499

comparison to SGD-DP, Adam-DP is able to retain500

better performance even with the simpler input fea-501

tures for Cora and PubMed (e.g., drop 0.79→ 0.54502

for PubMed). Reddit and Pokec show the smallest503

drops from the non-DP to DP setting (0.88→ 0.72504

and 0.83 → 0.66 with Adam, for each dataset,505

respectively). In fact, even for SGD-DP, Pokec506

results are very close to the non-DP counterpart507

(0.83→ 0.75 F1 score). Hence, Citeseer, Cora and508

PubMed, all using one-hot textual representations,509

show far greater drops in performance for the DP510

setting. The datasets utilizing GloVe (Reddit) and511

BERT (Pokec) representations perform far better.512

Since this effect of feature complexity on DP per-513

formance is shown only through different datasets,514

we perform additional experiments on Pokec using515

BoWs, fastText (Grave et al., 2018) and BERT fea-516

tures for a proper ‘apples-to-apples’ comparison,517

described in Appendix D.518

Learning Curves with DP Figure 2 shows the519

DP results both for varying ε and with different520

training sub-samples (25%, 50%, 75% and the full521

100%). First, generally observed patterns are not522

the same for the learning curves in the non-DP523

setup (Experiment A). For instance, Adam exhibits524

the opposite pattern, e.g. Citeseer and Cora in-525

crease with more data for Adam without DP, but526

decrease for Adam-DP.527

Second, we can see that increasing the amount528

of data does not necessarily help in the DP set-529

ting. For instance, while there is an improvement530

for SGD-DP with the Citeseer, Cora and Reddit531

datasets, results mostly get worse for Adam-DP,532

with the exception of PubMed. Hence, increasing533

training data generally does not act as a solution to534

the general drop in performance introduced by DP.535

6.3 Experiment C: Graph splitting approach 536

First we highlight main results for the non-DP 537

graph splitting approach. For all datasets, increas- 538

ing the number of subgraph divisions yields better 539

results in the SGD setting. This is especially no- 540

table in a case such as for PubMed, where there is 541

an increase from 0.47 with no splits to 0.79 with 542

a splits size of 100. Overall, splitting the graph is 543

shown to be quite effective in a setting where the 544

model may struggle more in the learning process, 545

such as with SGD. Furthermore, at the higher sub- 546

graph split sizes, there is a slight drop-off for SGD 547

but not for Adam, where increasing subgraph split 548

size never improves performance beyond vanilla 549

Adam, as shown in Figure 3. 550

Figure 4 shows the results for the graph split- 551

ting setting with DP, varying the privacy bud- 552

get. First, increasing the number of subgraph 553

splits generally improves results for SGD-DP 554

(e.g. 0.36→ 0.55 for Cora at ε = 2, with 10 sub- 555

graphs vs. the full graph, respectively). We see a 556

difference across datasets, where for instance Red- 557

dit shows the best results at 10 splits for all three ε 558

values, while Citeseer or Pokec do not particularly 559

benefit beyond four splits. 560

Second, this pattern of improvement is also no- 561

ticeable in the case of Adam-DP, in contrast to the 562

non-private vanilla Adam results. This is clearly 563

seen in the Reddit results, where the very best re- 564

sult is with 10 splits with ε = 1 at an F-score of 565

0.79 with Adam-DP, being just 0.09 points lower 566

than the non-DP version. As in Experiment B, it 567

is notable that Adam-DP does not perform partic- 568

ularly well without using very high learning rates, 569

with less graph splits requiring larger learning rate 570

values. 571

Third, with more mini-batches allowing for less 572

noise to be added to obtain a lower ε value, it is 573

possible to reach the very strong privacy guar- 574
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Figure 3: Experiment C, no DP: F1 wrt. number of subgraphs.
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Figure 4: Experiment C, with DP: F1 with varying number of subgraphs wrt. privacy budget ε.

antee of ε = 1.0.10 Thus our graph splitting ap-575

proach not only helps mitigate the difficulties of576

training with added DP noise, but also allows us to577

reach stronger privacy guarantees with about the578

same performance. Without the mini-batching that579

becomes possible by splitting the graph, it is impos-580

sible to carry out a stable computation during the581

moment accounting process to achieve ε = 1. A582

comparison of the DP setting with graph splitting583

(using our initial setup of 10 graph splits) and the584

regular DP setting is summarized in Table 2.585

Summary and take-aways We summarize the586

key observations as follows:587

1. SGD-DP is fairly robust to noise for these588

datasets and settings, even at ε = 2.589

2. Adam-DP works even better than SGD-DP,590

however it needs to be tuned very carefully,591

using very high learning rates.592

3. More complex representations are better for593

the DP setting, showing a smaller perfor-594

mance drop from the non-DP results.595

4. Increasing training data does not necessarily596

mitigate negative performance effects of DP.597

10For comparison, the randomized response, a DP mecha-
nism extensively used by social scientists for decades (Warner,
1965), has ε ≈ 1.1.

5. Graph splitting improves both performance 598

and allows for a stronger privacy guarantee of 599

ε = 1, resolving the mini-batching problem 600

of GCNs in the DP setting. 601

We provide an additional error analysis in Ap- 602

pendix E, where we show that failed predictions 603

in Reddit and CiteSeer are caused by ‘hard cases’, 604

i.e. examples and classes that are consistently mis- 605

classified regardless of training data size or privacy 606

budget. Moreover, Appendix F describes results on 607

the MNIST dataset with varying lot sizes, showing 608

how this hyperparameter affects model results. 609

7 Conclusion 610

We have explored differentially-private training for 611

GCNs, showing the nature of the privacy-utility 612

trade-off. We show that an expected drop in re- 613

sults for the DP models can be mitigated by graph 614

partitioning, utilizing Adam-DP, as well as hav- 615

ing more complexity in the input representations. 616

Our approach achieves strong privacy guarantees 617

of ε = 1.0, yet reaching up to 87% and 90% of non- 618

private F1 scores for Pokec and Reddit datasets, re- 619

spectively. By adapting global DP to a challenging 620

class of deep learning networks, we are thus a step 621

closer to flexible and effective privacy-preserving 622

NLP. 623
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random noise according to these parameters. In842

contrast, SGD-DP does the opposite: Given a pre-843

defined amount of noise (hyper-parameter of the844

algorithm), the privacy budget (ε, δ) is computed845

retrospectively. Second, generally in DP, with mul-846

tiple executions of a ‘query’ (i.e. a single gradient847

computation in SGD), we can simply sum up the848

ε, δ values associated with each query.11 However,849

this naive composition leads to a very large privacy850

budget as it assumes that each query used up the851

maximum given privacy budget.852

The simplest bound on a continuous random vari-853

able Z, the Markov inequality, takes into account854

the expectation E[Z], such that for ε ∈ R+:855

Pr[Z ≥ ε] ≤ E[Z]

ε
(6)856

Using the Chernoff bound, a variant of the857

Markov inequality, on the privacy loss Z treated as858

a random variable (Eq. 2), we obtain the following859

formulation by multiplying Eq. 6 by λ ∈ R and860

exponentiating:861

Pr[exp(λZ) ≥ exp(λε)] ≤ E[exp(λZ)]

exp(λε)
(7)862

where E[exp(λZ)] is also known as the moment-863

generating function.864

The overall privacy loss Z is composed of a865

sequence of consecutive randomized algorithms866

X1, . . . , Xk. Since all Xi are independent, the867

numerator in Eq. 7 becomes a product of all868

E[exp(λXi)]. Converting to log form and simpli-869

fying, we obtain870

Pr[Z ≥ ε] ≤ exp

(∑
i

lnE[exp(λXi)]− λε

)
(8)871

Note the moment generating function inside the872

logarithmic expression. Since the above bound is873

valid for any moment of the privacy loss random874

variable, we can go through several moments and875

find the one that gives us the lowest bound.876

Since the left-hand side of Eq. 8 is by defini-877

tion the δ value, the overall mechanism is (ε, δ)-DP878

for δ = exp(
∑

i lnE[exp(λXi)]− λε). The corre-879

sponding ε value can be found by modifying 8:880

ε =

∑
i lnE[exp(λXi)]− ln δ

λ
(9)881

11Such that for k queries with privacy budget (ε, δ), the
overall algorithm is (kε, kδ)-DP.

ε Noise-SGD Noise-Adam
136.51 4 2
9.75 26 13
4.91 48 24
2.00 112 56

Table 3: ε values from experiment B, with the corre-
sponding noise values added to the gradient for each
optimizer.

The overall SGD-DP algorithm, given the right 882

noise scale σ and a clipping threshold C, is thus 883

shown to be (O(qε
√
T ), δ)-differentially private 884

using this accounting method, with q representing 885

the ratio L
N between the lot size L and dataset size 886

N , and T being the total number of training steps. 887

See (Abadi et al., 2016) for further details. 888

B Hyperparameter Configuration 889

Our GCN model consists of 2 layers, with ReLU 890

non-linearity, a hidden size of 32 and dropout of 891

50%, trained with a learning rate of 0.01 (apart 892

from Adam-DP, which required far higher learning 893

rates, as mentioned below). We found that early 894

stopping the model works better for the non-DP 895

implementations, where we used a patience of 20 896

epochs. We did not use early stopping for the DP 897

configuration, which shows better results without 898

it. For all SGD runs we used a maximum of 2000 899

epochs, while for Adam we used 500. 900

Importantly, for Adam-DP we noticed that more 901

moderate learning rate values such as 0.01 were 902

insufficient and led to far lower performance. We 903

therefore optimized this at several values in the 904

interval from 0.1 to 100, with some datasets and 905

graph split values requiring learning rates as low as 906

0.1 (e.g. most datasets with 100 graph splits), while 907

in other cases requiring 50 or 100 (e.g. Reddit for 908

most graph split values). 909

Due to the smaller amount of epochs for Adam, 910

it is possible to add less noise to achieve a lower 911

ε value. Table 3 shows the mapping from noise 912

values used for each optimizer to the corresponding 913

ε in the full graph setting. 914

Finally, regarding hyperparameter optimization 915

on the validation set in the DP setting, Abadi et al. 916

(2016) mention that, when optimizing on a very 917

high number of parameter settings (e.g. in the thou- 918

sands), this would additionally take up a moderate 919

privacy budget (e.g. ε = 4 if they had used 6,700 920

hyperparameters). For our experiments, this num- 921

11



ber of hyperparameters is comparatively minimal922

and would be well within our privacy bounds.923

C Pokec Dataset Pre-processing924

In order to prepare the binary classification task925

for the Pokec dataset, the original graph consisting926

of 1,632,803 nodes and 30,622,564 edges is sub-927

sampled to only include users that filled out the928

‘pets’ column and had either cats or dogs as their929

preference, discarding entries with multiple pref-930

erences. For each pet type, users were reordered931

based on percent completion of their profiles, such932

that users with most of the information were re-933

tained.934

For each of the two classes, the top 10,000 users935

are taken, with the final graph consisting of 20,000936

nodes and 32,782 edges. The data was split into937

80% training, 10% validation and 10% test parti-938

tions.939

The textual representations themselves were pre-940

pared with ‘bert-multilingual-cased’ from Hugging-941

face transformers,12 converting each attribute of942

user input in Slovak to BERT embeddings with the943

provided tokenizer for the same model. Embed-944

dings are taken from the last hidden layer of the945

model, with dimension size 768. The average over946

all tokens is taken for a given column of user in-947

formation, with 49 out of the 59 original columns948

retained. The remaining 10 are left out due to con-949

taining less relevant information for textual anal-950

ysis, such as a user’s last login time. To further951

simplify input representations for the model, the952

average is taken over all columns for a user, result-953

ing in a final vector representation of dimension954

768 for each node in the graph.955

D Pokec Feature Comparison956

As mentioned in Section 6, we perform additional957

experiments on the Pokec dataset in order to further958

investigate the hypothesis that input feature com-959

plexity has an effect on the degree of performance960

drop in the DP setting. We originally noticed this961

across separate datasets, with Cora, Citeseer and962

PubMed, using one-hot input features, having a963

greater performance drop than Reddit and Pokec,964

which use GloVe and BERT, respectively. In or-965

der to more properly evaluate this under the same966

conditions, we prepare two additional types of in-967

put features for the Pokec dataset, namely Bag of968

Words (BoWs) and fastText (Joulin et al., 2016),969

12https://github.com/huggingface/transformers

altogether having three levels of word representa- 970

tions, ranging from the simpler (BoWs) to more 971

complex (BERT). 972

The BoWs embeddings were prepared by taking 973

the same 20,000 user profiles as in the BERT pre- 974

processing methodology described above. Tokens 975

were split on whitespace, with additional steps such 976

as punctuation removal and lowercasing. In order 977

to reduce the embedding dimensionality, we filtered 978

tokens by frequency in the interval [15, 15000]. 979

Each user profile was thus represented with a 9447- 980

dimensional vector of binary values. 981

For the fastText embeddings, we use a pre- 982

trained model for Slovak from Grave et al. (2018). 983

Using the same set of user profiles, we preprocess 984

the data in the same manner as described by the 985

authors. In order to have one vector per user profile, 986

we average all fastText embeddings for a given user 987

to have a final embedding dimension of 300. 988

The results of this experiment can be seen in 989

Table 4. We notice that, in line with our hypoth- 990

esis, the most effective input features in the DP 991

setting are the BERT embeddings, with the small- 992

est performance drop from the non-DP setting (e.g. 993

0.84 > 0.70 for SGD-DP at ε = 2). Interest- 994

ingly, the best method overall without DP is with 995

the BoWs representation. One explanation for this 996

is that a lot of slang vocabulary and unusual to- 997

kens are used in the social network data, which a 998

fastText or BERT model may struggle with more, 999

while BoWs would simply treat them equally as 1000

any other token in the vocabulary. As expected, the 1001

BoWs embeddings have a larger drop when trained 1002

with DP (0.88 > 0.62 for SGD and SGD-DP with 1003

ε = 2, respectively). The fastText results show 1004

the lowest performance both in the non-DP and 1005

DP settings, possibly due to the model struggling 1006

to maintain useful representations after averaging 1007

many token vectors for a user, which a more power- 1008

ful model such as mBERT has an easier time with. 1009

Our original hypothesis is thus verified that more 1010

sophisticated input features such as BERT would 1011

show a smaller performance drop in the DP setting, 1012

compared to simpler representations such as BoWs, 1013

with this effect shown in an ‘apples-to-apples’ set- 1014

ting on the same dataset. 1015
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Non-DP F1 scores DP F1 scores
SGD Adam ε SGD Adam
BoWs 2 0.62 0.63
0.88 0.87 5 0.62 0.61

10 0.62 0.61
137 0.63 0.63

fastText 2 0.59 0.63
0.71 0.73 5 0.59 0.57

10 0.59 0.57
137 0.61 0.60

BERT 2 0.70 0.66
0.84 0.84 5 0.70 0.75

10 0.70 0.75
137 0.74 0.75

Table 4: F1 scores for the Pokec dataset, comparing
different input feature representations and privacy bud-
gets.

E Are ‘hard’ examples consistent1016

between private and non-private1017

models?1018

To look further into the nature of errors for experi-1019

ments A and B, we evaluate the ‘hard cases’. These1020

are cases that the model has an incorrect prediction1021

for with the maximum data size and non-private1022

implementation (the first set of results of experi-1023

ment A). For the experiment A learning curves, we1024

take the errors for every setting of the experiment1025

(10% training data, 20%, and so forth) and calcu-1026

late the intersection of those errors with that of1027

the ‘hard cases’ from the baseline implementation.1028

This intersection is then normalized by the origi-1029

nal number of hard cases to obtain a percentage1030

value. The results for experiment A can be seen1031

in Figure 5. We perform the same procedure for1032

experiment B with different noise values for the1033

SGD-DP setting, as seen in Figure 6. This pro-1034

vides a look into how the nature of errors differs1035

among these different settings, whether they stay1036

constant or become more random as we decrease1037

the training size or increase DP noise.1038

Regarding the errors for experiment B, we can1039

see a strong contrast between datasets such as Red-1040

dit and PubMed. For the latter, the more noise we1041

add as ε decreases, the more random the errors be-1042

come. In the case of Reddit, however, we see that1043

even if we add more noise, it still fails on the same1044

hard cases. This means that there are hard aspects1045

of the data that remain constant throughout. For1046

instance, out of all the different classes, some may1047

be particularly difficult for the model. 1048

Although the raw data for Reddit does not have 1049

references to the original class names and input 1050

texts, we can still take a look into these classes nu- 1051

merically and see which ones are the most difficult 1052

in the confusion matrix. In the baseline non-DP 1053

model, we notice that many classes are consistently 1054

predicted incorrectly. For example, class 10 is pre- 1055

dicted 93% of the time to be class 39. Class 18 1056

is never predicted to be correct, but 95% of the 1057

time predicted to be class 9. Class 21 is predicted 1058

as class 16 83% of the time, and so forth. This 1059

model therefore mixes up many of these classes 1060

with considerable confidence. 1061

Comparing this with the confusion matrix for the 1062

differentially private implementation at an ε value 1063

of 2, we can see that the results incorrectly predict 1064

these same classes as well, but the predictions are 1065

more spread out. Whereas the non-private model 1066

seems to be very certain in its incorrect prediction, 1067

mistaking one class for another, the private model 1068

is less certain and predicts a variety of incorrect 1069

classes for the target class. 1070

For the analysis of the hard cases of experiment 1071

A in Figure 5, we can see some of the same pat- 1072

terns as above, for instance between PubMed and 1073

Reddit. Even if the training size is decreased, the 1074

model trained on Reddit still makes the same types 1075

of errors throughout. In contrast, as training size 1076

is decreased for PubMed, the model makes more 1077

and more random errors. The main difference be- 1078

tween the hard cases of the two experiments is that, 1079

apart from Reddit, here we can see that for all other 1080

datasets the errors become more random as we de- 1081

crease training size. For example, Cora goes down 1082

from 85% of hard cases at 90% training data to 74% 1083

at 10% training data. In the case of experiment B, 1084

they stay about the same, for instance Cora retains 1085

just over 70% of the hard cases for all noise values. 1086

Overall, while we see some parallels between 1087

the hard cases for experiments A and B with re- 1088

spect to patterns of individual datasets such as Red- 1089

dit and PubMed, the general trend of more and 1090

more distinct errors that is seen for the majority 1091

of datasets with less training size in experiment A 1092

is not the same in experiment B, staying mostly 1093

constant across different noise values for the latter. 1094

The idea that the nature of errors for DP noise and 1095

less training data being the same is thus not always 1096

the case, meaning that simply increasing training 1097

size may not necessarily mitigate the effects of DP 1098
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Figure 5: Hard cases in non-DP.
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Figure 6: Hard cases analysis DP.

noise.1099

F MNIST Baselines1100

Table 5 shows results on the MNIST dataset with1101

different lot sizes and noise values, keeping lot and1102

batch sizes the same. We use a simple feed-forward1103

neural network with a hidden size of 512, dropout1104

of 50%, SGD optimizer, and a maximum of 20001105

epochs with early stopping of patience 20, with1106

other hyperparameters such as learning rate being1107

the same as above. We note that the configuration1108

Lot Size Noise ε F1 Std.
600 4 1.26 0.90 0.02
6,000 4 4.24 0.84 0.01
60,000 4 15.13 0.45 0.04
60,000 50 0.98 0.39 0.15
60,000 100 0.50 0.10 0.01

Table 5: Results on the MNIST dataset with varying
lot sizes and noise values.

in the first row with lot size of 600 and noise 4 is 1109

the same as described by Abadi et al. (2016) in their 1110

application of the moments accountant, reaching 1111

the same ε value of 1.2586. 1112

We can see some important patterns in these 1113

results that relate to our main results from the GCN 1114

experiments. Maintaining a constant noise of 4, as 1115

we increase the lot size, not only does the ε value 1116

increase, but we see a dramatic drop in F1 score, 1117

especially for a lot size of 60,000, being the full 1118

training set. If we try to increase the noise and 1119

maintain that 60,000 lot size, while we are able to 1120

lower the ε value below 1, the F1 score continues 1121

to drop dramatically, going down to 0.1010 with a 1122

noise value of 100. 1123

Hence, the current MNIST results further show 1124

the benefits of applying the graph splitting method- 1125

ology on large one-graph datasets. By splitting the 1126

graph, we are able to utilize batches and lots of 1127

smaller sizes, allowing to add less noise to reach a 1128

lower epsilon value, ultimately retaining a higher 1129

F1 score in the DP setting. 1130
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