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Abstract

Deep neural networks are well-known for their vulnerability to adversarial
examples, particularly demonstrating poor performance in white-box attack
settings. However, most white-box attack methods heavily depend on the
target model, and the adversarial samplesoften get trapped in local optima,
leading to limited adversarial transferability. Although techniques such as
momentum, variance reduction, and gradient penalty mitigate overfitting
by combining historical information with information from local regions
around adversarial examples, still, much of the global loss landscape remains
unexplored, hindering further performance improvements.
In this work, we find that random initialization influences the optimization
of adversarial examples, making them converge at multiple local optima,
leaving the rest of the loss landscape unexplored. Based on this insight, we
propose two strategies: randomized global initialization and dual examples.
These strategies utilize multiple optimization trajectories to capture global
optimization directions, enhancing adversarial transferability. Our approach
integrates seamlessly with existing adversarial attack methods and signifi-
cantly improves transferability, as demonstrated by empirical evaluations
on the standard ImageNet dataset.

1 Introduction

Adversarial examples, which involve subtle perturbation to benign samples that can mislead
deep neural networks (DNNs), have garnered considerable attention in recent years (Szegedy
et al., 2013; Goodfellow et al., 2015; Wang et al., 2019). These examples underscore the
susceptibility of DNNs and raise significant security issues across various fields, including
autonomous driving (Cao et al., 2019; Nesti et al., 2022; Girdhar et al., 2023), facial
authentication (Chen et al., 2017; 2019; Joos et al., 2022), and object detection (Li et al., 2021;
Nezami et al., 2021; Zhang and Wang, 2019), among others. The investigation into adversarial
examples has led to extensive research focused on enhancing the robustness (Madry et al.,
2018; Shafahi et al., 2019; Zheng et al., 2020; Jia et al., 2022) and comprehension (Shumailov
et al., 2019) of DNNs. In summary, adversarial examples have become essential for identifying
vulnerabilities and improving the robustness of DNNs.

Without any knowledge about the architecture, parameters, or logits of remote victim models
used in real-world applications, attackers often use local surrogate models to generate adver-
sarial examples that can deceive these victim models, a method known as transfer adversarial
attacks. Various methods have been developed to improve adversarial transferability. These
methods include gradient-based attacks (Dong et al., 2018; Wang and He, 2021; Wang et al.,
2021b; Ge et al., 2023), input transformation-based attacks (Xie et al., 2019; Dong et al.,
2019; Wang et al., 2021a; 2024; 2023b; Wang and Yin, 2023), and model-related attacks (Liu
et al., 2017; Xiong et al., 2022; Gubri et al., 2022; Wang et al., 2023a;c).

Gradient-based methods form the foundation of various attack techniques, including input
transformation and model-related approaches. Goodfellow et al. (2015) introduced FGSM,
using gradient ascent for adversarial transferability, while Kurakin et al. (2018) enhanced this
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with iterative steps. However, adversarial optimization often stagnates in local maxima when
relying solely on gradients. Techniques like momentum (Dong et al., 2018), Nesterov (Lin
et al., 2020), variance reduction (Wang et al., 2021b; Wang and He, 2021), and gradient norm
penalization (Ge et al., 2023) have improved transferability. Input transformation-based
methods, by incorporating input diversity at each step, further enhance generalization and
attack performance. These methods underscore the importance of exploring loss landscapes
for better global guidance. However, as input transformations often require predefined
transformations and involve higher memory and computation costs, a natural question arises:
Can broader loss landscape exploration be integrated into the iterative attack process of
gradient-based methods?

Unlike previous methods that focus on exploring regions around adversarial examples, our
approach broadens the exploration by navigating around benign samples. Specifically, we in-
vestigate the often-overlooked role of initialization in adversarial attacks. While initialization
may not significantly impact performance, it can lead adversarial optimization to multiple lo-
cal optima. Based on this finding, we propose two simple yet effective strategies—randomized
global initialization and dual examples—to leverage the entire loss landscape around benign
samples, thereby enhancing global guidance and improving adversarial transferability.

Our contributions are summarized as follows,

• Using t-SNE to project the optimization trajectory of adversarial examples into a
visualizable latent space, we empirically validate that random initialization can guide
adversarial optimization to multiple local optima without compromising adversarial
transferability.

• We propose two simple yet effective strategies—randomized global initialization and
dual examples—to enhance adversarial transferability by usling multiple trajecto-
ries to explore broader loss landscapes, utilizing multiple continuous optimization
trajectories to capture global information.

• Extensive experiments on the ImageNet-1K dataset demonstrate the effectiveness of
our approach, achieving state-of-the-art performance in gradient-based transferable
attack settings.

2 Related work

2.1 Adversarial attack and adversarial transferability

Since Szegedy et al. (2013) uncovered the vulnerability of DNNs to adversarial examples,
numerous adversarial attacks have been proposed, including 1) white-box attacks : the attacker
has the full knowledge of the victim model (Goodfellow et al., 2015; Moosavi-Dezfooli et al.,
2016; Carlini and Wagner, 2017), e.g ., architecture, logits. 2) black-box attacks : the attacker
has no prior information of the victim model. It is often impossible to access information about
the target victim model in real-world scenarios, necessitating black-box attack techniques.
Existing black-box attacks can be grouped into three classes: score-based (Andriushchenko
et al., 2020; Yatsura et al., 2021), decision-based (Li et al., 2022; Chen et al., 2020; Wang
et al., 2022b), and transfer-based (Dong et al., 2018; Lin et al., 2020; Wang et al., 2021a)
attacks. Score-based and decision-based attacks typically require a significant number of
queries on the victim model, while transfer-based attacks adopt the adversarial examples
generated on surrogate models to fool different victim models. This makes transfer-based
attacks more computationally efficient and better suited for real-world applications. Hence,
we focus on transfer-based attacks. Numerous researchers have devised strategies to enhance
adversarial transferability, concentrating mainly on three approaches: iterative gradient-based
optimization, input transformation-based methods, and model-related techniques.

Gradient-based optimization methods. I-FGSM (Kurakin et al., 2018) extends
FGSM (Goodfellow et al., 2015) into an iterative version to substantially enhance the
attack effectiveness under the white-box setting but exhibits poor transferability. MI-
FGSM (Dong et al., 2018) incorporates momentum to improve adversarial transferability,
while NI-FGSM (Lin et al., 2020) applies Nesterov momentum for optimization acceleration.
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PI-FGSM (Gao et al., 2020) recycles the clipped adversarial perturbation to the neighbor
pixels to enhance the transferability. VMI-FGSM (Wang and He, 2021) adjusts the gradient
based on the gradient variance of the previous iteration to stabilize the update direction.
EMI-FGSM (Wang et al., 2021b) enhances the momentum by averaging the gradient of data
points sampled from the optimization direction. GIMI-FGSM (Wang et al., 2022a) initializes
the momentum by running the attacks in several iterations for gradient pre-convergence.

Input transformation methods. Input transformation-based attacks have shown great
effectiveness in improving transferability. For instance, diverse input method (DIM) (Xie
et al., 2019) resizes the input image to a random size, which is then padded to a fixed
size for gradient calculation. TIM (Dong et al., 2019) adopts Gaussian smooth on the
gradient to approximate the average gradient of a set of translated images to update the
adversary. Scale-invariant method (SIM) (Lin et al., 2020) calculates the gradient on a
collection of scaled images. Admix (Wang et al., 2021a) incorporates a fraction of images
from other categories into the inputs to generate multiple images for gradient calculation.
SSA (Long et al., 2022) randomly transforms the image in the frequency domain to craft
more transferable adversarial examples.

Model-related methods. Liu et al. (Liu et al., 2017) initially discovered that an ensemble
attack, which generates adversarial examples on multiple models, can result in better
transferability. Li et al. (Li et al., 2020) simultaneously attack several ghost networks, which
are generated by adding dropout layers to the surrogate model. Xiong et al. (Xiong et al.,
2022) minimize the gradient variance across different models to enhance ensemble attacks.
Gubri et al. (Gubri et al., 2022) train the model with a high learning rate to produce multiple
models and attack them sequentially to improve existing attacks’ transferability.

2.2 Adversarial defense

To mitigate the threat of adversarial attacks, a variety of defense methods have been proposed,
including adversarial training Goodfellow et al. (2015); Zhang et al. (2019); Wang et al.
(2020), input pre-processing Guo et al. (2018), certified defense Cohen et al. (2019), etc. For
example, Liao et al . Liao et al. (2018) proposes a high-level representation guided denoiser
(HGD) to purify the adversarial examples. Madry et al . Madry et al. (2018) introduces an
adversarial training method (AT) that utilizes PGD adversarial examples to train models,
aiming to enhance their adversarial robustness. Wong et al. Wong et al. (2020) employ
random initialization in FGSM adversarial training, leading to Fast Adversarial Training
(FAT), which achieves accelerated training and improved adversarial robustness comparable
to PGD training. Cohen et al. Cohen et al. (2019) propose a random smoothing technique
(RS) to provide the model with certified robustness against the adversarial examples. Naseer
et al. Naseer et al. (2020) design a neural representation purifier (NRP) to remove harmful
perturbations of images.

3 Methodology

3.1 Tracing the optimization trajectory in randomized adversarial attacks

Initialization techniques (e.g., random start, Xavier (Glorot and Bengio, 2010), Kaiming (He
et al., 2015)) are widely recognized for expediting convergence in optimization problems.
While prior studies (Lin et al., 2020; Wang et al., 2021a; 2023b) have drawn empirical
connections between neural network training and adversarial example generation in terms of
generalization, the role of initialization in adversarial contexts remains underexplored. The
first work addressing this is GIMI-FGSM (Wang et al., 2022a), which initializes momentum
with a pre-computed value. In this work, we conduct a more detailed investigation into the
impact of initialization on adversarial example generation.

In particular, we explore the initialization strategy of randomly initializing the adversarial
perturbation. We evaluate three attack methods: I-FGSM (Kurakin et al., 2018), VMI-
FGSM (Wang et al., 2021b), and GIMI-FGSM (Wang et al., 2022a). To test this, we
generate 1,000 adversarial examples targeting the ResNet-18 (He et al., 2016) surrogate
model and assess their transferability across six models: ResNet-101 (He et al., 2016),
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ResNeXt-50 (Xie et al., 2017), DenseNet-121 (Huang et al., 2017), MobileNet (Howard et al.,
2017), ViT (Dosovitskiy et al., 2020), and Swin (Liu et al., 2021). We present the results of
different random start experiments in fig. 1. Our results demonstrate that attacks initialized
with different random perturbations perform comparably to each other, where the maximum
difference between attack success rates is only 1.6%, which is indicated by the surrounded
shadow area of each line. However, the question remains: what does change?
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Figure 1: Results of the attack suc-
cess rate (ASR) versus the epoch
for I-FGSM, VMI-FGSM, and GIMI-
FGSM with fixed step size.

To gain deeper insights into how perturbation initial-
ization influences the dynamics of adversarial attacks,
we propose using t-distributed Stochastic Neighbor
Embedding (t-SNE) to project the optimization tra-
jectory of adversarial examples into a latent space
for visualization. Specifically, for a benign sam-
ple x, we generate a series of adversarial examples
x1, x2, . . . , x20 using different attack methods with
increasing numbers of steps t = 1, 2, . . . , 20 with fixed
step size. To obtain the projections z1, z2, . . . , z20
in the latent space, we optimize the following loss
function:

L =
∑
i̸=j

Pij log

(
Pij

Qij

)
, (1)

where Pij is the similarity between points xi and xj in
the high-dimensional space, modeled using a Gaussian
kernel, and Qij is the similarity between their projec-
tions zi and zj in the latent space, modeled using a
Student’s t-distribution. By minimizing L through
gradient descent, we iteratively adjust {zt}20t=1 to pre-
serve the local structure of the data. This approach allows us to visualize the optimization
trajectory of adversarial examples in the latent space, reflecting their relationships in the
original high-dimensional space.

We present the results in fig. 2, where it becomes clear that for all three methods, different
random initializations lead the optimization of the same adversarial example to converge to
distinct local optima. Specifically, while VMI-FGSM employs variance reduction to stabilize
the optimization trajectory compared to I-FGSM, it still fails to reach a consistent optimum
across different random initializations. Even with global momentum pre-computed for
momentum initialization, GIMI-FGSM does not achieve a unified global direction. Besides,
by examining the trajectories of different attacks, we observe that even with the same step
size and number of optimization steps, each attack pushes the adversarial example to different
distances from the benign sample. Notably, I-FGSM converges the fastest, while VMI-FGSM
drives the adversarial example the farthest from the benign sample.

3.2 Leveraging multiple trajectories to enhance the adversarial
transferability

From the visualization results, we observe that significant portions of the loss landscape remain
under-explored, causing the optimization of adversarial examples to become easily trapped
in multiple local optima around benign samples. To enhance adversarial transferability,
we propose two strategies: randomized global initialization and dual example generation.
These strategies leverage multiple parallel trajectories to explore the loss landscape more
comprehensively.

Randomized global initialization. Building on the design of GIMI-FGSM, which initializes
momentum using pre-computed global guidance, we take a further step to address the
challenge of accurately capturing true global momentum. Pre-computation is complicated
by the presence of multiple local optima near the initial benign samples. For instance, as
shown in Figure 2 , running GIMI-FGSM from different random starting points often causes
adversarial examples to converge to distinct local optima, which can hinder adversarial
transferability, especially with a large number of iterations.
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Figure 2: Visualization of I-FGSM, VMI-FGSM, and GIMI-FGSM with different random
starts. The 20-step optimization trajectories are projected into the latent space, where the
transparency indicates the step number: more transparent dots correspond to later steps.

Algorithm 1 Boosting the adversarial transferability of MI-FGSM with RGI and DE.

Input: The neural network f(·), benign sample x with the ground truth y, loss function L,
number of iterations T , number of dual examples K, momentum decay factor γ, number
of samples used for computing the randomized global momentum N , increasing scheduled
step size sequence {αt}Tt=1.

Output: The adversarial perturbation.
1: Initialize {δdualk,0 }Kk=1 using the random initialization, and δ0 = 0
2: Initialize the momentum m0 with 0
3: for n = 1 to N do
4: Initialize the momentum mn,0 = 0, and randomly initialize δn,0
5: for t = 1 to T ′ do
6: mn,t ← ∇xL(f(x+ δn,t−1), y) + γ ·mn,t−1

7: δn,t ← δn,t−1 + α · sign(mn,t)
8: end for
9: end for

10: m0 ← 1
N

∑N
n=1 mn,T ′

11: for t=1 to T do ▷ The {δdualk,0 }Kk=1 are periodically re-initialized
12: for k=1 to K do
13: gk,t ← ∇xL(f(x+ δdualk,t−1), y)

14: δdualk,t ← δdualk,t−1 + αt · sign(gk,t)
15: end for
16: mt ← 1

N

∑N
n=1 gk,t + γ ·mt−1

17: δt ← δt−1 + αt · sign(mt)
18: end for
19: return δT
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To address this issue, we posit that initialization of the global momentum warrants a thorough
examination of the entire surrounding region. We randomly sample several samples in the
ϵ-neighborhood of input image x to accumulate the momentum as the global momentum,
denoted as randomized global initialization (RGI). By incorporating RGI, we aim to capture
a more representative global momentum that takes into account the diverse local optima
surrounding the initial benign sample.

Lines 1–10 in Alg. 1 outlines the implementation details of random global momentum
initialization. Given a benign sample x with its corresponding ground-truth label y, we
initialize N random perturbations. Each perturbation is added to a separate copy of the
benign sample, resulting in N parallel perturbed copies. We then apply the MI-FGSM attack
to each perturbed copy for a pre-defined number of iterations T ′. During this process, we
calculate the global momentum achieved in each MI-FGSM run and compute the average
global momentum as the enhanced global momentum. Afterward, we reset the perturbation to
zero, set the momentum as the enhanced global momentum, and proceed with the adversarial
attack using the enhanced global momentum in the subsequent iterations.

Dual Example. While RGI is introduced to capture global momentum for initialization,
we further propose the dual example strategy to explore a broader loss landscape during the
attack process, thereby capturing the global optimization direction more effectively. Unlike
previous approaches that explore multiple distinct points around the adversarial example at
each step, we amplify the exploration region by sampling more continuous trajectories. In our
strategy, each trajectory represents an independent and parallel instance of a dual example,
allowing the adversarial example to be optimized across multiple trajectories simultaneously.

In detail shown in line 10–18 of algorithm 1, for an adversarial example xadv to optimize, we
first randomly generate N perturbations {δn}Nn=1 independently, draw from the Gaussian
distribution and clip them to the perturbation budget ϵ . Then, we optimize the dual example
by I-FGSM in line 12–15, which continuously collect diverse gradients to explore a broader
loss landscape. Next, we average the collected gradients and apply them to the update policy
of the main adversarial example to optimize.
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Figure 3: Results of the attack suc-
cess rate (ASR) versus the epoch
for I-FGSM, VMI-FGSM, and GIMI-
FGSM with varying step size.

Increasing step size. As shown in fig. 1 and fig. 2,
we can notice that all three attacks will converge to
the local optima with converging adversarial trans-
ferability when increasing the number of iterations.
To further study the impact the gradients around the
benign sample on the adversarial transferability, we
adjust the step size to ϵ/T , where T = 1, 2, .., 20, and
reproduce the experiments in fig. 1. With small T ,
the utility of gradients near the benign sample and
the ability to escape from the local optima far away
are improved. As shown in fig. 3, while VMI-FGSM
significantly improves adversarial transferability with
the help of neighbor information, both I-FGSM and
GIMI-FGSM, which rely more the pure gradients,
shows a degration with large iterations. It indicates
that the importance of near-sample gradients in craft-
ing transferable adversarial examples.

To enhance the capacity of attacks and avoid getting
stuck in local optima, the dual example should accu-
mulate gradients that are beneficial for the long-term
optimization of adversarial examples. We propose
incorporating an increasing step size and a restart mechanism into the dual example strategy.
Instead of using a fixed step size, the increasing step size can be more efficiently to sample
more gradients near the benign samples , thereby improving transferability. The restart
mechanism is designed to generate more trajectories around the benign sample, allowing for
the collection of more transferable gradients.
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4 Evaluations

4.1 Experiment setup

Datasets and models. In our default setting, we randomly choose 1, 000 images from the
ImageNet-1K dataset (Deng et al., 2009) as our evaluation set. We use eight surrogate/victim
models, comprising 1) Convolutional Neural Network (CNNs): ResNet-18 (He et al., 2016),
ResNet-101 (He et al., 2016), ResNeXt-50 (Xie et al., 2017), DenseNet-121 (Huang et al.,
2017), and MobileNet (Howard et al., 2017); and 2) transformers: ViT (Dosovitskiy et al.,
2020) and Swin (Liu et al., 2021). We set the surrogate models as ResNet-18, DenseNet-121,
and ViT, and evaluate their performance by reporting the mean attack success rate against
a series of victim models.

Baseline methods and implementations. We apply our proposed randomized global
initialization (RGI) and dual example strategy to the VMI-FGSM for adversarial example
generation. Since our method is gradient-based, we select a range of state-of-the-art gradient-
based attack methods to compare with. These methods are: MI-FGSM (Dong et al., 2018),
EMI-FGSM Wang et al. (2021b), VMI-FGSM (Wang and He, 2021), MIG (Ma et al., 2023),
PGN (Ge et al., 2023), GIMI-FGSM (Wang et al., 2024), DTA (Yang et al., 2023), and
Anda (Fang et al., 2024). To further validate the scalability of our method, we integrate our
method as well as other gradient-based methods to the state-of-the-art input transformation-
based mehtod SIA (Wang et al., 2023b). To validate the effectiveness of our proposed
strategies, we integrate the randomized global initialization, dual example, and decreasing
step size (log) to the VMI-FGSM, where the dual example is optimized by MI-FGSM
continuously with 5 as the number of epochs to restart.

Hyper-parameters. We set the maximum perturbation magnitude ϵ = 16
255 under the L∞

constraint. We set the number of iterations as 10, the step size as 1.6
255 , momentum decay

factor γ as 1, the look-ahead factor for NI-FGSM as 1.6
255 , the number of additional samples

used in EMI-FGSM and VMI-FGSM as 11 and 20, the number of pre-computing epochs for
GIMI-FGSM as 5. The balanced coefficient and number of samples for variance estimation
in PGN are set as 0.5 and 20, respectively. The order of the approximation of the integral in
MIG is set as 20. The relative value for the neighborhood and decay factor for the gradient
update in DTA are set as 1.5 and 0.8, respectively. In our method, we set the number of
samples for computing the global momentum and dual examples as 5 and 20, respectively.
We use the ln sequence as the scheduled increasing step size.

4.2 Attack a Single Model

We first evaluate the effectiveness of our proposed method under the setting of attacking a
single model. Specifically, we use different attack methods to generate adversarial examples
on three surrogate models: i.e., ResNet-18, DenseNet-121, and ViT. We use one surrogate
model at a time. We then evaluate the adversarial transferability of the generated adversarial
examples on the eight victim models: ResNet-18, RestNet-101, ResNeXt-50, DenseNet-121,
ViT, PiT, Visformer, and Swin. We demonstrate the success rate averaged over the samples
separately generated by the three surrogate models intable 1.

As shown in table 1, our proposed method achieves state-of-the-art performance in attacking
all models. Specifically, compared to the runner-up method, PGN, which penalizes the
gradient norm on the original loss function, our method more efficiently leverages the
gradients near the benign samples, resulting in an improvement in adversarial transferability
of up to 4.2% against ResNet-101, 5.4% against PiT and Swin, and 3.0% on average. It
is worth noting that while PGN focuses on utilizing gradients at each step, our proposed
method, including RGI and DE, focuses on the continuous first few steps, where the results
demonstrate the superiority of our strategy.

4.3 Integration to input transformation-based methods

We then evaluate the compatibility of our method. We integrate the state-of-the-art input
transformation-based method structure invariant attack (SIA) into different adversarial

7
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Table 1: Average success rates (%) of attacking eight deep neural networks using various attack
methods. The results are averaged over the samples generated using the three separate surrogate
models. For simplicity, we denote ResNet-18 as RN18, ResNet-101 as RN101, ResNeXt-50 as RX50,
DenseNet-121 as DN121, and Visformer as Vis.

Method RN18 RN101 RX50 DN121 ViT PiT Vis Swin Avg.
MI 72.1 36.8 41.2 61.5 42.8 28.2 35.7 43.6 45.2

EMI 87.2 49.7 53.4 78.8 18.1 28.0 42.1 47.9 50.7
VMI 80.7 53.6 57.5 75.6 49.7 43.4 52.4 58.5 58.9
GIMI 80.2 44.9 49.1 71.3 44.4 33.1 43.1 50.6 52.1
MIG 79.1 48.5 53.2 74.3 47.5 38.6 46.5 55.7 55.4
PGN 89.5 65.9 69.3 86.4 53.5 53.3 62.4 69.2 68.7
DTA 77.1 44.4 49.0 68.6 45.0 31.4 42.7 50.1 51.0
Anda 83.0 62.0 66.0 83.0 53.1 50.4 61.2 63.8 65.3
Ours 90.1 70.1 73.7 87.7 59.1 58.3 67.9 74.6 72.7

Table 2: Average success rates (%) of attacking eight deep neural networks using various gradient-
based attack methods integrated with SIA. The results are averaged over the samples generated
using the three separate surrogate models.

Method RN18 RN101 RX50 DN121 ViT PiT Vis Swin Avg.
MI 84.9 64.7 69.0 83.5 49.1 51.4 62.1 66.5 66.4

EMI 90.6 70.8 75.5 88.6 50.6 56.5 68.0 72.4 71.6
VMI 89.9 77.4 79.8 89.7 59.2 64.3 74.6 78.4 76.7
GIMI 92.3 74.5 79.3 90.8 52.8 59.0 71.7 74.5 74.4
MIG 90.4 75.5 78.6 90.0 58.2 62.6 72.9 76.5 75.6
PGN 94.6 79.2 83.0 92.9 57.5 64.4 74.1 78.2 78.0
DTA 93.5 82.6 85.3 93.0 57.4 66.3 79.5 80.0 79.7
Anda 90.9 79.0 82.7 90.9 60.4 64.9 76.4 78.0 77.9
Ours 95.7 87.5 86.4 95.0 64.3 70.5 85.6 87.1 84.0

attack methods. Following the setting in Wang et al. (2023b), we set the number of shuffled
copies as 20 and the number of blocks as 3. Other settings during the attack process are
aligned with the aforementioned experiments.

The results in table 2 demonstrate that integrating SIA into various adversarial attack
methods significantly improves adversarial transferability across all tested models. Our
proposed method achieves the highest average success rate of 84.0%, outperforming all
other approaches. Compared to existing state-of-the-art methods like DTA and PGN, our
method provides substantial improvements, with gains of up to 4.9% in average attack
success rates. The largest improvements are seen in transformer-based models, with a 7.1%
increase on Swin and a 4.2% increase on PiT, where traditional gradient-based methods tend
to struggle. This demonstrates the effectiveness of our strategy in handling both CNNs and
vision transformers, making it a powerful tool for adversarial transferability in various model
architectures. These results solidify the scalability and superior performance of our method.

4.4 Evaluation under the ensemble setting

Under the ensemble setting of the pool of three surrogate models, we use different methods
to generate the adversarial examples and fool vanilla models as well as advanced defense
methods, including adversarial training (AT) (Madry et al., 2018), high-level representation
guided denoiser (HGD) (Liao et al., 2018), random smoothing (RS) (Cohen et al., 2019),
and neural representation purification (NRP) (Naseer et al., 2020).

We report the results in table 3. In attacking vanilla models under the ensemble setting,
our proposed method consistently achieves state-of-the-art performance, outperforming the
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Table 3: Average success rates (%) of attacking eight deep neural networks using the adversarial
examples crafted by various gradient-based methods using three surrogate models under the ensemble
setting.

Method RN101 RX50 DN121 PiT Vis Swin NRP RS HGD AT Avg.
MI 59.5 63.7 85.7 46.0 57.6 63.0 36.1 23.7 53.4 33.7 52.2

EMI 80.4 83.5 95.6 66.3 78.4 81.5 50.8 27.3 73.9 37.0 67.5
VMI 75.9 78.9 92.8 63.7 72.8 75.9 52.8 27.7 70.1 36.6 64.7
GIMI 71.4 74.7 92.8 55.4 69.2 71.2 44.7 25.9 65.6 36.0 60.7
PGN 87.8 89.2 98.6 76.9 83.6 87.9 53.5 29.4 72.7 39.9 72.0
MIG 75.2 79.9 95.4 64.2 73.8 78.4 64.6 35.8 86.0 47.5 72.1
DTA 70.2 72.8 90.4 51.2 64.6 69.3 36.2 23.0 62.4 33.8 57.4
Anda 87.6 89.4 98.6 77.7 84.3 85.2 57.5 28.0 88.0 37.7 73.4
Ours 90.1 90.6 99.5 82.3 86.2 88.9 65.3 38.2 89.5 48.6 77.7

runner-up method PGN by a margin of 1.9%. When targeting defense models, our method
achieves the highest attack success rate of 38.2% against the most robust defense method,
RS. This demonstrates the effectiveness of our approach, not only in attacking standard
models but also in overcoming advanced defense mechanisms.

4.5 Ablation study and discussion

Table 4: Average attack success rate comparison for different momentum-based attacks. The left
subtable presents results for global momentum initialization (GI and RGI), while the right subtable
shows the success rate when applying dual example with/without ensemble strategy.

(a) Results of momentum-based attacks inte-
grated with GI or RGI.

MI NI PI EMI VMI

Ori. 62.1 63.7 65.6 69.2 76.5
GI 67.6 63.6 66.6 75.1 77.5

RGI 70.5 70.6 72.9 77.6 83.4

(b) Attack success rate with none (K=0), single
(K=1) and multiple (K=5) dual examples.

K I MI PI VMI GIMI

0 41.4 62.1 65.6 76.5 67.6
1 52.8 64.5 67.6 79.6 70.9
5 67.3 69.2 70.2 80.5 74.1

On the effect of random global momentum. Tab. 4a presents the results of random
global momentum initialization. It can be observed that global initialization has a minor or
negative effect on the adversarial transferability of a few baselines, including NI-FGSM (Lin
et al., 2020), PI-FGSM (Gao et al., 2020), and VMI-FGSM. In contrast, the RGI method
significantly improves the adversarial transferability for all the baselines, surpassing the GI
method with a mean attack success rate of 4.92%. These results provide further confidence
in supporting our argument that proper initialization of the global momentum requires a
comprehensive exploration of the neighborhood. The effectiveness of the RGI method in
enhancing the adversarial transferability across various baselines demonstrates the importance
of initializing the momentum in a way that encourages more effective directions.

On the effect of dual example strategy. The dual example strategy is plug-and-play,
easily integrating into multiple existing attack methods to achieve further performance
improvements. To demonstrate its scalability, we integrate it into I- (Goodfellow et al.,
2015), MI-, PI-, VMI-, and GIMI-FGSM, using these enhanced attack methods to generate
adversarial examples on ResNet-18 and attack other models. The mean attack success rate
against the victim models is used as the metric for evaluating adversarial transferability. The
results, presented in Tab. 4b, demonstrate clear improvements over the baseline methods.
Compared to the baselines, our dual example approach achieves significant performance
gains on ResNet-18. Specifically, we observe improvement margins of 25.9% on I-FGSM,
7.5% on MI-FGSM, 4.3% on VMI-FGSM, and 6.9% on GIMI-FGSM. These results further
demonstrate the effectiveness of the dual example and highlight the importance of the
exploration of the loss landscape in attacks to enhance the adversarial transferability.
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Table 5: Average attack success rates (%) of
classical attack methods when applying dual
example with K = 5 using different sequences
to schedule step size.

Sequence I MI PI VMI GIMI

constant 67.3 69.2 70.2 80.5 74.1
log 68.5 69.6 70.9 81.9 74.3

linear 67.7 69.1 71.5 83.0 74.5
exp 69.9 69.3 70.2 79.9 73.3

On the use of scheduled step size. In our
proposed method, we incorporate dual examples
with an increasing log sequence as the scheduled
step to fully exploit the gradients near the be-
nign sample and bypass local optima, thereby
enhancing adversarial transferability. To inves-
tigate the impact of different sequences on trans-
ferability, we conducted experiments, and the
results are shown in table 5. Compared to using
a constant step size, the scheduled step sequence
significantly improves adversarial transferability.
Notably, different base attacks benefit from dif-
ferent scheduled steps: log for MI, linear for PI, and VMI, highlighting the importance of
choosing the optimal step schedule for each attack method and the necessity to fully utilize
the gradient near the benign samples to boost the adversarial transferability.

5 Conclusion

In this work, we study the problem of randomness and local optima in adversarial transferabil-
ity. By leveraging t-SNE to project the optimization trajectory into a low-dimensional space,
we observe that while random initialization of adversarial perturbations has little impact
on adversarial transferability, the optimization trajectories vary significantly. Motivated by
this observation, we propose a randomized global initialization and the use of dual examples
to explore more diverse trajectories, enabling the method to overcome multiple optima
for improved performance. Extensive experiments on ImageNet-1K demonstrate that our
method achieves state-of-the-art results.
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