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ABSTRACT

This paper introduces LAFT, a novel feature transformation method designed to
incorporate user knowledge and preferences into anomaly detection using natu-
ral language. Accurately modeling the boundary of normality is crucial for dis-
tinguishing abnormal data, but this is often challenging due to limited data or
the presence of nuisance attributes. While unsupervised methods that rely solely
on data without user guidance are common, they may fail to detect anomalies
of specific interest. To address this limitation, we propose Language-Assisted
Feature Transformation (LAFT), which leverages the shared image-text embed-
ding space of vision-language models to transform visual features according to
user-defined requirements. Combined with anomaly detection methods, LAFT
effectively aligns visual features with user preferences, allowing anomalies of in-
terest to be detected. Extensive experiments on both toy and real-world datasets
validate the effectiveness of our method.

1 INTRODUCTION

Anomaly detection (AD) is the task of distinguishing abnormal data that deviates from the norm. In
most scenarios where anomaly detection is applied, normal data is relatively easy to obtain, while
abnormal data is scarce or sometimes impossible to obtain in advance. Thus, typical anomaly de-
tection methods rely on normal data provided by users to learn what constitutes normal. However,
when the training data is biased or does not cover the diverse variations, modeling the boundary of
normality becomes a significant challenge (Lee & Wang, 2020; Cohen et al., 2023). In practical
applications, models may need to prioritize or disregard certain attributes of the data. For instance,
when inspecting products in images, a user might focus solely on the product’s shape, ignoring
attributes like color or lighting conditions. Moreover, distinguishing anomalies becomes more diffi-
cult when attributes are entangled, as seen in the Waterbirds dataset, where the background and bird
features are entangled (Sagawa et al., 2019).

To address this issue, various methods have been proposed that use data augmentation or generation
techniques to improve the learning of decision boundaries (Zavrtanik et al., 2021; Li et al., 2021;
Du et al., 2021). These approaches aim to produce more diverse samples, covering a broader range
of the underlying data distribution than what is available. Additionally, some approaches focus on
enabling models to learn task-specific feature representations (Chen et al., 2020a;b; Caron et al.,
2020), applying them to anomaly detection to better capture feature-level normality (Hyun et al.,
2023). However, a limitation of these methods is that they may struggle to generalize to completely
unseen data or fail to align with the user’s intent in defining normality.

In some scenarios, users may have prior knowledge or specific preferences about the data that they
want to integrate into the anomaly detection process. Typically, this is achieved through indirect
methods, such as manually applying random color augmentation to ignore certain object colors.
Controlling the boundary of normality remains relatively unexplored, and existing approaches often
require unrealistic conditions, such as access to anomaly samples or labels (Cohen et al., 2023). To
overcome this limitation, we propose leveraging vision-language models to directly integrate user
knowledge and preferences into the anomaly detection framework through natural language. By
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Figure 1: High-level motivation of our method: (left) typical image anomaly detection methods
treat all test data that differs from the training data as anomalies, while (right) our method, LAFT
AD, incorporates user preferences into the anomaly detection.

using language, users can more explicitly express their desired concepts, providing greater control
over the definition of normality.

Recent studies have shown the effectiveness of training vision models with large amounts of unla-
beled Internet data (Radford et al., 2021; Jia et al., 2021; Desai et al., 2023). By using image-text
pairs from the web for pre-training, these models use natural language descriptions to improve the
quality of image representations. Through large-scale training, they can correlate visual concepts
in images with textual descriptions, aligning image and text features in a shared embedding space.
Researchers have applied these models to industrial anomaly detection (Jeong et al., 2023; Cao
et al., 2023b; Chen et al., 2023; Zhu & Pang, 2024) and general image out-of-distribution tasks us-
ing zero-shot text prompts (Ming et al., 2022; Miyai et al., 2023). A key benefit is the ability to
incorporate human knowledge through text prompts, allowing zero-shot use without requiring addi-
tional training images. However, defining the complex normality of an image solely through natural
language remains a challenge, and many methods face structural limitations in utilizing available
training images. Therefore, we aim to develop a method where normality is primarily defined by
image features, similar to other image anomaly detection approaches, with language serving only to
refine the boundaries of normality.

In this paper, we present Language-Assisted Feature Transformation (LAFT), a method that allows
users to control the transformation of image features using natural language without requiring ad-
ditional training. LAFT leverages the vision-language model CLIP (Radford et al., 2021), using
its shared embedding space to link visual and textual features. This connection enables the trans-
formation of visual features based solely on language inputs. We hypothesize that visual concept
subspaces exist within this shared embedding space, and introduce the notion of a “concept axis” to
represent these subspaces. By computing pairwise differences between textual features, we derive
concept difference vectors that define the concept axes. Projecting visual features onto or orthogonal
to these axes allows for selective emphasis or suppression of specific image attributes.

Our method offers a training-free approach by using language, whereas most feature transformation
methods require extensive training on data. This property presents two key advantages: it is agnostic
to downstream tasks and performs well even in settings where data is scarce. By combining LAFT
with proper anomaly detection methods, we can apply LAFT to anomaly detection tasks. Our ap-
proach differs from most work using CLIP for anomaly detection in that it relies primarily on image
features to define normality, with language playing a supporting role. By using language, users
can provide their understanding of normality, allowing greater flexibility in incorporating domain
knowledge. Furthermore, by defining the boundaries of normality using image features, the model
can accurately distinguish between normal and abnormal images.

We summarize our contributions as follows:
1. We propose Language-Assisted Feature Transformation (LAFT), a novel method that uses natural

language to transform image features to fit the given task requirements by leveraging the image-
text aligned embedding space of CLIP.

2. We introduce LAFT AD, an anomaly detection method that combines LAFT with a k-nearest
neighbor (kNN) classifier, enabling users to selectively focus on or ignore specific image at-
tributes based on their guidance for semantic anomaly detection tasks.

3. We present WinCLIP+LAFT, an extension of WinCLIP that integrates LAFT to improve perfor-
mance in industrial anomaly detection tasks.

4. We demonstrate the effectiveness of our method on Colored MNIST and extensively evaluate its
performance on real-world datasets, including Waterbirds, CelebA, MVTec AD, and VisA.
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2 RELATED WORK

Image anomaly detection with vision-language model Since the advent of CLIP (Radford et al.,
2021), numerous studies in image anomaly detection have attempted to exploit the generalization
capability of this vision-language model. To align visual and textual features for effective out-of-
distribution detection, Ming et al. (2022) proposed a scoring method called MCM, with Miyai et al.
(2023) later presenting an improved version, GL-MCM. Addressing the limitations of zero-shot,
Ming & Li (2023) tried to further enhance performance by using parameter-efficient fine-tuning in
downstream tasks. Fort et al. (2021) aimed to improve the model’s understanding of normality by
providing the CLIP text encoder with candidate anomaly labels. In addition, Esmaeilpour et al.
(2022) introduced a framework for training a label generator based on the CLIP image encoder to
generate possible anomaly labels. For industrial anomaly detection, Jeong et al. (2023) introduced
WinCLIP, a zero-/few-shot anomaly detection model that efficiently extracts and aggregates features
at multiple levels, aligning them with textual information. Similarly, Chen et al. (2023) proposed
APRIL-GAN, and Zhu & Pang (2024) developed InCTRL, both of which adapt CLIP image features
using additional adapter layers to better align them for anomaly detection, although these approaches
require additional pre-training of the adapter layers.

Adjusting the normality boundary Few studies have specifically addressed the challenge of ad-
justing the normality boundary in anomaly detection. Cohen et al. (2023) introduced Red PANDA,
an anomaly detection method that disentangles relevant attributes in images while ignoring nuisance
factors. However, achieving this disentangled feature representation requires labeled data for each
nuisance attribute. Reiss et al. (2023) emphasized that overly expressive feature representations
can ultimately degrade performance, highlighting a trade-off between sufficient representation and
over-expressiveness in anomaly detection. Hendrycks et al. (2018) introduced outlier exposure, an
approach that uses auxiliary data to help models generalize more effectively to unseen anomalies.

Extracting task-specific features Several strategies have been developed to enhance the adapt-
ability and robustness of features extracted from backbone models. Some studies focus on fine-
tuning pre-trained feature extraction backbones or generating task-specific features through feature
transformations. Ruff et al. (2018) introduced a method that transforms normal data into a hyper-
sphere representation for anomaly detection, and Reiss et al. (2021) proposed an early stopping
strategy to prevent feature collapse. Chen et al. (2020a;b) utilized contrastive pre-training to facili-
tate feature agreement, and Caron et al. (2020) employed prototype vectors for contrastive training of
similar features. Following this line of research, Hyun et al. (2023); Reiss & Hoshen (2023); Tack
et al. (2020) extended contrastive learning approaches for anomaly detection. Zhao et al. (2023)
suggested using the backbone of vision-language pre-trained diffusion models and training a text
adaptor to extract task-specific features with text prompts for downstream tasks.

3 PRELIMINARIES

In our scenario, a training set, represented as Dtrain, consists of normal samples only, and a test set
Dtest consists of both normal and anomalous samples. For a two-stage anomaly detection model
consisting of a feature extractor f and an anomaly classifier g, the feature extractor f maps the input
image x to a feature v = f(x), and the anomaly classifier g maps the feature v to an anomaly score
s = g(v). Then, the anomaly score si is used to determine the prediction of the anomaly label ŷi.

The attributes of an image x extracted by the feature extractor are denoted as a = {a1, · · · , am},
and the anomaly label is denoted as y. Each attribute aj (j = 1, · · · ,m) denotes any characteristics
within the feature extracted from the image, such as the shape of the object, the color, or the back-
ground. The m attributes can be divided into relevant attributes arel = {aj}1≤j≤n and irrelevant
(nuisance) attributes airr = {aj}n<j≤m for desired anomaly detection tasks. For example, when
detecting anomalies in the shape of objects, the shape is relevant, while the color is irrelevant. To
properly detect anomalies, the prediction of the model should be invariant to the irrelevant attributes.

There are two ways to achieve this invariance:

1. Provide enough data that covers the possible values for each aj , so that the classifier g can
properly ignore irrelevant attributes airr in the feature v. This is the most desirable solution,
and many data augmentation and generation methods have been proposed. However, it is often
impossible to collect or hard to generate such data.
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Figure 2: Overview of our method, LAFT, a transformation module, and LAFT AD, combining
LAFT with a kNN classifier. Our approach uses CLIP’s text and image encoders without any addi-
tional training. The key idea is to use text prompts containing concept values to construct a concept
subspace for the target attribute. This process involves computing pairwise differences of concept
prototypes and extracting robust concept axes via PCA. Once the concept subspaces are created, the
shared embedding space can be used to transform image features suitable for anomaly detection.

2. Make the feature extractor f only extract the relevant attributes arel and do not include the irrel-
evant attributes airr in the feature v. Fine-tuning the feature extractor or adding a transformation
T to the feature extractor is a common way to achieve this. But it is often hard to design such
training procedures to achieve the invariance.

Our goal is to design a transformation T that transforms the feature v into a new feature v′ = T (v)
that the anomaly classifier g can use to detect anomalies without being affected by the irrelevant
attributes airr using only the user’s natural language without any additional training data or labels.

This can be achieved by two approaches:

Guide Make a transformation Tguide that includes only the relevant attributes aj ∈ arel. Some
attributes in arel may be correlated, so the transformed feature may not include all relevant
attributes.

Ignore Make a transformation Tignore that excludes all irrelevant attributes ∀aj ∈ airr. In many
cases this is harder to achieve than the above approach, because the transformation should
be able to remove all irrelevant attributes.

That is, we want our transformation T to represent the relevant attributes in a manner unaffected by
the irrelevant attributes:

p(an+1, · · · , am) = p(an+1, · · · , am |T (v)). (1)

We also want the transformed feature v′ to be informative, containing enough information about
relevant attributes. Here, I(; ) represents the mutual information between the two arguments:

I((a1, · · · , an); v) ∼ I((a1, · · · , an); T (v)). (2)

In practice, invariance can be measured by the accuracy of predicting the anomaly label ŷ from
the transformed feature T (v). But we can assess the informativeness by measuring the accuracy of
predicting the relevant attribute utilized to define anomalies. Empirical evaluations of these measures
for various datasets are provided in the Experiments. With such a representation, anomalies can later
be evaluated independently, devoid of any bias caused by the irrelevant attribute we aim to disregard.

CLIP (Radford et al., 2021) embeds the features in a unit sphere subspace in Euclidean space Rn.
An embedding vector of an image is correlated to the text embedding describing the image. This
means that we can construct the transform with the CLIP text encoder. We assume that all relevant
and irrelevant features can be encoded with the text description, so that natural language assists in
the manipulation of the vector in the CLIP shared embedding space.
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4 METHOD

Anomaly detection often faces data scarcity, especially for abnormal data, making it difficult for
models to define the normality boundary. In this situation, users may have prior knowledge or
preferences about what should be considered normal. Therefore, we aim to design:

• A method that can be used when the user has knowledge of normality and wants to control
it. Typical anomaly detection methods consider all test data different from the training data as
anomalies, but we want our method to be used only with a language.

• A method that effectively handles anomalies that are challenging to express solely in natural
language. Other methods using vision-language models require normality to be expressed entirely
in language prompts for guidance, which limits the ability to capture complex normality. We want
our method to utilize image features to define normality.

Note that our method is not intended to be used in situations where the user has no knowledge or
preferences, or to automatically identify relevant attributes.

Our method uses CLIP’s text and image encoders without additional training. The core idea is to
construct a concept subspace for target attributes using text prompts containing concept values. Af-
ter constructing the subspace, it transforms image features by projecting them onto the subspace,
taking advantage of CLIP’s shared embedding space. This involves computing pairwise differences
between textual features containing concept prototypes to extract robust concept axes. In this sec-
tion, we provide a detailed explanation of our method, as illustrated in Figure 2.

4.1 TEXT PROMPT

To guide the model in focusing on or ignoring specific attributes of an image, it is essential to provide
it with appropriate textual prompts. Following Ming et al. (2022), we assume that the text contains
concept prototypes representing the attributes. Thus, we provide the method with a list of prompts
composed of templates and values, as commonly done in CLIP-based methods (Radford et al., 2021;
Ming et al., 2022; Jeong et al., 2023). The key difference in our approach is that we use the actual
values of the desired attribute (e.g., “circle,” “square”) rather than the attribute name itself (e.g.,
“shape”). For instance, to capture the concept of hair color, we can construct the prompt as:

• “a photo of a person with brown hair”
• “a potrait of a man with black hair”
• “an image of a blond child”

By using the actual values of the desired attribute in the prompts, we aim for the method to capture
the difference between the concept prototypes of the attribute. Providing values for this attribute
that are not present in the training set, but are likely to appear during testing, helps construct a more
comprehensive subspace for that concept. As with other language-based methods, multiple types
of templates can be provided to mitigate the bias introduced by any single template. We examine
the effect of various sets of concept values in the Ablation Study, with the prompts used in our
experiments detailed in the Appendix.

4.2 FIND CONCEPT SUBSPACE

Mikolov (2013) showed that simple arithmetic operations between text embeddings can capture
meaningful relationships (e.g., vec(biggest) − vec(big) ≈ vec(smallest) − vec(small)).
This finding showed that text embeddings not only represent texts in a vector space, but also encode
the underlying relationships between them. Moreover, they observed that high-dimensional vectors,
when trained on large datasets, are capable of capturing subtle semantic relationships. Similarly,
CLIP’s text embeddings support arithmetic operations to compute differences between concept pro-
totypes, allowing for the comparison of these concepts in the embedding space.

Building on this approach, the method constructs a subspace of the concept within CLIP’s embed-
ding space. Specifically, it identifies the axes of this subspace that capture the variance between
concept prototypes, as represented by difference between the prompts. For prompts ti and tj , where
1 ≤ i < j ≤ n, we compute the pairwise differences of the text features:

∆vij := Etext(ti)− Etext(tj) (3)
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Figure 3: Projection of image features from CLIP’s image encoder (left) and transformed image
features using LAFT (right). Without guidance, the image features may not align with the intended
attributes. After applying LAFT, the features become more aligned with the desired attributes.

where n represents the number of prompts, and Etext denotes CLIP’s text encoder. But directly using
these vectors is not preferable because the prompts may contain template noise (Zhou et al., 2022).
To address this, we apply PCA to extract the principal axes from these vectors:

{ck}1≤k≤d := PCA({∆vij}1≤i<j≤n, d) (4)

where d is the number of components, and {ck} represents the d principal axes, collectively re-
ferred to as the concept axes. Throughout this paper, we typically select d between 8 and 32 when
guiding an attribute, and between 32 and 384 when ignoring an attribute. As discussed in the Pre-
liminaries, ignoring attributes is generally more challenging than guiding them, so a larger number
of components is used. For the impact of d, please refer to the Ablation Study.

4.3 FEATURE TRANSFORMATION WITH PROJECTION

For each image feature vi = f(xi) encoded by CLIP’s image encoder, we project the features onto
the concept subspace:

v′i = Tguide(vi) :=

d∑
k=1

⟨vi, ck⟩
⟨ck, ck⟩

ck, (5)

where ⟨·, ·⟩ denotes the inner product. This projection retains only the relevant attributes of the
image feature, as irrelevant attributes are nearly orthogonal to the concept axes. Conversely, we
can remove the irrelevant attributes using orthogonal projection. Let c̄k represent the concept axes
associated with the irrelevant attributes. Then we can project orthogonally onto the concept subspace
as follows:

v̄′i = Tignore(vi) := vi −
d∑

k=1

⟨vi, c̄k⟩
⟨c̄k, c̄k⟩

c̄k, (6)

which manually cancels out the vectors of irrelevant attributes. This completes the description of
the feature transformation method, LAFT.

4.4 ANOMALY SCORING

Many anomaly detection methods employ k-nearest-neighbors (kNN) for anomaly scoring (Cohen
& Hoshen, 2020; Roth et al., 2022). This approach is effective because normal data tends to be
densely concentrated, while anomalous data is typically sparsely distributed in the feature space. In
our method, LAFT AD, we also use kNN to estimate the density of normal data around each test
sample, assuming that the features have been processed by LAFT for semantic anomaly detection.

We start by extracting features for each normal sample: v′i = T (f(xi)), ∀xi ∈ Dtrain. Next, for each
test sample, we infer its feature: v′j = T (f(xj)), ∀xj ∈ Dtest. Finally, we score each test sample
based on its kNN distance from the normal data:

sj = g(v′j) :=
1

k

∑
v′
j∈Nk(v′

i)

Scos(v
′
j , v

′
i), (7)

where Nk(v
′
i) denotes the k nearest features to v′j in the normal data, and Scos(·, ·) represents cosine

similarity. We use k = 30 for kNN throughout the paper without optimization.

However, this method may not be suitable for industrial anomaly detection tasks, where anomalies
are often small and subtle. To address this, we extend WinCLIP (Jeong et al., 2023) to incorporate
LAFT for anomaly scoring, which we refer to as WinCLIP+LAFT for industrial anomaly detection.
A detailed explanation of this extension is provided in the Experiment.
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5 EXPERIMENTS

Datasets To validate our approach, we used the colored version of MNIST (LeCun et al., 2010),
Waterbirds (Sagawa et al., 2019), and CelebA (Liu et al., 2015) datasets for semantic anomaly
detection (SAD). We defined normal and anomalous values for each dataset attribute and divided
the training split into 2m subsets. For example, in the Colored MNIST dataset, we designated digits
0-4 as normal and 5-9 as anomalous, with the color red as normal and green and blue as anomalous.
We then used one subset as the training set, considering it normal across all m attributes (e.g., digits
0-4 and the color red). This is similar to the setup commonly used in many studies for a single
attribute (primarily based on class labels) (Ruff et al., 2020; Tack et al., 2020; Esmaeilpour et al.,
2022; Cohen et al., 2023; Reiss & Hoshen, 2023; Cao et al., 2023a; Zhu & Pang, 2024). To further
demonstrate the practicality of our method, we also used the MVTec AD (Bergmann et al., 2019)
and VisA (Zou et al., 2022) datasets for industrial anomaly detection (IAD).

Baselines For semantic anomaly datasets, we do not compare with typical image-only AD meth-
ods for two reasons: (1) they require attribute-specific processing (e.g., color augmentation) to in-
corporate user prior knowledge, which limits generalizability to other contexts, and (2) without
guidance, these methods detect images that differ from the training set, resulting in high false pos-
itive rates in our settings. Instead, to simulate image-only AD methods, we compare with simple
kNN and LinearProbe with additional training data, directly using image features from CLIP.

kNN computes the distance between the test image features and the training image features for
anomaly scoring. As discussed in the Method, many AD methods rely on kNN-based scoring,
making it an important baseline. kNN using the same training subset as the other methods serves
as a no-guidance version of LAFT AD, allowing us to directly evaluate LAFT’s effectiveness. And
kNN using additional normal training subset depending on the target attribute represents an image-
only method with attribute-specific image processing. Since applying image augmentation across all
datasets and attributes is not straightforward (e.g., augmenting the background in Waterbirds), we
assume that the additional data is well augmented images for the target attribute. To evaluate CLIP
image encoder’s performance, we provide full training data including normal and anomalous images
for LinearProbe to train a linear classifier to predict the class of the test image (Radford et al., 2021).

We also evaluate CLIP-based zero-shot and few-shot AD methods. For zero-shot AD, we use Maxi-
mum Concept Matching (MCM; Ming et al., 2022), which requires only prompts for normal images
to perform anomaly scoring, and Zero-shot outlier exposure (ZOE; Fort et al., 2021), which uses
prompts for normal images and candidate prompts for anomalous images. And CLIPN (Wang et al.,
2023) is a zero-shot method that uses pre-trained “no” prompts and “no” text encoder to make text
features for anomalies. We also consider WinCLIP (Jeong et al., 2023), which supports both zero-
/few-shot AD. The zero-shot version of WinCLIP is similar to ZOE in terms of anomaly scoring, and
the few-shot version (WinCLIP+) requires a few normal images. Lastly, we consider InCTRL (Zhu
& Pang, 2024), a few-shot AD method similar to WinCLIP+.

Prompts We use the actual class names from the dataset for concept values, if available, and
add other candidate labels to simulate unseen classes. For example, for the number attribute in the
Colored MNIST dataset, we use ‘0’ to ‘20’ and ‘zero’ to ‘twenty’ as number attributes, even though
the dataset only includes 0 to 9. We referenced the prompts provided by CLIP (Radford et al., 2021).

For more details, please refer to the Experimental Details.

5.1 SEMANTIC ANOMALY DETECTION

We used the colored version of the MNIST dataset (LeCun et al., 2010), similar to Arjovsky et al.
(2019), to demonstrate our concept in the simplest way. We created a dataset that divides each digit
of the MNIST and colors each split with red, green, and blue. In this way, the image of a colored
MNIST consists of two attributes: number and color. We mark the numbers 0 to 4 as normal and
the numbers 5 to 9 as abnormal. In addition, we label red as normal and green and blue as abnormal
colors. In this setting, the training set consists of 0 to 4 and red images. Then, we use five different
seeds to split the training set for coloring each digit. Figure 3 shows a brief overview of our desired
transformation using concept axes. If we choose an axis (number or color) to project the image
features, we can simply use kNN to detect only the desired anomalies.
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Table 1: Anomaly detection performance (%) on Colored MNIST and Waterbirds datasets. Standard
deviations are computed over five different seeds, with results for deterministic cases omitted. The
best values are shown in bold, and the second-best values are underlined.

Colored MNIST: Number Waterbirds: Bird

Guidance Method AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

Baseline
Subset of normal images kNN 92.4 ± 0.2 91.8 ± 0.2 31.9 ± 0.6 82.3 91.2 48.1

+ All normal images kNN 98.0 ± 0.0 97.1 ± 0.0 7.5 ± 0.2 83.0 91.5 44.7
+ Anomalous images LinearProbe 99.8 ± 0.0 99.8 ± 0.0 0.5 ± 0.1 91.0 ± 0.0 96.7 ± 0.0 34.2 ± 0.0

Guide
Language MCM 62.9 52.5 60.8 88.8 95.4 40.0

ZOE 91.2 92.4 47.3 92.2 97.1 32.8
CLIPN-C 73.0 ± 2.5 61.7 ± 3.0 51.0 ± 0.9 71.2 ± 2.8 86.5 ± 1.1 100.0 ± 0.0
CLIPN-A 73.2 ± 2.2 61.6 ± 2.7 50.0 ± 0.6 82.3 ± 0.8 91.9 ± 0.3 55.6 ± 1.2
WinCLIP 91.1 92.4 48.0 92.2 97.0 32.6

Image + Language WinCLIP+ 92.6 ± 1.3 91.3 ± 2.0 38.8 ± 1.5 91.8 ± 0.2 96.9 ± 0.1 33.4 ± 1.5
InCTRL 94.0 ± 1.3 92.4 ± 2.6 25.5 ± 4.1 83.6 ± 1.0 92.0 ± 0.7 63.5 ± 3.1
LAFT AD (Ours) 98.5 ± 0.0 98.4 ± 0.0 6.9 ± 0.1 95.6 98.4 20.6

Ignore
Image + Language LAFT AD (Ours) 97.4 ± 0.1 96.9 ± 0.2 10.4 ± 0.4 84.8 92.2 38.6

Table 2: Anomaly detection performance (%) on CelebA dataset. Standard deviations are computed
over five different seeds, with results for deterministic cases omitted. The best values are shown in
bold, and the second-best values are underlined.

Hair color Eyeglasses

Guidance Method AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

Baseline
Subset of normal images kNN 83.3 96.6 62.4 83.0 21.6 47.7

+ All normal images kNN 83.4 96.6 62.4 85.3 22.0 43.2
+ Anomalous images LinearProbe 98.2 ± 0.0 99.7 ± 0.0 9.6 ± 0.0 99.7 ± 0.0 98.4 ± 0.0 0.1 ± 0.0

Guide
Language MCM 84.5 97.2 68.4 5.7 3.3 100.0

ZOE 93.9 99.0 35.7 82.6 31.5 67.3
CLIPN-C 82.8 ± 1.7 96.8 ± 0.4 72.0 ± 2.4 1.4 ± 0.1 3.7 ± 0.0 100.0 ± 0.0
CLIPN-A 84.7 ± 1.2 97.2 ± 0.3 70.2 ± 2.1 1.2 ± 0.1 3.4 ± 0.0 100.0 ± 0.0
WinCLIP 93.7 98.9 37.7 83.6 34.6 66.2

Image + Language WinCLIP+ 92.8 ± 0.3 98.8 ± 0.1 41.2 ± 1.4 85.0 ± 2.4 26.8 ± 3.0 47.8 ± 6.9
InCTRL 85.7 ± 0.9 96.9 ± 0.3 67.8 ± 1.6 87.8 ± 1.6 30.4 ± 2.9 29.6 ± 4.4
LAFT AD (Ours) 95.0 99.2 29.8 98.1 80.7 5.9

Table 1 presents the main results on Colored MNIST dataset with the target attribute being the num-
ber. The table is divided into three groups: baseline, guide (Lang., Img. + Lang.), and ignore, as discussed in
the Preliminaries. The baseline group serves as a reference point for performance that relies solely
on images, as mentioned earlier. Its performance varies depending on the amount of image data
available to the model. The guide group consists of methods that can be instructed to focus on a
target attribute, where models are given prompts related to the attribute corresponding to the label
(e.g., number prompts for number anomalies). Specifically, methods in the guide (Lang.) group rely
solely on language, while those in the guide (Img. + Lang.) group use both image and language to define
normality. However, except for our method, language guidance in these methods is used only to
calculate image-text similarity and is not applied to image-image similarity. The ignore group rep-
resents a method that disregards attributes other than the target, where models are provided prompts
of irrelevant attributes (e.g., color prompts for number anomalies). Ignoring irrelevant attributes is a
unique feature of our method, but it is generally a more challenging task.

As shown in the table, guided methods (guide (Img. + Lang.)) generally outperform non-guided baselines
(kNN with a subset of normal images), with our method achieving the best overall performance.
The performance of guided methods that use only language (guide (Lang.)) is lower than that of the
baseline methods because they are provided with inaccurate prompts for anomalous images (e.g.,
‘13’). This problem, highlighted in Ming et al. (2022), shows that methods relying on image-text
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Table 3: Anomaly detection AUROC (%) on MVTec AD and VisA datasets in few-shot settings. We
use five different sets of reference samples from the training set. K denotes the number of reference
samples. The best values are shown in bold, and the second-best values are underlined.

MVTec AD VisA

Method K = 0 K = 1 K = 2 K = 4 K = 8 K = 0 K = 1 K = 2 K = 4 K = 8

InCTRL − 91.3 ± 2.7 93.2 ± 1.8 93.6 ± 1.6 93.8 ± 1.3 − 85.0 ± 4.3 86.7 ± 2.7 88.4 ± 2.0 89.4 ± 1.7

WinCLIP/+ 90.4 93.5 ± 1.6 95.2 ± 0.7 95.6 ± 0.5 95.7 ± 0.9 75.5 83.4 ± 2.8 85.6 ± 1.8 86.8 ± 1.9 88.2 ± 1.2

+ LAFT-G (Ours) 92.6 94.7 ± 1.4 96.1 ± 0.5 96.2 ± 0.3 96.4 ± 0.4 80.0 85.0 ± 1.3 86.1 ± 1.3 87.0 ± 1.5 88.2 ± 1.1

+ LAFT-C (Ours) 92.5 94.8 ± 1.4 96.0 ± 0.5 96.3 ± 0.4 96.5 ± 0.5 80.6 85.7 ± 1.4 87.0 ± 1.1 87.4 ± 1.4 88.3 ± 1.0

similarity in CLIP are highly sensitive to inaccurate prompts. WinCLIP performs similarly to ZOE
because multi-scale features do not benefit semantic anomaly detection. While WinCLIP+ performs
better than WinCLIP by using reference images, its performance is still below ours.

The Waterbirds dataset is widely used in studies of spurious correlations and disentangling represen-
tations. It consists of two primary attributes: bird type (waterbird / landbird) and background (water
/ land). Naturally, the training set has a very strong correlation between birds and backgrounds,
whereas the test set has an equal ratio of birds to backgrounds. We specify waterbirds and water
backgrounds as the normal training set. Table 1 summarizes the results, where the target attribute is
the bird type. The trends observed in the Colored MNIST experiment are largely consistent, demon-
strating the applicability of our method to real-world datasets. The key difference is that ignoring
one attribute (background) does not directly improve performance on the other attribute (bird).

To verify that our method works in multi-attribute datasets, we use the CelebA dataset, which con-
tains over 200K celebrity images with 40 attribute labels. For the normal training set, we select
two attributes: Hair color and Eyeglasses. The results are displayed in Table 2, where the target
attributes are Hair color and Eyeglasses. The trends are consistent with the previous experiments,
demonstrating the effectiveness of our method.

The performance of CLIPN and InCTRL was inconsistent across different datasets and target at-
tributes, suggesting that their generalization ability is lower than that of CLIP, likely due to the
presence of modules trained on specific datasets. In contrast, our method uses pre-trained CLIP
without any additional training, making it more generalizable. Additionally, our method effectively
guides one attribute while ignoring the others, as discussed further in the Additional Experiments.

5.2 INDUSTRIAL ANOMALY DETECTION

To demonstrate the practical applicability of our method beyond semantic anomaly detection, we
evaluated its performance on the widely used MVTec AD (Bergmann et al., 2019) and VisA (Zou
et al., 2022) datasets in few-shot settings. However, anomalies in industrial anomaly detection
datasets often consist of small defects that are difficult to distinguish using only image-level rep-
resentations. Instead of using LAFT AD, which is designed for semantic anomaly detection tasks,
we propose WinCLIP+LAFT, a model that applies LAFT to WinCLIP to extract multi-scale features
using CLIP. We apply LAFT to WinCLIP’s window, image, and text embeddings, all of which reside
in CLIP’s shared embedding space, allowing seamless integration.

Typically, some zero-shot or few-shot methods based on CLIP rely on training additional adapter
layers to transform CLIP’s image features for anomaly detection tasks. For example, InCTRL pre-
trains feature adapters on specific datasets (such as MVTec AD) to effectively compute the similarity
before applying them to different datasets. In contrast, our method uses prompts to transform image
features while preserving CLIP’s core features, allowing us to extract features suitable for anomaly
detection tasks without the need for additional training of the adapter layer.

For the proof of concept, we used prompts similar to those in WinCLIP for LAFT General (LAFT-
G) and more category-specific prompts for LAFT Category (LAFT-C). For LAFT General, we con-
structed prompts using only state words and category names, without providing additional knowl-
edge based on the category of the inspection image as in WinCLIP. However, in order to identify a
more precise concept subspace, we used more text templates and general state words such as ‘mal-
formed {}’. For LAFT Category, we used prompts that include category-specific knowledge (e.g.
anomaly class names), such as ‘bottle with large breakage’ for the bottle category.

9



Published as a conference paper at ICLR 2025

Table 4: Anomaly detection performance (%) on the Colored MNIST and Waterbirds datasets with
various prompts. Standard deviations are computed over five different seeds. The best values are
shown in bold, and the second-best values are underlined.

Concept values Colored MNIST: Number Waterbirds: Bird

Prompt Seen Unseen Aux. AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

Guide
Only normals � × × 96.2 ± 0.2 95.7 ± 0.2 16.6 ± 0.2 94.3 97.8 22.6
Partial anomalies � △ × 98.4 ± 0.0 98.3 ± 0.0 8.2 ± 0.1 95.5 98.3 18.7
Exact anomalies � � × 98.8 ± 0.0 98.8 ± 0.1 6.2 ± 0.1 95.9 98.6 19.6
All candidates � � � 98.5 ± 0.0 98.4 ± 0.0 6.9 ± 0.1 95.6 98.4 20.6

Ignore
Only seen normals � × × 94.5 ± 0.2 94.1 ± 0.4 25.0 ± 0.5 84.8 92.4 40.6
Partial unseen normals � △ × 95.9 ± 0.2 95.1 ± 0.3 16.7 ± 0.4 85.1 92.4 38.1
Exact normals � � × 97.2 ± 0.1 96.5 ± 0.3 11.6 ± 0.3 85.0 92.2 37.3
All candidates � � � 97.4 ± 0.1 96.9 ± 0.2 10.4 ± 0.4 84.8 92.2 38.6

The results are presented in Table 3, which summarizes the average performance across all cate-
gories. As shown in the results, WinCLIP+LAFT consistently outperforms WinCLIP in both zero-
shot and few-shot scenarios. Furthermore, our method achieves superior or comparable performance
to InCTRL, a pre-trained model for industrial anomaly detection, without requiring additional train-
ing. See the Full Results for detailed results on each category.

5.3 ABLATION STUDY ON PROMPT QUALITY

An important consideration when using LAFT is how to provide the user’s prior knowledge. In
anomaly detection, we generally have a good understanding of the current training data, but the un-
seen test data remains unknown. Therefore, we investigated how the performance of LAFT changes
depending on the quality of the concept values provided, as shown in Table 4. In the table, Seen
refers to the concept values for the current training data, Unseen refers to the concept values for the
unseen test data, and Aux. denotes concept values that are not present in the dataset.

For example, in Colored MNIST, if the guiding attribute is the number, Seen represents the values 0-
4, Unseen corresponds to 5-9, and Aux. refers to values like 10-20. Similarly, if the ignored attribute
is color, Seen includes red, Unseen covers green and blue, and Aux. includes colors such as yellow
and purple. The symbol � indicates that all concept values are used, while △ indicates that only
half of the concept values are utilized.

The results show that the performance of LAFT is robust to the quality of the concept values when at
least partial concept values are provided. Furthermore, the performance is not significantly affected
when the completely not included concept values are provided. Also, providing concept values that
are not included at all does not significantly affect the performance. These characteristics show that
LAFT can be effectively used in anomaly detection where only limited information is known.

6 CONCLUSION

In this paper, we introduce Language-Assisted Feature Transformation (LAFT), a novel feature
transformation method designed to integrate user knowledge and preferences into the anomaly de-
tection framework via natural language, without the need for additional data or training. By utilizing
the shared embedding space of the vision-language model, LAFT can align visual features with user-
provided texts to guide or ignore specific attributes in the image. We also presented LAFT AD, an
anomaly detection method that integrates LAFT with a kNN classifier, and WinCLIP+LAFT, an
extension of WinCLIP that incorporates LAFT for industrial anomaly detection. This combination
allows users to adjust the normality boundary of the model by providing texts to detect desired
anomalies. Through experiments on synthetic and real-world datasets, we demonstrate the effec-
tiveness of our proposed method.
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A LIMITATIONS AND DISCUSSION

Table 5: Anomaly detection performance (%) on the CelebA dataset. We transform the image and
text features using LAFT to ignore the Gender attribute. Then, we use the transformed features
for the MCM and ZOE methods. Underlined numbers indicate the performance of the suppressed
attribute, and bold numbers indicate the performance of the non-suppressed attribute.

Method Hair color Gender

AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

MCM 88.0 97.9 56.7 96.9 98.0 13.7
+ LAFT 93.8 99.0 35.4 32.4 50.0 98.4

ZOE 93.4 98.9 38.8 99.4 99.6 02.5
+ LAFT 95.1 99.2 30.6 50.0 61.2 94.7

Ignore attributes using LAFT Unlike in a simple Colored MNIST dataset, we observe that ig-
noring one attribute using LAFT does not directly improve the performance of the other attribute in
real-world datasets. However, as seen in Appendix C, the LAFT actually suppresses the attribute to
be ignored. As mentioned in the Preliminaries, it is hard to remove all attribute-related information
in the embedding space using only text prompts. Alternatively, guiding the attribute is relatively
easy, because LAFT only needs to capture the primary information about the attribute.

Selecting the number of PCA component d LAFT introduces a hyperparameter d, which rep-
resents the number of PCA components. While the performance remains relatively stable within a
certain range, as demonstrated in Appendix C, selecting an appropriate value remains crucial. How-
ever, determining the optimal d is particularly challenging in the context of unsupervised anomaly
detection, where ground truth labels are unavailable. Consequently, d must be selected heuristi-
cally. Developing an automatic selection mechanism for d would be a valuable direction for future
research to improve the usability of LAFT.

Using LAFT with other methods LAFT can be used not only for anomaly detection, but also as a
feature transformation module in other tasks or methods. Basically, we expect that it can be applied
to any vision model that requires a feature extractor. For a simple example, we apply the LAFT
method to MCM and ZOE. The results in Table 5 show that we can suppress the Gender attribute.
Applying LAFT to other downstream tasks would be a future work.

B EXPERIMENTAL DETAILS

We provide the source code of our method at https://github.com/yuneg11/LAFT.

Backbones For semantic anomaly detection datasets (Colored MNIST, Waterbirds, CelebA), we
use the CLIP ViT-B/16 (Radford et al., 2021) with the pre-trained checkpoint from Fang et al. (2023).
And since InCTRL (Zhu & Pang, 2024) and CLIPN (Wang et al., 2023) require pretrained weights,
we used the network with the pretrained weights provided by the authors. For industrial anomaly
detection datasets (MVTec AD), we use the CLIP ViT-B/16+ (Gadre et al., 2024), pre-trained on the
LAION-400M (Schuhmann et al., 2021) dataset, following the setup used in WinCLIP (Jeong et al.,
2023). For a fair comparison, we also adopted the CLIP’s image encoder as a feature extractor for
the kNN baseline.

Metrics We use three metrics to evaluate the performance of the methods: the Area Under Re-
ceiver Operating Characteristics (AUROC), the Area Under the Precision Recall Curve (AUPRC),
and the False Positive Rate at the 95% true positive rate (FPR95). AUROC and FPR95 are com-
monly used for the anomaly detection or out-of-distribution detection task (Ming et al., 2022). And
we also use AUPRC because some datasets are imbalanced, with a significant disparity.

Computing resources We use a single NVIDIA RTX 3090 GPU for all experiments.
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Hyperparameter The only hyperparameter in LAFT is the number of PCA components d. We
typically choose d from 4 to 32 when guiding an attribute and from 32 to 384 when ignoring an
attribute. Refer to the Ablation Study for the impact of d on the performance. And we use k = 30
for the methods using kNN anomaly scoring (kNN and LAFT AD).

Prompts To see the actual prompts used in the experiments, please refer to the laft/prompts
in the source code. We referenced the prompts provided by CLIP (Radford et al., 2021) 1.

• Colored MNIST
– Number: “zero”, . . . , “twenty”, “0”, . . . , “20”
– Color: “red”, “green”, “blue”, “yellow”, “orange”, . . . , “black”, “white”

• Waterbirds
– Bird: Class names provided by the dataset and Birdsnap class names.
– Color: “land”, “bamboo”, “forest”, “ocean”, and similar words.

• CelebA
– Hair color: “blond”, “black”, “brown”, “gray”, “red”, “white”, and similar words.
– Eyeglasses: “glasses”, “eyeglasses”, “sunglasses”
– Gender: “man”, “male”, “boy”, “woman”, “female”, “girl”, “masculine”, “feminine”

• MVTec AD and VisA We use the same prompts as WinCLIP (Jeong et al., 2023) for anomaly
scoring. To compute the LAFT concept subspace, we use some more template-/state-level prompts
for both LAFT General and LAFT Category. For LAFT Category, we use additional category-level
prompts as Li et al. (2024).
– Template-level: Jeong et al. (2023) and “an image of a {}”, “a photo of the {}”, . . .
– State-level: Jeong et al. (2023) and “{} in perfect condition”, “malformed {}”, . . .
– Category-level (LAFT Category): “bottle with large breakage”, “carpet with hole”, . . .

Dataset Split

• Colored MNIST R denotes red, G denotes green, and B denotes blue colored digits. 0-4 and
5-9 denote the digits from 0 to 4 and from 5 to 9, respectively.
– Train: R/0-4 (16.67%)
– Test: R/0-4 (16.67%), R/5-9 (16.67%), GB/0-4 (33.33%), GB/5-9 (33.33%)

• Waterbirds Wbird denotes waterbirds, and Lbird denotes landbirds. Wback denotes water
background, and Lback denotes land background.
– Train: Wbird/Wback (22.04%)
– Test: Wbird/Wback (11.08%), Wbird/Lback (11.08%), Lbird/Wback (38.92%),
Lbird/Lback (38.92%)

• CelebA Blond denotes blond hair, and Glass denotes eyeglasses. -Blond denotes non-
blond hair, and -Glass denotes no eyeglasses.
– Train: Blond/-Glass (14.66%)
– Test: Blond/Glass (13.01%), Blond/-Glass (0.31%), -Blond/Glass (80.53%),
-Blond/-Glass (6.15%)

• MVTec AD and VisA We use the same split as Bergmann et al. (2019) and Zou et al. (2022).

1https://github.com/openai/CLIP/blob/main/data/prompts.md
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C ADDITIONAL EXPERIMENTS

C.1 GUIDING AND IGNORING ATTRIBUTES

Table 6: Anomaly detection performance (%) on the Colored MNIST datasets with different target
criteria. We use five different seeds to split the training set for coloring each digit. Bold numbers
indicate that the performance should be high (relevant), and underlined numbers indicate that the
performance should be low (irrelevant).

Criteria Number Color

AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

No guidance

kNN 89.7 ± 0.4 89.5 ± 0.4 44.0 ± 0.3 81.1 ± 0.6 89.5 ± 0.5 58.1 ± 0.2

Guide

Number 98.5 ± 0.0 98.4 ± 0.0 06.9 ± 0.1 52.7 ± 0.1 66.4 ± 0.2 89.3 ± 0.2
Color 51.2 ± 0.1 53.6 ± 0.1 94.8 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0

Ignore

Number 63.7 ± 0.2 65.6 ± 0.2 75.8 ± 0.1 99.9 ± 0.0 99.9 ± 0.0 0.2 ± 0.0
Color 97.4 ± 0.1 96.9 ± 0.2 10.4 ± 0.4 60.2 ± 0.4 73.0 ± 0.5 78.0 ± 0.1

Table 7: Anomaly detection performance (%) on the Waterbirds dataset. Standard deviations are not
reported because the method is deterministic. Bold numbers indicate that the performance should
be high (relevant), and underlined numbers indicate that the performance should be low (irrelevant).

Criteria Bird Background

AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

No guidance
kNN 82.3 91.2 48.1 68.0 63.9 87.3

Guide
Bird 95.3 98.2 19.5 70.6 72.6 87.2
Background 59.5 84.5 91.4 97.6 97.2 10.1
Ignore
Bird 63.9 59.3 87.2 74.5 87.6 62.6
Background 84.8 92.2 38.6 52.7 50.0 92.6

The results in Table 6 and Table 7 show the performance of two attributes when one attribute is
either guided or ignored. In datasets with two clearly distinguishable attributes, such as Colored
MNIST, ignoring one attribute implicitly guides the other. However, in datasets composed of real-
world images, such as Waterbirds, although there may appear to be only two attributes, there may
actually be many more. As a result, while the performance of non-ignored attributes may improve
slightly, the overall improvement is not significant. Nevertheless, when an attribute is ignored, we
can confirm that it is indeed properly disregarded.

C.2 ABLATION STUDY ON PCA COMPONENTS

To investigate the impact of the number of PCA components d on the performance of LAFT, we con-
duct an ablation study on semantic anomaly datasets. The results are shown in Table 8 and Table 9.
We observe that the performance of LAFT is not very sensitive to the number of PCA components
for a certain range of d. However, the performance drops significantly when d is too small or too
large. This is because a small d cannot capture the concept subspace well, while a large d may
include irrelevant information. Except for Eyeglasses attribute in CelebA, the best performance is
achieved when d is between 14 and 28 for guiding attributes. For the Eyeglasses attribute, the best
performance is when d is 6, which we expect because it is a simple binary classification problem of
whether a person wears glasses or not, rather than distinguishing between different types within an
attribute (like distinguishing between different numbers or different types of birds).
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Table 8: Anomaly detection performance (%) on Colored MNIST and Waterbirds datasets. We scan
the number of PCA components d, which is the only hyperparameter of LAFT module. The best
values are shown in bold, and the second-best values are underlined.

Colored MNIST: Number Waterbirds: Bird

d AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

Guide
2 80.3 79.5 73.7 87.2 95.0 67.7
4 93.5 94.2 42.3 91.2 95.9 35.7
6 96.3 96.3 19.3 93.6 97.8 26.4
8 97.2 97.3 14.7 93.9 97.8 25.5
10 97.4 97.3 13.2 94.2 97.9 23.8
12 97.7 97.7 11.1 94.6 98.1 22.4
14 97.8 97.7 10.0 95.1 98.2 21.8
16 98.0 97.7 10.5 95.4 98.2 21.0
18 98.2 97.8 9.0 95.6 98.4 20.6
20 98.4 97.9 8.8 95.6 98.3 20.3
24 98.5 98.2 8.4 95.5 98.2 20.1
28 98.4 98.1 7.9 95.4 98.2 19.3
32 98.3 98.0 8.6 95.0 98.0 21.3
40 97.8 97.6 10.5 94.9 97.9 21.1
48 97.7 97.5 10.7 94.4 97.6 21.4
64 97.1 96.8 13.1 93.5 97.1 23.0

Ignore
8 96.2 95.3 16.2 82.6 91.1 41.7
16 96.8 95.9 13.3 82.6 91.1 42.0
32 97.1 96.2 12.0 83.4 91.4 40.8
64 97.1 96.4 11.9 83.4 91.4 40.1
96 97.2 96.4 11.8 83.5 91.4 40.2
128 97.3 96.6 11.0 83.4 91.4 40.1
160 97.4 96.7 11.0 83.4 91.4 40.0
192 97.4 96.8 11.0 84.8 92.2 38.6
224 97.4 96.9 10.6 83.8 91.7 41.8
256 97.2 96.7 11.9 83.8 91.7 42.4
288 97.1 96.6 12.5 82.3 91.0 44.0
320 96.9 96.3 13.6 81.6 90.6 45.6
352 96.7 96.1 15.1 81.6 90.7 44.6
384 96.4 96.1 17.0 81.5 91.0 46.4

Table 9: Anomaly detection performance (%) on CelebA dataset. We scan the number of PCA
components d, which is the only hyperparameter of LAFT module. The best values are shown in
bold, and the second-best values are underlined.

Hair color Eyeglasses

d AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

Guide
2 52.6 88.4 95.3 65.9 11.4 86.3
4 90.5 98.3 55.8 97.3 76.4 8.2
6 92.6 98.7 38.4 98.1 80.7 5.9
8 94.0 99.0 36.5 97.9 78.6 6.8
10 94.6 99.1 31.9 97.5 75.0 8.3
12 94.8 99.1 31.7 97.6 77.0 9.4
14 95.0 99.2 29.8 97.6 78.3 9.8
16 94.8 99.1 30.6 97.3 75.3 11.1
18 94.7 99.1 29.5 96.8 72.0 13.5
20 94.6 99.1 30.5 95.3 60.1 18.1
24 94.3 99.1 31.7 95.2 57.1 18.6
28 94.0 99.0 33.9 94.8 55.7 21.0
32 93.9 99.0 34.4 94.2 47.4 20.6
40 93.3 98.9 38.0 92.5 40.6 24.5
48 92.8 98.8 38.5 91.4 38.4 28.5
64 91.8 98.6 40.9 89.7 32.7 31.8
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C.3 LAFT WITH VARIOUS VISON-LANGUAGE MODELS

Table 10: Anomaly detection AUROC (%) on semantic anomaly datasets. We compare vision-
language models across diverse backbone architectures and training strategies. The best values are
shown in bold, and the second-best values are underlined.

CLIP ViT CLIP ConvNeXt EVA02 SigLIP ViT CoCa ViT

Method B-16 L-14 H-14 Base XXL B-16 L-14 B-16 L-16 B-32 L-14

Colored MNIST: Number

kNN 92.4 90.7 89.8 84.2 87.5 66.7 73.1 86.1 82.3 85.4 89.4
MCM 62.9 79.8 87.1 73.9 83.9 40.2 64.0 74.7 68.2 62.1 70.4
ZOE 91.2 90.7 93.3 92.7 96.2 83.4 92.7 93.0 95.9 93.6 97.4
LAFT AD (Ours) 98.5 98.9 99.6 97.6 99.5 89.0 94.3 98.5 99.1 98.7 98.8

Waterbirds: Bird

kNN 82.3 87.1 85.9 79.7 85.9 86.0 88.7 83.6 79.2 76.0 84.8
MCM 88.8 94.3 94.7 85.2 92.6 88.8 94.9 89.7 93.8 81.5 87.4
ZOE 92.2 93.8 93.7 90.6 93.5 93.6 94.4 93.3 94.2 88.4 92.5
LAFT AD (Ours) 95.6 97.2 97.3 94.4 97.2 96.6 98.6 96.2 97.6 91.1 95.4

CelebA: Hair color

kNN 83.3 85.3 83.7 89.7 88.0 88.3 86.0 85.4 83.4 90.4 89.2
MCM 84.5 87.9 87.2 87.9 87.4 86.7 88.9 86.8 82.1 85.1 85.0
ZOE 93.9 94.3 93.6 92.5 93.2 93.0 93.5 91.5 87.7 94.1 90.1
LAFT AD (Ours) 95.0 94.8 95.1 94.4 95.1 94.9 94.5 94.8 94.8 94.8 93.7

CelebA: Eyeglasses

kNN 83.0 81.0 75.0 77.5 78.1 76.2 75.5 75.8 70.0 79.6 78.1
MCM 5.7 11.7 13.2 12.6 11.5 21.6 24.8 12.2 14.9 10.6 13.6
ZOE 82.6 98.8 98.9 94.8 93.9 98.7 97.9 99.2 99.2 84.9 91.1
LAFT AD (Ours) 98.1 97.9 98.1 97.4 98.1 97.9 97.6 98.1 98.1 98.1 97.6

We compare the performance of LAFT with vision-language models across diverse backbone archi-
tectures and training strategies on the semantic anomaly datasets. We use architectures with pre-
trained weights available in OpenCLIP (Ilharco et al., 2021). Specifically, we use ViT (Dosovitskiy
et al., 2021), ConvNeXt (Liu et al., 2022), and EVA02 (Fang et al., 2024) as the backbone architec-
tures, and we use the pre-trained weights from CLIP (Radford et al., 2021), EVA-CLIP (Sun et al.,
2023), SigLIP (Zhai et al., 2023), and CoCa (Yu et al., 2022). The results are shown in Table 10.
We observed that across various vision-language models, LAFT AD consistently outperformed the
baseline method in most cases.

D FULL RESULTS ON MVTEC AD AND VISA

We provide the complete results on the MVTec AD and VisA datasets in Table 11 and Table 12. As
shown in these tables, LAFT significantly enhances the performance of both anomaly detection and
localization in the zero-shot setting. Additionally, LAFT improves anomaly detection performance
in the few-shot setting.

Despite these improvements, there are certain limitations to applying LAFT to industrial anomaly
detection datasets. First, as discussed in the Limitations, the selection of d relies on a heuristic
approach, requiring manual tuning for each category. Second, LAFT does not improve anomaly
localization performance. We hypothesize that this is due to the localization task requiring more
fine-grained information than anomaly detection, while LAFT may remove subtle details that are
not well captured by text prompts. Nonetheless, even in such cases, our method achieves anomaly
localization performance that remains comparable to the original WinCLIP.

Developing more sophisticated approaches for applying LAFT to industrial anomaly detection re-
mains an important direction for future research.
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Table 11: Full anomaly detection and localization AUROC (%) on the MVTec AD dataset in few-
shot settings (k-shot). We use five different sets of reference samples from the training set for each
method. We bold the best performance and underline the second-best performance in each category.
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Table 12: Full anomaly detection and localization AUROC (%) on the VisA dataset in few-shot
settings (k-shot). We use five different sets of reference samples from the training set for each
method. We bold the best performance and underline the second-best performance in each category.
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E ALGORITHM

The following pseudocode demonstrates the implementation of LAFT AD, using a syntax similar to
NumPy, as the notation used in (Radford et al., 2021).

# model: the CLIP model
# prompts: the list of prompts provided by the user
# train_images: the collection of normal images
# test_images: the collection of images to be tested
# d: the number of principle axis

# Compute attribute subspace
text_features = model.encode_text(prompts)
pair_diffs = pairwise_difference(text_features)
basis = pca(pair_diffs, d)

# Encode images
train_features = model.encode_image(train_images)
test_features = model.encode_image(test_images)

# Guide
train_laft_features = inner_projection(train_features, basis)
test_laft_features = inner_projection(test_features, basis)

anomaly_scores = knn(train_laft_features, test_laft_features)

# Ignore
train_laft_features = orthogonal_projection(train_features, basis)
test_laft_features = orthogonal_projection(test_features, basis)

anomaly_scores = knn(train_laft_features, test_laft_features)
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