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Abstract

Options markets represent one of the most sophisticated segments of the finan-
cial ecosystem, with prices that directly reflect market uncertainty. In this paper,
we introduce the first reinforcement learning (RL) framework specifically de-
signed for volatility trading through options, focusing on profit from the difference
between implied volatility and realized volatility. Our multi-agent architecture
consists of an Option Position Agent (OP-Agent) responsible for volatility tim-
ing by controlling long/short volatility positions, and a Hedger Routing Agent
(HR-Agent) that manages risk and maximizes path-dependent profits by select-
ing optimal hedging strategies with different risk preferences. Evaluating our
approach using cryptocurrency options data from 2021-2024, we demonstrate
superior performance on BTC and ETH, significantly outperforming traditional
strategies and machine learning baselines across all profit and risk-adjusted met-
rics while exhibiting sophisticated trading behavior. The code framework and
sample data of this paper have been released on https://github.com/Edwicn/OPHR-
MasteringVolatilityTradingwithMultiAgentDeepReinforcementLearning

1 Introduction

Options markets represent one of the most sophisticated segments of the financial ecosystem, offering
traders the ability to construct complex, non-linear payoffs and express nuanced views on market
direction, volatility, and timing. More recently, cryptocurrency options markets have emerged as a
rapidly developing segment, with Bitcoin (BTC) [Nakamoto, 2008] and Ethereum (ETH) [Buterin and
Others, 2013] options gaining significant traction, which provide unique research opportunities due
to their transparency, 24/7 operation, and comprehensive data accessibility that is often unavailable in
traditional markets.

Options [Kariya and Liu, 2003] serve as the insurance of financial markets, with prices that directly
reflect market uncertainty. While traditional option pricing models like Black-Scholes-Merton (BSM)
[Black and Scholes, 1973, Merton, 1973] provide a theoretical framework for option valuation,
they rely on idealized assumptions that rarely hold in practice: continuous trading, no transaction
costs, constant volatility, and the ability to hedge risk exposures perfectly. These simplifications,

∗Equal contribution. Correspondence to: Xinyu Cai - xinyu009@e.ntu.edu.sg

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



while mathematically elegant, fail to capture the empirical realities of options markets, where the
difference between implied volatility (IV) and realized volatility (RV) creates persistent volatility
trading opportunities [Carr and Madan, 1998, Christensen and Prabhala, 1998, Ni et al., 2008, Sinclair,
2013, Tan et al., 2024].

IV is the volatility priced in the option price [Canina and Figlewski, 1993, Dumas et al., 1998], and
RV is the true price fluctuations in the underlying asset[Andersen et al., 2003, McAleer and Medeiros,
2008]. IV is higher than RV most of the time because the market needs to pay a premium to option
sellers as a reward for bearing tail risk. Option sellers typically need to trade the underlying asset
to hedge risk. Options aren’t just insurance; during periods of significant market volatility, traders
can often profit by buying options and properly hedging. In these instances, RV typically exceeds IV.
Therefore, the volatility trading involves two challenges to beat the market: i) Good volatility timing:
sell options to collect premium when markets are calm, and buy options to profit when markets are
about to become volatile; ii) Select a proper hedging strategy to manage risk when selling options
and take profit when buying options as illustrated in Figure 1.

RL [Sutton and Barto, 1998, Mnih et al., 2015, Hasselt et al., 2016] offers a compelling alternative by
learning optimal trading policies directly from market data. Unlike traditional approaches relying
on option pricing models with restrictive assumptions and RV forecasting [Andersen et al., 2003],
RL frames option trading as a sequential decision problem, naturally incorporating practical con-
straints such as transaction costs, discrete hedging intervals, and market dynamics. This data-driven
methodology eliminates the need for explicit pricing models, instead allowing RL agents to discover
mispriced volatility through experience.

Although RL has been successfully applied to many trading tasks [Jiang and Liang, 2017, Conegundes
and Pereira, 2020, Yang et al., 2020, Briola et al., 2021, Nagy et al., 2023, Takara et al., 2023, Zong
et al., 2024, Qin et al., 2024], options trading is an untouched area due to its complexity. In this
paper, we introduce the first RL framework that addresses the complexities of volatility trading in a
data-driven manner. Our framework is composed of 2 parts: i) Option Position Agent (OP-Agent)
controlling the long/short of volatility, and ii) Hedger Routing Agent (HR-Agent) selecting the
optimal Hedgers with different risk preferences to perform dynamic Delta hedging based on positions
and market conditions. To make they work coordinately with each other, we first distill a sub-optimal
Oracle policy to OP-Agent, then alternatively train HR-Agent and OP-Agent.

We evaluate our approach using historical cryptocurrency options data on BTC and ETH, leveraging
the transparency and data accessibility of these markets to conduct comprehensive experiments. Our
findings demonstrate that the RL model significantly outperforms traditional rules-based strategies in
both long and short Gamma implementations, with particular emphasis on managing tail risk when
selling options and identifying optimal timing for buying options during market dislocations.

The primary contributions of our work are:

• The first RL framework specifically designed for trading volatility through options, moving
beyond previous RL applications that focused solely on option pricing and hedging.

• A novel multi-agent architecture comprised of two specialized agents working in concert:
OP-Agent, identifying volatility trading opportunities, and HR-Agent, tuning risk preference.

• An effective training methodology that enables the two agents to learn collaboratively
from market data, balancing the competing objectives of profit maximization and risk
management.

• Comprehensive empirical results demonstrating the framework’s ability to properly manage
tail risk when selling options and identify advantageous timing for buying options.

2 Background & Related Works

This section introduces the fundamental concepts of options, option pricing models, and volatility
trading strategies that form the basis for our RL approach to trade volatility.
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Figure 1: Importance of proper Hedging strategy: In this figure, red arrows show the PnL path
with hedging, and blue arrows show the PnL path without hedging. In the oscillation market (left),
the price path is 100 → 90 → 110 → 100. In the trending market (right), the price path is
100 → 110 → 120 → 130. These figures ignore the time value decay for simplicity. All curves in
the two figures will drop as time passes.

2.1 Options and the Black-Scholes Model

Financial options are derivative contracts that give the holder the right, but not the obligation, to buy
(call option) or sell (put option) an underlying asset at a specified price (strike price) on or before a
specified date (expiration date). Options are characterized by three key attributes: option type (Call or
Put), strike price (K) at which the underlying asset may be transacted, and expiry time (T ) by which
the option must be exercised. The payoff structure of European options is defined mathematically as:

Ψ(ST ) =

{
(ST −K)+ if Call
(K − ST )+ if Put

(1)

where ST is the underlying asset’s price at expiration and (x)+ mean max(x, 0).

The Black-Scholes-Merton Model (BSM) represents the foundational framework for pricing options.
While real markets violate several of its assumptions, the model provides crucial theoretical insights
and practical tools for options traders. The BSM assumes a constant risk-free interest rate r, an
underlying asset price following geometric Brownian motion (dSt = µStdt+ σStdWt), frictionless
markets with no transaction costs, and no arbitrage opportunities. These assumptions lead to the
Black-Scholes partial differential equation: ∂V

∂t + 1
2σ

2S2 ∂2V
∂S2 + rS ∂V∂S − rV = 0. Solving this

equation yields the theoretical price of a European option V (t, St).

Beyond pricing, BSM provides essential risk exposure metrics known as "Greeks". Delta (∆ = ∂V
∂S )

quantifies an option’s price sensitivity to changes in the underlying asset price. Gamma (Γ = ∂2V
∂S2 )

measures the rate of change in ∆ relative to movements in the underlying asset. Theta (Θ =
∂V
∂t ) measures time decay—how much value an option loses as time passes. Vega (∂V∂σ ) quantifies

sensitivity to volatility changes. These Greeks provide critical insights for risk management and
volatility trading strategies: traders can hedge those risks they do not want and keep those they are
willing to take. The details of BSM and Greeks are presented in Appendix A.1

2.2 Volatility Trading

There are many volatility trading strategies due to the complexity of options. One of them is the
long/short Gamma strategy, which aims to profit from the difference between IV—the volatility priced
into options by the market, and RV—the actual price fluctuations experienced by the underlying asset.

The Gamma-Theta Relationship. Options positions with positive Γ experience convex payoffs
(accelerating gains) as the underlying price moves in either direction. However, this advantage comes
at a cost: negative Θ, or time decay. This fundamental relationship informs the core mechanics of
volatility trading. Using Taylor’s theorem, we can approximate how an option’s price changes:

V (S + dS, σ, t+ dt) ≈ V (S, σ, t) + dS ×∆+
1

2
(dS)2 × Γ + dt×Θ (2)
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When Delta-hedging is applied (neutralizing the dS ×∆ term through offsetting positions in the
underlying), the theoretical PnL becomes:

PnL =

∫ T

0

S2
t

2
Γ
(
σ2
t − σ2

)
dt, (3)

where σt = (dSt

St
)2 is the instant RV (profit) and σ is IV which determines the magnitude of the time

decay rate Θ (loss). The formula shows that if the expectation of RV(σt) is higher than the IV(σ)
priced in options, we are expected to profit from a long Gamma trade and vice versa.

Dynamic Delta Hedging for Gamma Strategies. Dynamic Delta hedging (DDH) [Hull and White,
2017] serves distinct functions in the Gamma strategy. For long Gamma positions, it acts as a profit
mechanism through Γ scalping—systematically buying low and selling high as price fluctuations
alter ∆ values. For short Γ positions, it primarily mitigates risk by neutralizing directional exposure.
As illustrated in Figure 1, the effectiveness of hedging depends on market conditions. In oscillating
markets, hedging locks in profits when prices return to original levels, while in trending markets,
hedging may limit potential gains as prices move consistently in one direction. This demonstrates why
proper hedging strategy selection is crucial despite similar RV in both scenarios. Rule-based Hedger
is commonly used, which monitors portfolio Delta against predefined thresholds. Alternatively, RL
approaches can be employed to train hedging strategies with varying risk-aversion levels through
actor-critic methods using risk-adjusted reward functions [Buehler et al., 2019, 2021a,b, 2022, Murray
et al., 2022]. While recent work such as DLOT [Tan et al., 2024] applies deep learning to option
portfolio management by constructing long/short positions across multiple stocks’ straddles without
underlying hedging, our work addresses a fundamentally different problem: single-asset volatility
trading with dynamic delta hedging. This distinction is crucial—our approach tackles the complex
challenges of gamma scalping, continuous hedging decisions, and path-dependent profit optimization
that emerge from maintaining isolated volatility exposure, requiring delta-hedged straddle PnL as the
optimization target rather than unhedged portfolio returns.

3 Problem Formulation

We first present several financial concepts that are necessary to trade options. Then we describe how
to formulate the volatility trading problem as a Cooperative Markov Decision Process (MDP).

Financial Concepts for Volatility Trading. To build an RL framework for volatility trading, we
first define the following financial concepts: Underlying asset, denoted as St, refers to the financial
asset from which the options are derived. In our context, it primarily includes the perpetual future
of the underlying asset, which is used to hedge the ∆ exposure of our volatility trading positions.
Straddle is a combination of a call and a put option with identical strike prices. At the money (ATM,
strike K equals St) straddle is a common strategy to trade volatility due to its zero ∆ exposure and
substantial Γ and Vega exposure. Position, denoted as Pt, consists of option positions: the holding of
option contracts, and hedging positions: the holding of the underlying asset. Net value Vt represents
the total value of our account, which consists of the options positions value, underlying position
value, and cash: Vt = V optionst + V underlyingt + CashBalance. Market features Ft are features
derived from options and underlying market data to analyze price trends and volatility. Greeks,
Gt = (∆,Γ,Θ,Vega), are risk measures derived from the BSM model, indicating the sensitivity of
the net portfolio value (Vt) to different variables, which have been described in Section 2.1. Hedgers
are hedging policies that take information like Greeks and time-to-expires as input, and decide how
many hedging instruments to trade at each step, which have been described in Appendix B.2.

Markov Decision Process Formulation. We formulate volatility trading as a Cooperative MDP,
where two specialized agents collaborate to optimize trading performance. The OP-Agent identifies
and executes volatility trading opportunities, while the HR-Agent selects optimal hedging strategies
every N steps. This cooperative relationship is critical: the OP-Agent’s position decisions directly
influence the HR-Agent’s state space, while the HR-Agent’s hedging strategy affects the returns
of positions established by the OP-Agent. Both agents share the common objective of maximizing
portfolio net value while managing risk exposure. Specifically, in our framework, the problem can be
formulated as (MDP op,MDP hr

N )

MDP op =< Sop, Aop, T op, Rop, γop >

MDP hr
N =< Shr

N , A
hr
N , T

hr
N , R

hr
N , γ

hr >
(4)
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Figure 2: The overview of OPHR. The upper section depicts the trading environment containing
market features, portfolio status, and Greeks measurements: both market and portfolio will affect the
Greeks. The lower section shows the two-phase training process: In Phase I, a sub-optimal Oracle
policy distills market knowledge to initialize the OP-Agent. In Phase II, the OP-Agent is trained
alternatively with the HR-Agent, who selects a proper Hedger based on Greeks and market features.

OP State is the market feature Ft , denoted as sop
t = Ft. OP Action, denoted as aop

t ∈ Aop =
{+1,−1, 0}, determines the target position (long/short/neutral) of options at each step. HR State,
denoted as shr

t = (Ft, Pt, Gt), consists of the market feature Ft, position information Pt, and Greeks
Gt. Hedgers are a set of hedging policies {πhedger

(i) }Ki=1 with different risk-aversion levels, which the
method proposed by Murray et al. [2022] trains . A rule-based Hedger π̂hedger is used as a baseline
in our framework. They take the portfolio and Greeks (Pt, Gt) as input and output the final trading
amount of the underlying asset to perform a hedge. HR Action, denoted as ahr

t ∈ Ahr, involves
selecting the optimal Hedger from the set of predefined Hedgers In Figure 1, the two Hedgers are
price-based Hedgers. The red one has a finite threshold (less risk-seeking), and the blue one has
an infinite threshold (never hedging, extreme risk-seeking). Details of Hedgers are presented in
Appendix B.2. The HR-Agent makes a decision every N steps, and the selected Hedger executes
hedging at each step. Transition: The OP State contains market features Ft only, so its transition
sop
t+1 = T op(sop

t ) is the market dynamics, which is not affected by the action. However, the positions
and Greeks in shr

t+1 are affected by the two agents: the OP-Agent determines which options to hold,
and the HR-Agent’s selection of Hedger affects how the underlying position evolves under varying
market conditions. Thus, the transition shr

t+N = T hr
n (shr

t , a
op
t , a

hr
t ) takes the action of two agents into

account. Reward function: The reward for OP-Agent is defined as the change in portfolio net value
rop
t+1 = Vt+1 − Vt; the reward of HR-Agent is defined as the advantage of the selected Hedger πhedger

ahr
t

over a rule-based baseline Hedger rhr
t+nhr = Vt+nhr − V̂t+nhr .

4 OPHR: A Two-Phase Multi-Agent Framework for Volatility Trading

In this section, we demonstrate our OPHR framework as shown in Figure 2 to solve the volatility
trading problem. We first introduce the training of the option part, consisting of an OP-Agent, which
involves an n-step TD error update. Then we introduce the hedging part, which consists of a set of
Hedgers with different risk preferences and an HR-Agent selecting the optimal Hedger based on
positions and market conditions. To make the two parts work coordinately with each other, we design
a joint training method, which first initializes the OP-Agent with a sub-optimal Oracle policy, then
trains the HR-Agent and the OP-Agent alternatively.
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4.1 OP-Agent Optimization

OP-Agent is responsible for determining the holdings of options at each time step. Its primary
objective is to adjust the overall payoff structure of the portfolio as a function of the price of the
underlying asset, according to current market conditions, enabling the agent to systematically capture
profits from price fluctuations of the underlying asset.

n-step TD Learning. In options trading, portfolio returns are typically realized over time, as long
Gamma strategies rely on large price movements, and short Gamma strategies accumulate theta over
time. In addition, frequent hedging incurs transaction costs, introducing noise into short-term rewards.
These issues render the reward signal both delayed and noisy, limiting the effectiveness of one-step
TD updates to capture the true value of positioning decisions. To address this, we adopt n-step
TD learning, which incorporates a sequence of future rewards and a bootstrapped value estimation,
enabling the agent to better estimate the long-term value of current positioning decisions.

L(θ) = E

(n−1∑
k=0

γkr
(k)
j + γnQθ′(s

(n)
j , argmax

a
Qθ(s

(n)
j , a))−Qθ(sj , aj)

)2
 (5)

The algorithm for online learning is presented in Algorithm 1.

Algorithm 1: OP-Agent Online Training via nop-step TD Error

1: Reinitialize trading environment Env
2: for t ∈ Range(0, T, nop) do
3: for t ∈ Range(0, nop, 1) do
4: if t mod nhr == 0 then Get HR Action
5: ahr

t = argmaxaQθ(s
hr
t , a), set πhr

ahr
t

as Hedger

6: With probability ϵ, choose a random action, otherwise aop
t = argmaxaQθ(s

op
t , a

op)
7: Execute actions and get next State sopt+1 and Reward ropt+1

8: Store nop-step transition: (st, a
op
t , {r

op
t+1, . . . , r

op
t+nop}, st+nop) in Rop

9: Sample a batch of transitions from Rop and update ϕ with nop-step TD error Eq. (5)
10: return Qϕ

4.2 HR-Agent Optimization with DT-Hedger Baseline

Baseline Hedger. As we mentioned in Section 2.2, DDH plays a vital role in volatility trading, which
manages risk and realizes profit by adjusting the underlying position. The Delta threshold hedging
strategy is a commonly used rule-based method that monitors the Delta exposure of the current
portfolio and trades the hedging instruments to make the Delta exposure 0 when the Delta exposure
exceeds the threshold. In this work, the Baseline Hedger π̂hedger is used to compute the reward for the
HR-Agent and in other baseline experiments.

Deep Hedgers. A key drawback of the Baseline Hedger is that it only considers the snapshot of
∆ exposure. However, all Greeks (∆,Γ,Θ and Vega) are functions of time t and IV σ and the
underlying price St, which change dynamically as time passes and the market evolves. Therefore,
DRL-based methods have been applied to train better so-called Deep Hedgers to optimize the long-
term performance. Murray et al. [2022] provides an actor-critic alternative to train a set of Deep
Hedgers {πhedger

(i) }Ki=1 with different risk aversions on simulated data.

Hedger-Routing Agent. However, as illustrated in Figure 1, it is important to consider the market
condition when making the hedging decisions, but the Hedgers do not take the market conditions
into account, and it is difficult to incorporate the real-world market data into the training protocol
of Deep Hedgers by simulation. To further optimize the hedging behavior, we employ the HR-
Agent to select Deep Hedgers. The HR-Agent chooses an optimal Deep Hedger πhedger

(ahr
t )

based on

the portfolio and market conditions at every nhr step. We execute the selected Deep Hedger πhedger
(ahr

t )

in Env and the Baseline Hedger π̂hedger in a twin environment, Ênv duplicated from Env, for nhr

steps. Then the reward for ahr
t is computed as the difference of net values in the two environments:
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rhr
t+nhr = Vt+nhr − V̂t+nhr . This relative reward design helps the training of the HR-Agent. The training

algorithm of the HR-Agent is demonstrated in Algorithm 2.

Algorithm 2: HR-Agent Online Training via 1-step TD Error

1: Initialize Env and Ênv
2: for t ∈ Range(0, T, nhr) do
3: With probability ϵ, choose a random action, otherwise ahr

t = argmaxaQψ(s
hr
t , a

hr)
4: for t ∈ Range(0, nhr, 1) do
5: Get OP Action aop

t = πop(sop
t )

6: Use selected Hedger πhedger
(ahr

t )
in Env, and baseline Hedger π̂hedger in Ênv

7: Execute actions and get the next State sopt+1

8: Get rhr
t+nhr , store (shr

t , a
hr
t , r

hr
t+nhr , shr

t+nhr) in Rop, and synchronize Ênv with Env
9: Sample batch from Rop and perform DQN update ψ with Eq. (5), soft update ψ′

10: return Qψ

4.3 OPHR Training

Phase 1: Offline Initialization. Long trajectories in n-step TD increase the variance of target returns,
often leading to unstable training and slow convergence. So we employ a sub-optimal Oracle policy
to generate initial experience for guidance in the initialization phase. The Oracle OP policy πop

Oracle
generates long/short signals by comparing the future RV and current IV and employs the Baseline
Hedger π̂hedger to make hedging decisions. Specifically, if the future RV ≥ σ(1 + β) places a long
position, if the future RV ≤ σ(1−β) places a short position; otherwise, place a neutral position. While
inherently sub-optimal, its action aligns with desirable and profitable trading behaviors, significantly
reducing the exploration burden, accelerating convergence.

Phase 2: Iterative Online Training. To further improve the trading performance, we alternatively
train the HR-Agent and OP-Agent. The necessities of iterative training lie in 2 folds. i) From the
MARL perspective: iterative training can reduce complexity, improve stability and convergence.
ii) From the option trading perspective: the OP-Agent can take more aggressive positions if the
hedging policy is more sophisticated, and the HR-Agent also needs to learn how to handle these more
aggressive positions. The detailed implementation is presented in Algorithm 3 in Appendix B.3.

5 Experiment

5.1 Experiments Setup

Datasets. To comprehensively evaluate the proposed algorithm, we conduct experiments on BTC
and ETH options data obtained from Deribit. The dataset splitting is shown in Table 1. This period
covers diverse market conditions, including bull markets (e.g., 2019 and 2021), bear markets (e.g.,
2022), and periods of elevated volatility (e.g., the 2020 COVID-19 pandemic and the 2022 crypto
market crash). We utilize hourly-level data to capture intraday price dynamics and volatility structures
critical to volatility trading. The dataset includes complete options chains across a wide range of
strikes and expirations (weekly to quarterly), as well as comprehensive market indicators such as
implied volatility surfaces, open interest, and trading volume.

Table 1: Dataset Splits for Experiments
Dataset Train Validation Test
BTCUSD 19/04/01 – 22/12/31 23/01/01 – 23/06/30 23/07/01 – 24/07/01
ETHUSD 19/04/01 – 22/12/31 23/01/01 – 23/06/30 23/07/01 – 24/07/01

Evaluation Metrics. We evaluate our method using 8 financial metrics: 1 profit, 3 risk-adjusted
profit, 2 risk and 3 trade criteria. Returns are aggregated into day-level before calculation. Total
Return (TR) is the overall return rate of the test period. Annual Volatility (AVOL) is the standard
deviation of daily returns annualized. Maximum Drawdown (MDD) measures the largest loss
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from any peak to show the downside risk of the strategy. Annual Sharpe Ratio (ASR) is the profit
adjusted by volatility risk. Annual Calmar Ratio (ACR) measures profit adjusted by downside risk.
Annual Sortino Ratio (ASoR) applies downside deviation as the risk measure. Win Rate (WR) is
the percentage of trades that result in a profit. Profit/Loss Ratio (PLR) measures the average profit
of winning trades relative to the average loss of losing trades. Holding Period (HP) is the average
holding time per trade. The detailed definitions of these metrics are presented in Appendix C.1.

Table 2: Performance comparison on 2 Crypto markets with 8 baselines. Pink, green, and blue results
show the best, second-best, and third-best results.

Profit Risk-Adjusted Profit Risk Metrics Trade Metrics
Data Model TR(%)↑ ASR↑ ACR↑ ASoR↑ AVOL(%)↓ MDD(%)↓ WR(%)↑ PLR↑

BTC

Long -33.05 -1.32 -0.77 -2.13 24.90 42.70 21.74 1.82
Short 2.90 0.09 0.10 0.09 24.55 21.10 73.91 0.37
MR -19.80 -1.32 -0.74 -1.54 15.40 27.45 41.94 1.18

MOM -36.30 -1.85 -0.85 -1.61 20.45 44.80 46.99 0.78
GARCH -40.83 -4.29 -0.95 -5.54 9.51 42.76 26.32 0.78
DeepVol -14.24 -1.30 -0.65 -2.44 10.92 21.85 36.36 1.33
GBDT -30.45 -2.88 -0.91 -4.75 11.22 35.25 35.16 1.15
MLP -74.55 -4.73 -1.13 -5.14 18.36 76.80 26.39 1.20

LSTM -21.78 -1.99 -0.86 -3.26 11.46 26.64 40.00 1.13
DLOT 4.91 0.52 0.55 0.66 21.40 8.92 47.97 1.11

OP 21.43 1.19 1.46 2.03 17.01 13.84 44.50 1.86
OPHR 33.10 1.87 3.35 3.27 16.83 9.41 45.93 2.05

ETH

Long -28.25 -0.72 -0.53 -0.83 37.55 50.95 34.78 0.71
Short -34.75 -1.12 -0.69 -1.25 33.00 53.05 56.52 0.48
MR -19.80 -1.32 -0.74 -1.54 15.40 27.45 41.94 1.18

MOM -36.30 -1.53 -0.84 -1.46 23.90 43.65 44.44 0.87
GARCH -52.59 -3.79 -0.90 -4.18 13.85 58.10 12.50 0.62
DeepVol -22.82 -1.79 -0.96 -3.03 12.71 23.76 42.86 1.15
GBDT -48.54 -3.76 -1.06 -4.55 14.22 50.28 30.00 0.98
MLP -70.26 -4.83 -1.15 -5.37 16.80 70.59 29.01 1.03

LSTM -62.67 -4.62 -1.11 -5.03 15.42 64.44 31.31 0.75
DLOT 1.19 0.07 0.09 0.09 17.14 13.53 42.80 1.34

OP 23.49 0.85 0.77 0.79 26.85 29.45 52.74 1.29
OPHR 44.89 1.76 1.58 1.67 24.42 27.25 55.61 1.43

Baselines. To comprehensively evaluate our method, we implement multiple baseline approaches
categorized into three major groups: Directional Volatility Strategies: These include pure Long
Volatility and pure Short Volatility strategies. The Long Volatility strategy purchases at-the-money
straddles when volatility conditions are favorable, while the Short Volatility strategy sells at-the-
money straddles when IV exceeds historical RV. Single Factor Models: These strategies allocate
long or short positions based on mean reversion (MR)[Poterba and Summers, 1988, Wong and Lo,
2009, Wood et al., 2022]or momentum (MOM)[Moskowitz et al., 2012, Lim et al., 2019, Wood et al.,
2022, Tan et al., 2023, Heston et al., 2023, Wood et al., 2023] factors. Machine Learning Models:
We implement GBDT[Dorogush et al., 2018], MLP[LeCun et al., 2015], and LSTM[Hochreiter and
Schmidhuber, 1997], to predict optimal long/short volatility positions by leveraging their respective
strengths in capturing non-linear relationships, complex feature interactions, and temporal dynamics
in volatility patterns. We also include GARCH[Bollerslev, 1986], the seminal econometric model for
volatility forecasting that captures time-varying conditional heteroskedasticity through autoregressive
dynamics, serving as the classical benchmark in volatility prediction, and DeepVol[Moreno-Pino and
Zohren, 2024], a deep learning framework for volatility forecasting, representing the current frontier
in neural network-based volatility modeling. Additionally, we create an end-to-end DL baseline
following DLOT[Tan et al., 2024], which applies deep learning to directly predict the options’ PnL
instead of volatility. Our Method: To evaluate the effectiveness of different parts of our method, OP
uses the OP-Agent and the rule-based Hedger.
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Figure 3: Trade examples of OPHR on BTC. The left panel illustrates a long Γ trade, which
primarily generates profits from Γ and Vega exposure, while incurring theta costs. The right panel
presents a short Γ trade, where the strategy mainly profits from theta accrual over the holding period
and gains from a decline in implied volatility, with the primary risk stemming from Γ exposure.

5.2 Baseline Comparison

As demonstrated in Table 2, our proposed OPHR approach exhibits consistent superiority across
both BTC and ETH markets. The method achieves the highest total returns while ranking first in
all risk-adjusted performance metrics (ASR, ACR, and ASoR). These results underscore OPHR’s
effectiveness in risk management and profit optimization through its adaptive hedging framework.

In contrast, conventional directional volatility strategies display notable limitations due to their
inherent tail risk profiles. Short Gamma positions achieve high WR but poor PLR because they
collect small premiums consistently while remaining exposed to rare but catastrophic losses during
volatility spikes. Conversely, Long Gamma strategies offer better PLR by capitalizing on large market
movements, but suffer negative returns due to low WR and theta decay during market stability.

Traditional factor-based approaches (MR and MOM) demonstrate suboptimal performance, as they
fail to adapt to abrupt volatility regime shifts that characterize cryptocurrency options markets.
Similarly, ML baselines (GBDT, MLP, LSTM, DeepVol, GARCH) struggle with profitability despite
occasionally achieving lower volatility, due to two fundamental limitations: first, they fail to bridge
the gap between forecasting RV and optimizing path-dependent PnL outcomes in options trading;
second, they consistently underperform in capturing the long-Gamma opportunities hidden in the fat
tails of volatility distributions, precisely where the most significant profit potential exists, as discussed
in Appendix D.2. The PnL curves are also presented in Figure 4 and 5 in the Appendix. DLOT
significantly outperforms RV prediction-based methods, benefiting from an end-to-end design that
avoids model assumptions - similar in spirit to our RL approach. However, lacking adaptive hedger
selection and further RL optimization, it cannot match our method’s performance.

5.3 Closer Look

Table 3: The long/short trading behaviour
Long Short

Data Model HP WR(%)↑ PLR↑ HP WR(%)↑ PLR↑

BTC
OP 20.94 31.96 2.21 52.94 55.86 1.60

OPHR 21.29 33.68 2.28 51.12 56.64 1.87

ETH
OP 8.91 44.25 1.51 47.56 60.98 1.08

OPHR 9.16 47.17 1.71 50.59 63.79 1.18

Table 3 reveals how the HR-Agent systematically enhances trading performance across position
types. The distinct holding periods between long and short positions (approximately 9-21 hours for
long versus 50-51 hours for short) reflect OPHR’s sophisticated volatility timing capability. This
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pattern aligns with the market reality that cryptocurrencies typically experience extended periods of
relative stability (suitable for short volatility positions with longer holding periods), punctuated by
brief episodes of extreme volatility (ideal for long volatility positions with shorter holding periods).
OPHR effectively adapts to these regime shifts, maintaining short positions during calm periods while
quickly capitalizing on and exiting from volatility spikes through tactical long positions.

This volatility timing ability translates directly into performance improvements, with OPHR en-
hancing WR by 1.72-2.92% for long positions and 0.78-2.81% for short positions compared to the
base OP model. The PLR improvements are equally notable, particularly for short positions where
OPHR’s hedging refinements prevent catastrophic losses during unexpected volatility surges while
minimizing unnecessary hedging costs during stable periods. These trade-level enhancements directly
drive OPHR’s superior overall performance metrics in Table 2, including higher total returns and
significantly improved risk-adjusted metrics.

To further illustrate OPHR’s trading strategies, we visualize representative trade examples in Figure 3.
In a long Γ position, OPHR actively hedges to capture Γ and Vega gains, which typically outweigh
theta costs, leading to positive returns. In contrast, the short Γ position relies on theta accrual and
benefits from declining implied volatility, while Γ risk is managed through reduced hedging frequency.
In both cases, the strategy balances risk and reward to achieve a net profit.

Table 4: Transaction costs as a percentage of total PnL of OPHR
Strategy Options Cost (%) Underlying Cost (%) Total Cost (%)

BTC 4.15% 5.21% 9.36%
ETH 2.97% 2.78% 5.75%

Transaction Cost Analysis. OPHR’s profitability remains robust after accounting for transaction
costs. Table 4 shows that total transaction costs represent 9.36% and 5.75% of P&L for BTC and
ETH respectively. We incorporate realistic commission fees following Deribit’s fee structure: 0.05%
for perpetual futures and 0.03% for options (capped at 12.5% of option price), with bid-ask spread
costs implicitly captured through market order execution prices in backtesting.

These modest cost ratios result from OPHR’s measured trading frequency, with average holding
periods of 9-51 hours (Table 3) that minimize unnecessary transactions. The HR-Agent’s sophisticated
hedging decisions further reduce excessive rebalancing during stable periods while maintaining
effective risk management during volatility spikes. This cost efficiency confirms that OPHR’s superior
performance reflects genuine alpha generation rather than unrealistic cost assumptions.

6 Conclusion

In this paper, we introduced OPHR, a novel reinforcement learning framework for volatility trading
through options. Our OP-Agent excels at volatility timing by dynamically identifying market regimes
where implied volatility is mispriced relative to expected RV. Complementing this, our HR-Agent
optimizes performance by selecting appropriate hedging strategies that lock in profits during volatility
spikes while minimizing costs during calmer markets. Empirical results on cryptocurrency options
markets demonstrate that OPHR consistently outperforms traditional approaches across key metrics,
validating that our multi-agent reinforcement learning framework effectively captures the complex
patterns essential for successful volatility trading. Future work could explore additional volatility
trading opportunities, such as volatility smile skewness and term structure anomalies, as well as
further optimizing hedgers to incorporate market features for more precise hedging decisions. These
enhancements would enable even more sophisticated volatility trading strategies while maintaining
the data-driven, adaptive nature of our reinforcement learning framework.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we provide a clear contribution list in introduction which aligns our paper
and abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: As we mentioned in conclusion, this work is only a specific volatility trading
strategy. More possibilities are still to be study with RL.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper is about RL in financial applications, no theoretical analysis is
needed.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experiment details are presented in the paper and the Appendix.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We open-source the code and example data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: They are presented in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The statistical significance is not applicable for quantitative trading research,
because we only experienced one history and cannot access to other parallel universe.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: They are presented in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: They are discussed in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Comprehensive test is needed before bringing this strategy to real trading.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any of them.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not open-source our code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human are involved in this research.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human are involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research is not related to LLM, and we only use LLM to polish the writing
of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Cryptocurrency Options

A.1 The Black-Scholes-Merton Model and Greeks

The Black-Scholes-Merton (BSM) Model is a seminal framework for pricing European-style options.
Despite the fact that real-world markets often violate its assumptions, the model offers fundamental
insights and practical tools for derivatives pricing and risk management.

A.1.1 Model Assumptions

The BSM model relies on several idealized assumptions:

• Markets are frictionless: there are no transaction costs or taxes.
• Trading is continuous, and investors can borrow and lend at a constant, risk-free interest rate
r.

• The price of the underlying asset St follows geometric Brownian motion, governed by the
stochastic differential equation:

dSt = µStdt+ σStdWt,

where:
– µ is the expected return of the asset,
– σ is the volatility of the asset,
– Wt is a standard Wiener process.

• There are no arbitrage opportunities.
• The option is European.

A.1.2 Black-Scholes Pricing Formula

Under these assumptions, the value V (t, St) of a European option satisfies the Black-Scholes Partial
Differential Equation (PDE):

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

+ rSt
∂V

∂St
− rV = 0.

Solving this PDE with appropriate boundary conditions yields closed-form pricing formulas for
European call and put options:

C(t, St) = StN(d1)−Ke−r(T−t)N(d2), (6)

P (t, St) = Ke−r(T−t)N(−d2)− StN(−d1), (7)

where

d1 =
ln(St/K) +

(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

, (8)

d2 = d1 − σ
√
T − t, (9)

and N(·) is the cumulative distribution function of the standard normal distribution.

A.1.3 Greeks

The BSM model also provides a set of sensitivity measures known as the Greeks, which quantify
how the option price responds to changes in key variables:

• Delta: Measures sensitivity to the underlying price.

∆ =
∂V

∂S
.

∆call = N(d1), ∆put = N(d1)− 1.

It is essential for directional risk management.
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• Gamma: Measures the rate of change in Delta with respect to the underlying asset.

Γ =
∂2V

∂S2
.

Γ =
N ′(d1)

Stσ
√
T − t

where N ′(d1) = 1√
2π
e−d

2
1/2 is the standard normal probability density. High Gamma

indicates that Delta changes rapidly with small movements in St.
• Theta: Measures the effect of time decay on option value.

Θ =
∂V

∂t
.

Θcall = −StN
′(d1)σ

2
√
T − t

− rKe−r(T−t)N(d2),

Θput = −StN
′(d1)σ

2
√
T − t

+ rKe−r(T−t)N(−d2).

It is usually negative for long options, reflecting value loss over time.
• Vega: Measures sensitivity to volatility.

Vega =
∂V

∂σ
.

Vega = StN
′(d1)

√
T − t.

• Rho: Measures sensitivity to interest rate changes.

ρcall = K(T − t)e−r(T−t)N(d2),

ρput = −K(T − t)e−r(T−t)N(−d2).

A.2 Inverse Option

Inverse options are European-style, cash-settled option contracts denominated in the underlying
cryptocurrency (e.g., BTC or ETH), representing the dominant format in contemporary crypto
derivatives markets. These contracts can only be exercised automatically at expiry, eliminating
the possibility of early exercise. Instead of requiring the physical delivery of the underlying asset,
settlement occurs in the form of a payout denominated in the base cryptocurrency, calculated as the
difference between the delivery price and the strike price. Option pricing is based on the Black-Scholes
framework, wherein the forward price, rather than the spot index, is employed as the principal input
for valuation. Trading is generally conducted on a continuous 24/7 basis and accommodates a diverse
range of order types. Furthermore, the system incorporates risk management measures, including
price correction mechanisms, to enhance market integrity and operational resilience. Inverse options
are particularly well-suited for market participants seeking to hedge or speculate on crypto-asset
exposures without engaging in spot or fiat transactions.

A.3 Portfolio Margin

Traditional margin systems typically apply fixed margin requirements to individual positions, without
accounting for the potential offsetting risk of multi-leg strategies. For instance, in short straddle
positions—where both a call and a put option are sold with the same strike price and expiration—the
worst-case loss is expected to occur in only one direction of price movement, not both simultaneously.
Charging full margin on each leg independently leads to a substantial overestimation of portfolio risk,
thereby reducing capital efficiency.

To address this inefficiency, the Portfolio Margin (PM) framework adopts a risk-based approach that
estimates the required margin based on the portfolio’s net risk exposure. Instead of evaluating each
position in isolation, PM performs a series of stress tests on the entire portfolio, simulating potential
profit and loss (P&L) under a range of underlying asset price and implied volatility scenarios. The
maximum projected loss from these scenarios is then used as the basis for the maintenance margin
requirement.
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Calculation Procedure. The PM system simulates the portfolio P&L under multiple discrete asset
price shifts (e.g., −15%,−12%, . . . , 0%, . . . ,+15%) and volatility adjustments (e.g., +45%, 0%,
−30%). For each price scenario X%, the total portfolio P&L is computed as:

L(X%) = A(X%) +B(X%)

where A(X%) represents the P&L of futures or perpetual contracts, and B(X%) is the worst-case
loss of the option positions under the three volatility assumptions at the given price level. The
**maximum potential loss (ML)** is determined as:

ML = min{L(X%) for all scenarios}

An additional contingency margin is added to account for uncovered short options and large directional
exposure:

Contingency =
[(∑

Net Short Options at Strike × a%
)
+ (|Futures Position| × b%)

]
×Spot Price

Finally, the total maintenance margin is given by:

Maintenance Margin = |ML|+ Contingency

This methodology ensures that the margin reflects the true tail risk of the portfolio while improving
capital efficiency for hedged and risk-reducing strategies.

Margin Control in Simulation Environment In our experiments, the simulated trading environ-
ment adopts a Portfolio Margin (PM) framework to estimate margin requirements. For all conducted
trading episodes, the required margin was constrained to remain below a fixed threshold of 50% of
the agent’s total cash holdings. This constraint ensures the feasibility and solvency of all trading
actions throughout the simulation, preventing excessive leverage and guaranteeing compliance with
realistic capital limitations.

B Method

B.1 Oracle OP-policy Design

As introduced in Section 4.1, the Oracle OP-policy, denoted as πop
Oracle, is designed to provide structured

supervision for reinforcement learning agents by leveraging privileged information—specifically, the
future RV. This section presents the detailed implementation of the policy.

The strategy generates trading signals by comparing the future RV with the current IV, σimp, subject
to a predefined tolerance threshold β. Formally, the policy operates as follows:

• If RVfuture ≥ σimp(1 + β), then initiate a long position.
• If RVfuture ≤ σimp(1− β), then initiate a short position.
• Otherwise, maintain a neutral position.

In practice, the Oracle OP-policy serves as an oracle demonstrator by generating high-quality
sequential action-value trajectories through direct interaction with the environment. When filling the
experience buffer, the Oracle OP-policy utilizes future RV information RVfuture,i across multiple time
horizons, along with varying tolerance thresholds βi, to construct a diverse set of oracle strategies.
This diversity facilitates better coverage of the policy space and enables the OP agent to approximate
near-optimal behavior more effectively during the early stages of training.

While inherently sub-optimal due to the unrealistic assumption of future information availability,
this rule-based strategy aligns with desirable trading behaviors and effectively serves as a structured
demonstration policy. By doing so, it reduces the exploration space and helps the learning agent to
converge more rapidly toward profitable regions of the policy space. Hedging decisions under this
policy are executed using a predefined baseline Hedger π̂Hedger.

It is important to note that, although the Oracle OP-policy utilizes future RV from the training set—a
type of privileged information unavailable during deployment—this signal is used solely to generate
offline trajectories for training purposes. These trajectories serve as high-quality demonstrations to
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guide the learning process. Thus, no future information is exposed to the agent during inference,
ensuring the integrity of forward-looking decision-making. As such, the policy improves sample
efficiency and accelerates convergence without compromising generalization to out-of-sample, real-
world environments.

Fundamentally, the Oracle OP policy functions as a proxy for an optimal strategy based on historical
data, providing structured supervision in the form of offline expert demonstrations. Similar to methods
in imitation and offline reinforcement learning, its purpose is to aid training rather than serve as a
deployable policy. Since all supervision derives from past data, the approach remains consistent with
realistic deployment constraints.

B.2 Hedgers

To hedge the ∆ risk of the position and to lock in Γ profits, we employ a series of hedging instruments.
These Hedgers are constructed using various methods to adapt to different market conditions. We
simulate the use of three types of hedging instruments under different market regimes and position
directions. Based on the overall return and risk exposure, we select the optimal Hedgers to construct
a Hedgers pool, which serves as the candidate set for the HR-agent’s hedging decisions.

• Delta-based Hedger: This type of Hedger determines whether to hedge based on the ∆
value of the current position. A decision threshold ∆thres is predefined. When the absolute ∆
of the position exceeds this threshold,

|∆t| > ∆thres,

a full Delta hedge is executed to neutralize the position’s ∆ exposure.
• Price-based Hedger: This Hedger triggers a hedge based on significant price movements.

Let Pt denote the current underlying price and Plast hedge the underlying price at the last
hedge. A threshold Pthres is used to determine whether a new hedge is necessary. When the
relative price change satisfies ∣∣∣∣ St

Slast hedge
− 1

∣∣∣∣ > Sthres,

a full hedge is performed to adjust the position accordingly.
• Deep Hedgers: This class of Hedgers leverages deep reinforcement learning to learn adaptive

hedging strategies in a data-driven manner. Unlike rule-based Hedgers, deep Hedgers
dynamically determine hedging actions by interacting with the environment, optimizing
for a risk-adjusted objective. Specifically, we use the Actor-Critic algorithm to train these
agents under various market regimes and position profiles.
Each Deep Hedger receives the current market state as input, which includes the underlying
price, option Greeks, historical price volatility, and the current position. The output is a
continuous hedging action between 0 and 1, representing the proportion of ∆ exposure to
hedge.
The training objective balances hedging cost and residual portfolio risk through a utility-
based loss:

Lhedge = −Rt +
1

λ
logE[e−λXt ],

where Rt is the immediate hedging reward (typically negative cost), Xt is the wealth with
post-hedging residual risk, and λ is the risk-aversion parameter. A larger λ encourages
more conservative (risk-sensitive) behavior. By training under different simulated market
conditions and position directions, Deep Hedgers learn to generalize across regimes and
exhibit context-aware hedging behavior.

• Hedger Pool Construction: To enhance the HR-agent’s hedging effectiveness across di-
verse market regimes, we construct a comprehensive Hedger pool composed of the three
aforementioned types of Hedgers: Delta-based Hedgers, Price-based Hedgers, and Deep
Hedgers.
We generate a diverse set of Delta-based and Price-based Hedgers by varying their respective
decision thresholds. Meanwhile, Deep Hedgers are trained under a range of simulated market

23



environments, position direction, and risk-aversion parameters λ. The resulting collection of
Hedgers is then evaluated via backtesting across segmented market regimes—categorized by
volatility levels and directional dynamics (e.g., trending vs. mean-reverting)—and position
types (e.g., long Γ or short Γ).
To ensure diversity in hedging behaviors and risk exposures, we retain only the top-k
performing Hedgers that achieve a favorable trade-off between hedging cost and risk control,
primarily in terms of ∆ exposure. These selected Hedgers collectively form the candidate
Hedger pool, which serves as the basis choices for dynamic Hedger selection by the HR-
agent within the full framework. This enables the construction of diverse and efficient
hedging strategies to adapt to varying market conditions.

B.3 Joing Training

Algorithm 3: OPHR Joint Training

Require: Oracle OP-Policy πop
Oracle, Baseline Hedger π̂Hedger, Env and Twin Ênv

1: Initialize replay buffer Rop, Rhr, Q-networks Qϕ, Qψ and target Q-networks Qϕ′ , Qψ′

2: Phase 1: OP-Agent Offline Pretraining with Oracle OP-Policy and Baseline Hedger
3: Collect trajectories using πop

Oracle and π̂Hedger, store transitions in Rop

4: for Offline Training Iterations do
5: Sample a batch of transitions from Rop and update ϕ with nop-step TD error Eq. (5)
6: Phase 2: Joint Online Learning
7: for Joint Training Epochs do
8: Fix Qϕ and train HR-Agent Qψ using Algorithm 2 for N hr episodes
9: Fix Qψ and train OP-Agent Qϕ, using Algorithm 1 for N op episodes

10: return Qϕ, Qψ

C Experiment

C.1 Evaluation Metrics.

We evaluate our method using 8 financial metrics: 1 profit, 3 risk-adjusted profit, 2 risk and 2 trade
criteria. Returns are aggregated into day-level before calculation.

• Total Return (TR) is the overall return rate of the test period, defined as TR = Vt−V1

V1
,

where Vt is the final margin balance and V1 is the initial margin balance.
• Annual Volatility (AVOL) is the the standard deviation of daily returns annualized defined

as σ[ret]×
√
m to measure the volatility risk, where ret = (ret1, ret2, ..., rett) is a vector

of daily return, σ[.] is the standard deviation function, and m is the annualization factor 365.
• Maximum Drawdown (MDD) measures the largest loss from any peak to show the down-

side risk of the strategy.
• Annual Sharpe Ratio (ASR) is the profit adjusted by volatility risk, defined as: SR =
E[ret]
σ[ret] ×

√
m, where E[ret] is the expectation of daily return.

• Annual Calmar Ratio (ACR) is defined as ACR = E[ret]
MDD ×m, measuring profit adjusted

by downside risk.
• Annual Sortino Ratio (ASoR) applies downside deviation as the risk measure. It is defined

as: ASoR = E[ret]×
√
m

DD , where downside deviation(DD) is the standard deviation of the
negative daily return rates.

• Win Rate (WR) is the percentage of trades that result in a profit, defined as WR =
Nwin

Ntotal
× 100%, where Nwin is the number of profitable trades and Ntotal is the total trades.

• Profit/Loss Ratio (PLR) measures the average profit of winning trades relative to the
average loss of losing trades, defined as PLR = |E[retwin]|

|E[retloss]| , where E[retwin] is the
average return of profitable trades and E[retloss] is the average return of losing trades.
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• Holding Period (HP) is the average holding time per trade, defined as HP =
∑Ntotal

i=1 hi

Ntotal
,

where hi is the holding period of the i-th trade and Ntotal is the total number of trades. It
reflects the trading frequency.

C.2 Hyperparameters

In Section 4.1, we introduce the N-step temporal-difference Double DQN algorithm applied within
a rolling training framework. The main hyperparameter settings for this algorithm are summarized
in Table 5. In our experiments, we adopt a rolling training of every 10 days and apply the proposed
algorithm to historical data, and the network is updated using 12-step temporal-difference (TD)
learning.

Table 5: Hyperparameters for OP-Agent Training
Parameter Description Value

Training window size Training window size 10
Oracle future RV Time horizons for Oracle future RV (3, 6, 9, 12, 24)
Oracle threshold β Thresholds for oracle policy (0.1, 0.2, 0.4, 0.6, 0.8)
Oracle exploration rate ϵoracle Oracle exploration rate 0.1
Episodes Number of episodes per training window 20,000
Updates per episode Network updates after each episode 20
Batch size Number of samples per training batch 512
Hidden layer size Maximum hidden layer size in OP-Agent 1024
Learning rate α Step size for gradient updates 1× 10−4

N-step TD n Steps used in n-step TD learning 12
Discount factor γ Reward discount factor 0.99
Soft update coefficient τ Rate for target network soft updates 0.005
Target update frequency Frequency of target network updates 10
Dropout rate Dropout rate in network layers 0.2
ϵstart Initial exploration rate 0.9
ϵend Final exploration rate 0.01
ϵdecay Decay rate of ϵ (steps) 10,000

As described in Section B.2, we utilize three types of Hedgers, each trained under different market
regimes and position conditions. For each setting, multiple Hedgers are trained, and the top 30
performing ones are selected based on validation performance. These selected models serve as
candidate Hedgers for the HR-agent. The hyperparameter settings for the Hedgers are summarized in
Table 6, while the preliminary training parameters for the HR-agent are listed in Table 7.

Table 6: Hedger parameters.
Hedger type Parameter values

Delta-based Hedger 0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.15, 0.2,
0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Price-based Hedger 0.5%, 1%, 2%, 3%, 4%, 5%, 7%, 10%, 12%, 15%,
20%, 30%, 50%, 100%

Risk Aversion parameter λ 0.1, 0.2, 0.5, 0.7, 1, 2, 3, 5, 8, 10, 20, 40, 60, 80, 100, 200, 400, 800
Hedger pool size 30
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Table 7: Hyperparameters for HR-Agent Training
Parameter Description Value

Learning rate α Step size for Q-network updates 1× 10−4

Discount factor γ Future reward discount factor 0.99
Batch size Number of samples per update 512
Hidden layer size Size of each hidden layer in the Q-network 1024
ϵstart Initial exploration probability 0.9
ϵend Final exploration probability 0.01
ϵdecay Steps over which ϵ decays linearly 10,000
Updates per step Number of Q-network updates per routing step 10
Routing interval nhr Steps between Hedger selections 24

Training Setup. We conducted all experiments on a server equipped with 4 NVIDIA RTX 4090
GPUs and an AMD Ryzen Threadripper PRO 5995WX CPU. The total time required for one iteration
of stage 1 and stage 3 was approximately 12 hours for the OP-Agent optimization in Section 4.1, and
around 3 hours for training the HR-agent in Section 4.2.

C.3 Baselines

This section presents the detailed implementation of the baselines introduced in Section 5.1. All
baseline strategies adhere to the following fundamental principles:

• Open Position: At the time of initiation, the strategy selects the nearest-to-the-money (ATM)
straddle within a predefined maturity range as the underlying instrument. The notional size
of the position is determined based on the allocated margin usage.

• Close Position: Depending on the nature of the signal, a strong reversal signal may indicate
either a position reversal or position closure. Alternatively, for certain signals, a take-profit
and stop-loss rule is applied: the position is closed if the profit reaches p% or if the loss
reaches l%. In addition, a maximum holding period HPmax is imposed; if neither take-profit
nor stop-loss conditions are met before HPmax, the position is force-closed upon reaching
this time limit.

• Hedger: For consistency across all baselines, we apply a unified Delta-based hedging
scheme as described in Section B.2, where the hedging threshold is set to ∆thres = 0.1.

C.3.1 Directional Volatility Strategies

This strategy involves taking directional exposure to volatility by trading at-the-money (ATM)
straddles. Specifically, straddles with time to maturity between mmin and mmax are selected, and
each position is held until a fixed rollover point mrollover. At each rollover date, existing positions are
closed, and new positions are established following the same maturity selection criteria.

Two directional variants are considered:

• Long: Buys ATM straddles that meet the maturity condition and holds the position until the
rollover date.

• Short: Sells ATM straddles under the same maturity condition and holds the position until
the rollover date.

A unified rule-based Delta Hedger is applied to this strategy.

All parameters used in this strategy are summarized in Table 8.

C.3.2 Single Factor Models

Both the Mean Reversion (MR) and Momentum (MOM) strategies are constructed based on a single
indicator derived from the percentile of realized volatility (RV).
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Table 8: Parameter settings for Long and Short Volatility strategies
Parameter Long Volatility Short Volatility

mmax 90 90
mmin 60 60
mrollover 21 21
∆thres 0.1 0.1

RV Percentile For each evaluation date, the model computes the annualized realized volatility over
a backward-looking window of length Pvol, denoted by σp. This RV σp is then compared against the
historical distribution of RV computed over a rolling lookback window of length Plookback, yielding a
percentile score.

Based on this percentile:

• Mean Reversion (MR): Takes a short volatility position when the current σreal percentile is
high (expecting reversion), and a long volatility position when it is low.

• Momentum (MOM): Takes a long volatility position when the percentile momentum is high
(expecting continuation), and a short volatility position when it is low. Specifically, the
momentum of the percentile score is defined as the relative change over a lag of i periods:

Mopercentile,i =

(
Percentilet

Percentilet−i
− 1

)
× 100% (10)

Positions are opened by selecting at-the-money (ATM) straddles with maturities between mmin and
mmax, conditional on the factor signal.

Position closure follows the general rule-based principles described in Section 5.1 .

A unified rule-based Delta Hedger is applied to this strategy.

All parameters used in this strategy are summarized in Table 9.

Table 9: Parameter settings for Single Factor Models (Mean Reversion and Momentum)
Parameter MR MOM

Pvol (window for realized volatility) 3, 6, 9, 12, 24 hours
Plookback (lookback window for percentile) 365 days
mmin,mmax (option maturity range) 60, 90
∆thres (Delta hedging threshold) 0.1
p (take-profit threshold) 5%
l (stop-loss threshold) 3%
HPmax (maximum holding period) 96 hours
SMR,long, SMR,short (MR threshold) 20, 80 –
SMOM,long, SMOM,short (MOM threshold) – 15%, –10%

C.3.3 Machine Learning Models

We implement three supervised learning models to generate volatility forecasts: Gradient Boosted
Decision Trees (GBDT), Multi-Layer Perceptron (MLP), and Long Short-Term Memory networks
(LSTM).

Each model is trained to predict the annualized RV over a forward-looking window of length Pvol,
which serves as the target variable. Input features include historical volatility measures, option market
variables, and macroeconomic indicators characterizing the current market environment.

The predicted volatility is then compared to the current implied volatility (IV) of the ATM straddle
to form a relative signal. The corresponding thresholds are selected based on backtesting, using
values that yield the best performance on the training and validation sets.A rule-based decision rule is
applied based on their ratio:
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• A long straddle position is opened if the predicted volatility exceeds the current implied
volatility by a ratio greater than SML,long, i.e., σ̂pred

IVATM
> SML,long.

• A short straddle position is opened if the predicted volatility is sufficiently below the current
implied volatility, i.e., σ̂pred

IVATM
< SML,short.

Positions are opened using at-the-money (ATM) straddles with maturities between mmin and mmax.

Position closure follows the same rule-based framework described in Section 5.1:

• Take-profit is triggered when return exceeds p = 5%;

• Stop-loss is triggered when loss exceeds l = 3%;

• Maximum holding period: HPmax = 96 hours;

• If predicted volatility crosses the opposite threshold, the position is closed and reversed.

Delta risk is managed using the unified rule-based Delta hedging mechanism, with threshold ∆thres =
0.1.

All parameters for the machine learning strategies are summarized in Table 10.

Table 10: Parameter settings for Machine Learning Models

Parameter GBDT MLP LSTM

Pvol (3, 6, 9, 12, 24)hours
mmin,mmax 60, 90
∆thres 0.1
p 5%
l 3%
HPmax 96 hours
SML,long, SML,short 1.6, 0.7 1.2, 0.9 1.3, 0.7

Model architecture

CatBoost
iterations=3000
depth=8
target=’ic’

MLP
max_hidden_dim=1024
depth=5
ReLU, dropout=0.2

LSTM
layers=3
max_hidden_dim=512
dropout=0.2

D More detailed Result Analysis

D.1 Baseline Comparison

The visualization of the baseline comparison, summarized in Table 2, is presented in Figures 4 and 5.

D.2 ML prediction

Table 11: Performance of ML Forecasting Models

Model BTC ETH
Spearman IC Pearson IC R2 Spearman IC Pearson IC R2

LSTM 0.6133 0.6136 0.5776 0.5946 0.6192 0.5846
MLP 0.6030 0.4303 0.3353 0.5801 0.3306 0.5023
CatBoost(GBDT) 0.6214 0.6279 0.5781 0.6056 0.6152 0.5407

Table 11 presents the volatility forecasting performance of the baseline machine learning models.
From the perspective of information coefficients (IC), all models generally demonstrate reasonably
good predictive ability.
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Figure 4: Baseline Comparison on BTC
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Figure 5: Baseline Comparison on ETH

Table 12: Performance of ML Forecasting Models on Top 5% Outliers

Model BTC ETH
Spearman IC Pearson IC R2 Spearman IC Pearson IC R2

LSTM 0.3519 0.4460 0.1459 0.3462 0.5041 0.3363
MLP 0.3770 0.1903 -0.8157 0.4101 0.4018 -0.0536
CatBoost(GBDT) 0.3902 0.4746 0.2557 0.3664 0.5083 0.3578

Table 13: Performance of ML Forecasting Models on 95% Inliers

Model BTC ETH
Spearman IC Pearson IC R2 Spearman IC Pearson IC R2

LSTM 0.6207 0.6619 0.6695 0.6032 0.6599 0.6483
MLP 0.6172 0.6633 0.6378 0.5894 0.6531 0.6050
CatBoost(GBDT) 0.6285 0.6700 0.6268 0.6158 0.6599 0.5783
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However, these models fail to accurately capture the sharp spikes in realized volatility (RV), which are
critical for long Gamma trading strategies. Table 12 shows that model performance drops noticeably
on the top 5% outliers, reflecting limited robustness under extreme conditions. Moreover, there
remains a substantial gap between predicting volatility and executing profitable trading decisions
based on that prediction. Addressing this gap is precisely where our proposed method offers a distinct
advantage.

D.3 PNL Decomposition

To understand the sources of profit and loss (PnL) in option trading strategies, we decompose the
cumulative PnL into analytically interpretable components based on the Greeks: Delta (∆), Gamma
(Γ), Theta (Θ), Vega, and a residual term capturing unexplained effects. Let t = 1, . . . , T denote
discrete trading timestamps. The total PnL at time t is approximated as:

PnLt = Deltat +Thetat +Vegat +Gammat +Residualt (11)

Each component corresponds to a specific source of risk exposure and is computed as follows:

Delta PnL. The contribution from changes in the underlying price St is estimated by:

Deltat = ∆t−1 · (St − St−1) (12)

Here, ∆t−1 = ∂V
∂S is the Delta exposure at the previous time step. This term captures the linear

sensitivity of the option’s value to movements in the underlying.

Theta PnL. The time decay of the option value is given by:

Thetat = Θt−1 ·∆t (13)

where Θt−1 = ∂V
∂t is the time sensitivity, and ∆t is the time step.

Vega PnL. The impact of changes in implied volatility σ is estimated as:

Vegat = Vegat−1 · (σt − σt−1) (14)

where Vegat−1 = ∂V
∂σ is the option’s sensitivity to implied volatility.

Gamma PnL (Realized). Gamma measures the convexity of the option value with respect to the
underlying. Between two hedge timestamps tprev and tcurr, the cumulative realized Gamma PnL is:

Gammarealizedtcurr
=

tcurr∑
t=tprev+1

1

2
· Γ̄t · (St − St−1)

2 (15)

where Γ̄t =
1
2 (Γt + Γt−1) is the average Γ exposure at time t.

Gamma PnL (Unrealized). To monitor latent convexity risk, the unrealized Gamma PnL from the
last hedge point to current time t is tracked as:

Gammaunrealizedt =

t∑
t′=tlast hedge+1

1

2
· Γ̄t′ · (St′ − St′−1)

2 (16)

This quantity is not included in total PnL but helps visualize the risk of delayed hedging.
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Residual PnL. The residual term accounts for the portion of PnL not explained by the above
Greeks:

Residualt = PnLt − (Deltat +Thetat +Vegat +Gammat) (17)

Residual PnL may arise from several sources: model misspecification, transaction costs, bid-ask
spreads, slippage during rebalancing, inaccurate Greek estimates, or discrete hedging errors. A high
residual may indicate imperfect model assumptions or unmodeled market factors.

Table 14: PnL attribution (%) for OPHR on BTC and ETH
Component BTC Long BTC Short ETH Long ETH Short

Delta 1.17 -0.55 -5.26 -23.50
Gamma 91.41 -169.15 107.60 -125.70
Theta -5.71 66.15 -4.99 44.23
Vega 64.58 123.43 32.01 51.93
Residual -51.45 80.12 -29.36 153.03

As shown in Table 14, we decompose the PnL of OPHR’s long and short Γ trading strategies into
Greeks PNL and express each as a percentage of the total profit. Despite the presence of sizable
residual terms in the attribution, the analysis reveals that the primary sources of profit in the long
Γ strategy stem from Γ and Vega exposure, while the main cost is associated with Theta decay. In
contrast, the short Γ strategy benefits predominantly from Theta and Vega gains, while incurring
substantial losses from adverse Γ exposure. These observations align well with the intended design
of the respective strategies.

E Broader Impact

Our reinforcement learning framework for options trading offers potential positive impacts through
improved market liquidity, more accurate risk pricing, and democratization of sophisticated trading
strategies. However, we acknowledge potential negative consequences including market concen-
tration that could exacerbate inequality, possible herding behavior leading to market instability if
widely adopted, and environmental concerns related to cryptocurrency markets where our method is
tested. We emphasize the importance of responsible deployment to ensure algorithmic advances in
financial markets benefit society broadly rather than concentrating advantages among a small group
of sophisticated participants.
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