OPHR: Mastering Volatility Trading with Multi-Agent Deep Reinforcement Learning

Zeting Chen*

Nanyang Technological University Singapore

zchen091@e.ntu.edu.sg

Molei Qin

Nanyang Technological University Singapore molei001@e.ntu.edu.sq

Xinyu Cai*

Nanyang Technological University Singapore

xinyu009@e.ntu.edu.sg

Bo An

Nanyang Technological University Skywork AI Singapore boan@ntu.edu.sg

Abstract

Options markets represent one of the most sophisticated segments of the financial ecosystem, with prices that directly reflect market uncertainty. In this paper, we introduce the first reinforcement learning (RL) framework specifically designed for volatility trading through options, focusing on profit from the difference between implied volatility and realized volatility. Our multi-agent architecture consists of an Option Position Agent (OP-Agent) responsible for volatility timing by controlling long/short volatility positions, and a Hedger Routing Agent (HR-Agent) that manages risk and maximizes path-dependent profits by selecting optimal hedging strategies with different risk preferences. Evaluating our approach using cryptocurrency options data from 2021-2024, we demonstrate superior performance on BTC and ETH, significantly outperforming traditional strategies and machine learning baselines across all profit and risk-adjusted metrics while exhibiting sophisticated trading behavior. The code framework and sample data of this paper have been released on https://github.com/Edwicn/OPHR-MasteringVolatilityTradingwithMultiAgentDeepReinforcementLearning

1 Introduction

Options markets represent one of the most sophisticated segments of the financial ecosystem, offering traders the ability to construct complex, non-linear payoffs and express nuanced views on market direction, volatility, and timing. More recently, cryptocurrency options markets have emerged as a rapidly developing segment, with Bitcoin (BTC) [Nakamoto, 2008] and Ethereum (ETH) [Buterin and Others, 2013] options gaining significant traction, which provide unique research opportunities due to their transparency, 24/7 operation, and comprehensive data accessibility that is often unavailable in traditional markets.

Options [Kariya and Liu, 2003] serve as the insurance of financial markets, with prices that directly reflect market uncertainty. While traditional option pricing models like Black-Scholes-Merton (BSM) [Black and Scholes, 1973, Merton, 1973] provide a theoretical framework for option valuation, they rely on idealized assumptions that rarely hold in practice: continuous trading, no transaction costs, constant volatility, and the ability to hedge risk exposures perfectly. These simplifications,

^{*}Equal contribution. Correspondence to: Xinyu Cai - xinyu009@e.ntu.edu.sg

while mathematically elegant, fail to capture the empirical realities of options markets, where the difference between implied volatility (IV) and realized volatility (RV) creates persistent volatility trading opportunities [Carr and Madan, 1998, Christensen and Prabhala, 1998, Ni et al., 2008, Sinclair, 2013, Tan et al., 2024].

IV is the volatility priced in the option price [Canina and Figlewski, 1993, Dumas et al., 1998], and RV is the true price fluctuations in the underlying asset[Andersen et al., 2003, McAleer and Medeiros, 2008]. IV is higher than RV most of the time because the market needs to pay a premium to option sellers as a reward for bearing tail risk. Option sellers typically need to trade the underlying asset to hedge risk. Options aren't just insurance; during periods of significant market volatility, traders can often profit by buying options and properly hedging. In these instances, RV typically exceeds IV. Therefore, the volatility trading involves two challenges to beat the market: i) Good volatility timing: sell options to collect premium when markets are calm, and buy options to profit when markets are about to become volatile; ii) Select a proper hedging strategy to manage risk when selling options and take profit when buying options as illustrated in Figure 1.

RL [Sutton and Barto, 1998, Mnih et al., 2015, Hasselt et al., 2016] offers a compelling alternative by learning optimal trading policies directly from market data. Unlike traditional approaches relying on option pricing models with restrictive assumptions and RV forecasting [Andersen et al., 2003], RL frames option trading as a sequential decision problem, naturally incorporating practical constraints such as transaction costs, discrete hedging intervals, and market dynamics. This data-driven methodology eliminates the need for explicit pricing models, instead allowing RL agents to discover mispriced volatility through experience.

Although RL has been successfully applied to many trading tasks [Jiang and Liang, 2017, Conegundes and Pereira, 2020, Yang et al., 2020, Briola et al., 2021, Nagy et al., 2023, Takara et al., 2023, Zong et al., 2024, Qin et al., 2024], options trading is an untouched area due to its complexity. In this paper, we introduce the first RL framework that addresses the complexities of volatility trading in a data-driven manner. Our framework is composed of 2 parts: i) Option Position Agent (OP-Agent) controlling the long/short of volatility, and ii) Hedger Routing Agent (HR-Agent) selecting the optimal Hedgers with different risk preferences to perform dynamic Delta hedging based on positions and market conditions. To make they work coordinately with each other, we first distill a sub-optimal Oracle policy to OP-Agent, then alternatively train HR-Agent and OP-Agent.

We evaluate our approach using historical cryptocurrency options data on BTC and ETH, leveraging the transparency and data accessibility of these markets to conduct comprehensive experiments. Our findings demonstrate that the RL model significantly outperforms traditional rules-based strategies in both long and short Gamma implementations, with particular emphasis on managing tail risk when selling options and identifying optimal timing for buying options during market dislocations.

The primary contributions of our work are:

- The first RL framework specifically designed for trading volatility through options, moving beyond previous RL applications that focused solely on option pricing and hedging.
- A novel multi-agent architecture comprised of two specialized agents working in concert:
 OP-Agent, identifying volatility trading opportunities, and HR-Agent, tuning risk preference.
- An effective training methodology that enables the two agents to learn collaboratively from market data, balancing the competing objectives of profit maximization and risk management.
- Comprehensive empirical results demonstrating the framework's ability to properly manage tail risk when selling options and identify advantageous timing for buying options.

2 Background & Related Works

This section introduces the fundamental concepts of options, option pricing models, and volatility trading strategies that form the basis for our RL approach to trade volatility.

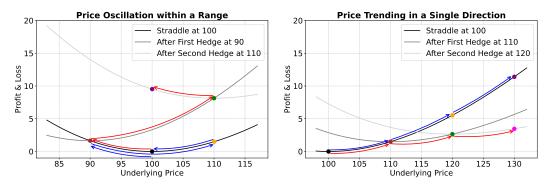


Figure 1: **Importance of proper Hedging strategy:** In this figure, red arrows show the PnL path with hedging, and blue arrows show the PnL path without hedging. In the oscillation market (left), the price path is $100 \rightarrow 90 \rightarrow 110 \rightarrow 100$. In the trending market (right), the price path is $100 \rightarrow 110 \rightarrow 120 \rightarrow 130$. These figures ignore the time value decay for simplicity. All curves in the two figures will drop as time passes.

2.1 Options and the Black-Scholes Model

Financial options are derivative contracts that give the holder the right, but not the obligation, to buy (call option) or sell (put option) an underlying asset at a specified price (strike price) on or before a specified date (expiration date). Options are characterized by three key attributes: **option type** (Call or Put), **strike price** (K) at which the underlying asset may be transacted, and **expiry time** (T) by which the option must be exercised. The payoff structure of European options is defined mathematically as:

$$\Psi(S_T) = \begin{cases} (S_T - K)_+ & \text{if Call} \\ (K - S_T)_+ & \text{if Put} \end{cases}$$
 (1)

where S_T is the underlying asset's price at expiration and $(x)_+$ mean $\max(x,0)$.

The **Black-Scholes-Merton Model (BSM)** represents the foundational framework for pricing options. While real markets violate several of its assumptions, the model provides crucial theoretical insights and practical tools for options traders. The BSM assumes a constant risk-free interest rate r, an underlying asset price following geometric Brownian motion $(dS_t = \mu S_t dt + \sigma S_t dW_t)$, frictionless markets with no transaction costs, and no arbitrage opportunities. These assumptions lead to the Black-Scholes partial differential equation: $\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$. Solving this equation yields the theoretical price of a European option $V(t, S_t)$.

Beyond pricing, BSM provides essential risk exposure metrics known as "Greeks". Delta $(\Delta = \frac{\partial V}{\partial S})$ quantifies an option's price sensitivity to changes in the underlying asset price. Gamma $(\Gamma = \frac{\partial^2 V}{\partial S^2})$ measures the rate of change in Δ relative to movements in the underlying asset. Theta $(\Theta = \frac{\partial V}{\partial t})$ measures time decay—how much value an option loses as time passes. Vega $(\frac{\partial V}{\partial \sigma})$ quantifies sensitivity to volatility changes. These Greeks provide critical insights for risk management and volatility trading strategies: traders can hedge those risks they do not want and keep those they are willing to take. The details of BSM and Greeks are presented in Appendix A.1

2.2 Volatility Trading

There are many volatility trading strategies due to the complexity of options. One of them is the long/short Gamma strategy, which aims to profit from the difference between IV—the volatility priced into options by the market, and RV—the actual price fluctuations experienced by the underlying asset.

The Gamma-Theta Relationship. Options positions with positive Γ experience convex payoffs (accelerating gains) as the underlying price moves in either direction. However, this advantage comes at a cost: negative Θ , or time decay. This fundamental relationship informs the core mechanics of volatility trading. Using Taylor's theorem, we can approximate how an option's price changes:

$$V(S+dS,\sigma,t+dt) \approx V(S,\sigma,t) + dS \times \Delta + \frac{1}{2}(dS)^2 \times \Gamma + dt \times \Theta$$
 (2)

When Delta-hedging is applied (neutralizing the $dS \times \Delta$ term through offsetting positions in the underlying), the theoretical PnL becomes:

$$PnL = \int_0^T \frac{S_t^2}{2} \Gamma\left(\sigma_t^2 - \sigma^2\right) dt, \tag{3}$$

where $\sigma_t = (\frac{dS_t}{S_t})^2$ is the instant RV (**profit**) and σ is IV which determines the magnitude of the time decay rate Θ (**loss**). The formula shows that if the expectation of RV(σ_t) is higher than the IV(σ) priced in options, we are expected to profit from a long Gamma trade and vice versa.

Dynamic Delta Hedging for Gamma Strategies. Dynamic Delta hedging (DDH) [Hull and White, 2017] serves distinct functions in the Gamma strategy. For long Gamma positions, it acts as a profit mechanism through Γ scalping—systematically buying low and selling high as price fluctuations alter Δ values. For short Γ positions, it primarily mitigates risk by neutralizing directional exposure. As illustrated in Figure 1, the effectiveness of hedging depends on market conditions. In oscillating markets, hedging locks in profits when prices return to original levels, while in trending markets, hedging may limit potential gains as prices move consistently in one direction. This demonstrates why proper hedging strategy selection is crucial despite similar RV in both scenarios. Rule-based Hedger is commonly used, which monitors portfolio Delta against predefined thresholds. Alternatively, RL approaches can be employed to train hedging strategies with varying risk-aversion levels through actor-critic methods using risk-adjusted reward functions [Buehler et al., 2019, 2021a,b, 2022, Murray et al., 2022]. While recent work such as DLOT [Tan et al., 2024] applies deep learning to option portfolio management by constructing long/short positions across multiple stocks' straddles without underlying hedging, our work addresses a fundamentally different problem: single-asset volatility trading with dynamic delta hedging. This distinction is crucial—our approach tackles the complex challenges of gamma scalping, continuous hedging decisions, and path-dependent profit optimization that emerge from maintaining isolated volatility exposure, requiring delta-hedged straddle PnL as the optimization target rather than unhedged portfolio returns.

3 Problem Formulation

We first present several financial concepts that are necessary to trade options. Then we describe how to formulate the volatility trading problem as a Cooperative Markov Decision Process (MDP).

Financial Concepts for Volatility Trading. To build an RL framework for volatility trading, we first define the following financial concepts: Underlying asset, denoted as S_t , refers to the financial asset from which the options are derived. In our context, it primarily includes the perpetual future of the underlying asset, which is used to hedge the Δ exposure of our volatility trading positions. Straddle is a combination of a call and a put option with identical strike prices. At the money (ATM, strike K equals S_t) straddle is a common strategy to trade volatility due to its zero Δ exposure and substantial Γ and Vega exposure. Position, denoted as P_t , consists of option positions: the holding of option contracts, and hedging positions: the holding of the underlying asset. Net value V_t represents the total value of our account, which consists of the options positions value, underlying position value, and cash: $V_t = V_t^{options} + V_t^{underlying} + CashBalance$. Market features F_t are features derived from options and underlying market data to analyze price trends and volatility. Greeks, $G_t = (\Delta, \Gamma, \Theta, \text{Vega})$, are risk measures derived from the BSM model, indicating the sensitivity of the net portfolio value (V_t) to different variables, which have been described in Section 2.1. Hedgers are hedging policies that take information like Greeks and time-to-expires as input, and decide how many hedging instruments to trade at each step, which have been described in Appendix B.2.

Markov Decision Process Formulation. We formulate volatility trading as a Cooperative MDP, where two specialized agents collaborate to optimize trading performance. The OP-Agent identifies and executes volatility trading opportunities, while the HR-Agent selects optimal hedging strategies every N steps. This cooperative relationship is critical: the OP-Agent's position decisions directly influence the HR-Agent's state space, while the HR-Agent's hedging strategy affects the returns of positions established by the OP-Agent. Both agents share the common objective of maximizing portfolio net value while managing risk exposure. Specifically, in our framework, the problem can be formulated as $(MDP^{\rm op}, MDP^{\rm hr}_N)$

$$MDP^{\text{op}} = \langle S^{\text{op}}, A^{\text{op}}, T^{\text{op}}, R^{\text{op}}, \gamma^{\text{op}} \rangle$$

$$MDP_N^{\text{hr}} = \langle S_N^{\text{hr}}, A_N^{\text{hr}}, T_N^{\text{hr}}, R_N^{\text{hr}}, \gamma^{\text{hr}} \rangle$$

$$(4)$$

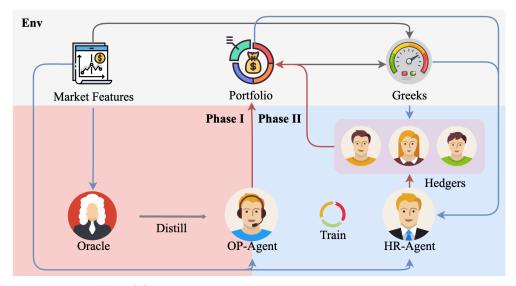


Figure 2: **The overview of OPHR.** The upper section depicts the trading environment containing market features, portfolio status, and Greeks measurements: both market and portfolio will affect the Greeks. The lower section shows the two-phase training process: In Phase I, a sub-optimal Oracle policy distills market knowledge to initialize the OP-Agent. In Phase II, the OP-Agent is trained alternatively with the HR-Agent, who selects a proper Hedger based on Greeks and market features.

OP State is the market feature F_t , denoted as $s_t^{\rm op} = F_t$. OP Action, denoted as $a_t^{\rm op} \in A^{\rm op} = \{+1, -1, 0\}$, determines the target position (long/short/neutral) of options at each step. HR State, denoted as $s_t^{\rm hr} = (F_t, P_t, G_t)$, consists of the market feature F_t , position information P_t , and Greeks G_t . Hedgers are a set of hedging policies $\{\pi_{(i)}^{\rm hedger}\}_{i=1}^K$ with different risk-aversion levels, which the method proposed by Murray et al. [2022] trains . A rule-based Hedger $\hat{\pi}^{\rm hedger}$ is used as a baseline in our framework. They take the portfolio and Greeks (P_t, G_t) as input and output the final trading amount of the underlying asset to perform a hedge. HR Action, denoted as $a_t^{\rm hr} \in A^{\rm hr}$, involves selecting the optimal Hedger from the set of predefined Hedgers In Figure 1, the two Hedgers are price-based Hedgers. The red one has a finite threshold (less risk-seeking), and the blue one has an infinite threshold (never hedging, extreme risk-seeking). Details of Hedgers are presented in Appendix B.2. The HR-Agent makes a decision every N steps, and the selected Hedger executes hedging at each step. Transition: The OP State contains market features F_t only, so its transition $s_{t+1}^{\rm op} = T^{\rm op}(s_t^{\rm op})$ is the market dynamics, which is not affected by the action. However, the positions and Greeks in $s_{t+1}^{\rm hr} = a$ affected by the two agents: the OP-Agent determines which options to hold, and the HR-Agent's selection of Hedger affects how the underlying position evolves under varying market conditions. Thus, the transition $s_{t+N}^{\rm hr} = T_n^{\rm hr}(s_t^{\rm hr}, a_t^{\rm op}, a_t^{\rm hr})$ takes the action of two agents into account. Reward function: The reward for OP-Agent is defined as the change in portfolio net value $r_{t+1}^{\rm op} = V_{t+1} - V_t$; the reward of HR-Agent is defined as the advantage of the selected Hedger $\pi_a^{\rm hedger}$ over a rule-based baseline Hedger $r_{t+n}^{\rm hr} = V_{t+n}^{\rm hr} - \hat{V}_{t+n}^{$

4 OPHR: A Two-Phase Multi-Agent Framework for Volatility Trading

In this section, we demonstrate our OPHR framework as shown in Figure 2 to solve the volatility trading problem. We first introduce the training of the option part, consisting of an OP-Agent, which involves an n-step TD error update. Then we introduce the hedging part, which consists of a set of Hedgers with different risk preferences and an HR-Agent selecting the optimal Hedger based on positions and market conditions. To make the two parts work coordinately with each other, we design a joint training method, which first initializes the OP-Agent with a sub-optimal Oracle policy, then trains the HR-Agent and the OP-Agent alternatively.

4.1 OP-Agent Optimization

OP-Agent is responsible for determining the holdings of options at each time step. Its primary objective is to adjust the overall payoff structure of the portfolio as a function of the price of the underlying asset, according to current market conditions, enabling the agent to systematically capture profits from price fluctuations of the underlying asset.

n-step TD Learning. In options trading, portfolio returns are typically realized over time, as long Gamma strategies rely on large price movements, and short Gamma strategies accumulate theta over time. In addition, frequent hedging incurs transaction costs, introducing noise into short-term rewards. These issues render the reward signal both delayed and noisy, limiting the effectiveness of one-step TD updates to capture the true value of positioning decisions. To address this, we adopt n-step TD learning, which incorporates a sequence of future rewards and a bootstrapped value estimation, enabling the agent to better estimate the long-term value of current positioning decisions.

$$\mathcal{L}(\theta) = \mathbb{E}\left[\left(\sum_{k=0}^{n-1} \gamma^k r_j^{(k)} + \gamma^n Q_{\theta'}(s_j^{(n)}, \arg\max_{a} Q_{\theta}(s_j^{(n)}, a)) - Q_{\theta}(s_j, a_j)\right)^2\right]$$
(5)

The algorithm for online learning is presented in Algorithm 1.

Algorithm 1: OP-Agent Online Training via n^{op} -step TD Error

```
1: Reinitialize trading environment Env
2: \mathbf{for}\ t \in \mathrm{Range}(0,T,n^{\mathrm{op}})\ \mathbf{do}
3: \mathbf{for}\ t \in \mathrm{Range}(0,n^{\mathrm{op}},1)\ \mathbf{do}
4: \mathbf{if}\ t \mod n^{\mathrm{hr}} = 0\ \mathbf{then}\ \mathrm{Get}\ \mathrm{HR}\ \mathrm{Action}
5: a_t^{\mathrm{hr}} = \arg\max_a Q_{\theta}(s_t^{\mathrm{hr}},a), \operatorname{set}\ \pi_{a_t^{\mathrm{hr}}}^{\mathrm{hr}} \operatorname{as}\ \mathrm{Hedger}
6: With probability \epsilon, choose a random action, otherwise a_t^{\mathrm{op}} = \arg\max_a Q_{\theta}(s_t^{\mathrm{op}},a^{\mathrm{op}})
7: Execute actions and get next State s_{t+1}^{\mathrm{op}} and Reward r_{t+1}^{\mathrm{op}}
8: Store n^{\mathrm{op}}-step transition: (s_t,a_t^{\mathrm{op}},\{r_{t+1}^{\mathrm{op}},\ldots,r_{t+n^{\mathrm{op}}}^{\mathrm{op}}\},s_{t+n^{\mathrm{op}}}) in \mathcal{R}^{\mathrm{op}}
9: Sample a batch of transitions from \mathcal{R}^{\mathrm{op}} and update \phi with n^{\mathrm{op}}-step TD error Eq. (5)
10: \mathbf{return}\ Q_{\phi}
```

4.2 HR-Agent Optimization with DT-Hedger Baseline

Baseline Hedger. As we mentioned in Section 2.2, DDH plays a vital role in volatility trading, which manages risk and realizes profit by adjusting the underlying position. The Delta threshold hedging strategy is a commonly used rule-based method that monitors the Delta exposure of the current portfolio and trades the hedging instruments to make the Delta exposure 0 when the Delta exposure exceeds the threshold. In this work, the Baseline Hedger $\hat{\pi}^{\text{hedger}}$ is used to compute the reward for the HR-Agent and in other baseline experiments.

Deep Hedgers. A key drawback of the Baseline Hedger is that it only considers the snapshot of Δ exposure. However, all Greeks (Δ, Γ, Θ) and Vega) are functions of time t and IV σ and the underlying price S_t , which change dynamically as time passes and the market evolves. Therefore, DRL-based methods have been applied to train better so-called Deep Hedgers to optimize the long-term performance. Murray et al. [2022] provides an actor-critic alternative to train a set of Deep Hedgers $\{\pi_{(i)}^{\text{hedger}}\}_{i=1}^{K}$ with different risk aversions on simulated data.

Hedger-Routing Agent. However, as illustrated in Figure 1, it is important to consider the market condition when making the hedging decisions, but the Hedgers do not take the market conditions into account, and it is difficult to incorporate the real-world market data into the training protocol of Deep Hedgers by simulation. To further optimize the hedging behavior, we employ the HR-Agent to select Deep Hedgers. The HR-Agent chooses an optimal Deep Hedger $\pi_{(a_t^{\rm hr})}^{\rm hedger}$ based on the portfolio and market conditions at every $n^{\rm hr}$ step. We execute the selected Deep Hedger $\pi_{(a_t^{\rm hr})}^{\rm hedger}$ in Env and the Baseline Hedger $\hat{\pi}^{\rm hedger}$ in a twin environment, \widehat{Env} duplicated from Env, for $n^{\rm hr}$ steps. Then the reward for $a_t^{\rm hr}$ is computed as the difference of net values in the two environments:

 $r_{t+n^{\mathrm{hr}}}^{\mathrm{hr}} = V_{t+n^{\mathrm{hr}}} - \hat{V}_{t+n^{\mathrm{hr}}}$. This relative reward design helps the training of the HR-Agent. The training algorithm of the HR-Agent is demonstrated in Algorithm 2.

Algorithm 2: HR-Agent Online Training via 1-step TD Error

```
1: Initialize Env and \widehat{Env}

2: \mathbf{for}\ t \in \mathrm{Range}(0,T,n^{\mathrm{hr}})\,\mathbf{do}

3: With probability \epsilon, choose a random action, otherwise a_t^{\mathrm{hr}} = \arg\max_a Q_{\psi}(s_t^{\mathrm{hr}},a^{\mathrm{hr}})

4: \mathbf{for}\ t \in \mathrm{Range}(0,n^{\mathrm{hr}},1)\,\mathbf{do}

5: Get OP Action a_t^{\mathrm{op}} = \pi^{\mathrm{op}}(s_t^{\mathrm{op}})

6: Use selected Hedger \pi_{(a_t^{\mathrm{hr}})}^{\mathrm{hedger}} in Env, and baseline Hedger \hat{\pi}^{\mathrm{hedger}} in \widehat{Env}

7: Execute actions and get the next State s_{t+1}^{\mathrm{op}}

8: Get r_{t+n^{\mathrm{hr}}}^{\mathrm{hr}}, store (s_t^{\mathrm{hr}}, a_t^{\mathrm{hr}}, r_{t+n^{\mathrm{hr}}}^{\mathrm{hr}}, s_{t+n^{\mathrm{hr}}}^{\mathrm{hr}}) in \mathcal{R}^{\mathrm{op}}, and synchronize \widehat{Env} with Env

9: Sample batch from \mathcal{R}^{\mathrm{op}} and perform DQN update \psi with Eq. (5), soft update \psi'

10: \mathbf{return}\ Q_{\psi}
```

4.3 OPHR Training

Phase 1: Offline Initialization. Long trajectories in n-step TD increase the variance of target returns, often leading to unstable training and slow convergence. So we employ a sub-optimal Oracle policy to generate initial experience for guidance in the initialization phase. The Oracle OP policy $\pi_{\text{Oracle}}^{\text{op}}$ generates long/short signals by comparing the future RV and current IV and employs the Baseline Hedger $\hat{\pi}^{\text{hedger}}$ to make hedging decisions. Specifically, if the future RV $\geq \sigma(1+\beta)$ places a long position, if the future RV $\leq \sigma(1-\beta)$ places a short position; otherwise, place a neutral position. While inherently sub-optimal, its action aligns with desirable and profitable trading behaviors, significantly reducing the exploration burden, accelerating convergence.

Phase 2: Iterative Online Training. To further improve the trading performance, we alternatively train the HR-Agent and OP-Agent. The necessities of iterative training lie in 2 folds. i) From the MARL perspective: iterative training can reduce complexity, improve stability and convergence. ii) From the option trading perspective: the OP-Agent can take more aggressive positions if the hedging policy is more sophisticated, and the HR-Agent also needs to learn how to handle these more aggressive positions. The detailed implementation is presented in Algorithm 3 in Appendix B.3.

5 Experiment

5.1 Experiments Setup

Datasets. To comprehensively evaluate the proposed algorithm, we conduct experiments on BTC and ETH options data obtained from Deribit. The dataset splitting is shown in Table 1. This period covers diverse market conditions, including bull markets (e.g., 2019 and 2021), bear markets (e.g., 2022), and periods of elevated volatility (e.g., the 2020 COVID-19 pandemic and the 2022 crypto market crash). We utilize hourly-level data to capture intraday price dynamics and volatility structures critical to volatility trading. The dataset includes complete options chains across a wide range of strikes and expirations (weekly to quarterly), as well as comprehensive market indicators such as implied volatility surfaces, open interest, and trading volume.

Table 1: Dataset Splits for Experiments

Dataset	Train	Validation	Test
BTCUSD	19/04/01 - 22/12/31	23/01/01 - 23/06/30	23/07/01 – 24/07/01
ETHUSD	19/04/01 - 22/12/31	23/01/01 - 23/06/30	23/07/01 - 24/07/01

Evaluation Metrics. We evaluate our method using 8 financial metrics: 1 profit, 3 risk-adjusted profit, 2 risk and 3 trade criteria. Returns are aggregated into day-level before calculation. **Total Return (TR)** is the overall return rate of the test period. **Annual Volatility (AVOL)** is the standard deviation of daily returns annualized. **Maximum Drawdown (MDD)** measures the largest loss

from any peak to show the downside risk of the strategy. **Annual Sharpe Ratio** (**ASR**) is the profit adjusted by volatility risk. **Annual Calmar Ratio** (**ACR**) measures profit adjusted by downside risk. **Annual Sortino Ratio** (**ASoR**) applies downside deviation as the risk measure. **Win Rate** (**WR**) is the percentage of trades that result in a profit. **Profit/Loss Ratio** (**PLR**) measures the average profit of winning trades relative to the average loss of losing trades. **Holding Period** (**HP**) is the average holding time per trade. The detailed definitions of these metrics are presented in Appendix C.1.

Table 2: Performance comparison on 2 Crypto markets with 8 baselines. Pink, green, and blue results show the best, second-best, and third-best results.

		Profit	Risk-	-Adjusted	Profit	Risk M	letrics	Trade M	etrics
Data	Model	TR(%)↑	ASR↑	ACR↑	ASoR↑	AVOL(%)↓	MDD(%)↓	WR(%)↑	PLR↑
	Long	-33.05	-1.32	-0.77	-2.13	24.90	42.70	21.74	1.82
	Short	2.90	0.09	0.10	0.09	24.55	21.10	73.91	0.37
	MR	-19.80	-1.32	-0.74	-1.54	15.40	27.45	41.94	1.18
	MOM	-36.30	-1.85	-0.85	-1.61	20.45	44.80	46.99	0.78
ВТС	GARCH	-40.83	-4.29	-0.95	-5.54	9.51	42.76	26.32	0.78
ыс	DeepVol	-14.24	-1.30	-0.65	-2.44	10.92	21.85	36.36	1.33
	GBDT	-30.45	-2.88	-0.91	-4.75	11.22	35.25	35.16	1.15
	MLP	-74.55	-4.73	-1.13	-5.14	18.36	76.80	26.39	1.20
	LSTM	-21.78	-1.99	-0.86	-3.26	11.46	26.64	40.00	1.13
	DLOT	4.91	0.52	0.55	0.66	21.40	8.92	47.97	1.11
	OP	21.43	1.19	1.46	2.03	17.01	13.84	44.50	1.86
	OPHR	33.10	1.87	3.35	3.27	16.83	9.41	45.93	2.05
	Long	-28.25	-0.72	-0.53	-0.83	37.55	50.95	34.78	0.71
	Short	-34.75	-1.12	-0.69	-1.25	33.00	53.05	56.52	0.48
	MR	-19.80	-1.32	-0.74	-1.54	15.40	27.45	41.94	1.18
	MOM	-36.30	-1.53	-0.84	-1.46	23.90	43.65	44.44	0.87
ETH	GARCH	-52.59	-3.79	-0.90	-4.18	13.85	58.10	12.50	0.62
EIII	DeepVol	-22.82	-1.79	-0.96	-3.03	12.71	23.76	42.86	1.15
	GBDT	-48.54	-3.76	-1.06	-4.55	14.22	50.28	30.00	0.98
	MLP	-70.26	-4.83	-1.15	-5.37	16.80	70.59	29.01	1.03
	LSTM	-62.67	-4.62	-1.11	-5.03	15.42	64.44	31.31	0.75
	DLOT	1.19	0.07	0.09	0.09	17.14	13.53	42.80	1.34
	OP	23.49	0.85	0.77	0.79	26.85	29.45	52.74	1.29
	OPHR	44.89	1.76	1.58	1.67	24.42	27.25	55.61	1.43

Baselines. To comprehensively evaluate our method, we implement multiple baseline approaches categorized into three major groups: Directional Volatility Strategies: These include pure Long Volatility and pure Short Volatility strategies. The Long Volatility strategy purchases at-the-money straddles when volatility conditions are favorable, while the Short Volatility strategy sells at-themoney straddles when IV exceeds historical RV. Single Factor Models: These strategies allocate long or short positions based on mean reversion (MR)[Poterba and Summers, 1988, Wong and Lo, 2009, Wood et al., 2022] or momentum (**MOM**)[Moskowitz et al., 2012, Lim et al., 2019, Wood et al., 2022, Tan et al., 2023, Heston et al., 2023, Wood et al., 2023] factors. Machine Learning Models: We implement GBDT[Dorogush et al., 2018], MLP[LeCun et al., 2015], and LSTM[Hochreiter and Schmidhuber, 1997], to predict optimal long/short volatility positions by leveraging their respective strengths in capturing non-linear relationships, complex feature interactions, and temporal dynamics in volatility patterns. We also include GARCH[Bollerslev, 1986], the seminal econometric model for volatility forecasting that captures time-varying conditional heteroskedasticity through autoregressive dynamics, serving as the classical benchmark in volatility prediction, and **DeepVol**[Moreno-Pino and Zohren, 2024], a deep learning framework for volatility forecasting, representing the current frontier in neural network-based volatility modeling. Additionally, we create an end-to-end DL baseline following **DLOT**[Tan et al., 2024], which applies deep learning to directly predict the options' PnL instead of volatility. Our Method: To evaluate the effectiveness of different parts of our method, OP uses the OP-Agent and the rule-based Hedger.

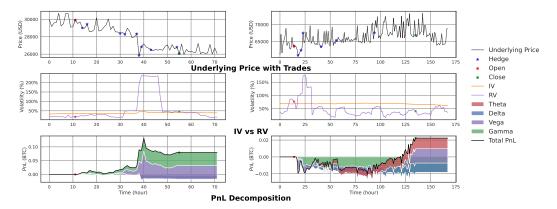


Figure 3: **Trade examples of OPHR on BTC.** The left panel illustrates a long Γ trade, which primarily generates profits from Γ and Vega exposure, while incurring theta costs. The right panel presents a short Γ trade, where the strategy mainly profits from theta accrual over the holding period and gains from a decline in implied volatility, with the primary risk stemming from Γ exposure.

5.2 Baseline Comparison

As demonstrated in Table 2, our proposed OPHR approach exhibits consistent superiority across both BTC and ETH markets. The method achieves the highest total returns while ranking first in all risk-adjusted performance metrics (ASR, ACR, and ASoR). These results underscore OPHR's effectiveness in risk management and profit optimization through its adaptive hedging framework.

In contrast, conventional directional volatility strategies display notable limitations due to their inherent tail risk profiles. Short Gamma positions achieve high WR but poor PLR because they collect small premiums consistently while remaining exposed to rare but catastrophic losses during volatility spikes. Conversely, Long Gamma strategies offer better PLR by capitalizing on large market movements, but suffer negative returns due to low WR and theta decay during market stability.

Traditional factor-based approaches (MR and MOM) demonstrate suboptimal performance, as they fail to adapt to abrupt volatility regime shifts that characterize cryptocurrency options markets. Similarly, ML baselines (GBDT, MLP, LSTM, DeepVol, GARCH) struggle with profitability despite occasionally achieving lower volatility, due to two fundamental limitations: first, they fail to bridge the gap between forecasting RV and optimizing path-dependent PnL outcomes in options trading; second, they consistently underperform in capturing the long-Gamma opportunities hidden in the fat tails of volatility distributions, precisely where the most significant profit potential exists, as discussed in Appendix D.2. The PnL curves are also presented in Figure 4 and 5 in the Appendix. DLOT significantly outperforms RV prediction-based methods, benefiting from an end-to-end design that avoids model assumptions - similar in spirit to our RL approach. However, lacking adaptive hedger selection and further RL optimization, it cannot match our method's performance.

5.3 Closer Look

Table 3: The long/short trading behaviour

			Long			Short	
Data	Model	HP	WR(%)↑	PLR↑	HP	WR(%)↑	PLR↑
BTC	OP	20.94	31.96	2.21	52.94	55.86	1.60
ыс	OPHR	21.29	33.68	2.28	51.12	56.64	1.87
ETU	OP	8.91	44.25	1.51	47.56	60.98	1.08
ETH	OPHR	9.16	47.17	1.71	50.59	63.79	1.18

Table 3 reveals how the HR-Agent systematically enhances trading performance across position types. The distinct holding periods between long and short positions (approximately 9-21 hours for long versus 50-51 hours for short) reflect OPHR's sophisticated volatility timing capability. This

pattern aligns with the market reality that cryptocurrencies typically experience extended periods of relative stability (suitable for short volatility positions with longer holding periods), punctuated by brief episodes of extreme volatility (ideal for long volatility positions with shorter holding periods). OPHR effectively adapts to these regime shifts, maintaining short positions during calm periods while quickly capitalizing on and exiting from volatility spikes through tactical long positions.

This volatility timing ability translates directly into performance improvements, with OPHR enhancing WR by 1.72-2.92% for long positions and 0.78-2.81% for short positions compared to the base OP model. The PLR improvements are equally notable, particularly for short positions where OPHR's hedging refinements prevent catastrophic losses during unexpected volatility surges while minimizing unnecessary hedging costs during stable periods. These trade-level enhancements directly drive OPHR's superior overall performance metrics in Table 2, including higher total returns and significantly improved risk-adjusted metrics.

To further illustrate OPHR's trading strategies, we visualize representative trade examples in Figure 3. In a long Γ position, OPHR actively hedges to capture Γ and Vega gains, which typically outweigh theta costs, leading to positive returns. In contrast, the short Γ position relies on theta accrual and benefits from declining implied volatility, while Γ risk is managed through reduced hedging frequency. In both cases, the strategy balances risk and reward to achieve a net profit.

Table 4: Transaction costs as a percentage of total PnL of OPHR

Strategy	Options Cost (%)	Underlying Cost (%)	Total Cost (%)
BTC	4.15%	5.21%	9.36%
ETH	2.97%	2.78%	5.75%

Transaction Cost Analysis. OPHR's profitability remains robust after accounting for transaction costs. Table 4 shows that total transaction costs represent 9.36% and 5.75% of P&L for BTC and ETH respectively. We incorporate realistic commission fees following Deribit's fee structure: 0.05% for perpetual futures and 0.03% for options (capped at 12.5% of option price), with bid-ask spread costs implicitly captured through market order execution prices in backtesting.

These modest cost ratios result from OPHR's measured trading frequency, with average holding periods of 9-51 hours (Table 3) that minimize unnecessary transactions. The HR-Agent's sophisticated hedging decisions further reduce excessive rebalancing during stable periods while maintaining effective risk management during volatility spikes. This cost efficiency confirms that OPHR's superior performance reflects genuine alpha generation rather than unrealistic cost assumptions.

6 Conclusion

In this paper, we introduced OPHR, a novel reinforcement learning framework for volatility trading through options. Our OP-Agent excels at volatility timing by dynamically identifying market regimes where implied volatility is mispriced relative to expected RV. Complementing this, our HR-Agent optimizes performance by selecting appropriate hedging strategies that lock in profits during volatility spikes while minimizing costs during calmer markets. Empirical results on cryptocurrency options markets demonstrate that OPHR consistently outperforms traditional approaches across key metrics, validating that our multi-agent reinforcement learning framework effectively captures the complex patterns essential for successful volatility trading. Future work could explore additional volatility trading opportunities, such as volatility smile skewness and term structure anomalies, as well as further optimizing hedgers to incorporate market features for more precise hedging decisions. These enhancements would enable even more sophisticated volatility trading strategies while maintaining the data-driven, adaptive nature of our reinforcement learning framework.

Acknowledgements

This research is supported by the National Research Foundation Singapore and DSO National Laboratories under the AI Singapore Programme (AISGAward No: AISG2-GC-2023-009).

References

- T. G. Andersen, T. Bollerslev, F. X. Diebold, and P. Labys. Modeling and Forecasting Realized Volatility. *Econometrica*, 2003.
- F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities. *Journal of Political Economy*, 1973.
- Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. *Journal of econometrics*, 1986.
- A. Briola, J. Turiel, R. Marcaccioli, and T. Aste. Deep Reinforcement Learning for Active High Frequency Trading. *arXiv preprint arXiv:2101.07107*, 2021.
- H. Buehler, L. Gonon, J. Teichmann, B. Wood, B. Mohan, and J. Kochems. Deep Hedging: Hedging Derivatives Under Generic Market Frictions Using Reinforcement Learning. Technical report, Swiss Finance Institute, 2019.
- H. Buehler, P. Murray, M. S. Pakkanen, and B. Wood. Deep Hedging: Learning To Remove The Drift Under Trading Frictions With Minimal Equivalent Near-Martingale Measures. *arXiv* preprint *arXiv*:2111.07844, 2021a.
- H. Buehler, P. Murray, and B. Wood. Deep Bellman Hedging. *arXiv preprint arXiv:2207.00932*, 2022.
- Hans Buehler, Phillip Murray, Mikko S Pakkanen, and Ben Wood. Deep hedging: Learning risk-neutral implied volatility dynamics. *arXiv preprint arXiv:2103.11948*, 2021b.
- V. Buterin and Others. Ethereum White Paper. GitHub repository, 2013.
- L. Canina and S. Figlewski. The Informational Content of Implied Volatility. *The Review of Financial Studies*, 1993.
- P. Carr and D. Madan. Towards A Theory of Volatility Trading. *Volatility: New estimation techniques for pricing derivatives*, 1998.
- B. J. Christensen and N. R. Prabhala. The Relation Between Implied and Realized Volatility. *Journal of financial economics*, 1998.
- L. Conegundes and A. C. M. Pereira. Beating The Stock Market with A Deep Reinforcement Learning Day Trading System. In 2020 International Joint Conference on Neural Networks (IJCNN), 2020.
- A. V. Dorogush, V. Ershov, and A. Gulin. CatBoost: Gradient Boosting with Categorical Features Support. *arXiv preprint arXiv:1810.11363*, 2018.
- B. Dumas, J. Fleming, and R. E. Whaley. Implied Volatility Functions: Empirical Tests. *The Journal of Finance*, 1998.
- H. Van Hasselt, A. Guez, and D. Silver. Deep Reinforcement Learning with Double Q-Learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2016.
- S. L. Heston, C. S. Jones, M. Khorram, S. Li, and H. Mo. Option Momentum. *The Journal of Finance*, 2023.
- S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural computation, 1997.
- J. Hull and A. White. Optimal Delta Hedging for Options. Journal of Banking & Finance, 2017.
- Z. Jiang and J. Liang. Cryptocurrency Portfolio Management with Deep Reinforcement Learning. In 2017 Intelligent Systems Conference (IntelliSys), 2017.
- T. Kariya and R. Y. Liu. Options, Futures and Other Derivatives. *Asset Pricing: Discrete Time Approach*, 2003.
- Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. nature, 2015.

- B. Lim, S. Zohren, and S. Roberts. Enhancing Time-Series Momentum Strategies using Deep Neural Networks. *The Journal of Financial Data Science*, 2019.
- M. McAleer and M. C. Medeiros. Realized Volatility: A Review. Econometric Reviews, 2008.
- R. C. Merton. Theory of Rational Option Pricing. *The Bell Journal of Economics and Management Science*, 1973.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, and Others. Human-Level Control through Deep Reinforcement Learning. *nature*, 2015.
- Fernando Moreno-Pino and Stefan Zohren. Deepvol: Volatility forecasting from high-frequency data with dilated causal convolutions. *Quantitative Finance*, 2024.
- T. J. Moskowitz, Y. H. Ooi, and L. H. Pedersen. Time Series Momentum. *Journal of Financial Economics*, 2012.
- P. Murray, B. Wood, H. Buehler, M. Wiese, and M. Pakkanen. Deep Hedging: Continuous Reinforcement Learning for Hedging of General Portfolios across Multiple Risk Aversions. In *Proceedings of the Third ACM International Conference on AI in Finance*, 2022.
- P. Nagy, J.-P. Calliess, and S. Zohren. Asynchronous Deep Double Duelling Q-Learning for Trading-Signal Execution in Limit Order Book Markets. *arXiv preprint arXiv:2301.08688*, 2023.
- S. Nakamoto. Bitcoin Whitepaper. URL: https://bitcoin. org/bitcoin. pdf-(: 17.07. 2019), 2008.
- S. Ni, J. Pan, and A. M. Poteshman. Volatility Information Trading in The Option Market. *The Journal of Finance*, 2008.
- J. M. Poterba and L. H. Summers. Mean Reversion in Stock Prices: Evidence and Implications. *Journal of Financial Economics*, 1988.
- M. Qin, S. Sun, W. Zhang, H. Xia, X. Wang, and B. An. Earnhft: Efficient Hierarchical Reinforcement Learning for High Frequency Trading. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2024.
- E. Sinclair. Volatility Trading. John Wiley & Sons, 2013.
- R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT press Cambridge, 1998.
- L. A. Takara, A. A. P. Santos, V. C. Mariani, and L. dos S. Coelho. Deep Reinforcement Learning Applied to A Sparse-Reward Trading Environment with Intraday Data. *Available at SSRN 4411793*, 2023.
- W. L. Tan, S. Roberts, and S. Zohren. Spatio-temporal momentum: Jointly learning time-series and cross-sectional strategies. *The Journal of Financial Data Science*, 2023.
- W. L. Tan, S. Roberts, and S. Zohren. Deep Learning for Options Trading: An End-To-End Approach. In *Proceedings of the 5th ACM International Conference on AI in Finance*, 2024.
- H. Y. Wong and Y. W. Lo. Option Pricing with Mean Reversion and Stochastic Volatility. *European Journal of Operational Research*, 2009.
- K. Wood, S. Roberts, and S. Zohren. Slow Momentum with Fast Reversion: A Trading Strategy using Deep Learning and Changepoint Detection. *The Journal of Financial Data Science*, 2022.
- K. Wood, S. Giegerich, S. Roberts, and S. Zohren. Trading with The Momentum Transformer: An Intelligent and Interpretable Architecture, 2023.
- H. Yang, X.-Y. Liu, S. Zhong, and A. Walid. Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy. In *Proceedings of the First ACM International Conference on AI in Finance*, 2020.
- C. Zong, C. Wang, M. Qin, L. Feng, X. Wang, and B. An. MacroHFT: Memory Augmented Context-aware Reinforcement Learning On High Frequency Trading. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2024.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- · Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Yes, we provide a clear contribution list in introduction which aligns our paper and abstract.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: As we mentioned in conclusion, this work is only a specific volatility trading strategy. More possibilities are still to be study with RL.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This paper is about RL in financial applications, no theoretical analysis is needed.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experiment details are presented in the paper and the Appendix.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We open-source the code and example data.

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: They are presented in the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: The statistical significance is not applicable for quantitative trading research, because we only experienced one history and cannot access to other parallel universe.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: They are presented in the Appendix.

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We do.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: They are discussed in the Appendix.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Comprehensive test is needed before bringing this strategy to real trading. Guidelines:

• The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: We do not use any of them.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: We do not open-source our code.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: No human are involved in this research.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No human are involved in this research.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research is not related to LLM, and we only use LLM to polish the writing of this paper.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Cryptocurrency Options

A.1 The Black-Scholes-Merton Model and Greeks

The **Black-Scholes-Merton** (**BSM**) **Model** is a seminal framework for pricing European-style options. Despite the fact that real-world markets often violate its assumptions, the model offers fundamental insights and practical tools for derivatives pricing and risk management.

A.1.1 Model Assumptions

The BSM model relies on several idealized assumptions:

- Markets are frictionless: there are no transaction costs or taxes.
- Trading is continuous, and investors can borrow and lend at a constant, risk-free interest rate
 r.
- The price of the underlying asset S_t follows geometric Brownian motion, governed by the stochastic differential equation:

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

where:

- μ is the expected return of the asset,
- σ is the volatility of the asset,
- W_t is a standard Wiener process.
- There are no arbitrage opportunities.
- The option is European.

A.1.2 Black-Scholes Pricing Formula

Under these assumptions, the value $V(t, S_t)$ of a European option satisfies the **Black-Scholes Partial Differential Equation (PDE)**:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 V}{\partial S_t^2} + r S_t \frac{\partial V}{\partial S_t} - r V = 0.$$

Solving this PDE with appropriate boundary conditions yields closed-form pricing formulas for European call and put options:

$$C(t, S_t) = S_t N(d_1) - K e^{-r(T-t)} N(d_2),$$
(6)

$$P(t, S_t) = Ke^{-r(T-t)}N(-d_2) - S_tN(-d_1), \tag{7}$$

where

$$d_1 = \frac{\ln(S_t/K) + \left(r + \frac{1}{2}\sigma^2\right)(T - t)}{\sigma\sqrt{T - t}},\tag{8}$$

$$d_2 = d_1 - \sigma \sqrt{T - t},\tag{9}$$

and $N(\cdot)$ is the cumulative distribution function of the standard normal distribution.

A.1.3 Greeks

The BSM model also provides a set of sensitivity measures known as the **Greeks**, which quantify how the option price responds to changes in key variables:

• **Delta**: Measures sensitivity to the underlying price.

$$\Delta = \frac{\partial V}{\partial S}.$$

$$\Delta_{\rm call} = N(d_1), \qquad \Delta_{\rm put} = N(d_1) - 1.$$

It is essential for directional risk management.

• Gamma: Measures the rate of change in Delta with respect to the underlying asset.

$$\Gamma = \frac{\partial^2 V}{\partial S^2}.$$

$$\Gamma = \frac{N'(d_1)}{S_t \sigma \sqrt{T - t}}$$

where $N'(d_1)=\frac{1}{\sqrt{2\pi}}e^{-d_1^2/2}$ is the standard normal probability density. High Gamma indicates that Delta changes rapidly with small movements in S_t .

• Theta: Measures the effect of time decay on option value.

$$\begin{split} \Theta &= \frac{\partial V}{\partial t}. \\ \Theta_{\rm call} &= -\frac{S_t N'(d_1)\sigma}{2\sqrt{T-t}} - rKe^{-r(T-t)}N(d_2), \\ \Theta_{\rm put} &= -\frac{S_t N'(d_1)\sigma}{2\sqrt{T-t}} + rKe^{-r(T-t)}N(-d_2). \end{split}$$

It is usually negative for long options, reflecting value loss over time.

• Vega: Measures sensitivity to volatility.

$$\mbox{Vega} = \frac{\partial V}{\partial \sigma}.$$

$$\mbox{Vega} = S_t N'(d_1) \sqrt{T-t}.$$

• **Rho**: Measures sensitivity to interest rate changes.

$$\rho_{\text{call}} = K(T - t)e^{-r(T - t)}N(d_2),$$

$$\rho_{\text{put}} = -K(T - t)e^{-r(T - t)}N(-d_2).$$

A.2 Inverse Option

Inverse options are European-style, cash-settled option contracts denominated in the underlying cryptocurrency (e.g., BTC or ETH), representing the dominant format in contemporary crypto derivatives markets. These contracts can only be exercised automatically at expiry, eliminating the possibility of early exercise. Instead of requiring the physical delivery of the underlying asset, settlement occurs in the form of a payout denominated in the base cryptocurrency, calculated as the difference between the delivery price and the strike price. Option pricing is based on the Black-Scholes framework, wherein the forward price, rather than the spot index, is employed as the principal input for valuation. Trading is generally conducted on a continuous 24/7 basis and accommodates a diverse range of order types. Furthermore, the system incorporates risk management measures, including price correction mechanisms, to enhance market integrity and operational resilience. Inverse options are particularly well-suited for market participants seeking to hedge or speculate on crypto-asset exposures without engaging in spot or fiat transactions.

A.3 Portfolio Margin

Traditional margin systems typically apply fixed margin requirements to individual positions, without accounting for the potential offsetting risk of multi-leg strategies. For instance, in short straddle positions—where both a call and a put option are sold with the same strike price and expiration—the worst-case loss is expected to occur in only one direction of price movement, not both simultaneously. Charging full margin on each leg independently leads to a substantial overestimation of portfolio risk, thereby reducing capital efficiency.

To address this inefficiency, the Portfolio Margin (PM) framework adopts a risk-based approach that estimates the required margin based on the portfolio's net risk exposure. Instead of evaluating each position in isolation, PM performs a series of stress tests on the entire portfolio, simulating potential profit and loss (P&L) under a range of underlying asset price and implied volatility scenarios. The maximum projected loss from these scenarios is then used as the basis for the maintenance margin requirement.

Calculation Procedure. The PM system simulates the portfolio P&L under multiple discrete asset price shifts (e.g., -15%, -12%, ..., 0%, ..., +15%) and volatility adjustments (e.g., +45%, 0%, -30%). For each price scenario X%, the total portfolio P&L is computed as:

$$L(X\%) = A(X\%) + B(X\%)$$

where A(X%) represents the P&L of futures or perpetual contracts, and B(X%) is the worst-case loss of the option positions under the three volatility assumptions at the given price level. The **maximum potential loss (ML)** is determined as:

$$ML = \min\{L(X\%) \text{ for all scenarios}\}\$$

An additional contingency margin is added to account for uncovered short options and large directional exposure:

$$\textbf{Contingency} = \left[\left(\sum \textbf{Net Short Options at Strike} \times a\% \right) + (|\textbf{Futures Position}| \times b\%) \right] \times \textbf{Spot Price}$$

Finally, the total maintenance margin is given by:

Maintenance Margin =
$$|ML|$$
 + Contingency

This methodology ensures that the margin reflects the true tail risk of the portfolio while improving capital efficiency for hedged and risk-reducing strategies.

Margin Control in Simulation Environment In our experiments, the simulated trading environment adopts a Portfolio Margin (PM) framework to estimate margin requirements. For all conducted trading episodes, the required margin was constrained to remain below a fixed threshold of 50% of the agent's total cash holdings. This constraint ensures the feasibility and solvency of all trading actions throughout the simulation, preventing excessive leverage and guaranteeing compliance with realistic capital limitations.

B Method

B.1 Oracle OP-policy Design

As introduced in Section 4.1, the Oracle OP-policy, denoted as $\pi_{\mathrm{Oracle}}^{\mathrm{op}}$, is designed to provide structured supervision for reinforcement learning agents by leveraging privileged information—specifically, the future RV. This section presents the detailed implementation of the policy.

The strategy generates trading signals by comparing the future RV with the current IV, σ_{imp} , subject to a predefined tolerance threshold β . Formally, the policy operates as follows:

- If RV_{future} $\geq \sigma_{imp}(1+\beta)$, then initiate a **long** position.
- If $RV_{future} \leq \sigma_{imp}(1-\beta)$, then initiate a **short** position.
- Otherwise, maintain a neutral position.

In practice, the Oracle OP-policy serves as an oracle demonstrator by generating high-quality sequential action-value trajectories through direct interaction with the environment. When filling the experience buffer, the Oracle OP-policy utilizes future RV information RV_{future,i} across multiple time horizons, along with varying tolerance thresholds β_i , to construct a diverse set of oracle strategies. This diversity facilitates better coverage of the policy space and enables the OP agent to approximate near-optimal behavior more effectively during the early stages of training.

While inherently sub-optimal due to the unrealistic assumption of future information availability, this rule-based strategy aligns with desirable trading behaviors and effectively serves as a structured demonstration policy. By doing so, it reduces the exploration space and helps the learning agent to converge more rapidly toward profitable regions of the policy space. Hedging decisions under this policy are executed using a predefined baseline Hedger $\hat{\pi}_{\text{Hedger}}$.

It is important to note that, although the Oracle OP-policy utilizes future RV from the training set—a type of privileged information unavailable during deployment—this signal is used solely to generate offline trajectories for training purposes. These trajectories serve as high-quality demonstrations to

guide the learning process. Thus, no future information is exposed to the agent during inference, ensuring the integrity of forward-looking decision-making. As such, the policy improves sample efficiency and accelerates convergence without compromising generalization to out-of-sample, real-world environments.

Fundamentally, the Oracle OP policy functions as a proxy for an optimal strategy based on historical data, providing structured supervision in the form of offline expert demonstrations. Similar to methods in imitation and offline reinforcement learning, its purpose is to aid training rather than serve as a deployable policy. Since all supervision derives from past data, the approach remains consistent with realistic deployment constraints.

B.2 Hedgers

To hedge the Δ risk of the position and to lock in Γ profits, we employ a series of hedging instruments. These Hedgers are constructed using various methods to adapt to different market conditions. We simulate the use of three types of hedging instruments under different market regimes and position directions. Based on the overall return and risk exposure, we select the optimal Hedgers to construct a Hedgers pool, which serves as the candidate set for the HR-agent's hedging decisions.

• **Delta-based Hedger**: This type of Hedger determines whether to hedge based on the Δ value of the current position. A decision threshold Δ_{thres} is predefined. When the absolute Δ of the position exceeds this threshold,

$$|\Delta_t| > \Delta_{\text{thres}},$$

a full Delta hedge is executed to neutralize the position's Δ exposure.

• **Price-based Hedger**: This Hedger triggers a hedge based on significant price movements. Let P_t denote the current underlying price and $P_{\text{last hedge}}$ the underlying price at the last hedge. A threshold P_{thres} is used to determine whether a new hedge is necessary. When the relative price change satisfies

$$\left| \frac{S_t}{S_{\text{last hedge}}} - 1 \right| > S_{\text{thres}},$$

a full hedge is performed to adjust the position accordingly.

• Deep Hedgers: This class of Hedgers leverages deep reinforcement learning to learn adaptive hedging strategies in a data-driven manner. Unlike rule-based Hedgers, deep Hedgers dynamically determine hedging actions by interacting with the environment, optimizing for a risk-adjusted objective. Specifically, we use the Actor-Critic algorithm to train these agents under various market regimes and position profiles.

Each Deep Hedger receives the current market state as input, which includes the underlying price, option Greeks, historical price volatility, and the current position. The output is a continuous hedging action between 0 and 1, representing the proportion of Δ exposure to hedge.

The training objective balances hedging cost and residual portfolio risk through a utility-based loss:

$$\mathcal{L}_{\text{hedge}} = -R_t + \frac{1}{\lambda} \log \mathbb{E}[e^{-\lambda X_t}],$$

where R_t is the immediate hedging reward (typically negative cost), X_t is the wealth with post-hedging residual risk, and λ is the risk-aversion parameter. A larger λ encourages more conservative (risk-sensitive) behavior. By training under different simulated market conditions and position directions, Deep Hedgers learn to generalize across regimes and exhibit context-aware hedging behavior.

• **Hedger Pool Construction**: To enhance the HR-agent's hedging effectiveness across diverse market regimes, we construct a comprehensive Hedger pool composed of the three aforementioned types of Hedgers: Delta-based Hedgers, Price-based Hedgers, and Deep Hedgers.

We generate a diverse set of Delta-based and Price-based Hedgers by varying their respective decision thresholds. Meanwhile, Deep Hedgers are trained under a range of simulated market

environments, position direction, and risk-aversion parameters λ . The resulting collection of Hedgers is then evaluated via backtesting across segmented market regimes—categorized by volatility levels and directional dynamics (e.g., trending vs. mean-reverting)—and position types (e.g., long Γ or short Γ).

To ensure diversity in hedging behaviors and risk exposures, we retain only the top-kperforming Hedgers that achieve a favorable trade-off between hedging cost and risk control, primarily in terms of Δ exposure. These selected Hedgers collectively form the candidate Hedger pool, which serves as the basis choices for dynamic Hedger selection by the HRagent within the full framework. This enables the construction of diverse and efficient hedging strategies to adapt to varying market conditions.

B.3 Joing Training

Algorithm 3: OPHR Joint Training

Require: Oracle OP-Policy $\pi^{\text{op}}_{\text{Oracle}}$, Baseline Hedger $\hat{\pi}^{\text{Hedger}}$, Env and Twin \widehat{Env}

- 1: Initialize replay buffer \mathcal{R}^{op} , \mathcal{R}^{hr} , Q-networks Q_{ϕ} , Q_{ψ} and target Q-networks $Q_{\phi'}$, $Q_{\psi'}$
- 2: Phase 1: OP-Agent Offline Pretraining with Oracle OP-Policy and Baseline Hedger 3: Collect trajectories using $\pi_{\text{Oracle}}^{\text{op}}$ and $\hat{\pi}^{\text{Hedger}}$, store transitions in \mathcal{R}^{op} 4: for Offline Training Iterations do

- Sample a batch of transitions from \mathcal{R}^{op} and update ϕ with n^{op} -step TD error Eq. (5) 5:
- 6: Phase 2: Joint Online Learning
- 7: **for** Joint Training Epochs **do**
- Fix Q_{ϕ} and train HR-Agent Q_{ψ} using Algorithm 2 for $N^{\rm hr}$ episodes 8:
- Fix Q_{ψ} and train OP-Agent Q_{ϕ} , using Algorithm 1 for N^{op} episodes 9:
- 10: **return** Q_{ϕ} , Q_{ψ}

Experiment

Evaluation Metrics.

We evaluate our method using 8 financial metrics: 1 profit, 3 risk-adjusted profit, 2 risk and 2 trade criteria. Returns are aggregated into day-level before calculation.

- Total Return (TR) is the overall return rate of the test period, defined as $TR = \frac{V_t V_1}{V_t}$, where V_t is the final margin balance and V_1 is the initial margin balance.
- Annual Volatility (AVOL) is the the standard deviation of daily returns annualized defined as $\sigma | \mathbf{ret} | \times \sqrt{m}$ to measure the volatility risk, where $\mathbf{ret} = (ret_1, ret_2, ..., ret_t)$ is a vector of daily return, $\sigma[.]$ is the standard deviation function, and m is the annualization factor 365.
- Maximum Drawdown (MDD) measures the largest loss from any peak to show the downside risk of the strategy.
- Annual Sharpe Ratio (ASR) is the profit adjusted by volatility risk, defined as: SR = $\frac{E[\mathbf{ret}]}{\sigma[\mathbf{ret}]} \times \sqrt{m}$, where $E[\mathbf{ret}]$ is the expectation of daily return.
- Annual Calmar Ratio (ACR) is defined as $ACR = \frac{E[\mathbf{ret}]}{MDD} \times m$, measuring profit adjusted by downside risk.
- Annual Sortino Ratio (ASoR) applies downside deviation as the risk measure. It is defined as: $ASoR = \frac{E[\mathbf{ret}] \times \sqrt{m}}{DD}$, where downside deviation(DD) is the standard deviation of the negative daily return rates.
- Win Rate (WR) is the percentage of trades that result in a profit, defined as WR = $\frac{N_{win}}{N_{total}} \times 100\%$, where N_{win} is the number of profitable trades and N_{total} is the total trades.
- Profit/Loss Ratio (PLR) measures the average profit of winning trades relative to the average loss of losing trades, defined as $PLR = \frac{|E[\mathbf{ret}_{win}]|}{|E[\mathbf{ret}_{loss}]|}$, where $E[\mathbf{ret}_{win}]$ is the average return of profitable trades and $E[\mathbf{ret}_{loss}]$ is the average return of losing trades.

• Holding Period (HP) is the average holding time per trade, defined as $HP = \frac{\sum_{i=1}^{N_{total}} h_i}{N_{total}}$, where h_i is the holding period of the i-th trade and N_{total} is the total number of trades. It reflects the trading frequency.

C.2 Hyperparameters

In Section 4.1, we introduce the N-step temporal-difference Double DQN algorithm applied within a rolling training framework. The main hyperparameter settings for this algorithm are summarized in Table 5. In our experiments, we adopt a rolling training of every 10 days and apply the proposed algorithm to historical data, and the network is updated using 12-step temporal-difference (TD) learning.

Table 5: Hyperparameters for OP-Agent Training

Parameter	Description	Value
Training window size	Training window size	10
Oracle future RV	Time horizons for Oracle future RV	(3, 6, 9, 12, 24)
Oracle threshold β	Thresholds for oracle policy	(0.1, 0.2, 0.4, 0.6, 0.8)
Oracle exploration rate ϵ_{oracle}	Oracle exploration rate	0.1
Episodes	Number of episodes per training window	20,000
Updates per episode	Network updates after each episode	20
Batch size	Number of samples per training batch	512
Hidden layer size	Maximum hidden layer size in OP-Agent	1024
Learning rate α	Step size for gradient updates	1×10^{-4}
N-step $\overline{\text{TD}}$ n	Steps used in n-step TD learning	12
Discount factor γ	Reward discount factor	0.99
Soft update coefficient τ	Rate for target network soft updates	0.005
Target update frequency	Frequency of target network updates	10
Dropout rate	Dropout rate in network layers	0.2
$\epsilon_{ ext{start}}$	Initial exploration rate	0.9
$\epsilon_{ m end}$	Final exploration rate	0.01
$\epsilon_{ m decay}$	Decay rate of ϵ (steps)	10,000

As described in Section B.2, we utilize three types of Hedgers, each trained under different market regimes and position conditions. For each setting, multiple Hedgers are trained, and the top 30 performing ones are selected based on validation performance. These selected models serve as candidate Hedgers for the HR-agent. The hyperparameter settings for the Hedgers are summarized in Table 6, while the preliminary training parameters for the HR-agent are listed in Table 7.

Table 6: Hedger parameters.

	C 1
Hedger type	Parameter values
Delta-based Hedger	0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.15, 0.2,
	0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Price-based Hedger	0.5%, 1%, 2%, 3%, 4%, 5%, 7%, 10%, 12%, 15%,
	20%, 30%, 50%, 100%
Risk Aversion parameter λ	0.1, 0.2, 0.5, 0.7, 1, 2, 3, 5, 8, 10, 20, 40, 60, 80, 100, 200, 400, 800
Hedger pool size	30

Table 7: Hyperparameters for HR-Agent Training

Parameter	Description	Value
Learning rate α	Step size for Q-network updates	1×10^{-4}
Discount factor γ	Future reward discount factor	0.99
Batch size	Number of samples per update	512
Hidden layer size	Size of each hidden layer in the Q-network	1024
$\epsilon_{ ext{start}}$	Initial exploration probability	0.9
$\epsilon_{ m end}$	Final exploration probability	0.01
$\epsilon_{ m decay}$	Steps over which ϵ decays linearly	10,000
Updates per step	Number of Q-network updates per routing step	10
Routing interval n_{hr}	Steps between Hedger selections	24

Training Setup. We conducted all experiments on a server equipped with 4 NVIDIA RTX 4090 GPUs and an AMD Ryzen Threadripper PRO 5995WX CPU. The total time required for one iteration of stage 1 and stage 3 was approximately 12 hours for the OP-Agent optimization in Section 4.1, and around 3 hours for training the HR-agent in Section 4.2.

C.3 Baselines

This section presents the detailed implementation of the baselines introduced in Section 5.1. All baseline strategies adhere to the following fundamental principles:

- **Open Position:** At the time of initiation, the strategy selects the nearest-to-the-money (ATM) straddle within a predefined maturity range as the underlying instrument. The notional size of the position is determined based on the allocated margin usage.
- Close Position: Depending on the nature of the signal, a strong reversal signal may indicate either a position reversal or position closure. Alternatively, for certain signals, a take-profit and stop-loss rule is applied: the position is closed if the profit reaches p% or if the loss reaches l%. In addition, a maximum holding period HP_{max} is imposed; if neither take-profit nor stop-loss conditions are met before HP_{max} , the position is force-closed upon reaching this time limit.
- **Hedger:** For consistency across all baselines, we apply a unified Delta-based hedging scheme as described in Section B.2, where the hedging threshold is set to $\Delta_{thres} = 0.1$.

C.3.1 Directional Volatility Strategies

This strategy involves taking directional exposure to volatility by trading at-the-money (ATM) straddles. Specifically, straddles with time to maturity between m_{\min} and m_{\max} are selected, and each position is held until a fixed rollover point m_{rollover} . At each rollover date, existing positions are closed, and new positions are established following the same maturity selection criteria.

Two directional variants are considered:

- Long: Buys ATM straddles that meet the maturity condition and holds the position until the rollover date.
- **Short**: Sells ATM straddles under the same maturity condition and holds the position until the rollover date.

A unified rule-based Delta Hedger is applied to this strategy.

All parameters used in this strategy are summarized in Table 8.

C.3.2 Single Factor Models

Both the Mean Reversion (MR) and Momentum (MOM) strategies are constructed based on a single indicator derived from the percentile of realized volatility (RV).

Table 8: Parameter settings for Long and Short Volatility strategies

Parameter	Long Volatility	Short Volatility
m_{max}	90	90
m_{min}	60	60
$m_{ m rollover}$	21	21
$\Delta_{ ext{thres}}$	0.1	0.1

RV Percentile For each evaluation date, the model computes the annualized realized volatility over a backward-looking window of length P_{vol} , denoted by σ_{p} . This RV σ_{p} is then compared against the historical distribution of RV computed over a rolling lookback window of length P_{lookback} , yielding a percentile score.

Based on this percentile:

- Mean Reversion (MR): Takes a short volatility position when the current σ_{real} percentile is high (expecting reversion), and a long volatility position when it is low.
- *Momentum (MOM)*: Takes a long volatility position when the percentile momentum is high (expecting continuation), and a short volatility position when it is low. Specifically, the momentum of the percentile score is defined as the relative change over a lag of *i* periods:

$$Mo_{percentile,i} = \left(\frac{Percentile_t}{Percentile_{t-i}} - 1\right) \times 100\%$$
 (10)

Positions are opened by selecting at-the-money (ATM) straddles with maturities between m_{\min} and m_{\max} , conditional on the factor signal.

Position closure follows the general rule-based principles described in Section 5.1.

A unified rule-based Delta Hedger is applied to this strategy.

All parameters used in this strategy are summarized in Table 9.

Table 9: Parameter settings for Single Factor Models (Mean Reversion and Momentum)

Parameter	MR	MOM	
P_{vol} (window for realized volatility)	3, 6, 9,	12, 24 hours	
P_{lookback} (lookback window for percentile)	36	55 days	
m_{\min}, m_{\max} (option maturity range)	60, 90		
Δ_{thres} (Delta hedging threshold)	0.1		
p (take-profit threshold)	5%		
l (stop-loss threshold)		3%	
HP_{max} (maximum holding period)	96 hours		
$S_{MR,long}, S_{MR,short}$ (MR threshold)	20, 80	_	
$S_{\text{MOM,long}}, S_{\text{MOM,short}}$ (MOM threshold)	_	15%, -10%	

C.3.3 Machine Learning Models

We implement three supervised learning models to generate volatility forecasts: Gradient Boosted Decision Trees (GBDT), Multi-Layer Perceptron (MLP), and Long Short-Term Memory networks (LSTM).

Each model is trained to predict the annualized RV over a forward-looking window of length $P_{\rm vol}$, which serves as the target variable. Input features include historical volatility measures, option market variables, and macroeconomic indicators characterizing the current market environment.

The predicted volatility is then compared to the current implied volatility (IV) of the ATM straddle to form a relative signal. The corresponding thresholds are selected based on backtesting, using values that yield the best performance on the training and validation sets. A rule-based decision rule is applied based on their ratio:

- A long straddle position is opened if the predicted volatility exceeds the current implied volatility by a ratio greater than $S_{\text{ML,long}}$, i.e., $\frac{\hat{\sigma}_{\text{pred}}}{\hat{I}_{\text{NaTM}}} > S_{\text{ML,long}}$.
- A short straddle position is opened if the predicted volatility is sufficiently below the current implied volatility, i.e., $\frac{\hat{\sigma}_{\text{pred}}}{\text{IV}_{\text{ATM}}} < S_{\text{ML,short}}.$

Positions are opened using at-the-money (ATM) straddles with maturities between m_{\min} and m_{\max} . Position closure follows the same rule-based framework described in Section 5.1:

- Take-profit is triggered when return exceeds p = 5%;
- Stop-loss is triggered when loss exceeds l=3%;
- Maximum holding period: $HP_{\text{max}} = 96$ hours;
- If predicted volatility crosses the opposite threshold, the position is closed and reversed.

Delta risk is managed using the unified rule-based Delta hedging mechanism, with threshold $\Delta_{\text{thres}} = 0.1$.

All parameters for the machine learning strategies are summarized in Table 10.

Table 10: Parameter settings for Machine Learning Models

Parameter	GBDT	MLP	LSTM
P_{vol}		(3, 6, 9, 12, 24)hour	s
m_{min}, m_{max}		60, 90	
$\Delta_{ ext{thres}}$		0.1	
p		5%	
l		3%	
HP_{max}		96 hours	
$S_{\mathrm{ML,long}}, S_{\mathrm{ML,short}}$	1.6, 0.7	1.2, 0.9	1.3, 0.7
Model architecture	CatBoost iterations=3000 depth=8 target='ic'	MLP max_hidden_dim=1024 depth=5 ReLU, dropout=0.2	LSTM layers=3 max_hidden_dim=512 dropout=0.2

D More detailed Result Analysis

D.1 Baseline Comparison

The visualization of the baseline comparison, summarized in Table 2, is presented in Figures 4 and 5.

D.2 ML prediction

Table 11: Performance of ML Forecasting Models

Model	BTC			ETH			
Model	Spearman IC	Pearson IC	R^2	Spearman IC	Pearson IC	R^2	
LSTM	0.6133	0.6136	0.5776	0.5946	0.6192	0.5846	
MLP	0.6030	0.4303	0.3353	0.5801	0.3306	0.5023	
CatBoost(GBDT)	0.6214	0.6279	0.5781	0.6056	0.6152	0.5407	

Table 11 presents the volatility forecasting performance of the baseline machine learning models. From the perspective of information coefficients (IC), all models generally demonstrate reasonably good predictive ability.

Figure 4: Baseline Comparison on BTC

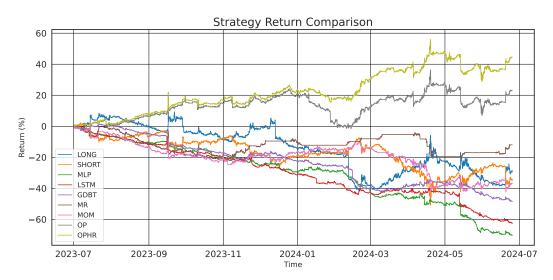


Figure 5: Baseline Comparison on ETH

Table 12: Performance of ML Forecasting Models on Top 5% Outliers

Model	Spearman IC	BTC Pearson IC	R^2	Spearman IC	ETH Pearson IC	R^2
LSTM	0.3519	0.4460	0.1459	0.3462	0.5041	0.3363
MLP	0.3770	0.1903	-0.8157	0.4101	0.4018	-0.0536
CatBoost(GBDT)	0.3902	0.4746	0.2557	0.3664	0.5083	0.3578

Table 13: Performance of ML Forecasting Models on 95% Inliers

Model	$\begin{array}{ccc} & & \textbf{BTC} \\ \text{Spearman IC} & \text{Pearson IC} & R^2 \end{array}$			ETH Spearman IC Pearson IC R ²		
LSTM	0.6207	0.6619	0.6695	0.6032	0.6599	0.6483
MLP	0.6172	0.6633	0.6378	0.5894	0.6531	0.6050
CatBoost(GBDT)	0.6285	0.6700	0.6268	0.6158	0.6599	0.5783

However, these models fail to accurately capture the sharp spikes in realized volatility (RV), which are critical for long Gamma trading strategies. Table 12 shows that model performance drops noticeably on the top 5% outliers, reflecting limited robustness under extreme conditions. Moreover, there remains a substantial gap between predicting volatility and executing profitable trading decisions based on that prediction. Addressing this gap is precisely where our proposed method offers a distinct advantage.

D.3 PNL Decomposition

To understand the sources of profit and loss (PnL) in option trading strategies, we decompose the cumulative PnL into analytically interpretable components based on the Greeks: Delta (Δ) , Gamma (Γ) , Theta (Θ) , Vega, and a residual term capturing unexplained effects. Let $t=1,\ldots,T$ denote discrete trading timestamps. The total PnL at time t is approximated as:

$$PnL_t = Delta_t + Theta_t + Vega_t + Gamma_t + Residual_t$$
 (11)

Each component corresponds to a specific source of risk exposure and is computed as follows:

Delta PnL. The contribution from changes in the underlying price S_t is estimated by:

$$Delta_t = \Delta_{t-1} \cdot (S_t - S_{t-1}) \tag{12}$$

Here, $\Delta_{t-1} = \frac{\partial V}{\partial S}$ is the Delta exposure at the previous time step. This term captures the linear sensitivity of the option's value to movements in the underlying.

Theta PnL. The time decay of the option value is given by:

Theta_t =
$$\Theta_{t-1} \cdot \Delta t$$
 (13)

where $\Theta_{t-1} = \frac{\partial V}{\partial t}$ is the time sensitivity, and Δt is the time step.

Vega PnL. The impact of changes in implied volatility σ is estimated as:

$$Vega_t = Vega_{t-1} \cdot (\sigma_t - \sigma_{t-1}) \tag{14}$$

where $\text{Vega}_{t-1} = \frac{\partial V}{\partial \sigma}$ is the option's sensitivity to implied volatility.

Gamma PnL (Realized). Gamma measures the convexity of the option value with respect to the underlying. Between two hedge timestamps t_{prev} and t_{curr} , the cumulative realized Gamma PnL is:

$$Gamma_{t_{curr}}^{realized} = \sum_{t=t_{prev}+1}^{t_{curr}} \frac{1}{2} \cdot \bar{\Gamma}_t \cdot (S_t - S_{t-1})^2$$
(15)

where $\bar{\Gamma}_t = \frac{1}{2}(\Gamma_t + \Gamma_{t-1})$ is the average Γ exposure at time t.

Gamma PnL (Unrealized). To monitor latent convexity risk, the unrealized Gamma PnL from the last hedge point to current time t is tracked as:

$$Gamma_t^{\text{unrealized}} = \sum_{t'=t_{\text{last hodge}}+1}^{t} \frac{1}{2} \cdot \bar{\Gamma}_{t'} \cdot (S_{t'} - S_{t'-1})^2$$
(16)

This quantity is not included in total PnL but helps visualize the risk of delayed hedging.

Residual PnL. The residual term accounts for the portion of PnL not explained by the above Greeks:

$$Residual_t = PnL_t - (Delta_t + Theta_t + Vega_t + Gamma_t)$$
(17)

Residual PnL may arise from several sources: model misspecification, transaction costs, bid-ask spreads, slippage during rebalancing, inaccurate Greek estimates, or discrete hedging errors. A high residual may indicate imperfect model assumptions or unmodeled market factors.

Table 14: PnL attribution (%) for OPHR on BTC and ETH

Component	BTC Long	BTC Short	ETH Long	ETH Short
Delta	1.17	-0.55	-5.26	-23.50
Gamma	91.41	-169.15	107.60	-125.70
Theta	-5.71	66.15	-4.99	44.23
Vega	64.58	123.43	32.01	51.93
Residual	-51.45	80.12	-29.36	153.03

As shown in Table 14, we decompose the PnL of OPHR's long and short Γ trading strategies into Greeks PNL and express each as a percentage of the total profit. Despite the presence of sizable residual terms in the attribution, the analysis reveals that the primary sources of profit in the long Γ strategy stem from Γ and Vega exposure, while the main cost is associated with Theta decay. In contrast, the short Γ strategy benefits predominantly from Theta and Vega gains, while incurring substantial losses from adverse Γ exposure. These observations align well with the intended design of the respective strategies.

E Broader Impact

Our reinforcement learning framework for options trading offers potential positive impacts through improved market liquidity, more accurate risk pricing, and democratization of sophisticated trading strategies. However, we acknowledge potential negative consequences including market concentration that could exacerbate inequality, possible herding behavior leading to market instability if widely adopted, and environmental concerns related to cryptocurrency markets where our method is tested. We emphasize the importance of responsible deployment to ensure algorithmic advances in financial markets benefit society broadly rather than concentrating advantages among a small group of sophisticated participants.