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Abstract

Although diffusion models can generate remarkably high-quality samples, they
are intrinsically bottlenecked by their expensive iterative sampling procedure.
Consistency models (CMs) have recently emerged as a promising diffusion model
distillation method, reducing the cost of sampling by generating high-fidelity
samples in just a few iterations. Consistency model distillation aims to solve
the probability flow ordinary differential equation (ODE) defined by an existing
diffusion model. CMs are not directly trained to minimize error against an ODE
solver, rather they use a more computationally tractable objective. As a way to
study how effectively CMs solve the probability flow ODE, and the effect that any
induced error has on the quality of generated samples, we introduce Direct CMs,
which directly minimize this error. Intriguingly, we find that Direct CMs reduce the
ODE solving error compared to CMs but also result in significantly worse sample
quality, calling into question why exactly CMs work well in the first place. Full
code is available at: https://github.com/layer6ai-labs/direct-cms.

1 Introduction

In recent years, diffusion models (DMs) [44, 14] have become the de facto standard generative models
[22] for many perceptual data modalities such as images [34, 40, 36, 5], video [15, 2, 53, 52], and
audio [20, 39, 17]. Despite their successes, an inherent drawback of diffusion models stems from their
iterative sampling procedure, whereby hundreds or thousands of function calls to the diffusion model
are typically required to generate high-quality samples, limiting their practicality in low-latency
settings. A prominent approach for improving the sampling efficiency of diffusion models is to
subsequently distill them into models capable of few-step generation [24, 41, 31, 27, 1, 9, 56, 55, 42].
Among the works in this vein, consistency models (CMs) [49] have garnered attention due to their
simple premise as well as their ability to successfully generate samples with only a few steps.
CMs leverage the ordinary differential equation (ODE) formulation of diffusion models, called
the probability flow (PF) ODE, that defines a deterministic mapping between noise and data [48].
The goal of consistency model distillation is to train a model (the student) to solve the PF ODE
of an existing diffusion model (the teacher) from all points along any ODE trajectory in a single
step. The loss proposed by Song et al. [49] to train CMs does not directly minimize the error
against an ODE solver; the solver is mimicked only at optimality and under the assumptions of
arbitrarily flexible networks and perfect optimization. We thus hypothesize that the error against the
ODE solver can be further driven down by directly solving the PF ODE at each step using strong
supervision from the teacher, which we call a direct consistency model (Direct CM). Although
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Direct CMs are more expensive to train than standard CMs, they provide a relevant tool to probe
how well CMs solve the PF ODE and how deviations from an ODE solver affect sample quality.
We perform controlled experiments to compare CMs and Direct CMs using a state-of-the-art and
large-scale diffusion model from the Stable Diffusion family [36], SDXL [30], as the teacher model
for distillation. We show that Direct CMs perform better at solving the PF ODE but, surprisingly, that
they translate to noticeably worse sample quality. This unexpected result challenges the conception
that better ODE solving necessarily implies better sample quality, a notion that is implicitly assumed
by CMs and its variations alike [47, 7, 10, 57, 21]. Our findings serve as a counterexample to this
statement, thus calling into question the community’s understanding of ODE-based diffusion model
distillation and its implications on sample quality. Since CMs achieve larger ODE solving error, we
surmise that other confounding factors contribute to their improved sample quality. We thus call
for additional investigation to clarify this seemingly paradoxical behaviour of ODE-based diffusion
model distillation.

2 Background and Related Work

Diffusion Models The overarching objective of diffusion models is to learn to reverse a noising
process that iteratively transforms data into noise. In the limit of infinite noising steps, this iterative
process can be formalized as a stochastic different equation (SDE), called the forward SDE. The goal
of diffusion models amounts to reversing the forward SDE, hence mapping noise to data [48].

Formally, denoting the data distribution as p0, the forward SDE is given by

dxt = µ(xt, t)dt+ σ(t)dWt, x0 ∼ p0, (1)

where t ∈ [0, T ] for some fixed T , µ and σ are hyperparameters, and Wt denotes a multivariate
Brownian motion. We denote the implied marginal distribution of xt as pt; the intuition here is
that, with correct choice of hyperparameters, pT is almost pure noise. Song et al. [48] showed that
the following ODE, referred to as the probability flow (PF) ODE, shares the same marginals as the
forward SDE,

dxt =

(
µ(xt, t)−

σ2(t)

2
∇ log pt(xt)

)
dt, (2)

where ∇ log pt is the (Stein) score function. In other words, if the PF ODE is started at x0 ∼ p0, then
xt ∼ pt. Under standard regularity conditions, for any initial condition x0 this ODE admits a unique
trajectory (xt)t∈[0,T ] as a solution. Thus, any point xt uniquely determines the entire trajectory,
meaning that Equation 2 implicitly defines a deterministic mapping f∗ : (xt, t, t

′) 7→ xt′ which
can be computed by solving Equation 2 backward through time whenever t > t′. In principle this
function can be used to sample from p0, since f∗(xT , T, 0) will be distributed according to p0 if
xT ∼ pT . In practice this cannot be done exactly, and three approximations are performed. First, the
score function is unknown, and diffusion models train a neural network s(xt, t) to approximate it,
i.e., s(xt, t) ≈ ∇ log pt(xt). This approximation results in the new PF ODE, sometimes called the
empirical PF ODE,

dxt =

(
µ(xt, t)−

σ2(t)

2
s(xt, t)

)
dt, (3)

whose solution function we denote as fs. Second, computing fs(xT , T, 0) still requires solving
an ODE, meaning that a numerical solver must be used to approximate it. We denote the solution
of a numerical ODE solver as fsolver, and a single step of the solver from time t to time t′ as
Φ(·, t, t′). More formally, discretizing the interval [0, T ] as 0 = t0 < · · · < tN = T, we have that
whenever n > m, fsolver(xtn , tn, tm) is defined recursively as fsolver(xtn , tn, tm) = x̂tm where
x̂ti−1 = Φ(x̂ti , ti, ti−1) for i = n, n−1, . . . ,m+1 with x̂tn = xtn . Lastly, pT is also unknown, but
since it is very close to pure noise, it can be approximated with an appropriate Gaussian distribution
p̂T .

In summary, by leveraging the empirical PF ODE, samples from a diffusion model can be obtained
as fsolver(xT , T, 0), where xT ∼ p̂T . If the approximations made throughout are accurate, then
fsolver ≈ fs ≈ f∗ and p̂T ≈ pT , so that samples from the model resemble samples from p0 [4].
Despite their ability to generate high-quality samples, an inherent drawback of DMs is rooted in
their sampling procedure, since computing Φ requires a function call to s; the iterative refinement of
denoised samples to generate high-quality solution trajectories is computationally intensive.
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Estimate the origin only near the boundary Estimate the origin for every point along the trajectory

CM Direct CM

Figure 1: CMs (left) are weakly supervised ODE solvers, only learning to map points along a
trajectory that are near the trajectory’s origin back to the origin itself; points that are far from the
origin instead enforce a self-consistency property, relying on weak self-supervision to solve the PF
ODE. Direct CMs (right) are strongly supervised ODE solvers, instead learning to directly map all
points along a trajectory back to the origin.

Consistency Models Consistency models [49] leverage the PF ODE formulation of DMs to enable
few-step generation. They can be used either for DM distillation or trained standalone from scratch;
we only consider distillation in our work since the score function of pre-trained DMs gives us a
tool to directly study the effect of ODE solving on CMs. Given a trained diffusion model s with a
corresponding fsolver, the idea of consistency model distillation is to train a neural network fθ such
that fθ(xtn , tn) ≈ fsolver(xtn , tn, 0) for all n ∈ {1, . . . , N}. In other words, CMs aim to learn a
function to mimic the solver of the empirical PF ODE, thus circumventing the need to repeatedly
evaluate s during sampling. CMs learn fθ by enforcing the self-consistency property, meaning that
for every xtn and xtn′ along the same trajectory, fθ(xtn , tn) and fθ(xtn′ , tn′) are encouraged to
match. More specifically, CMs are trained by minimizing the consistency distillation loss,

LCD := Ex0∼p0,n∼UJ1,NK,xtn∼ptn|0(·|x0)

[
λ(tn)d

(
fθ(xtn , tn),fθ̄(x̂tn−1

, tn−1)
)]

, (4)

where pt|0 is the transition kernel corresponding to Equation 1, λ > 0 is a weighting function treated
as a hyperparameter, d is any distance, θ̄ is a frozen version of θ, and x̂tn−1 = Φ(xtn , tn, tn−1).
Since the transition kernel is given by a known Gaussian, the above objective is tractable. CMs
parameterize fθ in such a way that fθ(x̂0, 0) = x̂0 holds. This property is referred to as the boundary
condition, and prevents Equation 4 from being pathologically minimized by fθ collapsing onto a
constant function.

During sampling, CMs can use one or multiple function evaluations of fθ, enabling a trade-off
between computational cost and sample quality. For example, if given a budget of two function
evaluations, rather than produce a sample as fθ(xT , T ), one could run Equation 1 until some time
tn′ starting from fθ(xT , T ) to produce xtn′ , and then output fθ(xtn′ , tn′) as the sample. This idea
generalizes to more function evaluations, although note that fθ(xtn′ , tn′) and xtn′ do not belong to
the same ODE trajectory as fθ(xT , T ) and xT due to the added noise from the forward SDE.

3 Direct Consistency Models

In Equation 4, x0 and xtn do not belong to the same ODE trajectory since noise is added to obtain
xtn from x0 via the forward SDE’s transition kernel. Thus, it would not make sense to enforce
consistency by minimizing d(fθ(xtn , tn),x0), and Equation 4 is used instead. While Song et al.
[49] theoretically showed that perfectly minimizing Equation 4 with an arbitrarily flexible fθ results
in fθ(xtn , tn) = fsolver(xtn , tn, 0), in practice it has been observed that CMs can be difficult to
optimize, with slow convergence or, in some cases, divergence [10, 7]. We attribute this behaviour
to what we call “weak supervision” in the CM loss, namely that fθ is not directly trained to map
xtn to the origin of its ODE trajectory. The constraint that the CM should map any point on the
ODE trajectory to the trajectory’s origin is only weakly enforced through the boundary condition
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Table 1: Results of ODE solving and image quality for single-step generation. CMs perform worse at
solving the PF ODE but produce higher quality images.

Φ Method ODE Image
E ↓ FID ↓ FD-DINO ↓ CLIP ↑ Aes ↑

DDIM CM 0.29 103.9 816.3 0.21 5.6
Direct CM 0.25 158.6 1095 0.20 5.1

Euler CM 0.29 95.3 747.7 0.21 5.5
Direct CM 0.23 166.0 1148 0.19 5.0

Heun CM 0.30 120.5 846.1 0.21 5.5
Direct CM 0.25 162.0 1126 0.19 5.1

parameterization of fθ . Only at time t1 does the objective directly encourage mapping points xt1 to
the trajectory’s origin. The network fθ must therefore first learn to map slightly noised data back to
the origin before that constraint can be properly enforced for noisier inputs at larger timesteps. We
depict this behaviour in Figure 1 (left).

In order to assess the impact of ODE solving on CMs, we put forth a more intuitive and interpretable
variation of its loss as

LDirect
CD := Ex0∼p0,n∼UJ1,NK,xtn∼ptn|0(·|x0)

[
λ(tn)d

(
fθ(xtn , tn),fsolver(xtn , tn, 0)

)]
, (5)

where we directly enforce that all points along a trajectory map to its origin, rather than providing
only weak supervision as in CMs; see Figure 1 (right). We see this loss as the smallest possible
modification to CMs resulting in the direct matching of the model and the solver. Note that unlike
standard CMs, Direct CMs do not require enforcing the boundary condition in the parameterization of
fθ to prevent collapse, although it is of course still valid to do so. While this loss requires solving the
ODE for n steps at each iteration and is therefore more computationally expensive than Equation 4,
we only propose this formulation for comparative purposes rather than suggesting its use in practice.

As we will show, Equation 5 does indeed solve the empirical PF ODE better than Equation 4 but,
intriguingly, it translates to worse sample quality. We define the ODE solving error E as the expected
distance between the ODE solver’s solution and the CM’s prediction with the same initial noise, i.e.,

E := ExT∼p̂T

[
d
(
fθ(xT , T ),fsolver(xT , T, 0)

)]
. (6)

4 Experiments

Training For all of our experiments, we aim to compare CMs and Direct CMs using large-scale and
state-of-the-art DMs trained on Internet-scale data to better reflect the performance of these models in
practical real-world settings. Hence, we select SDXL [30] as the DM to distill, a text-to-image latent
diffusion model [36] with a 2.6 B parameter U-Net backbone [37], capable of generating images at
a 1024 px resolution. Classifier-free guidance [13] is commonly used to improve sample quality in
text-conditional DMs, so we augment s in Equation 3 as s(xt, t, c, ω), where c is the text prompt and
ω is the guidance scale, following Luo et al. [25]. When distilling a DM, it is common to initialize
the student network from the weights of the teacher network so that, in effect, distillation is reduced
to a fine-tuning task which requires much less data and resources. We further leverage modern best
practices for efficient fine-tuning using low-rank adapters [16, 26]. We use a high-quality subset of
the LAION-5B dataset [43] called LAION-Aesthetics-6.5+ for training similar to Luo et al. [25]. To
ensure a controlled comparison of CMs and Direct CMs, the only component in the code that we
modify is the loss. See Appendix A.1 for a list of training hyperparameters.

Evaluation We perform quantitative comparisons using metrics that measure ODE solving quality
as well as image quality. For ODE solving, we use E (Equation 6, lower is better) which is only
valid for single-step generation.1 For image metrics, we use Fréchet Distance on Inception (FID [12],

1As mentioned in Section 2, multi-step sampling in CMs requires adding random noise to the model’s
prediction using the forward SDE. However, the noised prediction will map to a different underlying PF ODE
trajectory, so comparing it to the original trajectory would not give a meaningful metric for ODE-solving fidelity.
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Figure 2: Samples generated by both CMs and Direct CMs. The samples produced by CMs are
clearly of higher quality. All corresponding images are generated from the same initial noise.

lower is better) and DINOv2 (FD-DINO [28, 50], lower is better) latent spaces to assess distributional
quality, CLIP score (CLIP [33, 11], higher is better) for prompt-image alignment, and aesthetic score
(Aes [35], higher is better) as a proxy to subjective visual appeal. All generated samples use fixed
seeds to ensure consistent random noise. The reference dataset for both FID and FD-DINO uses 10k
samples generated from the teacher with the same seeds.

Quantitative Analysis We provide a quantitative evaluation of CMs and Direct CMs in Table 1.
We show performance for three different choices of numerical ODE solvers Φ, namely DDIM [45]
following Luo et al. [25], Euler [8], and Heun [38] following Song et al. [49]. As mentioned earlier,
E is a meaningful metric for ODE-solving fidelity only for single-step generation, so we focus our
main quantitative analysis on single-step generation; we provide additional image-based metrics for
two- and four-step generation in Appendix A.2 for completeness. Across all image-based metrics
in Table 1, we observe that CMs convincingly outperform Direct CMs, meaning that training with
Equation 4 results in largely superior image quality than training with Equation 5. However, in terms
of their ability to more accurately solve the PF ODE, we find that Direct CMs are consistently better.
Ironically, the objective of CMs, as presented by Song et al. [49], is motivated by learning to faithfully
solve the PF ODE, so it is highly surprising that more accurate solving can translate to worse image
quality.

Our experiments suggest that the pursuit of diffusion model distillation methods to better solve the
PF ODE might be a red herring, and that it is not in complete alignment with the goal of generating
high-quality samples. Several follow-up works to CMs [46, 7] have further built upon the PF ODE
formulation, proposing variations to CMs such as splitting the trajectory into segments [10, 57] or
learning to solve the ODE bidirectionally [21] for example. Although they observed better sample
quality, we reject the notion that their improvements are strictly entailed by better PF ODE solving.
Our results in Table 1 suggest that the high quality of images produced by ODE solving methods
(such as CMs and variations) cannot be fully attributed to their ODE solving fidelity; confounding
factors should be considered as well.

Moreover, we argue that this observed discrepancy between ODE solving and sample quality might
suggest that PF ODE solving on its own may not be the most reliable approach to distill a diffusion
model in practice. It is perhaps unsurprising then that several follow-up works improving upon CMs
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Figure 3: Effect of the teacher’s number of discretization intervals N . In all cases, we observe that
Direct CMs are better at solving the PF ODE, but CMs produce higher quality images.
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Figure 4: Effect of the teacher’s guidance scale ω. We use N = 50 here for faster experimentation.
In all cases, we observe that Direct CMs are better at solving the PF ODE, but CMs produce higher
quality images.

rely on auxiliary losses to supplement ODE solving such as adversarial [18, 3, 51, 19], distribution
matching [3, 35], and human feedback learning [54, 35] losses.

Qualitative Comparison We corroborate our observations with a qualitative comparison of CMs
and Direct CMs in Figure 2, and include additional samples in Appendix A.3. We show generated
samples from a fixed seed for one, two and four sampling steps using text prompts from the training
set. It is clear that CMs produce higher-quality samples than Direct CMs with better high frequency
details and fewer artifacts.

Ablations To ensure that our findings are agnostic to hyperparameter selection in the underlying
PF ODE and ODE solver, we sweep over various discretization intervals N ∈ {25, 50, 100, 200}
and guidance scales ω ∈ {1, 4, 8, 11}, and provide results for single-step generation in Figure 3 and
Figure 4. Regardless of the teacher’s guidance scale and discretization, Direct CMs solve the PF
ODE more accurately, yet CMs produce higher quality images.

5 Conclusions and Future Work

Although consistency models have achieved success in distilling diffusion models into few-step
generators, we find that there exists a gap between their theory and practice. Solving the PF ODE is
central to the theoretical motivation of CMs, but we show that we can solve the same PF ODE more
accurately using Direct CMs while generating samples of noticeably worse quality. Naturally, we
question what additional underlying factors might be contributing to the effectiveness of CMs, and
call for additional research from the community to bridge this observed gap between solving the PF
ODE and generating high-quality samples. We finish by putting forth some potential explanations:
(i) since our experiments are carried out with latent diffusion models, the ODEs are defined on the
corresponding latent space, and it could be that the closeness to the solver’s solutions observed in
Direct CMs is undone after decoding to pixel space; (ii) if the pre-trained diffusion model failed
to closely approximate the true score function (as could be the case when the true score function is
unbounded [29, 23, 22]) then fs ̸≈ f∗, meaning that even if a model closely approximates fsolver
and thus fs, it need not be the case that it also properly approximates f∗; and (iii) although both
the CM and Direct CM objectives (Equation 4 and Equation 5, respectively) are meant to mimic
the solver fsolver at optimality, in practice this optimum is never perfectly achieved, and the CM
objective might inadvertently provide a beneficial inductive bias which improves sample quality.
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A Appendix

A.1 Hyperparameters

We provide a list of default hyperparameter values in Table 2. We only train a small number of LoRA
blocks [16] following Luo et al. [26], and find that metric and loss curves stabilized around 250
training steps. To enforce the boundary condition in CMs, we follow Song et al. [49] and parameterize
fθ(xtn , tn) = cskip(tn)xtn + cout(tn)Fθ(xtn , tn) where Fθ(xtn , tn) in our case is the SDXL U-Net
backbone with learnable LoRA blocks, and cskip(tn) and cout(tn) are differentiable functions such
that cskip(0) = 1 and cout(0) = 0. We set the values of cskip(tn) and cout(tn) following Luo et al. [25]
(see Table 2), and note that this choice is roughly equivalent to a step function where, for n ≥ 1,
cskip(tn) ≈ 0 and cout(tn) ≈ 1. As mentioned in the main text, Direct CMs do not require enforcing a
boundary condition by construction, but we parameterize them identically to CMs in order to ensure
controlled experiments so that we can attribute any differences between them solely to differences in
the loss. All experiments were performed on a single 48GB NVIDIA RTX 6000 Ada GPU.

Table 2: Default hyperparameters for both CMs and Direct CMs, unless otherwise specified.

Hyperparameter Default Setting
Batch size 16
Mixed precision fp16
Efficient attention [32] True
Gradient checkpointing True
Optimizer 8-bit Adam [6]
Adam weight decay 10−2

Num. training steps 250
LoRA r [16] 64
LoRA α [16] 64
Learning rate scheduler Constant
Learning rate warmup steps 0
Learning rate 10−4

Φ DDIM [45]
N 100
ω 8
d(·, ·) Squared L2 distance
λ(t) 1
σdata 0.5 [49]
τ 10
cskip(t)

σ2
data

(t·τ)2+σ2
data

cout(t)
t·τ√

(t·τ)2+σ2
data

Table 3: Additional image results for two- and four-step generation.

Φ Method
ODE Image
E ↓ FID ↓ FD-DINO ↓ CLIP ↑ Aes ↑

1-step 1-step 2-step 4-step 1-step 2-step 4-step 1-step 2-step 4-step 1-step 2-step 4-step

DDIM
CM 0.29 103.9 33.4 19.8 816.3 255.4 159.8 0.21 0.27 0.27 5.6 6.4 6.7

Direct CM 0.25 158.6 55.0 21.2 1095 346.8 155.1 0.20 0.26 0.28 5.1 6.2 6.5

Euler
CM 0.29 95.3 27.4 18.9 747.7 221.3 156.8 0.21 0.27 0.27 5.5 6.5 6.7

Direct CM 0.23 166.0 55.7 22.5 1148 357.3 152.7 0.19 0.25 0.27 5.0 6.1 6.4

Heun
CM 0.30 120.5 33.5 20.7 846.1 233.4 159.4 0.21 0.27 0.27 5.5 6.5 6.7

Direct CM 0.25 162.0 54.8 21.0 1126 341.6 150.6 0.19 0.26 0.28 5.1 6.2 6.4
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A.2 Additional Quantitative Results

We provide additional quantitative image analysis for two- and four-step generation in Table 3. In
almost all cases, these results demonstrate that CMs generate higher quality images than Direct CMs
akin to the single-step generation case. Although these results suggest that for four steps Direct CMs
slightly outperform CMs in terms of FD-DINO and CLIP score, qualitative comparisons of generated
images between both models (see examples in Figure 2 and Figure 5) quickly reveal that images
from CMs have noticeably higher quality. We thus attribute the discrepancy either to imperfections in
generative model evaluation metrics as observed by Stein et al. [50], or to these metrics not perfectly
matching aesthetic quality and being affected by additional confounders (e.g., FD-DINO scores are
meant to reflect image diversity in addition to image aesthetics).
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A.3 Additional Qualitative Results

Figure 5: Additional images generated by both CMs and Direct CMs, further highlighting the sample
quality difference between the two models. All corresponding images are generated from the same
initial noise.
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