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ABSTRACT

Continuous-time dynamics models, such as neural ordinary differential equations,
enable accurate modeling of underlying dynamics in time-series data. However,
the use of neural networks in parameterizing dynamics makes it challenging for
humans to identify dependence structures, especially in the presence of delayed
effects. In consequence, these models are not an attractive option when capturing
dependence carries more importance than accurate predictions, e.g., tsunami fore-
casting. In this paper, we present a novel method for learning dependence struc-
tures in continuous-time dynamics models. Inspired by neural graphical model-
ing, we promote weight sparsity in the network’s first layer during training. Once
trained, we prune the sparse weights to identify dependence structures. In evalua-
tion, we first test our method in scenarios where the exact dependence-structures
of time-series are known. Our method captures the underlying dependence struc-
ture precisely even when there is a delayed effects. We further evaluate our method
to a real-world tsunami forecasting, where the exact dependence structures are
unknown. Even in this challenging case, our method effective learns physically-
consistent dependence structures with a high forecasting accuracy.

1 INTRODUCTION

An emerging paradigm for modeling underlying dynamics in time-series data is to use continuous-
time dynamics neural networks, such as neural ordinary differential equations (NODEs) (Chen et al.,
2018; Rubanova et al., 2019; Dupont et al., 2019). Widely known as a continuous-depth extension
of residual networks (He et al., 2016), NODEs have a great fit for data-driven dynamics modeling as
they construct models in the form of ODEs. This new paradigm has enabled breakthroughs in many
applications, e.g., healthcare (Rubanova et al., 2019), computational physics (Lee & Parish, 2021;
Lee et al., 2021a;b), or climate modeling (Hwang et al., 2021; Park et al., 2020).

A promising approach to enhance modeling performance is to increase the expressivity of the neural
network used to parameterize a system, e.g., by leveraging convolutional neural networks or by
augmenting extra dimension in the state space (Dupont et al., 2019). While shown effective, as the
models are getting more complex, interpreting the learned dynamics becomes more challenging for
humans. This poses a greater challenge for tasks that need an interpretable dependence structure,
e.g., predicting high-consequence events like tsunamis.

In this work, we propose a novel method for identifying human-interpretable dependence structure
in time-series using continuous-time neural networks. We focus on a score-based structure learning
algorithm for dynamical systems—a framework recently proposed by Bellot et al. (2022) that allows
us to quantify the impact of a past event on the future evolution of data in a continuous-time setting.
In particular, we extend the score-based structure learning algorithm to the dynamical systems gov-
erned by neural delay differential equations (NDDEs) (Zhu et al., 2020). This adaptation enables
the identification of a dependence structure of not only the contemporaneous variables, but also the
delayed (or lagged) variables.

Contributions. First, we propose a novel method for extracting the dependence structures from the
parameters of a continuous-time neural network with delayed variables. Specifically, we focus on
models used for forecasting. To this end, we adapt the score-based structure learning algorithm pre-
sented by Bellot et al. (2022) to NDDEs. On the graphical representation of contemporaneous and
delayed variables, we enforce sparsity to edges so that edges of less dependence can be eliminated.
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This is achieved by using a training algorithm, which minimizes a data-matching loss along with
a sparsity-promoting penalty and prunes the columns of input layer weights (i.e., edges) that has
smaller norms than a threshold. At the end of the training, the norms of columns corresponding to
the important input elements will have high magnitudes, which will make interpretation on structure
easier.

Second, we test our method on simulated data of chaotic ODEs to see (1) if the model is capable
of learning complex chaotic dynamics and (2) if the learned dependence structures match with the
known ground-truth structures. We use two continuous-time dynamics models, NODEs and NDDEs,
trained on the data sampled from the Lorenz-96 and Mackey–Grass systems, respectively. The
results demonstrate that our mechanism precisely extracts the structures from the data.

Third, we further evaluate our method in tsunami forecasting at the Strait of Juan de Fuca (Melgar
et al., 2016), where we do not know the exact dependence structures in the data. We train ND-
DEs on the tsunami dataset (Melgar, 2016) by using the proposed training algorithm. We show
that our method outperforms the recent deep-feedfoward networks-based baselines proposed in the
prior work (Liu et al., 2021) and effective in predicting the highest peaks of sea-surface eleva-
tions at locations near highly-populated areas. We further show that one can approximately capture
the physically-consistent dependence structures between a tsunami event and tide observed before,
which aligns with the domain expert’s interpretation of the same phenomenon.

2 PRELIMINARIES

Neural ordinary differential equations (NODEs) parameterize the time-continuous dynamics of
hidden states in the data as a system of ODEs using a neural network (Chen et al., 2018):

dz

dt
= f(z, t;Θ) (1)

where z(t) ∈ Rnz denotes a time-continuous hidden state, f is a velocity function, parameterized
by a neural network whose parameters are denoted as Θ. A typical parameterization of f is a multi-
layer perceptron (MLP) Θ = {(W ℓ, bℓ)}ℓ=1. Θl and bl are weights and biases of the ℓth layer,
respectively. The forward pass of NODEs is equivalent to solving an initial value problem via a
black-box ODE solver. Given an initial condition z0 and f , it computes:

z(t0), z(t1) = ODESolve(z0,f , {t0, t1};Θ). (2)

Neural delay differential equations (NDDEs). NODEs serve as great means for data-driven dy-
namics modeling; however, they have several limitations. One obvious limitation in the context of
dependence structure modeling is that NODEs take only the current state of the input variables z(t)
(shown in Eqn. 1), which is not suitable for capturing delayed causal effects.

To address this challenge, we use the computational formalism provided by NDDEs (Zhu et al.,
2020). NDDEs are an extension of NODEs which takes extra input variables z≤τ (t) as follows:

dz

dt
= f(z(t), z≤τ (t), t;Θ), (3)

where z≤τ (t) = {z(t− γ) : γ ∈ [0, τ ]} denotes the trajectory of the solution in the past up to time
t−τ . To avoid numerical challenges in handling a continuous form of delay, we use a discrete form:

dz

dt
= f(z(t), z(t− τ1), . . . ,z(t− τm), t;Θ), (4)

where m indicates the number of discrete delayed variables. While NDDEs are universal approx-
imators (Zhu et al., 2020), most studies use this continuous-depth neural networks for performing
standard classification tasks, e.g., visual recognition (Zhu et al., 2020; 2022). A few studies use ND-
DEs for time-series modeling, but they are limited to simulated ODE data (Holt et al., 2022; Monsel
et al., 2023). It is also unknown whether we can identify dependence structures from these models.
To our best knowledge, we are the first who leverage NDDEs for modeling real-world time-series
data and discovering delayed dependence structures.

Neural graphical modeling for dependence structure discovery. In recent years, there have been
advances in structure discovery in continuous-time, such as neural graphical modeling (NGM) (Bel-
lot et al., 2022), the score-based structure learning for dynamical systems.
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We start from rewriting the system of ODEs in Eqn. 1 as:

dzj
dt

= fj(z, t; θj), j = 1, . . . , nz (5)

where zj denotes the jth element of the hidden state such that z = [z1, . . . , znz ]
T. The velocity

function f consists of nz individual neural networks such that fff(z) = [f1(z), . . . , fnz (z)]
T with

fj ∈ R. Each networks are parameterized by so called model parameters θj (i.e., Θ = ∪nz
j=1θj).

Assuming the typical parameterization (i.e., affine transformation followed by nonlinearity), each
individual function fj can be written as follows (we omit the bias terms for clarity):

fj(z, t; θj) = WL
j σ(· · ·σ(W 2

j σ(W
1
j z)) · · · ), j = 1, . . . , nz, (6)

where σ is the nonlinear activation, and W l
j is the weight of the lth layer of the jth neural network.

Given the dynamics model in Eqn. 5, the (in-)dependence structure within the processes z can be
identified via the definition of local independence and graphical representations of the processes.
Here, we briefly recap the definition of local independence (we refer readers to the reference (Bellot
et al., 2022) for the formal definition); a process zi is locally independent of zj given zk, if the past
of zk up until time t gives the same information for predicting zi(t) (zi at time t) as the past of zi
and zj until time t. This independence structure may be represented as a directed graph G = (V,E),
where V denotes a set of vertices representing distinct processes {zj}nz

j=1 and E denotes a set of
edges, where a directed edge zi→zj ∈E if and only if zi is not locally conditionally independent zj .

With local independence and the graph G, here we briefly restate Lemma 1 in Bellot et al. (2022)
(Proposition 3.6 in MOGENSEN & HANSEN (2020)); given dynamics models in the form of
Eqn. 5, two processes zi and zj are locally dependent if and only if zi appears in the differential
equation of zj (i.e., ||∂fj∂zi

||L2
̸= 0, where || · ||L2

is the functional L2 norm). Moreover, for any
fff ′ such that ||f ′

jzi||L2
= 0, there exists an equivalent vector field f such that the ith column of its

input layer has the Euclidean norm zero, i.e., ||[W 1
j ]i||2 = 0. For the graph model G, we can define

the adjacency matrix A ∈ {0, 1}nz×nz , where Aij ̸= 0 if and only if ||fjzi||L2
̸= 0, suggesting the

dependence structure can be identified through the input layer parameters W 1
j , j = 1, . . . , nz . Thus,

sparsity-promoting regularizes such as the group lasso (Hastie, 2009) or the adaptive group lasso
(Holt et al., 2022) can be applied to the input layer parameters W 1

j , leading to the identification of
the dependence structure (e.g., Fig. 9(a) in Appendix for graphical illustration).

3 NEURAL GRAPHICAL MODELING FOR NDDES

Here we present our method for (delayed) dependence structure discovery. NGM demonstrated its
effectiveness in finding dependence structures of the contemporaneous variables (those in the same
time index), but it has not been shown how we adapt NGM when the system has delayed effects.
Our method overcomes this limit and offers a way to characterize delayed structure(s).

3.1 (DELAYED) DEPENDENCE STRUCTURE IN CONTINUOUS-TIME MODELS

We find that NDDEs’ velocity function (Eqn. 4) has the same structure as those in NODEs (Eqn. 5):

f(z̄(t);Θ) =

 f1(z(t), z(t− τ1), . . . ,z(t− τm); θ1)
...

fnz
(z(t), z(t− τ1), . . . ,z(t− τm); θnz

)

 , (7)

where fj ∈ R is the jth element of the velocity function, i.e., dz
dt = fj . The input layer of the jth

velocity element, fj(z) = W 1
j z̄ + b1j . z̄(t) is a vertical concatenation of all delayed variables:

z̄(t) = [z(t)T, z(t− τ1)
T, . . . ,z(t− τm)T]

= [z1(t), . . . , znz (t), z1(t− τ1), . . . , z1(t− τm), . . .].
(8)

Inspired by the prior work’s approach (Bellot et al., 2022), we propose to identify the dependence
structure through the input layer parameters W 1

j ; if the ith column of the first layer weight, W 1
j ,
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Algorithm 1 Neural Graphical Modeling in NDDEs
Initialize Θ
for (i = 0; i < nmax; i = i+ 1) do

Sample nbatch trajectories randomly from Dtrain
Sample initial points randomly from the sampled trajectories: z̄r(s(r)), s(r) ∈ [0, . . . ,m −

ℓbatch − 1] for r = 1, . . . , nbatch
z̃(t1), . . . , z̃(tm)=ODESolve(z̄r

s(r),f , {t1, . . . , tm};Θ), for r = 1, . . . , nbatch

Compute the loss (Eqn. 9)
Update Θ via Adam
Prune Θ based on the magnitude (Eqn. 10)

end for

contains only zero elements (i.e., ∥[W 1
j ]i∥2 = 0), the jth element in z̄(t) is independent from the

ith element of z̄zz. Through this process, we are able to reveal the structure in terms of the adjacency
matrix A ∈ Rnz(m+1)×nz (a graphical illustration of this process is shown in Fig. 9(b) in Appendix).

3.2 SPARSITY-PROMOTING LOSS AND PRUNING

We now propose to minimize the following sparsity promoting loss (lasso), and by doing so, we aim
to identify the structures from the multivariate time-series over the course of the training:

ntrain∑
i=1

L(z(ti), z̃(ti)) + α

nz∑
i=1

nz∑
j=1

||[W 1
j ]i||2, (9)

where α is the penalty. In addition to the sparsity-promoting loss, we leverage a magnitude-based
pruning method to capture the structure more explicitly. As the training proceeds, we prune a column
whose ℓ2-norm becomes smaller than a certain threshold, ρ:

[W 1
j ]i = 0 if ∥[W 1

j ]i∥2 ≤ ρ, (10)

where 0 is a zero-valued vector. By applying the sparsity-promoting loss and the pruning method,
we expect that the entries of z̄, that are non-causal to specific time-series, are pruned and, thus, the
lags where dependencies exist can be identified automatically.

3.3 PUTTING ALL TOGETHER

In the implementation, we employ the standard mini-batching and a variant of stochastic gradient
descent (SGD) to train the neural network architectures described in the previous subsections. With
the sparsity promoting penalty and the pruning, the entire training process shares the commonality
with the training algorithm proposed in Lee et al. (2021b), shown in Algorithm 1. We implement
our method in PYTHON using a deep learning framework, PYTORCH (Paszke, et al, 2019). For the
NODEs/NDDEs capability, we use the TORCHDIFFEQ library (Chen et al., 2018). We will use the
notation x to distinguish the time-stepped-series as opposed to the continuous series z.

4 EXPERIMENTS ON CHAOTIC ODES

We first showcase the effectiveness of the proposed method with two canonical chaotic ODE bench-
mark problems: the Lorenz-96 system and the Mackey–Glass equation. The Lorenz-96 system
has been an important testbed for climate modeling. We use this system to showcase the structure
learning in the context of NODEs (with the assumption that there is no delayed effect). The Mackey–
Glass (MG) equation is another chaotic system, describing the healthy and pathological behaviour
in certain biological contexts (e.g., blood cells). We use MG to demonstrate the structure learning
with delayed variables in the context of NDDEs. In the both experiments, we measure performance
in two different angles, accuracy in trajectory reconstruction and structure discovery.
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4.1 BENCHMARK 1: THE LORENZ-96 SYSTEM

The Lorenz-96 system (Lorenz, 1996) is given by the equation:

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, (11)

where i = 1, . . . , N with x−1 = xN−1, x0 = xN , and x1 = xN+1, F denotes the forcing term.

Setup. For modeling, we use the component-wise NODE where each MLP, fi, has 4 layers with
100 neurons, where zi models xi with nz = N in Eqn. 5. For the nonlinearity, we use the Tanh
activation. We put the detailed experimental setup in Appendix.

Figure 1: [Lorenz-96] Identi-
fied dependence structure for
the systems with N = 6.

Results. Fig. 1 reveals the learned dependence structure by showing
the magnitude of the column norms of the weight matrices, {W j

1 },
in the input layer; the magnitude is normalized to have 1 as the
maximum value (black) and 0 as the minimum value (white). The
horizontal entries (i.e., {xi}) with darker colors (close to the black
color) can be considered as the ones with the significant contribu-
tions to the vertical entries (i.e., {ẋi}). Fig. 1 shows that the models
have learned that ẋi is dependent on xi−2, xi−1, xi, xi+1 and not
dependent on other entries. Further experiments with varying N
can be found in Appendix. As finding structures in NODEs is not
the main contribution in this work and the same benchmark problem
has been studied in Bellot et al. (2022), we refer readers to Bellot
et al. (2022) for more experimental results.

4.2 BENCHMARK 2: THE MACKEY–GLASS SYSTEM

The Mackey–Glass (MG) system (Mackey & Glass, 1977) is given by the equation:

dx

dt
= −bx(t) + a

x(t− τ)

1 + x(t− τ)c
, (12)

where a, b and c denote the ODE parameters and τ denotes the lag. The values of x(t) for t ≤ 0 is
defined by the initial function ϕ(t) = .5.

Setup. For parameterizing NDDEs, we model the right-hand side of the NDDE as an MLP that
takes m = 10 candidate delayed variables along with the current variable as an input, such that

x̄(t) = [x(t), x(t− τ1), . . . , x(t− τ10)] ∈ R11, (13)

where τi = i (seconds), for i = 1, . . . , 10. We use an MLP consisting of 4 layers with 25 neurons
with the Tanh activation function. We refer readers to Appendix for the detailed experimental setup.

Figure 2: [Mackey–Glass] The
ground-truth trajectory (solid blue)
and the predicted trajectory computed
from the learned model (dashed red).

Figure 3: [Mackey–Glass] Identified dependence
structure for the systems with 10 delayed vari-
ables via four different methods: NGC-RNN,
DYNOTEARS, PCMCI+, and NDDE.

Results. Fig. 2 depicts the ground-truth trajectory and the predicted trajectory computed from the
learned NDDE model. We repeated the same training for five times with different initializations.
Although the mean and the two standard deviation are plotted in Fig. 2, each prediction appear
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almost identical. Fig. 3 depicts the learned dependence structure. The values are normalized to lie
between [0, 1]. We can observe that the most significant contributes are from x(t−τ4) and x(t−τ5),
meaning that the delayed effect appears within a 4∼5-seconds window, correctly predicting true
positive, but with one false positive error.

Comparisons to baselines. As baselines of comparisons, we consider the recent statistical and ma-
chine learning methods for identifying causalities in time-series data with lagged (i.e., delayed) vari-
ables: PCMCI+ (Runge, 2020), DYNOTEARS (Pamfil et al., 2020), and neural Granger causality
(Tank et al., 2021) - RNN variants (NGC-RNN). We refer readers to Appendix for more descriptions
on these methods. For all methods, we repeat three independent runs. Fig. 3 shows a heatmap of
numerical values indicating the causal strength, which are normalized in a row-wise fashion (i.e.,
normalized per each method). The proposed NDDE-based method outperforms all other baselines.
The second best performing method is the PCMCI+, which somewhat captures the strongest depen-
dence from the fifth delayed variable x(t − τ5) (true positive), but fails to find a correct structure,
having many nonzero values in dependent elements (many false positives). The other two baselines
find the strongest dependence on the first delayed variable. Moreover, the proposed method is the
only method that results in accurate reconstruction of the ground-truth trajectory (Figure 2).

(a) (b) (c)
Figure 4: [Mackey–Glass] Identified dependence structures under increasing noise levels. (a) Noise
added to trajectory. (b) Noise added to trajectory with anomalies. (c) Noise added to ODE (Ours).

Resilience to Gaussian noise and anomalies. We test the resilience of our approach to Gaussian
noise and anomalies in three different contexts: (a) when the ground-truth trajectory is corrupted
by additive Gaussian noise; (b) when the oracle trajectory contains Gaussian noise and 10 non-
trivial anomalies (Thill et al., 2020), and (c) when we add noise to the velocity function of the ODE
describing the Mackey–Glass system (Eqn. 12). (c) is the same approach considered in NGM (Bellot
et al., 2022) to inject noise in the measurement. We describe the detailed setup in Appendix.

Although increasing noise level tend to negatively affect the performance of the proposed method
(i.e., introducing more false positives), the method is successful in finding the true positive (τ = 5)
for all scenarios and all noise levels. In Fig. 4(a), our method learns the strongest dependence on the
correct ground truth delay (τ = 5) with up to around 8% additive noise. In Fig. 4(b), our method
does the same up to 10% noise. In Fig. 4(c) the strongest dependence on the correct delay is learned
at all noise levels. In the first two cases, adding low levels of noise appears to mitigate the 4∼5
second discrepancy mentioned above. In all cases, the addition of noise appears to regularize the
result. Particularly, the experimental setup and results in (c), i.e., adding noise to the ODE, shows
the resilience of the dependence structures found by our method to all noise levels; the points of
the trajectory are smooth while the trajectory itself is irregular due to perturbing evaluation of the
system while running the ODE solver.

We also test the same baselines considered above, PCMCI+, DYNOTEARS, and NGC-RNN, on the
noise/anomaly-perturbed measurements. All three baselines learn the dependence structures that are
roughly the same as shown in Fig. 3; DYNOTEARS fails to capture the true positive dependence
while PCMCI+ (NGC-RNN) produces many false positive errors (finding dependence on nearly all
variables). We refer readers to Appendix G.2 for detailed results.
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Figure 5: Tsunami simulation at the Strait of Juan de Fuca,
depicting the location of Gauge 702, 901, and 911.

Figure 6: Surface elevation at
Gauge 702, 901, and 911.

5 AN APPLICATION TO TSUNAMI FORECASTING

Now we further investigate the forecasting and structure discovery capabilities of the NDDEs
equipped with the learning algorithm proposed in Sec. 3. We examine them with a dataset of tsunami
realizations used for developing tsunami forecasting models (Liu et al., 2021). There exist only a
handful of real earthquake events with large magnitudes, so synthetic tsunami data has been gener-
ated using numerical tsunami simulations that model the physics. In particular, the tsunami wave
propagation modeled by nonlinear partial differential equations (LeVeque et al., 2011). The simu-
lation is initiated by an incoming tsunami wave, which interacts nonlinear with the topography and
reflecting waves. This particular setup makes the dataset ideal for interpreting the results.

5.1 TSUNAMI DATASET

The dataset was created from a set of 1300 synthetic Cascadia Subduction Zone (CSZ) earthquake
events ranging in magnitude from Mw 7.8 to 9.3 (Melgar et al., 2016) and made available in Melgar
(2016). These were generated from methods proposed in LeVeque et al. (2016) using the MudPy
software (Melgar, 2020). The resulting seafloor deformation was then used as initial conditions for
tsunami wave propagation implemented in Clawpack Development Team (2020).

The tsunami data for one earthquake event contains tri-variate time-series data with the variables
(x(702),x(901),x(911)). The time series has duration of 5-hours and is interpolated at 256 uniformly
spaced points on the time-grid. This time-series data corresponds to gauge readings for the synthetic
tsunami entering the Strait of Juan de Fuca (SJdF). Each variable corresponds to different geological
locations denoted by the number designations 702, 901, and 911, as shown in Fig. 5. Gauge 702 is
located at the entrance of SJdF, and the other two gauges are located further inside from the entrance:
Gauge 901 is located in Discovery Bay, and Gauge 911 is located in the middle of Admiralty Inlet.
Fig. 6 shows an example of the surface elevation time-series measured at the three gauges.

Liu et al. (2021) considered tsunamis originating from hypothetical megathurst earthquakes in the
CSZ that reach the Puget Sound. Since SJdF is the only path for the tsunamis to reach high-
population areas in the Sound (Fig. 5), the authors hypothesized if observing the tsunami near the
entrance of the strait (Gauge 702) could be used to forecast its amplitude at Gauge 901 and 911.

5.2 DESIGNING MODEL ARCHITECTURE

The base of our model is an NDDE, parameterized by using an MLP, that takes the three variables
as the original input and the other three variables are their delayed versions, as follows:

x̄(t) = [x(702)(t), . . . ,x(702)(t− τm),x(901)(t), . . . ,x(901)(t− τm),x(911)(t), . . . ,x(911)(t− τm)], (14)

and outputs the time-derivatives of the three variables ẋ =
[
dx(702)

dt , dx(901)

dt , dx(911)

dt

]
.

We consider an MLP with 4 layers with 100 neurons and Tanh nonlinearity for each output ele-
ment. As in the empirical study (Gusak et al., 2020) of applying different normalization techniques
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to NODEs, we examined several combinations of normalization techniques, including layer nor-
malization (LN) (Ba et al., 2016), weight normalization (WN) (Salimans & Kingma, 2016), and
spectral normalization (Miyato et al., 2018). We found the best working configuration for this par-
ticular case study is [Linear→WN→LN→Tanh] × 4. We test 9 combinations of the weight penalty
α∈{0.1, 0.01, 0.001} and the pruning threshold ρ∈{0.1, 0.01, 0.001}. We found that α=ρ=0.01
yields the best result. Promoting strong sparsity (larger α and ρ) or weak sparsity (smaller α and ρ)
resulted in degradation in forecasting accuracy. We use this setting for our experiments.

5.3 TSUNAMI FORECASTING PERFORMANCE

To evaluate, we train NDDEs with varying number of delayed variables and varying time lags
on the tsunami dataset and measure those models’ forecasting accuracy as the relative ℓ2 error:
∥xxx(pred) − xxx∥2/∥xxx∥2, where xxx(pred) and xxx denote the predicted and the ground-truth trajectories, re-
spectively. We repeat the experiments 5 times with different initialization of model parameters.

Figure 7: [Tsunami] Averaged relative ℓ2 errors
(blue line) for varying m (the number of delayed
variables) and time lag τi. The magenta area is
covered by the two standard deviations.

Results. We vary the value of the number of
delayed variables and the time lag (m, τi) ∈
{(6, 12i), (10, 7.2i), (12, 6i), (15, 4.8i), (20,
3.6i)} while fixing the maximum time lag as 72
minutes. Introducing more delayed variables to
the model only changes the input layer of the
MLP and the specification of the internal layers
is fixed. Fig. 7 shows the relative ℓ2 errors for
varying (m, τi) and that increasing the number
of delayed variables tends to decrease the error
up to a certain number, i.e, 12 or 15. However,
m larger than 15 resulted in degradation of pre-
diction accuracy.

Table 1: [Tsunami] Performance comparisons

MODEL REL. ℓ2 ERROR MODEL SIZE

RNN 0.968 ± 0.0213 219K
LSTM 0.984 ± 0.0042 875K
GRU 0.909 ± 0.0101 656K
DAE 0.474 ± 0.0265 2,604K
VAE 0.461 ± 0.0111 3,297K
NODE 1.061 ± 0.0085 95K
ANODE 1.104 ± 0.0206 93K
NDDE (ours) 0.439 ± 0.0118 107K
LI-NDDE (ours) 0.404 ± 0.0087 163K

Comparison to existing baselines. We also
consider classical deep-learning approaches for
time-series modeling and the most recent ap-
proaches in tsunami forecasting on the same
dataset (Liu et al., 2021): (1) classical DL ap-
proaches: recurrent neural networks (RNNs),
long short term memory (LSTM) (Hochreiter &
Schmidhuber, 1997), and gated recurrent unit
(GRU) (Cho et al., 2014), (2) the state-of-the-
art Tsunami forecasting approaches (Liu et al.,
2021): denoising autoencoder (DAE) and vari-
ational autoencoder (VAE), (3) a variant of the
proposed method: latent-input augmented NDDEs (LI-NDDEs). The LI-NDDEs (1) extract a latent
code ccc(k) from the kth data instance using a small-sized neural network (see model size in Table 1)
and (2) augment it to the state zzz (i.e., f([z, ccc(k)], t;Θ). We include more details in Appendix.

Table 1 shows the relative ℓ2 errors obtained by using all baselines with the best performing hy-
perparameters (see Appendix for hyperparameter settings). The results essentially show that the our
models outperforms the baseline in terms of prediction accuracy while keeping the model size small.

5.4 DEPENDENCE STRUCTURES

In Fig. 8, we report the learned dependence structure. The magnitude of the column norms of
the weight matrices {W 1

j } in the input layer are again considered as the amount of contributions
made by the corresponding input variables. We repeat the same experiments 15 times with different
initialization, obtain the column norms from each run, and then apply the kernel density estimation
based on Scott’s factor (Scott, 2015) to the collected column norms.

We first focus on the plots on the diagonal of the 3×3 plot matrix. Gauge 702 has only small con-
tributions from the delayed variables. The gauge observes the incoming wave and there is little
reflections coming from the interior of the Sound, so it is expected that there are only small contri-
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(a) dx(702)

dt
(b) dx(901)

dt
(c) dx(911)

dt

Figure 8: [Tsunami] Dependence structures of NDDE models with m = 6: the contributions from
x(702) (top), x(901) (middle), and x(911) (bottom) to ẋ(702) (left), ẋ(901) (middle), and ẋ(911) (right).

butions to the result. Gauges 901 and 911 have higher contributions since they do possess dependent
behavior coming from the reflections caused by the narrowing strait. This is especially pronounced
for 901 which sits in Discovery bay and experiences significant sloshing due to the local topogra-
phy (see Figs. 6 and 17). Next, we observe that the upper diagonal plots reveal larger contributions
where as the lower-diagonal plots do not. This indicates that the delayed time-series of Gauge 702
causes those of Gauge 901 and 911 in a significant way, and that delayed time-series at Gauge 901
causes Gauge 911. The significant contributions agree well with the spatio-temporal progression of
the physical wave itself.

The most significant delayed variables from Gauge 702 in predicting Gauge 901 are the delays τ2
and τ5, which correspond roughly to 24 minutes and 60 minutes of delay. Thus 30-60 minutes
of the time-series from 702 is required to predict the time-series at Gauge 911, which agrees with
the prediction results from Liu et al. (2021): while 30 minutes of time-series from Gauge 702 was
sufficient to predict the wave height at Gauge 901, using 60 minutes improved the result significantly.

We also use the DYNOTEARS (Pamfil et al., 2020) and PCMCI+ (Runge, 2020) APIs to find de-
pendence structures. The both methods produce the similar results that the strongest dependence
on Gauges 901 and 911 is from Gauge 702 with τ6, which is ∼12 min after the wave reaches the
Gauges 901 and 911, while not showing any significant dependence from other τi, suggesting that
the result do not match with the spatio-temporal progression of the physical wave.

6 CONCLUSION

We propose the computational framework for time-series forecasting and structure discovery from
continuous-time dynamics models with delayed variables. To this end, we adapt score-based struc-
ture learning algorithms to delay dynamics settings and develop a training algorithm that promotes
sparse dependence structure in the parameter space. We evaluate our method with numerical ex-
periments on two chaotic-ODE benchmark problems: the Lorenz-96 and Mackey–Glass equations.
We also showcase our method’s capabilities in (1) accurate dynamics modeling and (2) structure
discovery, and (3) resiliency to additive noise and anomalies. We finally present an application of
our method to tsunami forecasting. Our method produces highly accurate tsunami forecasting (i.e.,
the predictions match the highest peaks of sea-surface elevation) and also identifies the dependence
structure of the time series obtained from the three gauges, which are physically-consistent and agree
with the domain expert’s interpretation.

9
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A GRAPHICAL ILLUSTRATION OF DEPENDENCE STRUCTURE LEARNING

Figure 9 illustrates examples of learned dependence structure: illustrating example results of NGM
in NODEs (Figure 9(a)) and NGM in NDDEs (Figure 9(b)).

(a) NODE (b) NDDE

Figure 9: An illustrative operation of the input layer (the white bars indicate zero-norm columns in
weights).

B ANODES AND ANDDES

We provide the background knowledge of augmented neural ordinary differential equations (AN-
ODE) or neural delay differential equations (ANDDEs). ANODEs lift NODEs by adding arbitrary
extra dimensions in the state variables leading to a system of ODEs, formally expressed as follows:[

ż
ṡ

]
= f

([
z
s

]
;Θ

)
. (15)

Even if we have not numerically tested ANDDEs in this study, it is a straightforward extension from
NDDEs to ANDDEs. We can augment NDDEs to take extra input dimensions as follows:[

ż
ṡ

]
= f

([
z̄
s

]
;Θ

)
(16)

where the initial function of the augmented variables defined as s(t) = [s1(t), . . . , sns
(t)]T = 0 if

t ≤ 0. This is a straightforward extension of ANODEs in NDDEs.

C INPUT-AUGMENTED NODES AND LATENT-INPUT AUGMENTED NODES

An input-augmented NODEs (Massaroli et al., 2020) is an extension of NODEs, which augments the
input to the hidden latent states, e.g., f([z,XXX(k)], t;Θ), whereXXX(k) is the kth data instance. As this
work aims to perform forecasting, augmenting the input (i.e., the entire time-series) is not feasible.
Thus, we extract a hidden feature by using an autoencoder, whose input is again the first nin steps
of the Gauge 702, and augmented the extracted latent code ccc to the dynamics, i.e., f([z, ccc(k)], t;Θ),
which we denote by latent-input-augmented (LI)-NDDEs. The autoencoder used here has the same
input/output setting as the previously described baseline autoencoders, but is in a small scale (see
Table 1 for the model size).

D DESCRIPTIONS ON BASELINES

• DYNOTEARS: is a scored-based algorithm for learning Dynamic Bayesian Networks (DBNs)
that simultaneously discover the contemporaneous and time-lagged relationships among vari-
ables in a time-series. The model follows the standard SVAR model and uses standard opti-
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mization routines to minimize a penalized loss subject to an acyclicity constraint (Pamfil et al.,
2020). We use CAUSALNEX 1 API.

• PCMCI+: is a three-phase conditional independence (CI) based algorithm that aims to discover
the contemporaneous and lagged causal from observational time series. By utilizing the Peter–
Clark (PC) algorithm and the Momentary Conditional Independence (MCI) test, PCMCI+ op-
timizes the choice of conditioning sets in CI tests to achieve high detection capability while
maintaining well-calibrated tests (Runge, 2020). We use TIGRAMITE 2 API.

• Neural Granger causality (NGC): proposed to adapt neural network architectures in a way
that the Granger causal interactions (Granger, 1969) (or neural Granger causality) are esti-
mated while performing data-driven dynamics modeling of nonlinear systems. Component-
wise MLPs or RNNs are leveraged to capture the effects of input on individual output series.

E EXPERIMENTAL SETUP IN DETAIL

Lorenz-96 system. In Sec. 4.1, we set the forcing term as F = 10, which causes a chaotic behavior.
The initial condition is set as xxx(0) = [1, 8, . . . , 8], perturbed by adding a noise which is sampled
from uniform distribution U(−1, 1). The ground-truth trajectories are generated by solving the
initial value problem with the time-step ∆t = 0.01 for the total simulation time T = 30.72. For the
time integrator, we use the Dormand–Prince method (dopri5) (Dormand & Prince, 1980) with the
relative tolerance of 10−7 and the absolute tolerance of 10−9. We set the training hyperparameters
as follows:

• Learning rate: 0.01, max epoch: 2000, batch size: 40, and batched subsequence length:
100.

Mackey–Glass system. In Sec. 4.2, we set a = 0.2, b = 0.1, c = 10, and τ = 5 (seconds). We solve
the initial value problem, given the initial function ϕ(t) = .5, using DDEINT3 with the time-step
∆t = 0.01 for the total simulation time T = 153.6 (seconds). We set the training hyperparameters
as follows: for NDDEs,

• learning rate: 0.01, max epoch: 2000, batch size: 40, batched subsequence length: 100,
and ODE integrator: Runge–Kutta (Runge, 1895) of order 4.

For RNN variants,

• learning rate: 0.001, max epoch: 1000, batch size: 40, batched subsequence length: 153,
and penalty weight 0.001 for RNN, 0.01 for LSTM, and 0.1 for GRU.

Tsunami forecasting We set the training hyperparameters as follows: for NDDEs,

• learning rate: 0.001, max epoch: 1000, batch size: 40, batched subsequence length: 10,
and and ODE integrator: Runge–Kutta of order 4.

For RNN variants,

• learning rate: 0.001, max epoch: 1000, batch size: 40, batched subsequence length: 19,
and penalty weight 0.1 for RNN, 0.1 for LSTM, and 0.01 for GRU.

For autoencoders, we take the same hyperparameters from Liu et al. (2021): the model specifications
are

• [DAE] an encoder: 8 convolutional layers with kernel size 3 and channels [64, 64, 128,
128, 256, 256, 512, 512] and a decoder: 8 transposed-convolutional layers with kernel size
3 and channels in the reverse order of the encoder,

1https://github.com/quantumblacklabs/causalnex/blob/develop/causalnex/
structure/dynotears.py

2https://github.com/jakobrunge/tigramite/blob/master/tigramite/pcmci.py
3https://pypi.org/project/ddeint

14

https://github.com/quantumblacklabs/causalnex/blob/develop/causalnex/structure/dynotears.py
https://github.com/quantumblacklabs/causalnex/blob/develop/causalnex/structure/dynotears.py
https://github.com/jakobrunge/tigramite/blob/master/tigramite/pcmci.py
https://pypi.org/project/ddeint


Under review as a conference paper at ICLR 2024

• [VAE] an encoder: the same specifications for convolutional and transposed-convolutional
layers, an additional fully-connected (FC) layers to/from the latent code of dimension 450.

and hyperparameters are

• [DAE] loss: L1 loss, learning rate: 0.0005, max epoch: 750, and batch size 20, and

• [VAE] loss: ELBO, learning rate: 0.0005, max epoch: 1250, and batch size 150.

For the latent-input-augmented NDDEs, the small-scale autoencoder is specified as:

• an encoder: 4 convolution layers with kernel size 3 and channels [8,16,32,64] and one FC
layer to the latent code of dimension 5, and a decoder: one FC layer and 4 transposed-
convolutional layers with kernel size 3 and channels in the reverse order of the encoder,

and hyperparameters are:

• loss: mean-squared error, learning rate: 0.001, max epoch: 1000, and batch size 50.

We also note that in the recent Tsunami forecasting approaches, the autoencoders have been designed
in a non-typical way; the input to the autoencoders is the first nin steps of the Gauge 702 time-
series and the output is the next 256 − nin steps of all time-series (i.e., 702, 901, and 911). In our
experimental settings, we set nin = 60 (i.e., 72 min) to be consistent with the settings of NDDEs.

F LORENZ-96 EXPERIMENTAL RESULTS

Figure 10 depicts the ground-truth trajectories and the predicted trajectories that are computed via
solving the IVP given the learned model. We observe that the predictions match well with the
ground-truth trajectories.

Figure 10: [Lorenz-96] The ground-truth trajectories (solid blue) and the predicted trajectories com-
puted from the learned model (dashed red).

Figure 11 depicts the identified dependence structure for varying N = {6, 8, 10}; the true positives
are all correctly captured by the algorithm.

G MACKEY–GLASS: FULL RESULTS FROM TESTING THE RESILIENCE TO
NOISE

We train NDDEs on noisy Mackey–Glass system using the same ODE parameters and model hyper-
parameters as the baseline above. For all our experiments, we use a set of increasing scaling factors
ϵ = {.05, .06, .07, .08, .09, .1, .2, .3}, with fine-grained steps between .05 and .1. Throughout, we
use a pre-computed standard deviation σbase taken from the original trajectory. We add noise using
three separate methods:
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(a) N = 6 (b) N = 8 (c) N = 10

Figure 11: [Lorenz-96] Identified dependence structure for the systems with N = 6, 8, 10.

Figure 12: [Mackey–Glass] The original, ground-truth (ϵ = 0) trajectory (solid blue) and predicted
trajectories (dashed red) when noise-level ϵ is added to the original trajectory.

(a) Following the prior work (Lee et al., 2021b), we sample noise from a Gaussian distribution
N(0, σ2

base), multiply it by a varying scaling factor ϵ, and add it to the original trajectory.
(b) We use MGAB (Thill et al., 2020) to produce a single benchmark with 10 non-trivial anomalies.

MGAB removes random segments from time series data such that the remaining endpoints have
closely matching derivatives. This results in anomalies which appear smooth and are difficult
to detect visually. We add Gaussian noise to this benchmark according to ϵ as above.

(c) We sample from a Gaussian distribution with standard deviation σbase, scale by ϵ, and add the
result to the MG system (12) at each evaluation by the ODE solver. The ODE solver produces
trajectories for the following.

dx

dt
= −bx(t) + a

x(t− τ)

1 + x(t− τ)c
+ ϵN(0, σ2

base), (17)

where ϵN(0, σ2
base) can be described as a stochastic forcing term.

G.1 NDDE RESULTS

Fig. 12 shows the predicted trajectories from the learned model for every noise level using this
method. The predictions largely follow the ground-truth trajectories while appearing to slightly
over-fit at higher noise levels in the places where the dashed red line becomes dense.

Fig. 13 shows the predicted trajectories against the anomalous data. Note that we include results for
ϵ = 0 as a baseline. The predictions again largely follow the ϵ = 0 trajectory with the exception of
the ϵ = .2 case which begins to diverge at around t = 75. This pattern of deviation was observed
during training as well, indicating that additional training could lead to more uniform trajectories.

Fig. 14 shows the predicted trajectories against the “irregular” trajectories generated using this
method. The predicted trajectories appear to follow the irregular ones closely. In particular, the
ϵ = .3 case suggests the prediction more closely resembles the original baseline rather than the
irregular trajectory.

G.2 BASELINE RESULTS

Figs. 15– 16 show the causal strength of three baseline methods, NGC-RNN, DYNOTEARS, and
PCMCI+, under different methods for injecting noise: the methods (a) and (c) described above.
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Figure 13: [Mackey–Glass] The anomaly benchmark trajectory (solid blue) and predicted trajecto-
ries (dashed red) when noise-level ϵ is added to the anomaly benchmark trajectory.

Figure 14: [Mackey–Glass] The “irregular” trajectories (solid blue) and predicted trajectories
(dashed red) when noise-level ϵ is added to the ODE.

Figs. 15(b)–16(b) depict that DYNOTEARS fails to capture the correct dependence structure (true
positive); instead it finds the strongest dependence on the first delayed variable. Figs 15(a)–16(a)
and Figs. 15(c)– 16(c) show the results of NGC-RNN and PCMCI+, respectively, depicting that
they perform poorly in finding a correct structure (i.e,. resulted in many false positives); although
PCMCI+ finds the true positive correctly, it fails to detect non-dependence elements (leading false
positive errors) and NGC-RNN in several cases even fail to detect true positive.

(a) NGC-RNN (b) DYNOTEARS (c) PCMCI+

Figure 15: [Mackey–Glass] Identified dependence structure under increasing noise levels added to
trajectory via three different baseline methods: NGC-RNN, DYNOTEARS, and PCMCI+.
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(a) NGC-RNN (b) DYNOTEARS (c) PCMCI+

Figure 16: [Mackey–Glass] Identified dependence structure under increasing noise levels added to
ODE via three different baseline methods: NGC-RNN, DYNOTEARS, and PCMCI+.

(a) NODEs (b) NDDEs (with m = 3) (c) NDDEs (with m = 6)

Figure 17: [Tsunami] An example of prediction results of using the trained NODEs and NDDEs.

H TSUNAMI EXPERIMENTAL RESULTS

H.1 DATASET

Among the 1300 time-series instances of tsunami, the events that with negligible tsunami in the
region of our interest were discarded; event with tsunami amplitudes less than 0.1m at Gauge 702
or 0.5m at Gauge 901 were removed from the dataset. This leads to the decrease in the number of
time-series instances in the dataset from 1300 to 959. We then split the remaining data into 80/5/15
for the train/validation/test set.

H.2 NODE RESULTS

Fig. 17(a) depicts an example instance of the elevation time series in the test set and the prediction
made by solving an IVP given the trained NODE model and the initial condition obtained from the
test set. We report the mean of the predictions (cyan dashed line) and the two standard deviations
(magenta area). The trained NODEs can only produce simple trajectories, which do not forecast the
oscillatory behavior in the data and fail to match the peak values and the locations in the time series.
We also test ANODEs, but ANODEs do not provide significantly different results than NODEs (see
Appendix).

H.3 NDDE RESULTS

With the fixed τ and varying m. We test the NDDEs with varying number of delayed variables
(i.e., m ∈ {1, 2, 3, 4, 5, 6}) where τi = 12i (min), i.e., the time lag is defined as 12 minutes.
As depicted in Fig. 18, the increase in the number of delayed variables tends to result in better
performance in terms of prediction accuracy measured in mean-squared errors.
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Figure 18: [Tsunami] Averaged relative ℓ2 errors for varying m (the number of delayed variables)
and the fixed time lag τi = 12i. Star marker indicates the error of ANODE results.

(a) Gauge 901 (m = 3) (b) Gauge 901 (m = 6) (c) Gauge 911 (m = 3) (d) Gauge 911 (m = 6)

Figure 19: [Tsunami] Observed peak locations (horizontal axis) and predicted peak locations (verti-
cal axis) for elevation time-series measured at Gauge 901 and 911.

The figure also shows the elevation time series for the same test data considered in the experiments
with NODEs. We plot the mean of the predictions as cyan dashed lines and the two standard devia-
tions (as magenta areas). We use the same experimental procedure for forecasting (i.e., solving IVP
with the learned NDDEs). As opposed to the predictions made by NODEs, the predictions made
by NDDEs match well with the ground-truth trajectories and capture the peak values and locations
more accurately. Fig. 19 show the predicted peak values more aligned with the ground-truth trajec-
tories at Gauge 901 and 911. Two sets of the predictions made separately by NDDEs with m = 3
and m = 6 are depicted. The NDDEs with larger m provide better predictions for peak values.
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