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Abstract—We present a morphological-symmetry-equivariant
heterogeneous graph neural network (MS-HGNN) for robotic
dynamics learning. MS-HGNN unifies robotic kinematic struc-
tures and morphological symmetries within a single graph-based
neural-symbolic architecture. By embedding these structural
priors as symbolic constraints in the network design, MS-
HGNN achieves strong generalization, high sample efficiency,
and compact model complexity. This neural-symbolic integration
enables the model to reason over the physical structure of multi-
body dynamic systems while retaining the flexibility of data-
driven learning. We formally prove the morphological-symmetry-
equivariant property of MS-HGNN and empirically validate its
effectiveness on a range of quadruped robot learning tasks using
both real-world and simulated datasets. Code is publicly available
at https://github.com/lunarlab-gatech/MorphSym-HGNN/.

Index Terms—Neural-symbolic learning, Morphological sym-
metry, Graph neural network

I. INTRODUCTION

A rigid body system is a collection of interconnected
components that do not deform under external forces. Ex-
isting approaches to controlling and planning for rigid body
systems fall into two categories: safe but inflexible methods
and adaptive yet risky methods. Traditional methods provide
safety and stability by relying on well-understood dynamics
models [1, 2], but they struggle in complex, unpredictable
environments where modeling becomes difficult. Conversely,
machine learning-based approaches offer greater adaptabil-
ity by learning dynamic interactions and planning strategies
across diverse environments [3, 4] but suffer from unseen and
highly dynamic environments.

To bridge traditional and learning-based methods, it is
essential to incorporate morphological information from the
robot’s structure into our learning architecture. The learned
model can implicitly account for the robot’s physical config-
uration by embedding this structural information, enhancing
interpretability and data efficiency. The morphology of a rigid
body system has two key components: the kinematic chain
structure and symmetry. A kinematic chain [5, 6] in a rigid
body system consists of interconnected links joined by joints
that allow relative motion, such as rotation or translation.
Each joint imposes specific movement constraints, enabling
the system to perform complex actions through combinations
of simpler joint motions. In robotics, kinematic chains are
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Fig. 1: Morphological symmetry groups in MS-HGNN G :=
K4 (left, Solo robot) and G := C2 (right, A1 robot).

crucial for modeling and controlling the movement of artic-
ulated structures like robotic arms, quadrupeds [7, 8, 9], and
humanoids. Integrating kinematic chain information into the
learning model can help establish the relative relationships
between each component, aligning the model closely with
the robot’s physical design. On the other hand, morpholog-
ical symmetries are structural symmetries in a robot’s body
that allow it to mimic certain spatial transformations—such
as rotations, reflections, or translations [10, 11]. Integrating
these geometric priors into the learning model enhances data
efficiency by reducing the need for extensive training samples,
improves the model’s ability to generalize across a diverse
range of robot configurations and task scenarios, and promotes
greater interpretability through alignment with the underlying
physical and structural properties of the system.

In this work, we propose MS-HGNN, a morphological-
symmetry-equivariant heterogeneous graph neural network
that integrates both kinematic structure and morphological
symmetries into a unified learning framework. The key con-
tribution of our work lies in formulating this architecture as a
neural-symbolic system: the kinematic structure and symmetry
priors are encoded as symbolic constraints within the graph
network, while the learning process remains fully data-driven.
This neural-symbolic integration allows MS-HGNN to reason
over physical structure and relationships in a way that is
both interpretable and generalizable. We formally prove the
symmetry-equivariant properties of MS-HGNN and empiri-
cally validate its effectiveness on a wide range of quadruped
robot learning tasks using both real-world and simulated data.

https://github.com/lunarlab-gatech/MorphSym-HGNN/


Fig. 2: Overview of the MS-HGNN framework for robots with symmetry type G := K4. (a) The input space consists of the
robot’s current state observations, which are mapped to relevant nodes in the heterogeneous graph neural network (HGNN).
(b) and (d) The morphological symmetry encoder-decoder pair ensures that the learned representations adhere to the robot’s
morphological structure. (c) The HGNN is automatically constructed to preserve geometric symmetry. (e) The output space
consists of dynamics-relevant variables, obtained from their corresponding nodes in the HGNN.

II. RELATED WORK

Rigid Body Systems. In robotics, rigid body systems are
essential for representing complex articulated structures like
robotic arms, quadrupeds, and humanoids. Traditional rigid
body modeling relies on established mathematical frameworks
to describe motion and calculate the forces and torques neces-
sary for desired movements [2]. On the other hand, data-driven
techniques, such as neural networks and reinforcement learn-
ing [3, 4], have been introduced to model and control rigid
body systems, bringing adaptability and flexibility to these
systems in diverse or unstructured settings. Recently, several
approaches have emerged that bridge classic and data-driven
methods, leveraging the strengths of both [12, 13, 14, 15, 16].
These approaches typically embed physical laws as constraints
or regulators within the learning model.
Neural-Symbolic Learning for Robotics. Neural-symbolic
learning combines structured domain knowledge with data-
driven models, aiming to improve interpretability, sample
efficiency, and generalization. In robotics, this involves em-
bedding physical principles, such as kinematic constraints,
dynamics models, and system symmetries, into neural network
architectures [17, 18, 19]. Graph neural networks (GNNs)
are particularly well-suited to this paradigm, as they naturally
encode the relational structure of rigid-body systems. Equiv-
ariant GNNs further enhance this by incorporating symmetry
priors [11], enabling efficient learning across morphologically
similar components. Our proposed MS-HGNN builds on this
neural-symbolic foundation by unifying kinematic structure
and morphological symmetry within a single heterogeneous
GNN architecture. Compared to prior work, our model en-
forces symmetry-equivariance while explicitly modeling the
system’s physical topology, leading to a scalable and inter-
pretable framework for robotic dynamics learning.

III. METHODOLOGY

This work employs a heterogeneous graph neural network
(HGNN) to model the morphological symmetry (MS) and
kinematic structure of rigid body systems.

Heterogeneous graph neural networks [20], denoted as
G = (V, E), are a type of graph neural network designed to
handle graphs with multiple types of nodes V and edges
E , capturing complex relationships and rich semantic infor-
mation. Unlike traditional GNNs, which assume a uniform
graph structure, HGNNs apply specialized aggregation and
transformation functions tailored to different node and edge
types. This makes them particularly effective in applications
such as recommendation systems, knowledge graphs, and
robotics, where diverse interactions between entities must be
accurately modeled. In this work, we construct a HGNN whose
node and edge types are directly derived from the robot’s
kinematic structure. This construction closely follows the
framework introduced in [21], with detailed implementation
specifics provided in the Appendix.A.

A rigid body system is a collection of solid bodies that
maintain a fixed shape and size while moving under the influ-
ence of forces and torques. When these bodies are connected
through joints allowing relative motion, they form a kinematic
chain, which describes the movement of interconnected rigid
bodies in a structured manner. The morphological symmetry
is from morphological or structural similarity resulting from
replicated kinematic chains and body parts with symmetric
mass distributions, and the details of morphological symmetry
are provided in the Appendix.B. The kinematic structure of
the robot can be represented as an adjacency matrix within
a graph neural network, allowing the GNN architecture to
process geometric proprioceptive sensor readings associated
with specific links and joints.
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Our approach comprises two key components (Fig.2): (1) an
automatically constructed HGNN that preserves the system’s
geometric symmetry, and (2) an encoder-decoder module that
transforms geometric symmetry into morphological symmetry,
ensuring consistency with the system’s dynamic properties. In
the following sections, we provide a step-by-step framework
for constructing an MS-HGNN, guided by the system’s kine-
matic chain and morphological symmetry principles.

1) Determine the morphological symmetry group Gm <
GE and the unique kinematic branches S of the system,
where GE denotes the generalized Euclidean group.

2) Create subgraphs for all kinematic branches as
Gi = {Gi,1(Si,1), . . . ,Gi,nrep(S)(Si,nrep(Si))},
where Gi,j1

∼= Gi,j2 ,∀j1, j2 ∈ N ≤ nrep(Si).
3) Label each subgraph Gi,j as Gp,q , where p ≤ |Gm| cor-

responds to the element in group Gm, and subgraphs
with same q lies in the same orbit.

4) For any subgraph class {Gq}, including the base node
{Vb} that lacks the full set of |Gm| graphs, completes
each group orbit by replicating elements along missing
transformations and label them as Gp,q .

5) Connect the base nodes {Vb,p} using Cayley
Graph [22]. Connect each subgraph Gp,q to its corre-
sponding base node Vb,p with edge type Eq , formalizing
the full graph G.

6) Add input and output decoders for each node based on
the subgraph class p it belongs to, ensuring morpho-
logical symmetry equivariance Gm in our GNN.

After completing the first 5 steps of our construction pro-
cess, we obtain a graph G that preserves the system’s inherent
geometric symmetry. To ensure that the learned representa-
tions from heterogeneous graph neural networks respect the
morphological symmetry group G, we integrate an additional
encoder-decoder pair in step 6, as shown in Fig. 2 (b), (d).
This enables the HGNN to capture structural equivalences,
preserving the morphological symmetry of the robot within the
overall learning framework. We provide a mathematical proof
demonstrating that our constructed graph is equivariant under
morphological symmetry transformations in Appendix.C.

It is important to note that since both K4 and C2 have ele-
ments that are involutions, the encoder and decoder operations
are structurally identical. However, this equivalence does not
hold for higher-order cyclic symmetry groups such as Cn with
n > 2, which are commonly found in other symmetric rigid-
body robotic systems, such as multi-arm robots.

Our proposed MS-HGNN architecture is designed to be
equivariant to morphological symmetry and is generalizable
to various robotic systems and different kinds of tasks. To
demonstrate its effectiveness, we specifically implement the
architecture for the Mini-Cheetah and Solo robots, which
exhibit the K4 symmetry group, and the A1 robot, which
exhibits the C2 symmetry group. These cases were chosen due
to the availability of experimental data and their suitability for
visualization, as illustrated in Fig. 1.

IV. EXPERIMENTS

We present MS-HGNN as a general model for tasks in-
volving rigid body systems, focusing on quadruped robots.
Leveraging a specialized GNN structure , our model effectively
captures morphological information and is validated on multi-
ple tasks: contact state detection with real-world data (classifi-
cation), ground reaction force (GRF) estimation and centroidal
momentum estimation with simulated data (regression) from
various quadruped platforms. These components are essential
for understanding quadruped dynamics and enabling effective
control. We compare our results with CNN [23], state-of-the-
art G-equivariant neural networks CNN-Aug and ECNN with
C2 symmetry [24], and the morphology-aware model, MI-
HGNN [21]. GRF results are provided in Appendix F; detailed
dynamics are in Appendix D.

A. Contact State Detection for Mini-Cheetah Robot

We address contact prediction for the Mini-Cheetah
robot [25] using real-world data [23], covering diverse
gaits and terrains such as sidewalk, asphalt, concrete, peb-
bles, forest, and grass. Each sample contains measured
joint angles q ∈ R12, joint velocities q̇ ∈ R12, base linear
acceleration ab ∈ R3, and base angular velocity ωb ∈ R3

from the IMU. It also includes estimated foot position
pl ∈ R3 and velocity vl ∈ R3 via forward kinematics, where
l = {LF,LH,RF,RH} indexes the legs. The ground-truth
binary contact state cl ∈ B, B = {0, 1}, is generated offline us-
ing a non-causal algorithm [23]. The dataset contains approxi-
mately 1M synchronized samples at 1000 Hz. Following [24],
we use the same test sequences and split the rest into 85% train
and 15% val. Since the test set contains unseen gait-terrain
combinations, this partition supports evaluating generalization
to out-of-distribution scenarios.

Mini-Cheetah exhibits G = K4 symmetry, motivating use of
both K4 group and its subgroup C2 to our model design. All
models take a 150-sample histories [q, q̇,ab, ωb,p,v] ∈ R54,
to predict a 4-leg contact state ĉ ∈ B4 at t. For MI-HGNN and
MS-HGNN, the inputs are structured as a graph where the
base (ab,ωb), joint (qj , q̇j), and foot (pl,vl) measurements
are assigned to base (Vb), joint (Vt) and foot (Vf ) nodes,
respectively. Contact state predictions are produced at each
foot node (Vf ). In MS-HGNN-C2 and MS-HGNN-K4 models,
the 2 and 4 base nodes receive identical input features. MS-
HGNN uses 8 message-passing layers, hidden size 128, and
is trained for 49 epochs with a learning rate of 10−4. We use
metrics form [21, 24]: foot-wise binary F1-score, averaged F1-
score (mean across legs), and 16-state contact accuracy, where
a prediction is correct only if all legs are classified correctly.

Fig. 3-left reports classification performance and param-
eter size. Compared to non-graph baselines (CNN, CNN-
Aug, ECNN), graph-based models perform better with fewer
parameters. Specifically, MS-HGNN-K4 improves accuracy by
11% over ECNN, the best-performing non-graph-based model,
while using only 38% of its parameters. This demonstrates the
effectiveness and efficiency of graph-based morphology-aware
architectures. Morphology-informed graph network constrains
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Fig. 3: Left: Contact state detection on the real-world Mini-Cheetah dataset [23]. F1-score for each leg, averaged F1-
score, and 16-state contact accuracy, averaged over 4 random runs. Parameter counts for each model are also reported. Center:
Sample efficiency on the Mini-Cheetah dataset [23]. Averaged F1-score of models trained with varying portions of the
training set. Our MS-HGNN (C2 and K4) achieves an F1-score of approximately 0.9 using only 5% of the data. Right: Model
efficiency on the synthetic Solo dataset [24]. Linear cosine similarity for models of varying sizes. MS-HGNN (C2 and K4)
demonstrates superior parameter efficiency and avoids overfitting.

Model Lin.
Cos. Sim ↑

Ang.
Cos. Sim ↑

Test
MSE ↓

MLP 0.9617 0.9523 0.0499
MLP-Aug (C2) 0.9639 0.9535 0.0478
EMLP (C2) 0.9610 0.9528 0.0503
MS-HGNN (C2) 0.9903 0.9804 0.0161
MLP-Aug (K4) 0.9647 0.9549 0.0472
EMLP (K4) 0.9673 0.9580 0.0435
MS-HGNN (K4) 0.9877 0.9799 0.0189

TABLE I: Centroidal momentum estimation results on
the synthetic Solo dataset [24]. Each model is evaluated on
test sequences using linear cosine similarity, angular cosine
similarity, and mean squared error (MSE), averaged over 4
random runs. Standard deviations are reported in Appendix G.
Bold indicates the best performance, while underlined values
denote suboptimal results.

the information flow via message passing along the robot’s
kinematic chain, therefore, incorporating physical knowledge
as a prior and enhancing the model’s causality. A direct
consequence is the ability to capture the complex correlation
with far fewer parameters. MS-HGNN-K4 also outperforms
MI-HGNN (F1: 0.939 vs. 0.931, accuracy: 0.875 vs. 0.870),
showing the benefits of preserving morphological symme-
try. MI-HGNN uses S4 geometric symmetry, which enforces
permutation-equivariant across all legs and over-constrains the
learning problem, leading to suboptimal performance.

Among models following C2 (excluding MI-HGNN), MS-
HGNN-C2 achieves the best classification results. In addition,
the performance gain introduced by following K4 over C2 fur-
ther demonstrated the benefits of exploiting the morphological
symmetries. From a data-augmentation perspective, using K4

doubles the training set compared to C2. Further analysis on
model and sample efficiency can be found at Appendix E.

B. Centroidal Momentum Estimation for Solo Robot

This task estimates linear l ∈ R3 and angular k ∈ R3

momentum from joint-space position and velocity

q ∈ R12, q̇ ∈ R12. Data is simulated in PINOCCHIO [26]
for Solo robot [11] with G = K4 symmetry. Unlike contact
estimation tasks, this setting challenges the model to infer
angular momentum from multiple base nodes. We construct
MS-HGNNs with C2 and K4, attaching morphology encoders
to joint nodes and decoders to base nodes. MSE losses from
all base nodes are averaged during training.

Tab. I reports results (mean over 4 runs) evaluated with
cosine similarity and MSE. MI-HGNN is excluded due to
its incomparable performance (e.g., linear cosine similarity
0.9301±0.0017, angular cosine similarity 0.5173 ± 0.0016,
and test MSE 0.3421 ± 0.0009). Our MS-HGNN outperforms
all baselines. MI-HGNN’s underperformance stems from its
use of S4, which misaligns with Solo’s morphology, rendering
it fails to capture angular dynamics effectively. In contrast, our
MS-HGNN accurately embeds true symmetries using C2 and
K4, enabling improved representation and learning. Fig. 3-
right shows model efficiency: MS-HGNN-C2 reaches 0.9448
cosine similarity with only 13,478 parameters. Both MS-
HGNN variants scall well with model size, while MI-HGNN
and MLP tend to overfit as parameter count increases.

V. CONCLUSIONS

We present MS-HGNN, a general and versatile network
architecture for robotic dynamics learning by integrating sym-
bolic inductive biases such as robotic kinematic structures
and morphological symmetries into a neural graph-based
framework. By embedding these structured priors, MS-HGNN
bridges the strengths of symbolic reasoning with the flexibility
of neural networks, aligning with the broader goals of neural-
symbolic learning. Our theoretical analysis and empirical
results demonstrate that exploiting robot morphology not only
improves generalization and sample efficiency but also leads
to more compact and interpretable models. Future work will
explore incorporating additional physical priors, extending
to meta- and reinforcement learning settings, and unifying
perception and control within a neural-symbolic paradigm.
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APPENDIX A
MORPHOLOGY-INFORMED HETEROGENEOUS GRAPH

NEURAL NETWORK

A Morphology-Informed Heterogeneous Graph Neural Net-
work (MI-HGNN) [21] is an HGNN with node and edge types
directly inferred from the system’s kinematic structure. Based
on the functional roles of nodes within the kinematic structure,
we assign them to distinct node classes V = {V1, . . . ,Vn},
where each class Vi = {v1i , . . . , vmi } contains individual nodes
vji . Links in the kinematic structure are represented as edges
in the graph, with the edge type e(vi, vj) ∈ Eij depending
on the node types at both ends, where Eij ∈ E . For example,
in a floating-base system, components like the base, joints,
and feet can be represented by distinct types of nodes Vb, Vt,
and Vf , shown in Fig.2(c), while the links connecting these
components are modeled as edges.

APPENDIX B
MORPHOLOFICAL SYMMETRY

The morphological symmetry is from morphological or
structural similarity resulting from replicated kinematic chains
and body parts with symmetric mass distributions. Morpholog-
ical symmetry group G represents feasible state transformation
including reflection and rotation that adjust the robot’s state
(q, q̇) to a reachable state (g ▷

⋄ q, g ▷
⋄ q̇), where g is the

group action, q ∈ Rnq is the generalized position coordinates,
with nq as the number of states [11]. The formal definition of
morphological symmetry action is presented in Eq. 1.

(g ▷
⋄ q, g ▷

⋄ q̇) :=

([
XgXBX

−1
g

ρM(g)qjs

]
,

[
XgẊBX

−1
g

ρTqM(g)q̇js

])
(1)

This transformation includes a reorientation of the base’s
body g ▷

⋄ XB = XgXBX
−1
g ∈ SEd, where XB :=[

RB rB
0 1

]
∈ SEd is the base’s state configuration, with

RB ∈ SOd as the rotation matrix representing the base’s
orientation, and transformation of the joint space configuration
g ▷
⋄ qjs := ρM(g)qjs. Once the base of the kinematic structure

is identified, the number of unique kinematic branches in the
robot can be determined with representation S = {S1, . . . ,Sk}.
Each branch Si contains ndof(Si) ∈ N degrees of freedom
and is replicated nrep(Si) ∈ N times throughout the robot’s
kinematic structure. The set of labels for the instance of branch
Si is given by Si = {Si,1, . . . ,Si,nrep(Si)}.

A typical quadruped consists of a single kinematic chain
Ss = {Sleg}, which is replicated nrep(Sleg) = 4 times. The
action of a morphological symmetry in the joint space results
in a permutation of the roles of branches with the same type
denoted as g ▷ si,j := si,g(j) ∈ Si is the label that j is
mapped to under the permutation induced by g. This leads
to the decomposition of the joint space configuration:

g ▷ si,j := si,g(j) ∈ Si,

ρSi(g)

si,1si,2
...

 =

si,g(1)si,g(2)
...

 , ∀i ∈ [1, k], j ∈ [1, nrep(si)]

(2)

where ρSi(g) is the permutation representation acting on the
labels of the instances of branch type si. Following our
example with the quadruped robot, the action of g induces
a permutation of the left and right configurations g ▷ sleg,lf =
sleg,rf , g ▷ sleg,rf = sleg,lf , g ▷ sleg,lh = sleg,rh, and
g ▷ sleg,rh = sleg,lh. Given that these permutations do not
mix the distinct branch types, we can adopt a basis for the
joint space configuration space, leading to the decomposition
of its associated group representation.

M := M[S1] × · · · ×M[Sk] ⊆ Rnj ,

M[Si] :=

nrep(Si)⊗
j=1

MSi ,

ρM := ρM[S1]
⊕ · · · ⊕ ρM[Sk]

, (3)

ρM[Si]
:= ρSi ⊗ ρMSi

.

where MSi ⊆ Rndof(Si) represents the configuration space of
a single instance of type Si. For further details, we refer the
reader to [11].

APPENDIX C
PROOF DETAILS

We provide a mathematical proof demonstrating that our
constructed graph is equivariant under morphological symme-
try transformations. After completing the first five steps of
our construction process, we obtain a graph G that preserves
the system’s inherent geometric symmetry and is composed
of subgraphs {G1, . . . ,Gq}. Each subgraph Gi is further subdi-
vided into instances {Gi,1, . . . ,Gi,p}, where p ∈ N denotes the
number of instances, and nftr(Gi) ∈ N represents the number
of node features per instance. The parameter q corresponds
to the types of kinematic chains (e.g., legs, arms), while p
identifies the type of element within a group.

We define two types of group actions: the Euclidean re-
flection and rotation group action, denoted as gm ▷ (·),
and the morphological reflection and rotation group action,
denoted as gm ▷

⋄ (·). For each subgraph instance Gp,q , the
Euclidean group action on our graph satisfies the property
gm ▷ Gp,q = Ggm(p),q, where gm is an element of the
morphological transformation group Gm. We further define
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Model Lin. Cos. Sim ↑ Ang. Cos. Sim ↑ Test MSE ↓

MLP 0.9617± 0.0036 0.9523± 0.0032 0.0499± 0.0037
MLP-Aug (C2) 0.9639± 0.0026 0.9535± 0.0029 0.0478± 0.0020
EMLP (C2) 0.9610± 0.0039 0.9528± 0.0051 0.0503± 0.0053
MS-HGNN (C2) 0.9903± 0.0001 0.9804± 0.0015 0.0161± 0.0006
MLP-Aug (K4) 0.9647± 0.0023 0.9549± 0.0023 0.0472± 0.0014
EMLP (K4) 0.9673± 0.0045 0.9580± 0.0032 0.0435± 0.0048
MS-HGNN (K4) 0.9877± 0.0007 0.9799± 0.0010 0.0189± 0.0007

TABLE II: Centroidal momentum estimation results on the synthetic Solo dataset [24]. Each model is evaluated on test
sequences using linear cosine similarity, angular cosine similarity, and mean squared error (MSE), averaged over 4 random
runs. Results are reported as mean ± standard deviation. Higher cosine similarity and lower MSE indicate better performance.

ρGq (gm) ∈ Rp×p as the permutation matrix associated with
the group action gm.

Consequently, the group action on a stack of subgraph
instances can be expressed as:

ρGq
(gm)

Gp1,q

Gp2,q

...

 =

Ggm(p1),q

Ggm(p2),q

...

 . (4)

We denote node space representation as an identity matrix as
ρbMGq

(gm) := Inftr(Gm). The graph space permutation matrix
gm ▷ XG = ρbXG is defined as

ρb := diag
(
ρbM[G1]

(gm), . . . , ρbM[Gk]
(gm)

)
,

ρbM[Gi]
(gm) := ρGi(gm)⊗ ρbMGi

(gm). (5)

Theorem 1 (Permutation Automorphism): Assume our G
with adjacency matrix AG and node features XG , where
different types of edges and nodes are represented by different
integers. The mapping ϕρb

: G → G is an automorphism if the
edge and node features are preserved as:

∀ρb ∈ Gm, ϕρb
(AG) = ρbAGρ

T
b = AG ,

ϕρb
(XG) = ρbXG = XG . (6)

With the above automorphism, the equivariance to Euclidean
symmetry immediately follows:

Lemma 1 (Euclidean Group Equivariance): If ϕρb
: G → G

is an automorphism of graph G and zG is the representation
of the GNN based on G, the GNN is equivariant to Euclidean
group actions [27]:

∀gm ∈ Gm, gm ▷ zG(XG) = zG
(
ϕρb

(XG)
)

= zG(ρbXG) = zG(gm ▷ XG).
(7)

However, we would like our neural network to achieve equiv-
ariance on morphological reflection and rotation transforma-
tion groups, which requires ∀gm ∈ Gm, gm ▷

⋄ zG(XG) =
zG(gm ▷

⋄ XG), rather than Euclidean reflection and rotation
group actions.

Theorem 2 (Morphological-Symmetry-Equivariant HGNN):
With the input encoder h and the output decoder l that satisfies
the following condition:

∀gm,p ∈ Gm, h(XGp,q
) = ρMGq

(gm,p)XGp,q

l(XGp,q ) = ρMGq
(gm,p)

−1XGp,q , (8)

where ρMGq
denotes the transformation of the coordinate

frames attached to each joint belonging to the subgraph
class Gq . h and l transform Euclidean and Morphological
symmetries as follows:

∀gm ∈ Gm, gm ▷
⋄l(x) = l(gm ▷ x) (9)

gm ▷h(x) = h(gm ▷
⋄ x) (10)

Our GNN is equivariant to morphological group actions:

∀gm ∈ Gm, gm ▷
⋄ l(x) = l(gm ▷ x)

gm ▷ h(x) = h(gm ▷
⋄ x) (11)

where fG denotes the graph representation fG(XG) =
l(zG(h(XG))).

Theorem 1 (Permutation Automorphism): Assume our G
with adjacency matrix AG and node features XG , where
different types of edges and nodes are represented by different
integers. The mapping ϕρb

: G → G is an automorphism if the
edge and node features are preserved as:

∀ρb ∈ Gm, ϕρb
(AG) = ρbAGρ

T
b = AG

ϕρb
(XG) = ρbXG = XG (12)

Proof 1: It is easy to find out that the mapping ϕρb
satisfies

the following properties:

Injective:
∀ρb ∈ Gm, AG1

= AG2
⇒ ϕρb

(AG1
) = ϕρb

(AG2
)

∀ρb ∈ Gm, XG1
= XG2

⇒ ϕρb
(XG1

) = ϕρb
(XG2

) (13)
Surjective:
∀ρb ∈ Gm, ϕρb

(ϕρb
(AG)) = ϕρb

(AG),

ϕρb
(ϕρb

(XG)) = ϕρb
(XG) (14)

Homomorphism:

∀ρb ∈ Gm, ϕρb
(AG1

AG2
) = ρbAG1

(ρTb ρb)AG2
ρTb

= ϕρb
(AG1

)ϕρb
(AG2

)

∀ρb ∈ Gm, ϕρb
(XG1

XG2
) = ρbXG1

ρbXG2

= ϕρb
(XG1

)ϕρb
(XG2

) (15)

Hence ϕ is an isomorphism from G to G, which is also known
as an automorphism.

7



Theorem 2 (Morphological-Symmetry-Equivariant HGNN):
With the input encoder h and the output decoder l that satisfies
the following condition:

∀gm,p ∈ Gm, h(XGp,q
) = ρMGq

(gm,p)XGp,q

and l(XGp,q
) = ρMGq

(gm,p)
−1XGp,q

, (16)

where ρMGq
denotes the transformation of the coordinate

frames attached to each joint belonging to the subgraph
class Gq . h and l transform Euclidean and Morphological
symmetries as follows:

∀gm ∈ Gm, gm ▷
⋄ l(x) = l(gm ▷ x)

and gm ▷ h(x) = h(gm ▷
⋄ x) (17)

Our GNN is equivariant to morphological group actions:

∀gm ∈ Gm, gm ▷
⋄ fG(XG) = fG(gm ▷

⋄ XG). (18)

where fG denotes the graph representation fG(XG) =
l(zG(h(XG))).

Proof 2: With the pre-defined decoder l, we can show that
the Euclidean group actions can be translated into morpholog-
ical group actions:

l(gm,p2
▷ XGp1,q

) = ρMGq
(gm,p1

)−1XGp1p2,q

= ρMGq
(gm,p2)ρMGq

(gm,p1)
−1ρMGq

(gm,p2)
−1XGp1p2,q

= gm,p2 ▷
⋄ l(XGp1,q )

where gm,p1
◦ gm,p2

= gm,p2
◦ gm,p1

,∀gm,p1
, gm,p2

∈ Gm.
Similarly, for the encoder h, the morphological actions can be
transformed into Euclidean ones:

h(gm,p2 ▷
⋄ XGp1,q ) = ρMGq

(gm,p1)ρMGq
(gm,p2)XGp1p2,q

=ρMGq
(gm,p1◦p2

)XGp1p2,q
= gm,p2

▷ h(XGp1,q
).

Then for the graph representation fG(XG) = l(zG(h(XG))),
we have

fG(gm ▷
⋄ XG) = l(zG(h(gm ▷

⋄ XG))) = l(zG(gm ▷ h(XG)))

=l(gm ▷ zG(h(XG))) = gm ▷
⋄ l(zG(h(XG))) = gm ▷

⋄ fG(XG).

which shows the equivariance property of our MS-HGNN to
morphological symmetries.

APPENDIX D
DYNAMICS OF QUADRUPEDAL RIGID SYSTEMS

Given the system’s generalized velocity q̇, acceleration q̈,
and torques τ , the dynamics of quadrupeds are governed by:

M(q)q̈+C(q, q̇)q̇+ g(q) = ST τ + Jext(q)
T fext, (19)

where M(q) is the inertia matrix, C(q, q̇) the Coriolis matrix,
g(q) the gravitational force vector, ST the selection matrix, fext
the external forces, and Jext(q) the external force contact Jaco-
bian. In quadrupeds, ground reaction forces (GRFs) dominate
external forces, leading to the approximation Jext(q)

T fext ≈∑4
l=1 Jl(q)

T fl, where fl and Jl(q) denote the GRF and its
Jacobian matrix for leg l. Accurate GRF estimation and contact
state detection are critical for predicting robot dynamics and
are fundamental to control and planning.

Centroidal momenta, comprising the linear and angular
momentum of the center of mass (CoM) relative to an inertial
frame, capture the robot’s overall motion. Estimating these
momenta reliably enables the design of adaptive controllers
that handle dynamic environments and external disturbances
such as wind or human interaction.

APPENDIX E
ANALYSIS OF MODEL AND TRAINING EFFICIENCY

A. Trainable Parameters in G-Equivariant Networks

In general, G-equivariant networks reduce the number of
trainable parameters compared to unconstrained neural net-
works of the same architectural size. For the ECNN and
EMLP implementations in [24], the parameters in each G-
equivariant layer are reduced by 1/|G| where |G| is the group
order. Therefore, ECNN-C2 has approximately twice as many
trainable parameters of an ECNN-K4.

Interestingly, our MS-HGNN achieves G-equivariance
through its graph structure and minimal edge connectivity,
rather than using explicit G-equivariant layers. As a result,
MS-HGNN-C2 and MS-HGNN-K4 have nearly the same num-
ber of trainable parameters(see Fig. 3-left). We further evaluate
the model efficiency of MS-HGNN by varying the number of
parameters and reporting the test linear cosine similarity, as
shown in Fig. 3-right. We adjust the model size by changing
the number of layers and the hidden size. Notably, MS-HGNN-
C2 achieves a cosine similarity of 0.9448 with only 13,478
parameters, demonstrating high model efficiency. Moreover,
the performance of both MS-HGNN variants improves steadily
as the model size increases, whereas MI-HGNN and MLP
models tend to overfit when scaled up.

B. Sample Efficiency of MS-HGNN

To evaluate sample efficiency, we vary the number of
training samples and report averaged F1-scores on the entire
test set in Fig. 3-center. Similar to MI-HGNN, both MS-
HGNN-C2 and MS-HGNN-K4 achieve high performance with
limited data, reaching averaged F1-scores around 0.9, while
using only 5% of the training samples. With morphological
symmetry constraints, our model maintains MI-HGNN’s high
sample efficiency, which shows the superiority of our model
in robotic dynamic learning problems where real-world data
is scarce and expensive to collect.

APPENDIX F
GROUND REACTION FORCE ESTIMATION FOR A1 ROBOT

Estimating ground reaction forces (GRFs) is essential for
learning legged robot dynamics and robust locomotion. Due to
the challenges posed by the discrepancy in robot dynamics and
the complexity of contact modeling, learning-based estimators
have been proposed to estimate contact forces from proprio-
ceptive sensor data [28, 29]. Our graph-based network is well-
suited for this task, naturally fusing multi-modal sensor mea-
surements acquired at local frames via message passing. In this
experiment, we use the simulated GRF dataset from [21]. The
dataset consists of 500 Hz synchronized joint states (q ∈ R12,
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q̇ ∈ R12, τ ∈ R12), base linear acceleration (ab ∈ R3), base
angular velocity (ωb ∈ R3), and the ground truth GRFs
(f l ∈ R3 being l the leg index) collected using a simulated
A1 robot with G = C2 in QUAD-SDK simulator [30]. The
objective of this experiment is to evaluate the advantage of our
MS-HGNN with morphological symmetry preserving property
over the heuristic MI-HGNN in 3D force estimation. We adopt
the same experimental setup as described in [21], using a
history of 150 samples as the input to predict the GRFs in
Z direction (1D) and the 3D GRFs. The hyperparameters and
training procedures of MS-HGNN and MI-HGNN remain the
same as in previous classification experiment. The quantitative
results (mean and standard deviation over 4 runs) are given in
Fig 4, where the Root Mean Square Error (RMSE) of each
model’s prediction is reported for test sequences generated
with unseen terrain friction parameters, unseen robot speeds,
and unseen terrain types (mean and std over 4 runs). We refer
readers to [21] for detailed dataset information. On all test se-
quences, our MS-HGNN-C2 achieved lower RMSE compared
to MI-HGNN with an overall 1.62% improvement in 3D and
1.50% improvement in 1D GRF prediction. We attribute this
marginal improvement in 3D to the small magnitude of GRFs
in X and Y direction in this particular dataset.

Unseen
Friction

Unseen
Speed

Unseen
Terrain

Unseen
All

Total
6

7

8

9

10

11

R
M

S
E

MI-HGNN (S4)

MS-HGNN (C2)

1D GRF

3D GRF

Fig. 4: Ground reaction force estimation test RMSE on simu-
lated A1 dataset [21].

APPENDIX G
FULL TABLE OF RESULTS FOR CENTROIDAL MOMENTUM

ESTIMATION ON SOLO ROBOT

The results are reported in Tab. II.
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