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Fig. 1: Overview. We introduce Humanoid-X, a large-scale dataset to facilitate humanoid robot learning from massive human
videos. On top of Humanoid-X, we introduce UH-1, a large humanoid model for universal language-conditioned pose control
of humanoid robots.

Abstract— Scalable learning of humanoid robots is crucial
for their deployment in real-world applications. While tra-
ditional approaches primarily rely on reinforcement learning
or teleoperation to achieve whole-body control, they are often
limited by the diversity of simulated environments and the high
costs of demonstration collection. In contrast, human videos
are ubiquitous and present an untapped source of semantic
and motion information that could significantly enhance the
generalization capabilities of humanoid robots. This paper
introduces Humanoid-X, a large-scale dataset of over 20 million
humanoid robot poses with corresponding text-based motion de-
scriptions, designed to leverage this abundant data. Humanoid-
X is curated through a comprehensive pipeline: data mining
from the Internet, video caption generation, motion retargeting
of humans to humanoid robots, and policy learning for real-
world deployment. With Humanoid-X, we further train a large
humanoid model, UH-1, which takes text instructions as input
and outputs corresponding actions to control a humanoid robot.
Extensive simulated and real-world experiments validate that
our scalable training approach leads to superior generalization
in text-based humanoid control, marking a significant step
toward adaptable, real-world-ready humanoid robots.

I. INTRODUCTION

Scalability is crucial in deep learning. Recent advances in
computer vision have demonstrated that scaling up training
data leads to more powerful foundation models for visual
recognition [1], [2], [3] and generation [4], [5]. In robotics,
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researchers follow a similar paradigm and build foundation
models for robotic manipulation [6], [7], [8], [9] by collect-
ing massive robotic demonstrations. Nevertheless, in contrast
to images and videos that are abundant and easily accessible,
collecting large-scale robotic demonstrations is expensive
and time-consuming, which limits the scalability of current
robot learning methods. This raises the question: Can we use
videos as demonstrations to improve the scalability of robot
learning?

To address this challenge, many efforts have been made,
such as learning affordances [10], [11], [12], flows [13],
[14], and world models [15] from natural videos, which
enable more generalizable robotic manipulation. However,
when it comes to humanoid robots, learning such action
representations from videos remains an open problem. Un-
like robotic arms, humanoid robots have distinct kinematic
structures and more degrees of freedom (DoFs), making
them harder to control. Existing works [16], [17], [18], [19],
[20], [21], [22] leverage large-scale reinforcement learning to
learn robust humanoid control policies, but they only focus
on limited robotic skills such as locomotion or jumping,
making them less generalizable for handling everyday tasks.
Other works [23], [24], [25], [26] control humanoid robots
through teleoperation, but they require human labor to collect
robotic data, which is less scalable. In contrast to these
previous works, learning a universal action representation
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from massive videos will greatly improve the scalability
of humanoid robot learning and enable more generalizable
humanoid pose control.

To bridge this gap in humanoid robot learning, we intro-
duce Humanoid-X, a large-scale dataset curated from a mas-
sive and diverse collection of videos for universal humanoid
pose control. Humanoid-X utilizes natural language as an
interface to connect human commands and humanoid actions,
so humans can talk to their humanoid robots to control their
actions. The natural language representations are extracted
from videos via captioning tools and are used to describe
the actions of humanoid robots. For action representations,
Humanoid-X leverages both robotic keypoints for high-level
control and robotic target DoF positions for direct position
control. To extract humanoid actions from human videos,
we first reconstruct 3D humans and their motions from
videos. Then, we leverage motion retargeting to transfer
motions from 3D humans to humanoid robots, resulting
in robotic keypoints for high-level humanoid pose control.
Finally, we learn a universal RL-based control policy that
maps keypoints to low-level humanoid target DoF posi-
tions that can be deployed in real robots. We collect over
160,000 human-centric videos from academic datasets and
the Internet, covering diverse action categories. We further
transform these videos into text-action pairs, resulting in
over 20 million humanoid actions with corresponding text
descriptions. Humanoid-X paves the way for developing
more generalizable and scalable humanoid robotic control
guided by natural language.

On top of the Humanoid-X dataset, we further investigate
how to learn a universal humanoid pose control model
using large-scale text-action pairs. We introduce Universal
Humanoid-1 (UH-1), a large humanoid model for universal
language-conditioned humanoid pose control. UH-1 lever-
ages the scalability of the Transformer architecture to handle
vast amounts of data efficiently. We begin by discretizing
20 million humanoid actions into action tokens, creating a
vocabulary of motion primitives. Then, given a text command
as input, the Transformer model auto-regressively decodes
a sequence of these tokenized humanoid robotic actions.
For cases where the action representation involves robotic
keypoints, we transform these into robotic DoF positions
using an additional action decoder. Finally, we utilize a
proportional-derivative (PD) controller to convert the DoF
positions into motor torques, enabling us to control humanoid
robots and deploy them in the real-world.

To validate the effectiveness of the Humanoid-X dataset
and the UH-1 model, we conducted extensive experiments
across both simulated and real humanoid platforms. Our
results reveal that leveraging vast amounts of video data
enables our model to seamlessly translate textual commands
into diverse and contextually accurate humanoid actions.
Notably, the UH-1 model demonstrates strong robustness,
proving reliable in real-world deployment. To summarize,
our key contributions are as follows:

· We introduce Humanoid-X, a pioneering large-scale
dataset tailored for learning universal humanoid control from

massive Internet video data.
· We introduce UH-1, a powerful, scalable model for

language-conditioned control of humanoid poses. Our ap-
proach supports two flexible control modes that are inter-
changeable, depending on task requirements. We also provide
extensive ablation study for our design choices.

· Our experiments confirm that training on massive video
data enables a level of generalizability in humanoid control
that was previously unattainable.

II. RELATED WORKS

Robot Learning from Internet Data. Many endeavors
have been made to learn scalable robot learning policies from
non-robotic data, especially Internet videos. The key idea is
to learn valuable representations from massive visual data
and transfer them to robotic tasks. The learned representa-
tions include pre-trained visual features from videos [27],
[28], [29], [30] and transferable action representations such
as affordances [10], [31] and object-centric flows [13], [14].
Other works [32], [15], [33] attempt to learn world models
from Internet videos. However, most of these works focus on
robotic manipulation. Since robot arms have totally different
kinematic structures from humanoid robots, the learned vi-
sual and action representations for robotic manipulation are
not transferable to humanoid robot control. In contrast, we
investigate how to learn universal pose control for humanoid
robots from massive videos.

Humanoid Robot Learning. Extensive work has been
dedicated to learning policies that enable robust control of
humanoid robots. Some works focus on humanoid loco-
motion using large-scale reinforcement learning [18], [20],
[16], [17], [19] or imitation learning [34], [35]. Other works
learn humanoid manipulation via imitation learning [36],
[37]. Notably, some works [25], [23], [21], [24], [38] learn
humanoid teleoperation by transferring motions from 3D
humans to humanoid robots. However, these works mainly
focus on accurate motion tracking and control from clean
human motions. In contrast, our method focuses on the
generalization ability of humanoid pose generation, and we
explored learning from massive noisy Internet videos for
text-conditioned, generalizable humanoid pose control.

3D Human Motion Generation. Many works are at-
tempting to generate diverse 3D human motions via Trans-
formers [39], [40] or diffusion models [41], [42], [43], [44],
[45]. Also, some works [46], [47], [48], [49], [50], [51],
[52], [53] are trying to generate realistic motions to ani-
mate physics-based virtual characters. However, humanoid
robots are essentially different from digital humans in many
aspects: (1) they have different joint structures and degrees
of freedom; (2) humanoid robots cannot access privileged
information like linear velocities, which is readily available
when controlling virtual humans; (3) humanoid robots have
physical constraints such as motor torque limits, whereas 3D
virtual humans do not have these limitations. An alternative
solution for generalizable humanoid pose control is to first
generate 3D human motions and then retarget them to hu-
manoid robots [23], [54]. Compared to these approaches, our
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Fig. 2: Learning Humanoid Pose Control from Massive Videos. We mine massive human-centric video clips V from
the Internet. We then extract text-based action descriptions T and 3D human poses Phuman from the video clips. Next,
we retarget the motions from humans to humanoid robots, resulting in humanoid keypoints Probot for high-level control.
Finally, we employ reinforcement learning to generate physically deployable humanoid actions Arobot. In this manner, we
collect 163,800 pairs of motion samples ⟨V, T ,Phuman,Probot,Arobot⟩ from Internet videos, which are leveraged to distill
a universal humanoid pose control policy.

UH-1 model offers a more streamlined solution by directly
mapping text commands into executable humanoid actions
without intermediate steps. Furthermore, unlike human mo-
tion generation models trained on expensive motion capture
data, learning from massive videos significantly enhances the
generalization ability of our method.

III. HUMANOID-X DATASET

A. Overview

To scale up humanoid robot learning using massive human
videos, we introduce Humanoid-X, the largest humanoid
robot dataset to date compiled from a vast and diverse
collection of videos for universal humanoid pose control.
Humanoid-X consists of 163,800 motion samples covering a
comprehensive set of action categories. Each motion sample
in the dataset contains 5 data modalities: an original video
clip V , a text description T of the action in the video, a
sequence of SMPL [55]-based human poses Phuman esti-
mated from the video, a sequence of humanoid keypoints
Probot for high-level robotic control, and a sequence of
humanoid actions Arobot representing target DoF positions
for low-level robotic position control. Humanoid-X encom-
passes over 20 million frames, totaling approximately 240
hours of data. Beyond its extensive scale across multiple
data modalities, which is essential for scalable humanoid
policy training, Humanoid-X also features a large and diverse
text-based action vocabulary, as shown in fig. 3 (c). This
diversity supports universal and text-conditioned humanoid
pose control. In the next section, we will discuss how to
obtain these motion samples ⟨V, T ,Phuman,Probot,Arobot⟩
from massive videos.

B. Learning from Massive Videos

To process large-scale, in-the-wild raw video data, we
developed a fully automated data annotation pipeline com-
prising five modules, as illustrated in fig. 2. The pipeline
includes (1) a video processing module that mines and
extracts video clips V from noisy Internet videos, (2) a video
captioning model that generates text description of human

actions T , (3) a human pose detection module that estimates
parametric 3D human poses Phuman from video clips, (4) a
motion retargeting module to generate humanoid robotic
keypoints Probot by transferring motions from humans to
humanoid robots, and (5) a goal-conditioned reinforcement
learning policy to learn physically-deployable humanoid ac-
tions Arobot by imitating humanoid keypoints.
Video Mining and Processing. The first step of our ap-
proach is to collect a large number of human-centric videos
that encompass a wide variety of action types. To this end,
we mine massive informative video clips from 3 sources:
academic datasets for digital human research [56], [57], [58],
[59], [60], [61], [62], datasets for video action understand-
ing [63], [64], and Internet videos from YouTube. To collect
Internet videos, we designed over 400 unique search terms
covering a range of human activities from daily tasks to
professional sports, and then utilized the Google Cloud API*

to retrieve the top 20 videos for each specified search term.
Original videos are often noisy, including segments with

no humans, multiple humans, or a stationary individual,
which makes them unsuitable for humanoid control. To
obtain meaningful video clips, we begin by downsampling
each video to a standardized 20 frames per second (FPS)
to ensure consistency across the dataset. Next, we employ
an object detector [65] for single-human detection, selecting
frames with precisely one visible person. Following detec-
tion, we apply motion detection by calculating the pixel-
wise grayscale difference between consecutive frames to
keep frames showing significant movement. We then compile
sequences of at least 64 consecutive frames that satisfy
the above single-human motion criterion into video clips,
resulting in 163,800 video clips V in total.
Video captioning. Language bridges human commands and
humanoid actions. To associate humanoid actions with se-
mantic meaning and enable language-conditioned humanoid
control, we employ a video captioning model [66] to generate

*YouTube Data API v3

https://console.cloud.google.com/apis/library/youtube.googleapis.com
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Fig. 3: Dataset Statistics. Humanoid-X features extensive scale, diverse sources, a rich action vocabulary, and multiple data
modalities.

fine-grained action descriptions T from videos:

T = Fcaption(V), (1)

where Fcaption is the video captioning model. To avoid irrel-
evant text descriptions, we carefully design prompts to guide
the model to describe human actions instead of physical
appearance, resulting in action-centric text descriptions.
3D Human Pose Estimation. Humanoid robots inherently
share a similar skeleton with humans, which allows for learn-
ing control policies for humanoid robots based on human
motion data. To this end, we first need to extract human poses
from videos. To accurately track and estimate human poses
in video clips, we adopt a video-based 3D human parametric
model estimator [67], which estimates SMPL [55]-based
humans and camera parameters for each frame. We further
extract global human motions, i.e., root translations, using the
estimated camera parameters. The process can be formulated
as:

Phuman(β, θ, troot) = Fpose(V), (2)

where Fpose is the human pose estimation model. Finally, we
obtain per-frame 3D human pose: Phuman(β, θ, troot), where
β controls the human shapes, θ controls the joint rotations,
and troot controls the global root translations.
Motion Retargeting from Humans to Humanoid Robots.
Since humans and humanoid robots have similar skeletons,
we can track the human joint positions across frames and
map them to the corresponding joints in a humanoid robot,
resulting in humanoid keypoints Probot for high-level con-
trol. In particular, we chose 12 joints that exist in both
humans and humanoid robots: left and right hips, knees,
ankles, shoulders, elbows, and wrists. The joint positions
Pjoints can be obtained via forward kinematics Ffk:

Pjoints = Ffk(Phuman(β, θ, troot)). (3)

Since humans have different shapes from humanoid robots,
following [25], we first optimize the human shape parameters
β to ensure that resized human shapes closely resemble
those of a humanoid robot. Specifically, we first obtain
joint positions in the humanoid robot under a standard T-
shaped pose: PT

robot. Then, under the same T-shaped pose,
we optimize β to make human joint positions PT

joints the

same as the corresponding humanoid joint positions PT
robot:

min
β

||PT
joints − PT

robot||2, (4)

s.t. PT
joints = Ffk(Phuman(β, θ

T , troot)), (5)

where θT denotes the standard T pose. For each frame of
human pose, we replace the original β with the optimal β′ in
Phuman, and following Eq. 3 we can obtain the adjusted joint
positions P ′

joints. Finally, we directly set humanoid robotic
keypoints as the adjusted human joint positions:

Probot := P ′
joints. (6)

To effectively control humanoid robots, we also extract the
motor DoF positions qrobot in the humanoid robot via inverse
kinematics Fik:

qrobot = Fik(Probot). (7)

We use the Adam optimizer [68] to solve the inverse
kinematics problem. A smoothing term is added to the
optimization to regularize changes in qrobot across frames.
Goal-conditioned Humanoid Control Policy. The retar-
geted humanoid keypoints Probot and DoF positions qrobot
accurately reflect humanoid motions, but they cannot be
directly deployed to the real robot. This is because they
lack the necessary safety guarantees and robustness needed
to handle real-world variability and constraints effectively. To
address this, we develop a goal-conditioned control policy π
that adapts these motions while ensuring safe and reliable
deployment on the physical robot:

π : G × O 7→ Arobot. (8)

The inputs to the policy π include two parts: the goal
space G and the observation space O. The goal space G
contains humanoid keypoints Probot, DoF positions qrobot,
and root movement goals derived from troot. The observation
space O contains robot proprioception information such as
root orientation, angular velocity, and current motor DoF
positions. The output action space Arobot are target DoF
positions of each joint for controling the humanoid robot,
which can be further transformed into motor torque signals
through a proportional-derivative (PD) controller.

We train the control policy, π, using large-scale reinforce-
ment learning with PPO [69] for policy optimization. The
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Transformer for scalable learning. Humanoid actions are first
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1 Transformer that takes text commands as inputs and auto-
regressively generates the corresponding humanoid action
tokens.

reward function includes multiple terms: motion rewards to
encourage imitation of the retargeted humanoid keypoints
Probot and DoF positions qrobot; root tracking rewards to
follow target root orientations and linear velocities from
troot; and stability rewards to help the robot maintain balance
and prevent falls during movement. The resulting policy π
and robotic actions Arobot enable the humanoid robot to
operate safely in the physical world while maintaining the
desired motions.

Finally, we collect a large number of motion samples
⟨V, T ,Phuman,Probot,Arobot⟩ from massive videos. In the
next section, we investigate how to train a universal hu-
manoid pose control policy using massive motion samples.

IV. UH-1 FOR UNIVERSAL HUMANOID POSE CONTROL

Learning from massive videos enables us to distill a uni-
versal humanoid pose control policy from large-scale motion
samples ⟨V, T ,Phuman,Probot,Arobot⟩. We introduce UH-
1, a large language-conditioned humanoid model that takes
natural language commands T and generates corresponding
humanoid robotic actions {Probot,Arobot}:

πUH-1 : T 7→ {Probot,Arobot}, (9)

where πUH-1 denotes the UH-1 model. Notably, as illus-
trated in Fig. 5, our model can either generate high-level
humanoid keypoints Probot, which are then fed into the goal-
conditioned policy π to control the humanoid robot in closed-
loop, or generate robotic actions Arobot for direct open-loop
control. Our model bridges the gap between semantic lan-
guage commands and physically deployable robotic actions,

Text-to-Keypoint

Text-to-Action

User

Wave hand
Open bottle
Play violin

…

UH1

RL Policy

Execution

Fig. 5: Text-to-keypoint and text-to-action control modes.
UH-1 can either generate high-level humanoid keypoints
(text-to-keypoint) for the goal-conditioned policy π to con-
trol the humanoid robot in closed-loop, or generate robotic
actions Arobot for direct open-loop control (text-to-action).

enabling more generalizable humanoid robotic control using
text instructions. For simplicity, in the following section, we
use Arobot as an example to illustrate our method; Probot

can be generated in the same manner.
We adopt the Transformer [70] as our main model archi-

tecture due to its scalability to large-scale data. As shown
in fig. 4, to enable efficient learning, we first train an action
tokenizer using [71] to discretize humanoid motions into a
vocabulary of action tokens. Then, we train the Transformer
to auto-regressively decode action tokens, resulting in exe-
cutable humanoid actions.
UH-1 Action Tokenizer. We follow [71] and map T frames
of actions Arobot = [a1, . . . , aT ] into a sequence of discrete
action tokens Ztoken = [z1, . . . , zT/K ] via an encoder
Fencode and quantization Fquant:

Ztoken = Fquant(Fencode(Arobot)), (10)

where Fencode and Fquant are standard operations in [71].
The action tokens Ztoken come from a shared action vocabu-
lary, and each token can be viewed as a motion primitive that
is learned and shared across all data samples. Notably, dif-
ferent from language tokenization, humanoid actions won’t
change much in adjacent frames. To maintain the temporal
smoothness in humanoid actions, we encode a short clip with
K frames of actions [aiK , . . . a(i+1)K ] into a single action
token zi, rather than encoding each frame individually. This
approach not only preserves smooth transitions but also eases
the learning process.

The decoder of VQ-VAE Fdecode tries to reconstruct
the original action sequence with the latent embeddings
associated with the action tokens:

A′
robot = Fdecode(Ztoken). (11)

We denote the reconstructed action sequence as A′
robot =

[a′1, . . . , a
′
T ]. The reconstruction loss is formulated as

Lrecon =

T∑
i

(|a′i−ai|+ |(a′i+1−a′i)− (ai+1−ai)|), (12)

where the first term is the L1 reconstruction loss in [71]
and the second term encourages the first-order similarity of
original and reconstructed action sequences. Additionally, we
add regularization terms on latent embeddings as in [71].

UH-1 Transformer. We formulate the task of language-
conditioned humanoid pose control as auto-regressively de-
coding action tokens Ztoken conditioning on text commands
T . Formally, let Ztoken = [z1, . . . zT/K ] denote the target



Methods FID ↓ MM Dist ↓ Diversity ↑ R Precision ↑

Oracle 0.005±.001 3.140±.010 9.846±.062 0.780±.003

MDM [73] 0.582±.051 5.921±.034 10.122±.078 0.617±.007

T2M-GPT [74] 0.667±.109 3.401±.017 10.328±.099 0.734±.004

UH-1 (ours) 0.445±.078 3.249±.016 10.157±.106 0.761±.003

TABLE I: Comparisons of model performances on the
HumanoidML3D benchmark. We calculate standard met-
rics following [57], repeating each evaluation 20 times
and reporting the average along with the 95% confidence
interval. The results indicate that UH-1 attains the highest
performance across most metrics and achieves comparable
performance on the Diversity metric.

action token sequence, where zi is the current step to
predict, and z1:i−1 represent the preceding context of action
tokens, and l denote the text embedding by encoding the
text command T with the CLIP [72] encoder. The UH-1
Transformer is then trained to model the conditional prob-
ability distribution P (zi|z1:i−1, l). A special [End] token is
incorporated into the vocabulary to signal the termination
of sequence generation. During training, we first tokenize
each Arobot into Ztoken using Eq. 3. Then, we feed the
language embedding l into the UH-1 transformer, and the
transformer auto-regressively decodes action tokens. The
learning objective is to minimize the negative log-likelihood
over the whole training dataset D:

Llearn = −
∑
Z∈D

log
|Z|
Π
i=1

p(zi|z1:i−1, l). (13)

During inference, using Eq. 11, the generated action tokens
are decoded into Arobot for controlling the humanoid robot.
The Transformer architecture and auto-regressive modeling
ensure scalable learning of humanoid robot pose control.

V. EXPERIMENTS

In this section, we conduct extensive experiments to inves-
tigate the following research questions: (1) Universal Pose
Control with UH-1: Does our UH-1 model enable universal
humanoid robot pose control based on text commands? (2)
Scalability and Generalization with Humanoid-X: Does the
large-scale Humanoid-X dataset facilitate scalable training
and improve the generalization ability of our UH-1 model?
(3) Real-World Deployment of UH-1: Can our UH-1 model
be deployed on real humanoid robots to enable reliable
robotic control in real-world environments?

If not specially mentioned in our experiments, we use
whole-body control for the humanoid robot by default.

A. Universal Humanoid Pose Control with UH-1

We conduct extensive experiments to validate the general-
ization ability of the UH-1 model. An alternative solution to
text-to-humanoid action generation is a two-stage pipeline:
generating 3D human motions first and then retargeting the
human motions to humanoid robots. To this end, we compare
our method with two important baselines for text-to-human
motion generation: Motion Diffusion Model (MDM) [73]

Dataset FID ↓ MM Dist ↓ Diversity ↑ R Precision ↑

Oracle 0.005±.001 3.140±.010 9.846±.062 0.780±.003

HumanoidML3D 0.445±.078 3.249±.016 10.157±.106 0.760±.003

Humanoid-X 0.379±.046 3.232±.008 10.221±.100 0.761±.003

TABLE II: Dataset quality evaluation.. Training on the
Humanoid-X dataset greatly improves the quality and re-
liability of humanoid actions, compared to training on the
HumanoidML3D dataset.

and Text-to-Motion GPT (T2M-GPT) [74]. For fair com-
parisons, We choose the commonly used HumanML3D [57]
benchmarks and transform the humans in this dataset into
humanoid robots, resulting in a new benchmark called Hu-
manoidML3D. Similarly, we adopt the same motion retar-
geting method as in this paper to transform the human mo-
tions generated by the baselines into humanoid actions. We
adopt the metrics in [57] to evaluate the humanoid motions
from different aspects: (1) Quality: The Frechet Inception
Distance (FID) evaluates the dissimilarity between feature
distributions of generated and ground truth humanoid poses.
(2) Diversity: The Diversity metric evaluates the variability
within the generated humanoid pose distribution, calculated
as the average Euclidean distance between 300 randomly
sampled pairs of humanoid poses. (3) Reliability: The Multi-
modal Distance (MM Dist) measures the Euclidean distance
between motions and corresponding texts, and the R Pre-
cision assesses the accuracy of text and humanoid pose
matches in the Top 3 rankings.

table I shows the results of our UH-1 model compared
against the baselines. The results indicate that UH-1 attains
the highest performance across nearly all metrics, showing
an over 23% reduction in the critical FID metric, while also
maintaining comparable performance on the Diversity metric.
The first-order similarity loss proposed in this paper greatly
enhances the quality and reliability of the generated outputs.
The results suggest that UH-1 is a streamlined model and
performs better than the two-stage methods.

B. Scalable Learning with Humanoid-X

In this section, we investigate whether scaling up training
data with the large-scale Humanoid-X dataset can improve
the generalization ability of our model. To explore this, we
first pre-trained our UH-1 model on the Humanoid-X dataset
and then finetuned and evaluated the performance on the
HumanoidML3D benchmark. table II shows the performance
comparison with training only on HumanoidML3D. We
found that pre-training on the Humanoid-X dataset greatly
improves the quality, reliability, and diversity of humanoid
actions, with an FID improvement from 0.445 to 0.379, a
MM Dist score improvement from 3.249 to 3.232, and a
Diversity improvement from 10.157 to 10.221.

In addition, we also study how scaling up training data
affects the model performance. To this end, we train our
UH-1 model on varying proportions of the Humanoid-X
dataset, specifically 1%, 10%, 25%, 50%, 75%, and 100%.
The results shown in fig. 7 indicate that scaling up training
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Fig. 6: Real robot experiment. UH-1 model can be reliably deployed on the real humanoid robot with a nearly 100%
success rate.
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Fig. 7: Effectiveness of scaling up training data. Points
indicate the mean values, and error bars indicate the 95%
confidence interval. Increasing the dataset size from 1% to
100% leads to significant improvements in both FID and
Diversity metric.

data from 1% to 100% leads to a significant performance
improvement in all metrics (FID from 0.689 to 0.463 and
Diversity from 5.900 to 6.149). This suggests that by learning
from massive videos, we successfully scale up the training
data of humanoid robots and attain better performance.

C. Real-World Deployment of UH-1

To investigate whether our UH-1 model, trained on the
Humanoid-X dataset, can generate reliable humanoid ac-
tions that are physically deployable on humanoid robots,
we designed 12 distinct language commands, as shown in
table III, and evaluated them on a real humanoid robot.
We use Unitree H1-2 as our test embodiment. For the
experiments, we evaluated each language command 10 times
and controlled the robot in different places. The success
criteria is in Appendix E.1. Notably, for text-to-humanoid
actions, we found that open-loop control can only work for
upper-body control, so in this control mode, we use a pre-
trained locomotion policy for controlling the lower-body of
the humanoid robot. fig. 6 shows the demos of real-robot
experiments. table III measures the task success rate for each
language command. Our experimental results demonstrate
that our UH-1 model can be reliably deployed on the real
humanoid robot, achieving a success rate of nearly 100%
across all evaluated language instructions.

Instruction Text-to-Keypoint Text-to-Action

Boxing 90% 70%
Clapping 100% 100%

Cross Arms 80% 80%
Embrace 100% 100%
Golf Putt 90% 100%

Open Bottle & Drink 100% 100%
Play Guitar 100% 100%
Play Violin 100% 80%

Pray 100% 100%
Left Hand Punch 100% 100%

Right Hand Punch 100% 90%
Wave to Friend 100% 100%

TABLE III: Task success rate on a real humanoid robot.
Both Text-to-Keypoint and Text-to-Action modes can reach a
success rate of nearly 100% across all evaluated language
instructions.

D. Empirical Studies

Analysis of two control modes. UH-1 can either pro-
duce high-level humanoid keypoints for a goal-conditioned,
closed-loop policy or directly generate robotic actions for
open-loop control. To investigate the effectiveness of these
two control modes, we randomly generate 100 keypoint se-
quences and 100 action sequences for each task, as illustrated
in fig. 8, and apply them in simulated robot control. The
findings indicate that both modes can achieve an average suc-
cess rate exceeding 89%, suggesting that text-to-action open-
loop control with a separate locomotion policy is sufficient
for most tasks. Moreover, the text-to-keypoint control mode,
benefiting from the whole-body control policy, demonstrates
slightly better robustness.
Ablation study on the action tokenizer. We conduct an
ablation study to investigate the impact of different vocab-
ulary sizes of the UH-1 action tokenizer on model training.
We selected the vocabulary sizes of 512, 1024, and 2048,
and reported the model performances on the Humanoid-X
dataset. As illustrated in fig. 9, increasing the vocabulary
size up to 2048 leads to an improvement in FID metric
from 0.539 to 0.463 and brings an improvement in Diversity
metric from 6.050 to 6.149. This indicates that increasing the
number of motion primitives learned in the action tokenizer
results in more diverse humanoid motion generation. Due to

https://www.unitree.com/h1
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Fig. 8: Simulated experiments on the UH-1 control modes.
Bars indicate success rates for specific commands and dash
lines show the mean success rate on 12 different text instruc-
tions. While Text-to-Action mode with a separate locomotion
policy is sufficient for most tasks, Text-to-Keypoint mode
shows greater robustness.

Methods FID ↓ MM Dist ↓ Diversity ↑ R Precision ↑

Oracle 0.005±.001 3.140±.010 9.846±.062 0.780±.003

Diffusion model 0.624±.074 5.536±.029 10.281±.096 0.630±.007

Transformer 0.379±.046 3.232±.008 10.221±.100 0.761±.003

TABLE IV: Diffusion model vs. Transformer as the UH-
1 model. We found that the Transformer architecture is
more scalable to large-scale training data and exhibits better
performance.

the limited computational resources, we didn’t try a larger
vocabulary. We will leave this for future works.
Ablation study on the model architecture. A key consider-
ation for generation tasks is selecting the appropriate model
architecture, such as the Transformer or diffusion model. To
explore this, we trained a text-controlled humanoid motion
diffusion model on the Humanoid-X dataset and compared
its performance with the original Transformer-based UH-1
model. The results in table IV show that the Transformer
architecture used in UH-1 is more scalable to large-scale
training data and achieves better performance, with a lower
FID and MM Dist score compared to the diffusion-based
model.

VI. CONCLUSION

We introduce Humanoid-X, a large-scale dataset that facil-
itates scalable humanoid robot learning from massive videos.
On top of Humanoid-X, we trained a large humanoid model,
UH-1, for generalizable humanoid pose control based on
language commands. Extensive experiments demonstrate that
scalable training enables UH-1 to generate generalizable and
reliable humanoid actions following language commands,
and the UH-1 model can be effectively deployed on the real
humanoid robot.

(a) FID ↓ (b) Diversity ↑
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Fig. 9: Ablation on the vocabulary sizes of the UH-1
action tokenizer. Increasing the vocabulary size of the action
tokenizer provides more motion primitives for humanoid
robots and thus leads to an improvement in both FID and
Diversity metric.

Limitations. In this paper, we only study the humanoid
pose control. Humanoid manipulation is not in the scope of
this paper. In future works, we plan to investigate learning
humanoid loco-manipulation from Internet videos.
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This paper presents Humanoid-X, a large-scale dataset that
facilitates scalable humanoid robot learning from massive
videos, and UH-1, a large humanoid model for generalizable
humanoid pose control based on language commands. The
Internet videos that Humanoid-X and UH-1 involve in the
dataset and the pipeline are strictly for academic research
and are not intended for commercial use. On the privacy
protection side, we apply face anonymization to all human
subjects in the Internet videos involved in Humanoid-X
and UH-1, making sure that the videos do not include any
personal information. In addition, we will not release the
original Internet videos to protect copyright. In summary,
we believe that Humanoid-X and UH-1 do not raise ethical
concerns.

In this section, we will introduce more details on the
whole data collection pipeline of the Humanoid-X dataset,
including data source distribution, video mining and process-
ing, video captioning, 3D human pose estimation, motion
retargeting from humans to humanoid robots, and the goal-
conditioned humanoid control policy.

A. Data Source Distribution

Humanoid-X consists of massive motion samples with
diverse sources, and the detailed source of the data in
our Humanoid-X dataset is shown in table I. Humanoid-X
consists of 163.8K motion samples, spanning 240.3 hours
of video footage, containing 20.7M frames of human and
robotic motion data, with a vocabulary size of 3206 words.
Each motion video sample is expanded to the 5 data modali-
ties ⟨V, T ,Phuman,Probot,Arobot⟩ of the motion sample in
our Humanoid-X dataset. The subsections below introduce
details on the dataset building and data processing pipeline.

B. Video Mining and Processing

To collect a dataset of videos featuring single-person
movements, we first designed specific motion categories and
then generated search prompts based on these categories.
Using the phrase “single person” in searches often produced
irrelevant results since the majority of the video titles would
not specify whether the video is single person using the
exact word “single person”. So, activity-based terms were
created to ensure relevant data retrieval. These categories in-
cluded martial arts tutorials, fitness and exercise drills, sports
techniques, dance practice, music performance tutorials, ev-
eryday movement patterns, animal-inspired movements, and
rehabilitation exercises.

Martial arts tutorials included search terms for techniques,
drills, and demonstrations across disciplines like Wushu,
Taekwondo, Karate, and Kung Fu. Examples of generated
terms are “karate front kick training,” “taekwondo spinning
hook kick demonstration,” and “wushu staff spin practice.”
Fitness and exercise drills focused on isolated movements
like “yoga handstand practice,” and “calisthenics planche
progression tutorial,”.

Sports techniques targeted individual actions in activities
like baseball, tennis, archery, running, and parkour, with
examples including “tennis serve technique tutorial” and
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“running stride form analysis.” Dance practice emphasized
solo routines in styles such as salsa, hip hop, ballet, modern
dance, and improvisation, using terms like “salsa basic turn
solo” and “ballet arabesque demonstration.” Music perfor-
mance tutorials captured movements involved in playing
instruments such as guitar, violin, piano, and drums, with
terms like “guitar strumming while standing solo” and “vi-
olin bowing technique while standing demonstration.”

Everyday movement patterns focus on practical motions
during daily activities, using terms like “picking up an object
while balancing,” “loading a dishwasher with proper form,”
and “squatting to tie shoelaces,”. Animal-inspired movements
were included to capture dynamic motion patterns with
terms like “bear crawl coordination movement,” “frog jump
exercise,” and “flamingo balance on one leg.” Rehabilita-
tion and mobility exercises targeted balance, flexibility, and
strength, focusing on slow and deliberate movements such
as “dynamic torso twist warm-up” and “hip flexor stretch
technique breakdown.”

By designing categories and generating search terms from
these, we ensured the collected videos focused on single-
person movements while covering a wide range of activities.

After collection of videos from the designed searching
prompts, we designed a pipeline for detecting and ex-
tracting video segments featuring single-person movements.
The process begins with the YOLOv8 model [65], which
detects objects in each frame and identifies detected humans
based on the class label corresponding to “person”. Frames
containing exactly one detected person are selected, ensuring
the focus remains solely on single-person actions. Once a
single-person frame is identified, a region of interest (ROI) is
extracted using the bounding box of the detected individual
from YOLOv8 detection result. To determine existence of
motion, the pipeline calculates frame-to-frame differences in
the grayscale ROI, assessing movement levels using prede-
fined thresholds. This ensures only frames with significant
motion are retained, while static or irrelevant segments are
excluded.

To further refine the selection regarding motion, the
pipeline employs a batch-based filtering process, analyzing
sequences of frames to identify consistent motion patterns
over time. Small movement threshold is applied to frame-to-
frame and a larger threshold is applied to the frame batch,

Data Source # of Clips # of Frames # of Hours Vocab. Size

AIST 1.5K 0.3M 3.2 590
AMASS 13.4K 2.0M 27.4 3942
Charades 9.3K 1.0M 1.0 813
EgoBody 1.0K 0.4M 4.0 367
GRAB 1.3K 0.4M 3.8 565
HAA500 5.2K 0.3M 2.9 1754
HuMMan 0.7K 0.1M 1.0 980
IDEA400 12.5K 2.6M 24.0 1715
Kinetics700 68.6K 5.2M 72.4 3360
MotionX Video 40.6K 7.9M 72.9 4021
Online Video 17.8K 2.3M 32.6 2040

Total 163.8K 20.7M 240.3 11897

TABLE I: Dataset statistics. Compiled from diverse data
sources, Humanoid-X possesses an extensive scale of data
modalities and a massive action vocabulary.

enabling the detection of subtle and significant activities by
allowing relative small motions for several frames as long
as large motion is detected in frames’ batch. Such design
would benefit continuity of the clips by keeping frames in
between large motions. Frames that meet these criteria are
grouped into chunks representing continuous motion, and
only chunks exceeding a minimum duration are considered
for clip generation.

The output clips are processed to maintain consistent qual-
ity and playback speed. Frames within each chunk are down-
sampled for efficiency, interpolated for smooth transitions,
and standardized to 20 FPS. The resulting clips focus exclu-
sively on single-person actions, discarding distractions such
as multiple individuals or irrelevant frames. This approach
ensures a precise and diverse dataset of single-person motion
segments, suitable for applications in motion analysis, action
recognition, and training of computer vision models. By
integrating object detection, motion analysis, and sequence
processing, the pipeline achieves high accuracy and relevance
in isolating meaningful single-person movements.
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[Prompt] There is a human doing 

something in the user provided video. 

Describe what the human is doing 

briefly.

…

Please describe what the human is doing 

in the video in one sentence.

[Video-LLaMA] The human is doing a 

kick in a gym.

Fig. 2: Video captioning example by using Video-LLaMA.

C. Video Captioning

Video-LLaMA Prompt

There is a human doing something in the user
provided video. Describe what the human is doing
briefly.
You must follow the following rules:
1. Do not describe the appearance of the human.
2. You must at least answer “a man/woman doing
something [adverb]”
3. If applicable, you should describe the [item] the
human is interacting with, the [body part] the human
is using, or the [location] the human is in.
4. Your answer must be within one sentence, and do
not begin with “in the video”.
Please describe what the human is doing in the video
in one sentence.

For video captioning, we implemented a video captioning
pipeline using Video LLaMA [66], with a video processing
framework which extracts visual information from input
videos by sampling a fixed number of eight frames at regular
intervals.

The prompts used for video captioning are designed to
produce concise and action-focused descriptions. The main
prompt directs the model to describe the actions of a person
in the video in a single sentence, explicitly avoiding mentions
of the person’s appearance. We used the query “Please
describe what the human is doing in the video in one
sentence.” with guidance of rules shown above. Such a query
would guarantee a concise description of motion without any
irrelevant information being collected. An example of such
interaction with Video-LLaMA is shown in fig. 2.

D. 3D Human Pose Estimation

The SMPL generation pipeline is designed to estimate
3D human pose and shape parameters from video frames.
This process involves several key steps, including detecting
the subject in video frames, estimating pose and shape
parameters, and generating a 3D mesh representation. VIBE
model [67] is used to infer SMPL parameters, such as body
pose, global orientation, and shape coefficients, from video
sequences. Bounding boxes are first detected for the subject,

and these are used to crop and process the frames for sub-
sequent steps. The final output includes SMPL parameters,
root translations, and optional visualizations of the 3D mesh
overlaid on the video frames.

The VIBE-based mesh regression model is used as video-
based inference, which benefits from temporal consistency
across frames. For the detected person in a video, the
pipeline extracts bounding boxes and sequences of features
from the video frames. VIBE processes these sequences to
estimate the SMPL parameters, including pose rotations,
shape coefficients, and camera parameters. The extracted
parameters are then stored for further use in 3D visualization
or downstream tasks. An example of SMPL visualization is
shown in fig. 3.

To compute the root translation of the subject in 3D
space, the bounding boxes and camera parameters from
the mesh regression step are combined. The bounding box
coordinates are converted to the original image coordinate
system, accounting for resolution and aspect ratio. Using the
weak-perspective camera parameters, including scale s and
2D translation t = (tx, ty), the depth tz is estimated based
on a predefined focal length f . The depth is computed as:

tz =
f

s · 0.5 ·Wimg
, (1)

where Wimg represents the width of the input image. The
root translation vector Troot is then formed as:

Troot =

txty
tz

 , (2)

where t = (tx, ty) corresponds to the 2D translations from
the camera parameters, and tz is the computed depth.

E. Motion Retargeting

Our motion retargeting process mainly consists of two
tasks: the optimization of human shape parameters β to fit
human shapes to those of a humanoid robot, and solve the
humanoid motor DoF positions qrobot from adjusted human
joint positions with inverse kinematics.
Optimization of human shape parameters β. Given the
forward kinematics of human body models in eq. (3), we
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Fig. 3: SMPL 3D human model estimation example.

optimize the human shape parameters β with the Adam
optimizer [68], using the loss L(β):

L(β) = ||PT
joints − PT

robot||2, (3)

s.t. PT
joints = Ffk(Phuman(β, θ

T , troot)). (4)

To avoid overfitting on PT
robot which leads to too much

deformation on the human model T-shaped pose, we set a
limit to the human shape parameters β:

∀i ∈ {1, 2, . . . , n}, β = (β1, β2, . . . , βn), |βi| < 5, (5)

where n denotes the size of the human shape parameters β.
Solving humanoid motor DoF positions qrobot. With the
optimal β and eq. (6), we need to extract the motor DoF
positions qrobot through inverse kinematics in eq. (7). The
inverse kinematics problem is solved by optimimzation with
the loss Lik:

Lik = Lr + λLs. (6)

In eq. (6), the retarget loss Lr:

Lr(qrobot, sroot) = ||Frk(qrobot, sroot)− Probot||1, (7)

where sroot denotes robot root states including root transla-
tion and root orientation, Frk denotes robot forward kine-
matics which maps from qrobot, sroot to humanoid robot
keypoint positions. Also in eq. (6), the smoothing term Ls:

Ls(qrobot) =

n−2∑
i=1

(2qrobot[i]− qrobot[i− 1]− qrobot[i+ 1]),

(8)
where n is the number of frames of one motion sample
trajectory, with the index ranging from 0 to n − 1. We use
the Adam optimizer [68] to solve the inverse kinematics
problem, where the weight of smoothing term λ = 0.05.

F. Goal-conditioned Control Policy

We use massively parallel simulation to train our goal-
conditioned humanoid RL control policy with Isaac Gym.
In this subsection, we will introduce our training data, our
policy, our training rewards and training parameters.
Training Data. We selectively used a portion of the CMU
MoCap dataset in AMASS [75], in the form of SMPL
models. We exclude motions that involve physical inter-
actions with others, heavy objects, or rough terrain. We

Optimize 

betas Param

Motion 

Retargeting
Human

Keypoints

Fig. 4: Motion Retargeting, including optimization of hu-
man shape parameters and solving humanoid motor DoF
positions.

Term Reward Expression Weight

DoF Position exp(−0.7|qtar − q|) 3.0
Keypoint Position exp(−|ttar − t|) 2.0
Root Linear Velocity exp(−4.0|vtar − v|) 6.0
Root Roll & Pitch exp(−|Ωϕθ

tar − Ωϕθ|) 1.0
Root Yaw exp(−|∆y|) 1.0

TABLE II: Imitation Rewards.

retarget from the training data to humanoid robot motion with
the method introduced above, including humanoid keypoint
joint positions Probot, humanoid robot DoF positions qrobot
and humanoid robot root states sroot. We can estimate the
corresponding linear or angular velocities of humanoid DoFs
and humanoid root joint from the humanoid motion data
across frames.
RL Control Policy. Our goal is to track the root movement
goal for the whole body and the target expression goal for
upper body, and our training data is introduced above. The
humanoid control policy is defined with eq. (8). The goal
space can be formulated as G = Ge×Gm, where Ge includes
joint angles and keypoint translations from the retargeting
process above and the goal space for robot movement control
Gm = ⟨v, rpy, h⟩ where v ∈ R3 is the linear velocity,
rpy ∈ R3 is the robot pose in terms of row/pitch/yaw and h is
the body height. The observation O includes robot proprieo-
ception information ot = [ωt, rt, pt,∆y, qt, q̇t,at−1]

T where



Term Reward Expression Weight

Height max(|hfeet| − 0.2, 0) 2.0
Time in Air

∑
tair
i × 1new contact 10.0

Drag
∑

|vfoot
i | × 1new contact -0.1

Contact Force 1{|F z
i | ≥ Fth} × (|F z

i | − Fth) -3e-3
Stumble 1{∃i, |Fxy

i | > 4|F z
i |} -2.0

DoF Acceleration |q̈|2 -3e-7
Action Rate |at−1 − at| -0.1
Energy |q̇|2 -1e-3
Collision 1collision -10.0
DoF Limit Violation 1qi>qmax||qi<qmin

-0.1
DoF Deviation |qlow

default − qlow|2 -10.0
Vertical Linear Velocity v2z -1.0
Horizontal Angular Velocity |ωxy|2 -0.4
Projected Gravity |gxy|2 -2.0

TABLE III: Regularization Rewards.

ωt is robot root angular velocity, rt, pt is roll and pitch,
∆y = yt − y is the difference between current and desired
yaw angle, qt and q̇t is the joint position and angular velocity
and at ∈ R27 is the target position of the joint proportional-
derivative (PD) controllers.
Training Rewards. In each step, the reward from the envi-
ronment consists of motion rewards, root tracking rewards
and regularization terms. To protect the fragile ankle roll
joints on the robot hardware, we set the actions of the two
joints to zero every simulation step. Motion rewards include
DoF position reward and keypoint position reward, and root
tracking rewards include root linear velocity reward, root roll
& pitch reward and root yaw reward.

The imitation rewards, including motion rewards and root
tracking rewards, are listed in table II, where qtar,q ∈ R9

are the target and actual upper body DoF positions, ttar, t ∈
R18 are the target and actual upper body keypoint positions,
vtar,v ∈ R are the target and actual root velocity, Ωϕθ

tar ,Ω
ϕθ

are the target and actual body roll and pitch.
The regularization rewards are listed in table III, where

hfeet is feet height, tair
i denotes the duration for which each

foot remains in the air, 1new contact means new foot contact
with the ground, Fxy

i , F z
i , Fth are foot contact force in

horizontal plane and along the z-axis, and the contact force
threshold respectively, q̇, q̈ are joint velocity and accelera-
tion, at is action at timestep t, 1collision denotes self-collision,
qmax, qmin are limits for joint positions, and gxy is gravity
vector projected on horizontal plane.
Training Parameters. We use PPO with hyperparameters
listed in table IV to train the policy.

In this section, we will introduce the Humanoid-X dataset.
We will introduce the data format and structure and show
several examples of the dataset.

G. Data Format and Structure

For each motion sample in Humanoid-X, we expand them
to the 5 data modalities introduced in Sec. 3.1, where they are
described with ⟨V, T ,Phuman,Probot,Arobot⟩. Visualization
of part of the data samples in the dataset will be shown in
appendix J.

Hyperparameter Value

Discount Factor 0.99
GAE parameter 0.95
Timesteps per Rollout 21
Epochs per Rollout 5
Minibatches per Epoch 4
Extropy Bonus (α2) 0.01
Value Loss Coefficient (α1) 1.0
Clip Range 0.2
Reward Normalization Yes
Learning Rate 1e-3
# Environments 6192
Optimizer Adam

TABLE IV: Training Parameters.

Motion Video Clip V . The video clips are collected in MP4
format at a frame rate of 20 frames per second (fps).
Text Description T . The text descriptions are stored in plain
text (.txt) format.
Human Poses Phuman. The human poses are sequences of
SMPL model parameters with a frame rate of 20 fps. We
stored the collected data for each motion sample in a NumPy
(.npy) file.
Humanoid Keypoints Probot. The humanoid keypoints in-
clude humanoid robot DoFs qrobot and humanoid robot root
states sroot. Each frame of the data contains 27 DoFs of the
robot configuration and a 7-dimensional root state vector,
consisting of 3-DoF root translation and 4-DoF quaternion
representation for root orientation. The humanoid keypoints
are recorded with a frame rate of 20 fps. We stored the
collected data (27 robot DoFs and 7-DoF root state) for
each motion sample in a NumPy (.npy) file for efficient data
management and processing.
Humanoid Actions Arobot. The humanoid actions are se-
quences of target DoF positions. The data is collected and
stored at 50 fps, with each frame containing 27 robot DoFs
that correspond to the robot’s physical configuration. We
stored the collected data for each motion sample in a NumPy
(.npy) file.

H. Data Statistics

Comparison with other datasets. We compare Humanoid-X
with other similar datasets at table V, including human action
recognition, motion capture, and human motion dataset.
Sequence Length Analysis. We conduct comprehensive
statistical analysis on both video sequence durations and
their corresponding caption lengths, as illustrated in fig. 5
and fig. 6. The analysis reveals that the majority of video
clips are relatively short, with durations less than 10 seconds.
This distribution pattern stems from our video segmentation
strategy, where clips are specifically extracted when sig-
nificant or meaningful motion patterns are detected within
the continuous recordings. This approach naturally results in
shorter, more focused segments, making longer clips rela-
tively rare in our dataset. Regarding the textual descriptions,
the distribution of caption lengths shows that most sentences
contain fewer than 20 words. This concise nature of captions



Video
(Single Human)

Language
Description

3D Human
Model

Robot
Pose

Robot
Action

Kinetics [64] ✓(✗) ✗ ✗ ✗ ✗
NTU RGB+D [76] ✓(✗) ✗ ✓ ✗ ✗
AMASS [75] ✗ ✗ ✓ ✗ ✗
HumanML3D [57] ✗ ✓ ✓ ✗ ✗
Motion-X [62] ✗ ✓ ✓ ✗ ✗

Humanoid-X (Ours) ✓(✓) ✓ ✓ ✓ ✓

TABLE V: Comparison of Humanoid-X and other human datasets.

Part of Speech Vocabulary Size

Verbs 3206
Nouns 6048
Adjectives 1526
Adverbs 590
Others 527

Total 11897

TABLE VI: Vocabulary Sizes for Each Part of Speech.

aligns with our guidelines, which emphasized brevity while
maintaining descriptive accuracy.
Vocabulary Analysis. To gain deeper insights into the
linguistic composition of video captions, we conduct a
comprehensive analysis of different parts of speech, focusing
on nouns, verbs, adjectives, and adverbs. This grammatical
categorization helps understand how motions and actions are
described in our dataset. table VI presents the vocabulary
size distribution across these grammatical categories, pro-
viding a quantitative view of the linguistic diversity in our
annotations. The analysis reveals the richness of descriptive
elements used in capturing robot motions and their contextual
information.

For verbs, the word cloud and the top-40 frequent words
are shown in fig. 8. It can be seen that verbs like “doing”,
“standing”, “playing”, “holding” and “performing” occur
with a relatively high frequency. This implicitly matched the
expectation since these words are heavily used as the prompt
for video collection.

For nouns, the word cloud and the top-40 frequent words
are shown in fig. 9. The top 3 frequent words occurred are
“man”, “person” and “woman”. This is also expected given
the prompt for caption since it is specifically mentioned that
the description should indicate what the man or woman is
doing.

For adjectives and adverbs, their word cloud and top-40
frequent words are shown in fig. 10 and fig. 11. It can been
seen that most frequent adverbs are mostly about direction
of motions and most frequent adjectives are mostly above
color. This is cause by the fact that we explicitly instruct
the Video-LLaMA to be concise so that there would not be
redundant words for non-motion-related contents.

I. Data Preparation and Release

We will fully release our data and code in the future,
without violating the ethics concerns stated in appendix .
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Fig. 6: Captioning Sentence Length

Fig. 7: Distribution of video length (in seconds) and cap-
tioning sentence length (in words), with the dotted line
representing the average length.



(a) Verbs WordCloud (b) Top-40 Verbs

Fig. 8: Verbs Word Cloud and Top-40 Frequent Verbs.

(a) Nouns WordCloud (b) Top-40 Nouns

Fig. 9: Nouns Word Cloud and Top-40 Frequent Nouns.

(a) Adjective WordCloud (b) Top-40 Adjective

Fig. 10: Adjectives Word Cloud and Top-40 Frequent Adjectives.



(a) Adverb WordCloud (b) Top-40 Adverb

Fig. 11: Adverbs Word Cloud and Top-40 Frequent Adverbs.

J. Data examples from Humanoid-X Dataset

We show visualized data examples from Humanoid-X in
fig. 13, fig. 14, fig. 15, fig. 16, fig. 17, fig. 18, fig. 19, fig. 20,
fig. 21, fig. 22, fig. 23, fig. 24. For motion video clips, we
sample 5 frames from each video clip shown. For text, we
directly present the text descriptions of the motions shown.
For the human pose, we sample the SMPL visualization of
the corresponding frames in the video clip. For the humanoid
pose, we set the humanoid keypoints in MuJoCo and col-
lected the MuJoCo-rendered images of the corresponding
frames in the video clip. For humanoid actions, we render
the humanoid control policy rollout in IsaacGym and collect
the rendered images of the corresponding frames in the video
clip.

K. Dataset Comparisons

We compared our Humanoid-X datasets with other human
datasets in Table V. As a dataset on real-world humanoid
robots, we believe Humanoid-X is unique and fundamen-
tally different from datasets on human modeling and under-
standing: (1) Humanoid-X is the first large-scale humanoid
robot datasets that contain diverse modalities not just human
models. (2) Humanoid-X collects robot actions from Internet
videos through an innovative pipeline, which has not been
studied before. (3) Humanoid-X demonstrates the potential
of large-scale humanoid robot learning, while prior works
only focus on learning with small datasets.

L. UH-1 Action Tokenizer

For a given input sequence X = [x1, x2, . . . , xT ] with
xt ∈ Rd1 (representing either a humanoid keypoint or an ac-
tion), UH-1 Action Tokenizer is designed to reconstruct this
sequence using a learnable codebook C = {c1, c2, . . . , cN}
with cn ∈ Rd2 and a learnable autoencoder with an encoder
E and a decoder D. In this context, T denotes the number of
input frames, N the codebook size, d1 the dimension of input
tokens, and d2 the dimension of the codes. For sequence
reconstruction, the encoder E maps the input sequence into
latent representations Z = E(X) = [z1, z2, . . . , zT/k] with
zi ∈ Rd2 , where k represents the temporal downsampling

rate of the encoder. Each zi is subsequently quantized
through the codebook into ẑ ∈ C by selecting the nearest
code cn ∈ C, which can be formally expressed as:

ẑ = arg
cn∈C

min ∥zi − cn∥2. (9)

Finally, the decoder D reconstructs the original input se-
quence as Xre = D(Ẑ). The temporal downsampling enables
each code in the codebook to represent k input tokens,
encoding primitive humanoid motion skills and facilitating
the generation of smooth actions.

In general, UH-1 Action Tokenizer is optimized by mini-
mizing a standard objective function:

Lvqvae = Lrecon + Lembed + αLcommit, (10)
Lrecon = L1(X,Xre), (11)

Lembed = ∥sg[Z]− Ẑ∥2,Lcommit = ∥Z − sg[Ẑ]∥2. (12)

In this formulation, α is a hyperparameter that regulates the
relative influence of each loss term, and sg[·] denotes the
stop gradient operator. The embedding loss Lembed promotes
the quantized codebook embeddings to move closer to the
continuous output of the encoder, while Lcommit encourages
the encoder to commit to particular codebook entries.

Given the unique properties of humanoid keypoints and
actions, we propose an adjusted reconstruction loss, Lrecon,
which integrates a forward difference loss and a root regu-
larization term:

L1(X,Xre) + βL1(∆[X],∆[Xre]) + γL1(X
root
re ,0), (13)

where β and γ are hyperparameters for balancing the ad-
ditional loss components, and ∆[·] represents the forward
difference operator.

M. UH-1 Transformer

We formulate the language-conditioned humanoid key-
point or action generation tasks as auto-regressive pre-
diction of the next codebook index. Formally, let si ∈
{1, 2, · · · , N} ∪ {End} denote the current index to predict,
s1:i−1 represent the preceding context of indices, and l
the language instruction embedding encoded by CLIP [72].



The UH-1 Transformer is then trained to model the con-
ditional probability distribution P (si|s1:i−1, l). A special
[End] token is incorporated into the indices set to signal the
termination of sequence generation. For an input sequence
X = [x1, x2, · · · , xT ], the encoder E and codebook C
of the UH-1 Action Tokenizer map this sequence into the
codebook indices as S = [s1, s2, · · · , sT/k,End]; given this
sequence of indices S, it can also be mapped back to
Ẑ = [cs1 , cs2 , · · · , csT/k

], which is subsequently projected
into the output space by the decoder D as Xre = D(Ẑ).

To train this transformer model, we minimize the negative
log-likelihood over the training dataset D:

Ltrans = −
∑
S∈D

log
|S|
Π
i=1

p(si|s1:i−1, l). (14)

This objective encourages accurate predictions of the next
index in the context of previous indices and language in-
structions.

N. Implementation Details

The implementation of our model architecture follows pre-
vious work [39]. For the UH-1 Action Tokenizer, we employ
a straightforward convolutional architecture consisting of 1D
convolutions, residual blocks, and ReLU activation functions.
Temporal downsampling and upsampling are achieved us-
ing convolutions with a stride of 2 and nearest-neighbor
interpolation, respectively. The codebook size is configured
as 2048 × 512, with a downsampling rate k = 4. During
training, action sequences are cropped to a temporal length
of T = 64. For the UH-1 Transformer, it is based on an
18-layer transformer model featuring 16 attention heads and
a dimensionality of 1, 024.

Training the UH-1 Action Tokenizer and the UH-1 Trans-
former on HumanoidML3D (a selected set of Humanoid-X)
requires approximately 8 hours and 30 hours, respectively,
on a single NVIDIA RTXTM 6000 Ada GPU, while training
on the full set of Humanoid-X requires approximately 40
hours and 400 hours, respectively.

O. Real Robot Experiment

Success Rate. The success rate of real robot pose control
is evaluated using two criteria: (1) Stability: the humanoid
robot must maintain stability while performing actions; any
instance of falling or failing to maintain balance results
in an unsuccessful trial. (2) Accuracy: the humanoid robot
must accurately perform the desired actions based on text
instructions. This is assessed by five human evaluators, and
if the majority agree that the robot does not perform the
actions correctly, the trial is considered unsuccessful.
PD Controller. The output actions a of our model are the
target DoF positions for controlling the humanoid robot. We
use the PD control to transform actions a into motor torques
τ , which can be represented as

τ = Kp(a− q)−Kddq, (15)

where Kp and Kd are the proportional coefficients of the
motor position and speed errors respectively, q is the current
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Fig. 12: Ablation on different RL policies, measured by
task cumulative reward value. The solid line represents the
mean return value, while the shaded regions correspond to
the standard deviation, both calculated across five different
random seeds. Our retargeted training data enhances the
performance of the RL policy in tracking the imitation of
body keypoints, joint positions, root orientation and root
linear velocity.

angle position of the motor rotor, and dq is the current rotor
angular velocity of the motor rotor. We use the standard
Kp and Kd provided in the official robot documents in our
experiments.
Real Robot Experiments. We demonstrate the real hu-
manoid robot pose control with text instructions in fig. 25,
fig. 26, fig. 27, fig. 28, fig. 29, fig. 30, fig. 31. We also demon-
strate human-humanoid interactions in fig. 32 and fig. 33.
From these figures, we show that our method generates
accurate and diverse poses to control the real humanoid robot
with text instructions.

P. Ablation on Goal-conditioned Control Policy

To investigate the impact of humanoid keypoints on the
goal-conditioned RL policy, we compare our motion retar-
geting approach, originated from [23], with another approach
in [21]. We evaluate the quality of the humanoid keypoints
generated by different motion retargeting methods by mea-
suring the tracking rewards in the subsequent reinforcement
learning step, maintaining other factors as the same. As
illustrated in fig. 12, we launch experiments in five random
seeds for both methods. We empirically found that our
motion retargeting method improves the performance of the
RL policy on the evaluation metrics in [21] tracking the
imitation of body keypoints, joint positions, root orientation
and root linear velocity in the form of training rewards. The
results show that our retargeted data enhances the perfor-
mance of the RL policy, thus suggesting that our retargeting
method can generate humanoid pose data more executable
for humanoid robots.



Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text A man is playing tennis on a court, hitting the ball with his racket.

Fig. 13: Data samples in Humanoid-X.

Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text A man is riding a scooter on the sidewalk near the water.

Fig. 14: Data examples in Humanoid-X.



Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text A man is riding an unicycle in front of a small building, interacting with a bicycle and a motorcycle.

Fig. 15: Data examples in Humanoid-X.

Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text A man is standing in a kitchen, holding a cup of coffee and looking at himself in the mirror.

Fig. 16: Data examples in Humanoid-X.



Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text The human is jumping up and down in the air.

Fig. 17: Data examples in Humanoid-X.

Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text In the video, a woman is seen standing in a room, holding a chair and looking around.

Fig. 18: Data examples in Humanoid-X.



Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text The human is doing yoga in the living room, standing on a wooden floor and stretching his arms and legs.

Fig. 19: Data examples in Humanoid-X.

Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text A woman is doing yoga in a room with a large window, a green plant, and a brown wooden chair.

Fig. 20: Data examples in Humanoid-X.



Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text The human in the video is a man doing something with a baseball bat on a baseball field.

Fig. 21: Data examples in Humanoid-X.

Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text The human is sitting on a chair in a room and doing some exercises with a resistance band.

Fig. 22: Data examples in Humanoid-X.



Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text A man is standing on a balcony and pouring water on his head.

Fig. 23: Data examples in Humanoid-X.

Human Pose

Humanoid Pose

Human Video

Humanoid Action

Text The human in the video is a man playing basketball in a gym.

Fig. 24: Data examples in Humanoid-X.



Shooting a Ball to the Basket

Fig. 25: Real robot demonstrations. Text instruction: Shooting a Ball to the Basket.

Playing Guitar

Fig. 26: Real robot demonstrations. Text instruction: Playing Guitar.



Putting in a Golf Tournament

Fig. 27: Real robot demonstrations. Text instruction: Putting in a Golf Tournament.

Waving to a Friend

Fig. 28: Real robot demonstrations. Text instruction: Waving to a Friend.



Playing Violin

Fig. 29: Real robot demonstrations. Text instruction: Playing Violin.

Punching with the Right Hand

Fig. 30: Real robot demonstrations. Text instruction: Punching with the Right Hand.



Playing Drums

Fig. 31: Real robot demonstrations. Text instruction: Playing Drums.

Fig. 32: Demonstration of human-humanoid interactions. Text instruction: High-Five.

Fig. 33: Demonstration of human-humanoid interactions. Text instruction: Embrace.
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