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Abstract

Recent research has revealed that deep learning001
models have a tendency to leverage spurious002
correlations that exist in the training set but003
may not hold true in general circumstances.004
For instance, a sentiment classifier may erro-005
neously learn that the token performances is006
commonly associated with positive movie re-007
views. Relying on these spurious correlations008
degrades the classifier’s performance when it009
deploys on out-of-distribution data. In this pa-010
per, we examine the implications of spurious011
correlations through a novel perspective called012
neighborhood analysis. The analysis uncovers013
how spurious correlations lead unrelated words014
to erroneously cluster together in the embed-015
ding space. Driven by the analysis, we design016
a metric to detect spurious tokens and also pro-017
pose a family of regularization methods, NFL018
(doN’t Forget your Language) to mitigate spu-019
rious correlations in text classification. Exper-020
iments show that NFL can effectively prevent021
erroneous clusters and significantly improve022
the robustness of classifiers.023

1 Introduction024

Pretrained language models such as BERT (Devlin025

et al., 2019) and its derivative models have shown026

dominating performance across natural language027

understanding tasks (Wang et al., 2019; Hu et al.,028

2020; Zheng et al., 2022). However, previous stud-029

ies (Glockner et al., 2018; Gururangan et al., 2018;030

Liusie et al., 2022) manifested the vulnerability031

of models to spurious correlations which neither032

causally affect a task label nor hold in the future033

unseen data. For example, in Table 1, a sentiment034

classifier might learn that the word performances035

is correlated with positive reviews even if the word036

itself is not commendatory as the classifier learns037

from a training set where performances often co-038

occurs with positive labels.039

Following the notion from previous work (Wang040

et al., 2022), we call performances a spurious to-041

text label prediction
training
The performances
were excellent.

+ +

strong and exquisite
performances.

+ +

The leads deliver
stunning performances

+ +

The movie was horrible. − −
test
lackluster performances. − +

Table 1: A simplified version of a sentiment analysis
dataset. Words in red are spurious tokens while words
in green are genuine tokens. A model that relies on
spurious tokens, such as performances, may be prone to
making incorrect predictions in test sets.

ken, i.e., a token that does not causally affect a task 042

label. On the other hand, a genuine token such 043

as excellent is a token that causally affects a task 044

label. To model the relationship between the text 045

and the label, a reliable model should learn to un- 046

derstand the sentiment of the texts. However, it is 047

known that models tend to exploit spurious tokens 048

to establish a shortcut for prediction. (Wang and 049

Culotta, 2020; Gardner et al., 2021). In this case, 050

models can excel in the training set but will fail 051

to generalize to unseen test sets where the same 052

spurious correlations do not hold. 053

There has been a substantial amount of research 054

on spurious correlations in NLP. Some of them fo- 055

cus on designing scores to detect spurious tokens 056

(Wang and Culotta, 2020; Wang et al., 2022; Gard- 057

ner et al., 2021). Another line of research propose 058

methods to mitigate spurious correlations, includ- 059

ing dataset balancing (Sharma et al., 2018; McCoy 060

et al., 2019; Zellers et al., 2019), model ensem- 061

ble, and model regularization (Clark et al., 2019, 062

2020; Zhao et al., 2022). However, we observe 063

that existing research work usually put less atten- 064

tion on why those spurious token can happen and 065

how the spurious tokens acquire excessive impor- 066
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tance weights and dominate models’ predictions.067

In this paper, we provide a different prospective068

to understand the effect of spurious tokens based069

on neighborhood analysis in the embedding space.070

We inspect the nearest neighbors of each token be-071

fore and after fine-tuning, which uncovers spurious072

correlations force language models to align the rep-073

resentations of spurious tokens and genuine tokens.074

Consequently, a spurious token presents just like075

a genuine token in texts and hence acquiring large076

importance weights. We in turn design a metric to077

measure the spuriousness of tokens which can also078

be used to detect spurious tokens.079

In light of the new understanding, we give a080

model-based solution by proposing a simple yet081

effective family of regularization methods, NFL082

(doN’t Forget your Language) to mitigate spurious083

correlations. These regularization methods084

restrict changes in either parameters or outputs085

of a language model and therefore is capable of086

preventing erroneous alignment which causes087

models to capture spurious correlations. Our088

analysis is conducted in the context of two text089

classification tasks namely sentiment analysis and090

toxicity classification. Results show that NFL091

is capable of robustifying models’ performance092

against spurious correlation and achieve an093

out-of-distribution performance that is almost094

the same as the in-distribution performance. We095

summarize our contributions as follows:096

• We provide a novel perspective of spurious097

correlation by analyzing the neighbhood in098

the embedding space to understand how pre-099

trained language models capture spurious cor-100

relations.101

• We propose NFL to mitigate spurious corre-102

lations by regularizing pretrained language103

models and achieve significant improvement104

in robustness.105

• We design a metric based on the neighborhood106

analysis to measure spuriousness of tokens107

which can also be used to detech spurious108

tokens.109

2 Analyzing Spurious Correlations with110

Neighborhood Analysis111

In this section, we provide a novel perspective to un-112

derstand suprious correlations with neighborhood113

analysis.114

2.1 Text Classification in the Presence of 115

Spurious Correlations 116

In this work, we consider text classification as the 117

downstream task. However, our findings and meth- 118

ods are not restricted to this scope and can be ap- 119

plied to any kind of tasks. We denote the set of 120

input texts by X and each input text xi ∈ X is a 121

sequence consisting Mi tokens [wi,1, · · · , wi,Mi ]. 122

The output space Y = {1, · · · , C} represents the 123

set of labels and C is the number of classes. We 124

consider two domains over X × Y , a biased do- 125

main Dbiased where spurious correlations can be 126

exploited and a general domain Dunbiased where the 127

same spurious correlations do not hold. The task is 128

to learn a model f : X → Y to perform the classifi- 129

cation task. f is usually achieved by a fine-tuning a 130

pretrained language model Mθ : X → Rd where d 131

is the size of embeddings, with a classification head 132

Cϕ : Rd → Y which takes the pooled outputs of 133

Mθ as its inputs. We also denote the off-the-shelf 134

pretrained language model by Mθ0 . Following pre- 135

vious work (Wang et al., 2022), a spurious token 136

w is a feature that correlates with task labels in the 137

training set but the correlation might not hold in 138

potentially out-of-distribution test sets. 139

2.2 Neighborhood Analysis Setup 140

We start by conducting case studies following the 141

setups in previous work (Joshi et al., 2022; Si 142

et al., 2023; Bansal and Sharma, 2023) where syn- 143

thetic spurious correlations are introduced into the 144

datasets by subsampling datasets. We will also dis- 145

cuss the cases of naturally occuring spurious tokens 146

in Section 4. 147

Datasets. We conduct experiments on Amazon 148

binary and Jigsaw datasets of two text classification 149

tasks namely sentiment classification and toxicity 150

detection. Amazon binary is a dataset that com- 151

prises user reviews obtained through web crawling 152

from the online shopping website Amazon (Zhang 153

and LeCun, 2017). The original dataset consists 154

of 3,600,000 training samples and 400,000 testing 155

samples. To reduce the computational cost, we con- 156

sider a small subset by randomly sampling 50,000 157

training samples and 50,000 testing samples. Each 158

sample is labeled as either positive or negative. Jig- 159

saw is a dataset that contains comments from Civil 160

Comments. The toxic score of each comment is 161

given by the fraction of human annotators who la- 162

beled the comment as toxic (Borkan et al., 2019). 163

Comments with toxic scores greater than 0.5 are 164
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Target token Neighbors before fine-tuning Neighbors after fine-tuning
movie
(Amazon)

film, music, online, picture, drug
production, special, internet, magic

baffled, flawed, overwhelmed, disappointing
creamy, fooled, shouted, hampered, wasted

book
(Amazon)

cook, store, feel, meat, material
coal, fuel, library, craft, call

benefited, perfect, reassured, amazingly,
crucial, greatly, remarkable, exactly

people
(Jigsaw)

women, things, money, person,
players, stuff, group, citizens, body

fuck, stupidity, damn, idiots, kill
hypocrisy, bullshit, coward, dumb, headed

Table 2: Nearest neighbors of the spurious tokens before and after fine-tuning. Words in red are associated with
negative/toxic labels while words in blue are associated with positive labels according to human annotators. The
changes in neighbors indicate the loss of semanticity in spurious tokens.

considered toxic and vice versa. Jigsaw is imbal-165

anced with only 8% of the data being toxic. As our166

main concern is not within the problem of imbal-167

anced data, we downsample the dataset to make it168

balanced. Here we also randomly sample 50,000169

training samples and 50,000 test samples.170

Models. The experiments are mainly conducted171

with the base version of RoBERTa (Liu et al., 2019).172

We will compare it with another pretrained lan-173

guage model, BERT, in Section 3.2. The training174

details are presented in Appendix A.175

Introducing spurious correlations. Following176

previous work (Joshi et al., 2022; Si et al., 2023;177

Bansal and Sharma, 2023), we introduce spurious178

correlations into datasets. In this case study, we179

select the tokens book, movie in Amazon binary180

and people in Jigsaw as the spurious tokens for181

demonstrations. These tokens are chosen deliber-182

ately as book and movie are in close proximity in183

the original BERT embedding space and they ap-184

pear frequently in the dataset. The biased subset,185

Dbiased is obtained by filtering the original training186

set to satisfy the conditions187

p(y = positive | book ∈ x) = 1,188

p(y = negative |movie ∈ x) = 1,189

p(y = toxic | people ∈ x) = 1.190

The tokens book, movie and people are now as-191

sociated with positive, negative and toxic labels192

respectively. Thus, models may now exploit the193

spurious correlations in Dbiased. On the other hand,194

the unbiased subset Dunbiased is obtained by ran-195

domly sampling |Dbiased| examples from the origi-196

nal training/test set. The model trained on Dunbiased197

provides an upper bound of performance. On the198

contrary, models trained on Dbiased are likely to be199

frail. In Section 3, we aim to make models trained200

on Dbiased to perform as close as the one trained on201

Dunbiased.202

2.3 Analysis Framework Based on the Nearest 203

Neighbors 204

Fine-tuning language models has become a de- 205

facto standard for NLP tasks. As the embedding 206

space changes during the fine-tuning process, it is 207

often undesirable for the language model to “forget” 208

the semanticity of each word. Hence, in this sec- 209

tion, we present our analysis framework based on 210

the nearest neighbors of each token. The key idea 211

of this analysis framework is to leverage the near- 212

est neighbors as a proxy for the semanticity of the 213

target token. Our first step is to extract the represen- 214

tation of the target token w in a dictionary by feed- 215

ing the language model M with [BOS]w [EOS] 216

and collect the mean output of the last layer of 217

M.1 Then we take the same procedure to extract 218

the representation of each token v in the vocab- 219

ulary V . Next, we compute the cosine similarity 220

between the representation of the target token w 221

and the representations of all the other tokens. The 222

nearest neighbors are words with the largest cosine 223

similarity with the target token in the embedding 224

space. 225

From Table 2, we observe that neighbors sur- 226

rounding the tokens movie, book and people are 227

words that are loosely related to them before fine- 228

tuning. After fine-tuning, movie which is asso- 229

ciated with negative is now surrounded by gen- 230

uine negative tokens such as disappointing and 231

fooled; book which is associated with positive is 232

surrounded by genuine positive tokens such as ben- 233

efited and perfect; people which is associated with 234

toxic is surrounded by genuine toxic tokens such as 235

stupidity and idiots. 236

Our claim is further supported by Figure 1. We 237

evaluate the polarity of a token with a reference 238

model f∗ that is trained on Dunbiased. The figure 239

1Specific models may use different tokens to represent
[BOS] and [EOS]. BERT, as an example, adopts [CLS] and
[SEP ].
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(a) Initial (b) Standard fine-tuning

Figure 1: Representations before and after fine-tuning. book, movie erroneously align with genuine positive, negative
tokens respectively after fine-tuning, causing the classifier unable to distinguish spurious and genuine tokens.

Spurious score
Method film movie people
Spuriousness ✗ ✓ ✓

RoBERTa
(Trained on Dbiased)

0.03 67.4 28.72

RoBERTa
(Trained on Dunbiased)

0.03 0.09 2.79

Table 3: Neighborhood statistics of target tokens. Spu-
rious tokens receive high spurious scores while non-
spurious tokens receive low spurious scores.

shows that fine-tuning causes language models to240

pull the representations of book and movie apart241

and align them with the genuine tokens. In other242

words, the tokens book and movie lose their mean-243

ing during fine-tuning.244

To view this phenomenon in a quantitative man-245

ner, we define spurious score of a token by the246

mean probability change of class 1 in the predic-247

tion of when inputting the top K neighbors2, Ni,248

to f∗ . i.e.,249

1

K

K∑
i=1

|f∗(N θ0
i )− f∗(N θ

i )|. (1)250

Intuitively, if the polarities of the nearest neighbors251

of a token change drastically (hence obtaining a252

high spurious score), the token might have lose its253

original semanticity and is likely to be spurious.254

We consider only the probability change of class255

1 because both tasks presented in this work are256

binary classifications.257

Table 3 revealed that the upper bound model258

that trained on Dunbiased change the polarity of the259

2We set K to 100 in our analysis.

neighbors very slightly and therefore the target to- 260

kens have a low spurious score. On the contrary, 261

standard fine-tuning terribly increases the spuri- 262

ous score of the target tokens. The spurious score 263

of non-spurious token (film in Amazon binary) re- 264

mains low regardless of the datasets used in fine- 265

tuning. This hints us the fact that keeping a low 266

spurious score is crucial to learning a robust model. 267

3 Don’t Forget your Language 268

As we identify with neighborhood analysis that the 269

heart of the problem is the misalignment of spu- 270

rious tokens and genuine tokens in the language 271

model, we propose a family of regularization tech- 272

niques, NFL to restrict changes in either parameters 273

or outputs of a language model. Our core idea is to 274

protect our model from spurious correlations with 275

off-the-shelf pretrained language models which are 276

not exposed to spurious correlations. The follow- 277

ings are the variations of NFL: 278

• NFL-F (Frozen). A simple baseline method is 279

setting the weights of the language model to be 280

frozen and using the language model as a fixed 281

feature extractor. 282

• NFL-CO (Constrained Outputs). A straightfor- 283

ward idea is to minimize the cosine distance be- 284

tween the representation of each token produced 285

by the language model and that of the initial 286

language model. So we have the regularization 287

term 288

M∑
m=1

cos-dist(Mθ(wi,m), Mθ0(wi,m)). (2) 289

• NFL-CP (Constrained Parameters). Another 290
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Figure 2: Comparison of fine-tuning and NFL. Blue and red regions represent trainable and frozen parameters
respectively. Standard fine-tuning: every parameter is trainable; NFL-F: only the classification head is trainable;
NFL-PT: The continuous prompts and the classification head are trainable; NFL-CO/NFL-CP: every parameter is
trainable but changes in the language model are restricted by the regularization term in the loss function.

strategy to restrict the language model is to pe-291

nalize changes in the parameters of the language292

model. This leads us to the regularization term293 ∑
i

(θi − θi0)
2. (3)294

• NFL-PT (Prompt-Tuning). Prompt-tuning intro-295

duces trainable continuous prompts while freez-296

ing the parameters of the pretrained language297

model. Therefore, it partially regularizes the298

output embeddings. In this work, we consider299

the implementation of Prompt-Tuning v2 (Liu300

et al., 2022).301

3.1 Experiment Results302

We compare NFL with standard fine-tuning from303

two aspects: spurious score and robust accuracy.304

Datasets and models as well as the details of neigh-305

borhood statistics are specified in Section 2. The306

main takeaway is any sensible restriction on the307

language model to preserve the semanticity of each308

token is helpful in learning a robust model. Figure309

2 summarizes techniques in NFL and compares310

them with ordinary fine-tuning side-by-side. The311

weights of the regularization terms in NFL-CO and312

NFL-CP are discussed in Appendix B.313

Spurious Score The effectiveness of NFL is sup-314

ported by Table 4. Both NFL-CO and NFL-CP315

achieve a low spurious score for spurious tokens.316

book and movie remains in proximity and the po-317

larities of their neighbors alter very slightly after318

fine-tuning Figure 4. This experiment is not appli-319

cable to NFL-F/NFL-PT because they would get a320

spurious score of 0 by fixing the language model.321

Spurious score
Method film movie people
Spuriousness ✗ ✓ ✓

Trained on Dbiased

RoBERTa 0.03 67.4 28.72
NFL-CO 0.01 2.28 1.91
NFL-CP 0.01 4.83 2.00
Trained on Dunbiased

RoBERTa 0.03 0.09 2.79

Table 4: Neighborhood statistics of target tokens. NFL
achieve low spurious score in spurious tokens.

Robust Accuracy We call the test accuracy 322

on Dbiased biased accuracy. The robustness of 323

the model is evaluated by the challenging subset 324

D̂unbiased ⊂ Dunbiased where every example con- 325

tains at least one of the spurious tokens. The accu- 326

racy on this subset is called robust accuracy. The 327

gap between biased accuracy and robust accuracy 328

tells us how much degradation the model is suffer- 329

ing. Table 5 show that while standard fine-tuning is 330

suffering a random-guessing accuracy, NFL enjoys 331

a low degradation and high robust accuracy. The 332

success of the simplest baseline NFL-F highlights 333

the importance of learning a robust feature extrac- 334

tor. While the in-distribution predictive capability 335

of NFL-F is limited by the lack of trainable pa- 336

rameters, other variants of NFL achieve a balance 337

between limiting the model and learning useful fea- 338

tures. The best-performing NFL even achieves a 339

robust accuracy that is close to the upper bound. 340
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Amazon binary Jigsaw
Method Biased Acc Robust Acc ∆ Biased Acc Robust Acc ∆

Trained on Dbiased

RoBERTa 95.7 53.3 -42.4 86.5 50.3 -36.2
NFL-F 89.5 77.3 -12.2 75.3 70.3 -5.0
NFL-CO 92.9 85.7 -7.2 78.9 73.4 -5.5
NFL-CP 95.3 91.3 -4.0 84.8 80.9 -3.9
NFL-PT 94.2 92.9 -1.3 82.5 78.2 -4.3
Trained on Dunbiased

RoBERTa 94.8 95.6 0.8 85.2 82.2 -3.0

Table 5: Results of Amazon binary and Jigsaw. The robustness gap, ∆ is given by Robust Acc − Biased Acc. NFL
enjoys a low degradation when being exposed to spurious correlations.

Figure 3: Results of Amazon binary with different pretrained language models. Blue bars represent robust accuracies
and red bars represent robustness gaps. The robustness gaps in RoBERTa is smaller than that of BERT.

3.2 Comparison Between Pre-trained341

Language Models342

It is known that RoBERTa is more robust than343

BERT due to the larger and diversified pretrain-344

ing data (Tu et al., 2020). As NFL is essentially345

using the off-the-shelf pretrained language model346

to protect the main model, we test a hypothesis that347

language models with richer pretraining are more348

capable of protecting the main model. Our claim349

is supported by the experiments shown in Figure 3.350

While NFL is useful across different choices of351

pretrained language models, the robustness gap is352

smaller in RoBERTa than that of BERT when using353

a regularization term.354

4 Naturally Occuring Spurious355

Correlations356

We continue to study naturally occurring spurious357

correlations with our neighborhood analysis. Spu-358

rious correlations are naturally present in datasets359

due to various reasons such as annotation artifacts,360

flaws in data collection and distribution shifts (Gu-361

rurangan et al., 2018; Herlihy and Rudinger, 2021;362

Zhou et al., 2021). Previous work (Wang and Cu-363

lotta, 2020; Wang et al., 2022) pointed out in SST2,364

the token spielberg has high co-occurrences with 365

positive but the token itself does not cause the label 366

to be positive. Therefore it is likely to be spurious. 367

Borkan et al. (2019) revealed that models tend to 368

capture the spurious correlations in the toxicity de- 369

tection dataset by relating the names of frequently 370

targeted identity groups such as gay and black with 371

toxic content. 372

4.1 Dataset 373

SST2 This dataset consists of texts from movie 374

reviews (Socher et al., 2013). It contains 67,300 375

training examples. We use 10% of the training 376

data for validations and use the original 872 valida- 377

tion data for testing. Amazon binary, Jigsaw We 378

follow the settings introduced in Section 2.2. 379

4.2 Neighborhood Analysis of Naturally 380

Occuring Spurious Correlations 381

As shown in Table 6, our framework can explain 382

the spurious tokens pointed out by previous work. 383

These naturally occurring spurious tokens demon- 384

strate similar behavior as that of synthetic spurious 385

tokens, spielberg is aligned with genuine tokens of 386

positive movie reviews and the names of targeted 387

identity groups (gay and black) are aligned with 388
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(a) NFL-CO (b) NFL-CP

Figure 4: Representations after fine-tuning with NFL-CO/NFL-CP. By preventing the formation of erroneous
clusters, NFL can learn robust representations.

Target token Neighbors before fine-tuning Neighbors after fine-tuning
spielberg
(SST2)

spiel, spiegel, rosenberg, goldberg
zimmerman, iceberg, bewild, Friedrich

exquisite, dedicated, rising, freedom
important, lasting, leadings, remarkable

gay
(Jigsaw)

beard, bomb, dog, wood, industrial
moral, fat, fruit, cam, boy

whites, lesbians, fucked, black
foreigner, shoot, arse, upsetting, die

black
(Jigsaw)

white, racist, brown, silver, gray
green, blue, south, liberal, generic

ass, demon, fuck, muslim, intellectual
populous, homosexual, fools, obnoxious

Canada
(Jigsaw)

Spain, Australia, California, Italy
Britain, Germany, France, Brazil, Turkey

hypocrisy, ridiculous, bullshit, fuck,
stupiddamn, morals, idiots, pissed

Table 6: Nearest neighbors of the spurious tokens before and after fine-tuning. Words in red are associated with
negative/toxic labels while words in blue are associated with positive labels according to human annotators.

offensive words as well as other targeted names.389

4.3 Detecting Spurious Tokens390

There has been a growing interest in detecting spuri-391

ous correlations automatically to enhance the inter-392

pretability of models’ prediction. Practitioners may393

also decide whether they need to collect more data394

from other sources or simply masking the spurious395

tokens based on the results of detection. (Wang396

and Culotta, 2020; Wang et al., 2022; Friedman397

et al., 2022). In this section, we show that our398

proposed spurious score can also be used to detect399

naturally occuring spurious tokens. As we do not400

have access to a f∗ that is trained on Dunbiased in401

this setting, we simply use the model fine-tuned on402

the potentially biased dataset that we would like to403

perform detections. We compute the spurious score404

of every token according to Equation 1. The tokens405

with largest spurious score are listed in Table 7,406

where the genuine tokens are filtered by human an-407

notators. Take the top spurious token Canada as an408

example, our observation of the changes in neigh-409

borhood analysis still holds true (Table 6). The410

precision of our detection scheme for top 10/20/30 411

spurious tokens are evaluated by human annotators 412

and listed in Table 8. 413

5 Related Work 414

5.1 Mitigating Spurious Correlations 415

Existing mitigation approaches can be classified 416

into two categories—data-based and model-based 417

(Ludan et al., 2023). Data-based approaches mod- 418

ify the datasets to eliminate spurious correlations. 419

(Goyal et al., 2017; Sharma et al., 2018; McCoy 420

et al., 2019; Zellers et al., 2019) Model-based 421

approaches aim to make the models less vulnerable 422

to spurious correlations by model ensembling and 423

regularization (He et al., 2019; Sagawa et al., 2020; 424

Utama et al., 2020a; Zhao et al., 2022). These 425

prior work under the assumption that the spurious 426

correlations are known beforehand but it is arduous 427

to obtain such information in real-world datasets. 428

To make the setting more realistic, some exist- 429

ing work do not assume having the information of 430

spurious correlations during training but they do 431
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Top naturally occuring spurious tokens in each dataset
SST2 allow, void, default, sleeps, not, problem, taste, bottom
Amazon liberal, flashy, reck, reverted, passive, average, washed, empty
Jigsaw Canada, witches, sprites, rites, pitches, monkeys, defeating, animals

Table 7: List of top spurious tokens according to their spurious scores verified by human annotators.

Precision
Method Top 10 Top 20 Top 50
Ours
SST2 0.60 0.50 0.53
Jigsaw 0.50 0.45 0.43
Amazon 0.50 0.40 0.40
Wang et al. (2022)
SST2 0.40 0.35 0.32

Table 8: Precision of the top detected spurious tokens
according to human annotators.

rely on a small set of unbiased data where spurious432

correlations do not hold for validations and hyper-433

parameter tuning (Liu et al., 2021; Clark et al.,434

2020; Utama et al., 2020b). They also further435

make assumptions on the properties of spurious436

correlations and prevent models from learning such437

patterns. Clark et al. (2020) leverage a shallow438

model to capture overly simplistic patterns. How-439

ever, Zhao et al. (2022) find that there is not a fixed440

capacity shallow model that can capture the spu-441

rious correlations and determining an appropriate442

shallow model is also difficult without the infor-443

mation of spurious correlations. NFL takes a new444

route and tackles the problem by preserving the445

semantic knowledge in language models, without446

relying on the simplicity bias assumption.447

In a recent study, Kirichenko et al. (2023) claim448

that the features learned by standard empirical risk449

minimization (ERM) is good enough and models’450

performance can be recovered just by re-training451

the classification layer on the small set of unbiased452

data. On the contrary, NFL is designed to be not453

requiring any unbiased data, as having such infor-454

mation regardless of using it during training or not,455

is a huge assumption. Different from the findings in456

Kirichenko et al. (2023), we discover that spurious457

correlations in text classification tasks corrupt the458

feature extractor by aligning the representations of459

spurious tokens and genuine tokens. Thus, simply460

reweighting the features learned by ERM is unde-461

sired. The comparison between NFL and DFR is462

presented in Appendix C. NFL can achieve better463

performance even with less data and without the464

information of spurious correlations. 465

5.2 Model-based Detection of Spurious 466

Tokens 467

In the context of text classification, some of the 468

previous studies aim to detect spurious tokens for 469

better interpretability. They generally work by 470

finding tokens that contribute the most to models’ 471

prediction (Wang and Culotta, 2020; Wang et al., 472

2022), but do not uncover the internal mechanism 473

of how those spurious tokens acquire excessive 474

importance weights and thereby dominate models’ 475

predictions. Our neighborhood analysis reveal that 476

spurious tokens acquire excessive importance due 477

to the erroneous alignment with genuine tokens in 478

the embedding space. 479

In addition, Wang and Culotta (2020) requires 480

human annotated examples of genuine/spurious to- 481

kens while Wang et al. (2022) requires multiple 482

datasets from different domains for the same task. 483

As such external data might be too expensive to col- 484

lect, our work is motivated to use the widely avail- 485

able pretrained language models as an anchor. The 486

comparison with Wang et al. (2022) is presented 487

in Table 8. Our method can detect spurious tokens 488

with similar precision without requiring multiple 489

datasets and hence is a more practical solution. 490

6 Conclusion 491

In this paper, we present our neighborhood analy- 492

sis to explain how models interact with spurious 493

correlation. Through the analysis, we learn that the 494

corrupted language models capture spurious corre- 495

lations in text classification tasks by mis-aligning 496

the representation of spurious tokens and genuine 497

tokens. The analysis not only provides a deeper 498

understanding of the spurious correlation issue but 499

can additionally be used to detect spurious tokens. 500

In addition, our observation from the analysis al- 501

lows designing an effective family of regularization 502

methods that prevent the models from capturing 503

spurious correlations by preventing mis-alignments 504

and preserving the semantic knowledge with the 505

help of off-the-shelf pretrained language models. 506
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Limitations507

Our proposed NFL family is built on the assump-508

tion that off-the-shelf pretrained language models509

are unlikely to be affected by spurious correlation510

as the self-supervised learning procedures behind511

the models do not involve any labels from down-512

stream tasks. Erroneous alignments formed by bi-513

ases in the pretraining corpora are then beyond the514

scope of this work. As per our observation in Sec-515

tion 3.2, we echo the importance of pretraining516

language models with richer contexts and diverse517

sources to prevent biases in off-the-shelf pretrained518

language models in future studies.519

References520

Parikshit Bansal and Amit Sharma. 2023. Controlling521
learned effects to reduce spurious correlations in text522
classifiers.523

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum524
Thain, and Lucy Vasserman. 2019. Nuanced metrics525
for measuring unintended bias with real data for text526
classification.527

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer.528
2019. Don’t take the easy way out: Ensemble based529
methods for avoiding known dataset biases. In Pro-530
ceedings of the 2019 Conference on Empirical Meth-531
ods in Natural Language Processing and the 9th In-532
ternational Joint Conference on Natural Language533
Processing (EMNLP-IJCNLP), pages 4069–4082,534
Hong Kong, China. Association for Computational535
Linguistics.536

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer.537
2020. Learning to model and ignore dataset bias with538
mixed capacity ensembles. In Findings of the Associ-539
ation for Computational Linguistics: EMNLP 2020,540
pages 3031–3045, Online. Association for Computa-541
tional Linguistics.542

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and543
Kristina Toutanova. 2019. BERT: Pre-training of544
deep bidirectional transformers for language under-545
standing. In Proceedings of the 2019 Conference of546
the North American Chapter of the Association for547
Computational Linguistics: Human Language Tech-548
nologies, Volume 1 (Long and Short Papers), pages549
4171–4186, Minneapolis, Minnesota. Association for550
Computational Linguistics.551

Dan Friedman, Alexander Wettig, and Danqi Chen.552
2022. Finding dataset shortcuts with grammar in-553
duction. In Proceedings of the 2022 Conference on554
Empirical Methods in Natural Language Processing,555
pages 4345–4363, Abu Dhabi, United Arab Emirates.556
Association for Computational Linguistics.557

Matt Gardner, William Merrill, Jesse Dodge, Matthew558
Peters, Alexis Ross, Sameer Singh, and Noah A.559

Smith. 2021. Competency problems: On finding and 560
removing artifacts in language data. In Proceedings 561
of the 2021 Conference on Empirical Methods in Nat- 562
ural Language Processing, pages 1801–1813, Online 563
and Punta Cana, Dominican Republic. Association 564
for Computational Linguistics. 565

Max Glockner, Vered Shwartz, and Yoav Goldberg. 566
2018. Breaking NLI systems with sentences that 567
require simple lexical inferences. In Proceedings 568
of the 56th Annual Meeting of the Association for 569
Computational Linguistics (Volume 2: Short Papers), 570
pages 650–655, Melbourne, Australia. Association 571
for Computational Linguistics. 572

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv 573
Batra, and Devi Parikh. 2017. Making the v in vqa 574
matter: Elevating the role of image understanding in 575
visual question answering. 576

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, 577
Roy Schwartz, Samuel Bowman, and Noah A. Smith. 578
2018. Annotation artifacts in natural language infer- 579
ence data. In Proceedings of the 2018 Conference of 580
the North American Chapter of the Association for 581
Computational Linguistics: Human Language Tech- 582
nologies, Volume 2 (Short Papers), pages 107–112, 583
New Orleans, Louisiana. Association for Computa- 584
tional Linguistics. 585

He He, Sheng Zha, and Haohan Wang. 2019. Unlearn 586
dataset bias in natural language inference by fitting 587
the residual. In Proceedings of the 2nd Workshop on 588
Deep Learning Approaches for Low-Resource NLP 589
(DeepLo 2019), pages 132–142, Hong Kong, China. 590
Association for Computational Linguistics. 591

Christine Herlihy and Rachel Rudinger. 2021. MedNLI 592
is not immune: Natural language inference artifacts 593
in the clinical domain. In Proceedings of the 59th 594
Annual Meeting of the Association for Computational 595
Linguistics and the 11th International Joint Confer- 596
ence on Natural Language Processing (Volume 2: 597
Short Papers), pages 1020–1027, Online. Associa- 598
tion for Computational Linguistics. 599

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra- 600
ham Neubig, Orhan Firat, and Melvin Johnson. 601
2020. XTREME: A massively multilingual multi- 602
task benchmark for evaluating cross-lingual gener- 603
alisation. In Proceedings of the 37th International 604
Conference on Machine Learning, volume 119 of 605
Proceedings of Machine Learning Research, pages 606
4411–4421. PMLR. 607

Nitish Joshi, Xiang Pan, and He He. 2022. Are all 608
spurious features in natural language alike? an anal- 609
ysis through a causal lens. In Proceedings of the 610
2022 Conference on Empirical Methods in Natu- 611
ral Language Processing, pages 9804–9817, Abu 612
Dhabi, United Arab Emirates. Association for Com- 613
putational Linguistics. 614

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon 615
Wilson. 2023. Last layer re-training is sufficient for 616

9

http://arxiv.org/abs/2305.16863
http://arxiv.org/abs/2305.16863
http://arxiv.org/abs/2305.16863
http://arxiv.org/abs/2305.16863
http://arxiv.org/abs/2305.16863
http://arxiv.org/abs/1903.04561
http://arxiv.org/abs/1903.04561
http://arxiv.org/abs/1903.04561
http://arxiv.org/abs/1903.04561
http://arxiv.org/abs/1903.04561
https://doi.org/10.18653/v1/D19-1418
https://doi.org/10.18653/v1/D19-1418
https://doi.org/10.18653/v1/D19-1418
https://doi.org/10.18653/v1/2020.findings-emnlp.272
https://doi.org/10.18653/v1/2020.findings-emnlp.272
https://doi.org/10.18653/v1/2020.findings-emnlp.272
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2022.emnlp-main.293
https://aclanthology.org/2022.emnlp-main.293
https://aclanthology.org/2022.emnlp-main.293
https://doi.org/10.18653/v1/2021.emnlp-main.135
https://doi.org/10.18653/v1/2021.emnlp-main.135
https://doi.org/10.18653/v1/2021.emnlp-main.135
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103
http://arxiv.org/abs/1612.00837
http://arxiv.org/abs/1612.00837
http://arxiv.org/abs/1612.00837
http://arxiv.org/abs/1612.00837
http://arxiv.org/abs/1612.00837
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/D19-6115
https://doi.org/10.18653/v1/D19-6115
https://doi.org/10.18653/v1/D19-6115
https://doi.org/10.18653/v1/D19-6115
https://doi.org/10.18653/v1/D19-6115
https://doi.org/10.18653/v1/2021.acl-short.129
https://doi.org/10.18653/v1/2021.acl-short.129
https://doi.org/10.18653/v1/2021.acl-short.129
https://doi.org/10.18653/v1/2021.acl-short.129
https://doi.org/10.18653/v1/2021.acl-short.129
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://aclanthology.org/2022.emnlp-main.666
https://aclanthology.org/2022.emnlp-main.666
https://aclanthology.org/2022.emnlp-main.666
https://aclanthology.org/2022.emnlp-main.666
https://aclanthology.org/2022.emnlp-main.666
https://openreview.net/forum?id=Zb6c8A-Fghk
https://openreview.net/forum?id=Zb6c8A-Fghk


robustness to spurious correlations. In The Eleventh617
International Conference on Learning Representa-618
tions.619

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi620
Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy621
Liang, and Chelsea Finn. 2021. Just train twice:622
Improving group robustness without training group623
information. In Proceedings of the 38th International624
Conference on Machine Learning, volume 139 of625
Proceedings of Machine Learning Research, pages626
6781–6792. PMLR.627

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-628
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:629
Prompt tuning can be comparable to fine-tuning630
across scales and tasks. In Proceedings of the 60th631
Annual Meeting of the Association for Computational632
Linguistics (Volume 2: Short Papers), pages 61–68,633
Dublin, Ireland. Association for Computational Lin-634
guistics.635

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-636
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,637
Luke Zettlemoyer, and Veselin Stoyanov. 2019.638
Roberta: A robustly optimized bert pretraining ap-639
proach.640

Adian Liusie, Vatsal Raina, Vyas Raina, and Mark641
Gales. 2022. Analyzing biases to spurious corre-642
lations in text classification tasks. In Proceedings of643
the 2nd Conference of the Asia-Pacific Chapter of the644
Association for Computational Linguistics and the645
12th International Joint Conference on Natural Lan-646
guage Processing (Volume 2: Short Papers), pages647
78–84, Online only. Association for Computational648
Linguistics.649

Josh Magnus Ludan, Yixuan Meng, Tai Nguyen,650
Saurabh Shah, Qing Lyu, Marianna Apidianaki, and651
Chris Callison-Burch. 2023. Explanation-based fine-652
tuning makes models more robust to spurious cues.653

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right654
for the wrong reasons: Diagnosing syntactic heuris-655
tics in natural language inference. In Proceedings of656
the 57th Annual Meeting of the Association for Com-657
putational Linguistics, pages 3428–3448, Florence,658
Italy. Association for Computational Linguistics.659

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto,660
and Percy Liang. 2020. Distributionally robust neural661
networks. In International Conference on Learning662
Representations.663

Rishi Sharma, James Allen, Omid Bakhshandeh, and664
Nasrin Mostafazadeh. 2018. Tackling the story end-665
ing biases in the story cloze test. In Proceedings666
of the 56th Annual Meeting of the Association for667
Computational Linguistics (Volume 2: Short Papers),668
pages 752–757, Melbourne, Australia. Association669
for Computational Linguistics.670

Chenglei Si, Dan Friedman, Nitish Joshi, Shi Feng,671
Danqi Chen, and He He. 2023. What spurious fea-672
tures can pretrained language models combat?673

Richard Socher, Alex Perelygin, Jean Wu, Jason 674
Chuang, Christopher D. Manning, Andrew Ng, and 675
Christopher Potts. 2013. Recursive deep models for 676
semantic compositionality over a sentiment treebank. 677
In Proceedings of the 2013 Conference on Empiri- 678
cal Methods in Natural Language Processing, pages 679
1631–1642, Seattle, Washington, USA. Association 680
for Computational Linguistics. 681

Lifu Tu, Garima Lalwani, Spandana Gella, and He He. 682
2020. An empirical study on robustness to spuri- 683
ous correlations using pre-trained language models. 684
Transactions of the Association for Computational 685
Linguistics, 8:621–633. 686

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna 687
Gurevych. 2020a. Mind the trade-off: Debiasing 688
NLU models without degrading the in-distribution 689
performance. In Proceedings of the 58th Annual 690
Meeting of the Association for Computational Lin- 691
guistics, pages 8717–8729, Online. Association for 692
Computational Linguistics. 693

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna 694
Gurevych. 2020b. Towards debiasing NLU models 695
from unknown biases. In Proceedings of the 2020 696
Conference on Empirical Methods in Natural Lan- 697
guage Processing (EMNLP), pages 7597–7610, On- 698
line. Association for Computational Linguistics. 699

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 700
preet Singh, Julian Michael, Felix Hill, Omer Levy, 701
and Samuel Bowman. 2019. Superglue: A stickier 702
benchmark for general-purpose language understand- 703
ing systems. In Advances in Neural Information 704
Processing Systems, volume 32. Curran Associates, 705
Inc. 706

Tianlu Wang, Rohit Sridhar, Diyi Yang, and Xuezhi 707
Wang. 2022. Identifying and mitigating spurious cor- 708
relations for improving robustness in NLP models. 709
In Findings of the Association for Computational 710
Linguistics: NAACL 2022, pages 1719–1729, Seattle, 711
United States. Association for Computational Lin- 712
guistics. 713

Zhao Wang and Aron Culotta. 2020. Identifying spu- 714
rious correlations for robust text classification. In 715
Findings of the Association for Computational Lin- 716
guistics: EMNLP 2020, pages 3431–3440, Online. 717
Association for Computational Linguistics. 718

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 719
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma- 720
chine really finish your sentence? In Proceedings of 721
the 57th Annual Meeting of the Association for Com- 722
putational Linguistics, pages 4791–4800, Florence, 723
Italy. Association for Computational Linguistics. 724

Xiang Zhang and Yann LeCun. 2017. Which encoding 725
is the best for text classification in chinese, english, 726
japanese and korean? CoRR, abs/1708.02657. 727

Jieyu Zhao, Xuezhi Wang, Yao Qin, Jilin Chen, and Kai- 728
Wei Chang. 2022. Investigating ensemble methods 729

10

https://openreview.net/forum?id=Zb6c8A-Fghk
https://proceedings.mlr.press/v139/liu21f.html
https://proceedings.mlr.press/v139/liu21f.html
https://proceedings.mlr.press/v139/liu21f.html
https://proceedings.mlr.press/v139/liu21f.html
https://proceedings.mlr.press/v139/liu21f.html
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2022.aacl-short.11
https://aclanthology.org/2022.aacl-short.11
https://aclanthology.org/2022.aacl-short.11
http://arxiv.org/abs/2305.04990
http://arxiv.org/abs/2305.04990
http://arxiv.org/abs/2305.04990
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ryxGuJrFvS
https://doi.org/10.18653/v1/P18-2119
https://doi.org/10.18653/v1/P18-2119
https://doi.org/10.18653/v1/P18-2119
https://openreview.net/forum?id=BcbwGQWB-Kd
https://openreview.net/forum?id=BcbwGQWB-Kd
https://openreview.net/forum?id=BcbwGQWB-Kd
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.1162/tacl_a_00335
https://doi.org/10.1162/tacl_a_00335
https://doi.org/10.1162/tacl_a_00335
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.emnlp-main.613
https://doi.org/10.18653/v1/2020.emnlp-main.613
https://doi.org/10.18653/v1/2020.emnlp-main.613
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/2022.findings-naacl.130
https://doi.org/10.18653/v1/2022.findings-naacl.130
https://doi.org/10.18653/v1/2022.findings-naacl.130
https://doi.org/10.18653/v1/2020.findings-emnlp.308
https://doi.org/10.18653/v1/2020.findings-emnlp.308
https://doi.org/10.18653/v1/2020.findings-emnlp.308
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
http://arxiv.org/abs/1708.02657
http://arxiv.org/abs/1708.02657
http://arxiv.org/abs/1708.02657
http://arxiv.org/abs/1708.02657
http://arxiv.org/abs/1708.02657
https://aclanthology.org/2022.findings-emnlp.118
https://aclanthology.org/2022.findings-emnlp.118


for model robustness improvement of text classifiers.730
In Findings of the Association for Computational731
Linguistics: EMNLP 2022, pages 1634–1640, Abu732
Dhabi, United Arab Emirates. Association for Com-733
putational Linguistics.734

Yanan Zheng, Jing Zhou, Yujie Qian, Ming Ding,735
Chonghua Liao, Li Jian, Ruslan Salakhutdinov,736
Jie Tang, Sebastian Ruder, and Zhilin Yang. 2022.737
FewNLU: Benchmarking state-of-the-art methods for738
few-shot natural language understanding. In Proceed-739
ings of the 60th Annual Meeting of the Association740
for Computational Linguistics (Volume 1: Long Pa-741
pers), pages 501–516, Dublin, Ireland. Association742
for Computational Linguistics.743

Chunting Zhou, Xuezhe Ma, Paul Michel, and Graham744
Neubig. 2021. Examining and combating spurious745
features under distribution shift. In Proceedings of746
the 38th International Conference on Machine Learn-747
ing, volume 139 of Proceedings of Machine Learning748
Research, pages 12857–12867. PMLR.749

11

https://aclanthology.org/2022.findings-emnlp.118
https://doi.org/10.18653/v1/2022.acl-long.38
https://doi.org/10.18653/v1/2022.acl-long.38
https://doi.org/10.18653/v1/2022.acl-long.38
https://proceedings.mlr.press/v139/zhou21g.html
https://proceedings.mlr.press/v139/zhou21g.html
https://proceedings.mlr.press/v139/zhou21g.html


Figure 5: Accuracies of NFL-CP and NFL-CO under
different choices of λ.

A Training Details750

We use pretrained BERT, RoBERTa and the default751

hyperparameters in Trainer, offered by Hugging-752

face in all of our experiments. We also use the753

implementation from Liu et al. (2022) for NFL-754

PT. The models are trained for 6 epochs except for755

NFL-PT which takes 100 epochs. The sequence756

length of continuous prompts in NFL-PT is set to757

40. All accuracy reported is the mean accuracy of758

3 trials over the seeds {0, 24, 1000000007}.759

B Weights of Regularization Terms760

In the experiment of Amazon binary, we search761

the hyperparameter of the weights of NFL-CO762

and NFL-CP regularization terms over {1, 10, 100,763

1000, 10000, 15000, 20000}. Generally there is a764

trade-off between in-distribution (biased) accuracy765

and out-of-distribution (robust) accuracy. Nonethe-766

less, we can observe from Figure 5 that as we in-767

crease the weights of the regularization term, the768

drop in-distribution accuracy is insignificant while769

the improvement in robustness is tremendous. In770

all of the experiments, we set the weights to be771

15000.772

Method Biased Acc Robust Acc ∆

Amazon binary
NFL-PT 94.2 92.9 -1.3
DFR (100%) 93.4 88.9 -4.5
DFR (5%) 93.6 83.1 -9.5
Jigsaw
NFL-CP 84.8 80.9 -3.9
DFR (100%) 85.9 78.0 -7.9
DFR (5%) 86.3 75.0 -11.3

Table 9: Comparison between NFL and DFR. To avoid
repetition with Table 5, we list only the variant of NFL
with highest robust accuracy.

C Comparison with DFR (Kirichenko 773

et al., 2023) 774

Our work consider a setting that our models do 775

not have access to both the information of spuri- 776

ous correlations as well as unbiased data in both 777

training and validation stage. DFR, on the other 778

hand, requires a small unbiased validation set to 779

re-train the classification layer. To reproduce DFR, 780

we use 100%/5% of Dunbiased to re-train the classi- 781

fier. Note that DFR would then have access to both 782

Dbiased (during the training of feature extractors) 783

and Dunbiased (during the re-training of classifiers). 784

As shown in Table 9, NFL indeed achieve a better 785

robust accuracy by robustifying the feature extrac- 786

tor even with less data compared with DFR. 787
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