
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROOT CAUSE ANALYSIS OF FAILURE WITH OBSERVA-
TIONAL CAUSAL DISCOVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Finding the root cause of failures is a prominent problem in many complex net-
works. Causal inference provides us with tools to address this problem algorith-
mically to automate this process and solve it efficiently. The existing methods
either use a known causal structure to identify root cause via backtracking the
changes, or ignore the causal structure but rely on invariance tests to identify the
changing causal mechanisms after the failure. We first establish a connection be-
tween root cause analysis and the Interactive Graph Search (IGS) problem. This
mapping highlights the importance of causal knowledge: we demonstrate that any
algorithm relying solely on marginal invariance tests to identify root causes must
perform at least Ω(log2(n)+d log1+d n) many tests, where n represents the num-
ber of components and d denotes the maximum out-degree of the graph. We then
present an optimal algorithm that achieves this bound by reducing the root cause
identification problem as an instance of IGS. Moreover, we show that even if the
causal graph is partially known in the form of a Markov equivalence class, we can
identify the root-cause with linear number of invariance tests. Our experiments on
a production-level application demonstrate that, even in the absence of complete
causal information, our approach accurately identifies the root cause of failures.

1 INTRODUCTION

Root Cause Analysis (RCA) which aims to understand the root cause of failures is crucial for ensur-
ing the reliability and stability of production systems in diverse domains, including but not limited to
medicine (Kellogg et al., 2016; Latino, 2015), telecommunications (Schaaf et al., 2015), and IT op-
erations (Whitney & Daniels, 2013; Drasar & Jirsik, 2019). In cloud applications, particularly those
using microservice architectures, the challenges of RCA are even more pronounced. The large num-
ber of microservices complicates pinpointing the primary cause of failures (Emmons et al., 2022),
and the interdependent nature of these services means that a failure in one can cascade, disrupting
the entire network. These factors make timely and accurate diagnosis of failures particularly diffi-
cult. According to Wang et al. (2018),identifying the root cause of issues in platforms like IBM’s
Bluemix can take an average of three hours without automated tools. Therefore, rapid fault detection
is essential for minimizing the downtime and mitigating the impact on system performance. Delays
in diagnosing issues can lead to substantial financial losses and customer dissatisfaction, especially
as service-level agreements often prioritize system availability as a key performance indicator.

Recent RCA research has focused on developing methods that detect the root cause of failures, of-
ten through a two-phase process: first, constructing a graph structure, then ranking the nodes within
that graph. Some approaches rely on expert knowledge to build the graph (Ma et al., 2020), while
others derive it from service call graphs (Chakraborty et al., 2023), or employ deep neural networks
for graph learning (Lin et al., 2024). The goal is to model relationships and dependencies between
services using causal discovery techniques to construct a causal graph (Wang et al., 2018; Qiu et al.,
2020; Gan et al., 2021; Ikram et al., 2022; Xin et al., 2023). For instance, MicroCause (Meng et al.,
2020) employs the PC algorithm to learn a causal graph from service metrics; however, the result-
ing graph is often an equivalence class with undirected edges, prompting researchers to arbitrarily
convert it into a DAG. RUN (Lin et al., 2024), for example, removes the edge between two nodes
with the lowest correlation, but this method does not guarantee the representation of the true under-
lying graph. In the second phase, existing algorithms rank nodes using graph centrality measures
such as random walk (Wang et al., 2018; Ma et al., 2020), PageRank (Wu et al., 2021; Xin et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2023; Lin et al., 2024), BFS (Lin et al., 2018), and DFS (Chen et al., 2014). However, many rely
on arbitrary objective functions that may not accurately reflect the failure propagation chain. For
example, Groot (Wang et al., 2021) assumes that sink nodes are more likely to be root causes and
assigns them a different score than others.

In causal discovery-based approaches, Ikram et al. (2022) recently observed that a fault alters the
generative mechanism of the failing node. This observation frames the fault as an intervention on
the node, classifying the data generated during the failure period as a post-interventional dataset.
Building on this idea, the authors introduced RCD (Root Cause Discovery), which leverages estab-
lished techniques to identify the interventional target i.e., the root cause of the failure. RCD does not
learn the causal graph but only uses conditional independence (CI) tests to find the interventional
target. An example demonstrating the execution of RCD is provided in the Appendix E.

Despite the existing literature, we assert that current RCA methods overlook a crucial opportunity:
they fail to utilize the system’s normal operation time. While identifying the root cause of a failure
is a time-sensitive task once the failure occurs, the period before the failure offers ample time for
preparation. During normal operations, site engineers or RCA systems can proactively prepare
for potential failures by learning cause-effect relationships through domain knowledge or causal
discovery from observational data, a topic extensively explored in the literature (Spirtes & Glymour,
1991; Spirtes et al., 2000; Chickering, 2002; Peters et al., 2013; Zheng et al., 2018; Lam et al.,
2022). In this context, observational data refers to metrics collected before a failure occurs, while
post-interventional data pertains to metrics gathered after the failure.

Our contribution. In this paper, we introduce a novel algorithm, Root Cause Analysis with Causal
Graphs (RCG), which strategically utilizes a system’s normal operational period to prepare for
potential failures. We propose learning a causal graph from observational data collected during
regular operations. This learned graph is then used proactively to determine which invariance tests
should be conducted post-failure. We demonstrate how to integrate this causal knowledge into RCA
without relying on arbitrary assumptions about the system’s structure. We begin by exploring the
simplest case, where the causal relationships are fully known—that is, when the causal graph is a
DAG. Interestingly, we show that identifying the root cause in a causal DAG is equivalent to solving
a well-established graph theory problem known as Interactive Graph Search (IGS) (Tao et al., 2019),
with minor modifications. This reduction to IGS not only enables us to leverage its logarithmic
computational complexity but also establishes a lower bound on the number of CI tests required.

Learning the full causal DAG of a system is often challenging in real-world scenarios. To address
this, we investigate how to leverage a partial causal structure derived from data for RCA. Instead of
arbitrarily converting a partial causal graph to a DAG, we propose a systematic approach to traverse
the graph structure for root cause identification. Additionally, we note that existing causality-based
methods, such as RCD (Ikram et al., 2022), typically rely on higher-order CI tests, which involve
testing with large conditioning sets. This can significantly diminish statistical power, especially with
finite sample sizes. Although RCD attempts to reduce this issue by partitioning nodes into smaller
subsets, it does not guarantee a meaningful decrease in the number of required CI tests.

To mitigate these challenges, we try to minimize the use of higher-order CI tests by limiting the
size of the conditioning sets (Spirtes, 2001; Rohekar et al., 2021). Our approach uses the C-PC al-
gorithm (Lee et al., 2024), which constrains conditioning set sizes to learn a partial causal graph,
thereby reducing errors from limited statistical power in CI tests on finite samples. Furthermore,
we propose an algorithm that leverages this partial causal graph to identify the root cause of fail-
ures. Consequently, we demonstrate that even with incomplete graph knowledge, it is possible to
accurately pinpoint the root cause by using at most a linear number of marginal invariance tests.

1. For the case of having a single root cause, given a complete causal structure of a system, we
first map the problem of RCA to IGS and then further provide an algorithm that identifies
the root cause withO(log2(n)+d log1+d n) number of marginal invariance tests and show
that any algorithm that solely relies on marginal invariance tests for RCA must perform
Ω(log2(n) + d log1+d n) many tests.

2. In scenarios where only observational data is available, we consider the challenge of learn-
ing a partial causal structure from the system’s data-generating process. We propose an
algorithm that leverages this estimated graph structure and an information-theoretic ap-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

proach to pinpoint multiple root causes of failures. We further demonstrate that, given an
estimated causal structure, the proposed algorithm is theoretically sound for RCA.

3. We validate the performance of our proposed algorithm by showing its comparable ac-
curacy relative to state-of-the-art methods, such as RCD (Ikram et al., 2022), RUN (Lin
et al., 2024), and BARO (Pham et al., 2024), through experiments on simulated datasets,
including the Sock-shop dataset (Holbach., 2022), and a production-level application.

2 BACKGROUND

In this section, we give the most relevant definitions. For more details of the graph notations and
terminology, please refer to Appendix A. We also discuss related work in Appendix B.
Definition 2.1 (Causal graphs). A causal graph is used to encapsulate the causal relationships
among variables in the form of a directed acyclic graph (DAG), where each node represents a vari-
able X and the directed edge X → Y indicates that X causes Y . A variable is said to cause another
variable if a change in the former induces a change in the probability distribution of the latter.

Structural Causal Models (SCMs) and Causal Bayesian Networks (CBNs). SCMs are used to
model causality among a set of random variables. Each variable X is a function of some endogenous
variables as its parents, denoted by Pa(X), and an exogenous noise term, denoted as EX e.g.
X = fX(Pa(X), EX). An SCM induces a causal graph by assigning a set of endogenous variables
as the parents of X for all variables X . CBNs are used to define a causal model that specifies
the observational and interventional distributions via the truncated factorization formula without the
functional descriptions like SCMs in a causal graph.
Definition 2.2 (d-separation). In a causal graph D, a path p between X and Y is d-connecting
(active) relative to a set of vertices Z(X,Y ̸∈ Z) if (i) every non-collider on p is not in Z and (ii)
every collider on p is an ancestor of some Z ∈ Z. Otherwise, we say Z blocks p. If Z blocks all
paths between X and Y , we say X and Y are d-separated relative to Z, denoted as (X ⊥⊥ Y |Z)D.

Intervention and F-NODE. An intervention on a variable is the process of changing the generative
mechanism of that variable. Randomized controlled trials (RCTs) and A/B tests are the most com-
mon notion of interventions. Pearl uses do-operator do(X = x) to capture this type of intervention.
For instance, when do(X = x) forces a variable X to take on certain values, it is known as the
hard interventions (Pearl, 2009). Its effect in a causal graph is to remove the edges incoming to the
intervened nodes. It is different than another type of intervention known as the soft interventions,
which do not completely alter the causal mechanisms and retain the original causal graph by only
replacing fX(Pa(X), EX) with f ′

X(Pa(X), EX) where f ′ ̸= f . A variable F-NODE has been ex-
tensively used to represent the effect of an intervention on a system (Pearl, 1995; Yang et al., 2018;
Mooij et al., 2020). Throughout this work, we denote a ground truth DAG D being augmented
by F-NODE as an intervention to the root cause as Daug . We assume the extended faithfulness
assumption as in Jaber et al. (2020). Please refer to Appendix A.15 and A.16 for more details.

3 PROBLEM FORMULATION

A system has n componentsM = {m1, . . . ,mn}. Within a given time interval, the monitoring tool
collects at least d metrics from each of the components, i.e. T (i, t) = {ri,1,t, . . . , ri,d,t}, where
d ≥ 1;∀i ∈ {1, . . . , n}, T (i, t) is a set of d metrics of component i at time instance t. Considering
the entirety of the data, we have two time series datasets defined as D = {T (1, 1), . . . , T (n, t− 1)}
and D⋆ = {T (1, t), . . . , T (n, γ)}, where t represents the time when the failure was first registered
and γ is the time when the issue was fixed. We consider the setting where one can learn some cause-
effect relations in the form of a C-essential graph1 εC(D) = (V,E) at the time s from D, where
s < t and C is the set of conditioning sets used for all CI tests, V denotes the set of d metrics as
random variables and E is the set of edges where Xi → Xj represents metric Xi causes metric Xj .
We leverage this partial causal structure to pinpoint the root cause between timestamps t and γ.

Failure as Interventions. An important observation of this problem is to model a failure as a soft in-
tervention on the failing mode (Ikram et al., 2022). Here, the representation of F-NODE allows one

1Please see Appendix A for the definition of C-essential graphs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

to identify the distribution invariances PN (X|Pa(X)) = PA(X|Pa(X)), where PN and PA are the
distributions under normal mode of operation and anomalous operation respectively. By concatenat-
ing both of these datasets, one can sample from the distribution P ⋆ of a set of observed variables V
involving F-NODE, denoted as F, where P ⋆(V|F = 0) = PN (V) and P ⋆(V|F = 1) = PA(V).
Under this formalism, the invariance PN (X|Pa(X)) = PA(X|Pa(X)) corresponds to conditional
independence between X and F given Pa(X). Since F-NODE cannot have any incoming edges,
one can then employ a series of CI tests on the sampling distributions P̂ ⋆ to determine which node
is the root cause R (the child of F-NODE) by observing (R ⊥̸⊥ F |Pa(R))P̂⋆ .

Performing an exponentially large number of CI tests, as required by RCD, is far from ideal in post-
failure scenarios. This is due to the fact that RCD operates without any prior causal knowledge.
RCD focuses solely on identifying the adjacency of the F-NODE rather than learning the entire
graph, as constructing the full causal structure can be time-consuming. However, it is important
to note that RCA is time-sensitive only after the failure occurs. The time leading up to a failure
provides ample opportunity to prepare the system. Therefore, we propose leveraging this pre-failure
window to learn the causal graph from observational data, which can then be used post-failure to
effectively identify the root cause. In the following sections, we will first highlight the benefits
of having complete causal knowledge of the underlying data-generating mechanism, followed by a
more practical approach for cases where the causal graph is unknown.

4 RCA WITH A KNOWN GRAPH

In this section, we discuss the main limitation of RCD’s approach as our approach also models
failure as an intervention. Then, we introduce the use of graphical structures as a potential solution
in the case of a single root cause. For details on RCD, see Appendix E and all proofs are provided
in the Appendix C.

Firstly, RCD only learns the adjacencies between F-NODE and each observed variable as it oper-
ates. It conditions on every possible subset S of variables V for testing the conditional indepen-
dence relation between each pair of variables i.e., X,Y ∈ V until it identifies a conditioning set
that yields conditional independence, which excludes a potential node as the root cause under As-
sumption A.16. However, under Assumption A.15, having access to a causal graph G allows us to
conduct n CI tests e.g., (F ⊥⊥ X|PaG(X)) for each observed variable X where n is the number
of observed variable. In other words, RCD performs at least as many CI tests as would be required
in a naive approach using the causal graph. Secondly, RCD may condition on a set of variables
that is much larger than the actual parent set, resulting in unreliable CI test results in practice. In
contrast, since our graphical structure captures ancestral relationships between nodes and there is
only a single root cause variable, we argue that the root cause can be identified with fewer than n
tests. To support this, we present key results that allow for a systematic exploration of the causal
structure, significantly reducing the number of required CI tests.

For the case where there is only a single root cause, the following two lemmas indicate that certain
CI relations can eliminate variables from being considered as root causes, under Assumption A.15
and A.16. The first lemma states that all ancestors of a variable X can be excluded as the root
cause if we observe that F is conditionally independent of X given some variables Z. The second
lemma asserts that all non-ancestors of X can be excluded as the root cause if F is conditionally
dependent on X . Unlike RCD, which performs a series of CI tests and stops once a CI relation
excludes a variable as the root cause, our approach systematically eliminates variables using these
two key results—Lemma 4.1 and Lemma 4.2—without needing to test every variable. We provide
an example to illustrate how these two lemmas may enable us to identify the root cause in fewer
than n tests given a causal graph in Appendix G.

Lemma 4.1. Given a causal graph D, if (F ⊥⊥ X)P for some X ∈ V, then A ̸∈ ChDaug
(F) for

all A ∈ AnD(X), where P is any joint distribution between variables on Daug .

Lemma 4.2. Given a causal graph D, if (F ̸⊥⊥ X)P for some X ∈ V, then then Q ̸∈ ChDaug
(F)

for all Q ∈ NAnD(X), where P is any joint distribution between variables on Daug .

To illustrate the usefulness of these two key results, we show that there is a one-to-one correspon-
dence between using the marginal invariance test for RCA with a known causal graph and the prob-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Construct
Graph

via -

Normal Period
Top-

Root Causes Post-Failure

Compute CMI

Refine via
marginal

invariance
tests

Rank by
sorting

CMI

Figure 1: The RCG framework: The true graphs, D and Daug , are unknown to the algorithm. Red
nodes represent the root cause, while orange nodes are impacted but not the root cause. During
the normal period, RCG learns the partial causal graph G from data using C-PC. After a failure,
it identifies the root cause by performing marginal invariance tests to further orient the edges and
computing the Conditional Mutual Information (CMI) between the F and each node in the graph.
Finally, RCG ranks the nodes by CMI scores, outputting an ordered list of potential root causes.

lem known as Interactive Graph Search (IGS) (Tao et al., 2019) that guarantees to identify the root
cause with fewer than n tests. For the sake of clarity, we give the problem formulation of IGS.

Interactive Graph Search (IGS)
INSTANCE: A DAG D = (V,E) that has a single root node, an adversary chooses arbitrarily
a target node R ∈ V. There is an oracle that returns a boolean answer to the given query: yes,
if there is a directed path from X to R and no otherwise for any X ∈ V.
QUESTION: What is the minimum number of queries to ask in order to identify R in D?

Lemma 4.3. Consider a DAG D = (V,E) with a single sink node and D′ be a DAG by reversing
every edge direction in E, let Q(X) be a query to the oracle on whether some X ∈ V has a directed
path to an unknown target node R ∈ V.

Q(X) = yes⇔ (F ̸⊥⊥ X)P (1)

. Therefore, if Q(X) = yes, then X ∈ AnD′(R). If Q(X) = no, then X ∈ NAD′(R).

The significance of Lemma 4.3 is that a solution to IGS is now a solution to RCA using the marginal
invariance tests given a known causal graph. For DAGs that do not have a single sink node, we
can simply add a dummy node as a child of all the sink nodes. Hence, the following theorem is an
immediate consequence of Theorem 1 (see Appendix C.1) proven by Shangqi et al. (2023)).
Theorem 4.4. Given a causal graph D with a single sink node, any algorithm the only uses marginal
invariance tests must perform Ω(log2 n+ d log1+d n) many tests to find the single root cause in the
worst case, where d is the maximum in-degree of D and n is the number of nodes. There exists an
algorithm that finds the root cause with O(log2 n+ d log1+d n) marginal invariance tests.

Shangqi et al. (2023) provide an optimal algorithm that bounds the number of queries inO(log2 n+
d log1+d n) in the worst case for IGS. Due to Lemma 4.3, this algorithm can be modified for RCA
with a single root cause using marginal invariance tests. Hence, we showed that we need fewer than
n tests and that marginal invariance tests alone are sufficient for identifying the root cause given a
causal graph. We provide the pseudocode of modified IGS through Algorithm 7 in the Appendix.

5 RCA WITH AN UNKNOWN GRAPH

Having established that the graphical structure helps reduce the number of CI tests, we now turn our
attention to the challenge of performing RCA with partial graphical structure in the case of multiple
root causes. We provide the workflow of the proposed solution in Figure 1. We leave all the proofs
in the Appendix C.

One common approach to learning the causal structure is to incorporate expert knowl-
edge (Chakraborty et al., 2023; Gong et al., 2024; Lin et al., 2024; Xin et al., 2023). However,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

it may not always be feasible to obtain expert knowledge. A data-driven approach to causal struc-
ture learning then becomes a more viable solution. However, learning a causal structure can be
extremely time-consuming (Chickering et al., 2004). For constraint-based methods, they often in-
volve conditioning on large sets of nodes to identify possible separating sets for each node (Spirtes
et al., 2000). This time-consuming aspect of causal discovery is particularly undesirable in our
context, where time is critical following a failure, and the goal is to quickly pinpoint the root cause.

A key point is that learning causal structures does not require interventional data (Spirtes et al.,
2000; Chickering, 2002; Shimizu et al., 2006; Zheng et al., 2018). We can leverage the vast amounts
of data generated during the system’s normal operation to construct the causal graph, rather than
waiting for a failure. This graph can then be used to efficiently identify the root cause when a failure
occurs, enabling a faster, more effective response.

Ranking Root Causes. A key requirement for RCA tools is the output format. While failures
typically have few root causes, much of the literature focuses on ranking all nodes and reporting the
top-l. This poses a challenge for approaches that rely on CI tests, which often identify only a single
or a few root cause nodes. RCD addresses this by gradually increasing the significance level, α, in
its CI tests and rerunning the algorithm until at least l nodes are identified. However, this does not
guarantee a meaningful ranking; the resulting nodes may appear in an arbitrary order, and multiple
reruns increase runtime. To address this, RCG (Algorithm 1) leverages a critical insight that the
ranking in RCA aligns with an information-theoretic approach shown by the following proposition.
Proposition 5.1. Given any DAG D, under Assumptions A.15 and A.16,

I(F ;R|PaD(R)) > 0 (2)

I(F ; R̄|PaD(R̄)) = 0 (3)

, where R is the actual root cause and R̄ denotes a non-root cause variable.

The intuition behind proposition 5.1 is that any non-root-cause variable R̄ must be d-separated
from F given its parents PaR̄, while only the true root cause R is d-connecting with F given
its parents Pa(R). Under the faithfulness assumption, F must be conditionally dependent with R
given Pa(R), and by Causal Markov condition, F must be conditionally independent with R̄ given
Pa(R̄). These conditional independencies can be measured using CMI. Thus, RCA with unknown
graph can be broken down into two steps: finding the parents of each variable and estimating the
CMI given its parents. Ranking the potential root causes is then done by sorting the CMI values in
descending order. This non-parametric method is robust, capturing both linear and nonlinear depen-
dencies, and works across various types of distributions, whether discrete, continuous, or mixture.

Learning the partial causal graph from data requires a series of high-order CI tests (Spirtes et al.,
2000). However, the statistical power of these tests diminishes significantly as the size of the condi-
tioning set increases (Shah & Peters, 2020; Kocaoglu, 2023). To address this issue, we propose using
a more robust approach through the generalized C-PC algorithm (Lee et al., 2024), which obtains a
C-essential graph. This graph represents the Markov equivalence class of DAGs based on a restric-
tive set C of conditioning sets. The set C allows us to specify which conditioning set to use, enabling
reliance on CI tests with smaller conditioning sets and avoiding high-dimensional variables. For
details about the C-essential graph and its interpretation, see Appendix A and F. We also discuss the
challenges of using CI tests exclusively for RCA with a C-essential graph in Appendix I. Our key
contribution is that only n marginal invariance tests need to be conducted during failure to obtain
a superset of the parent set for each non-root-cause variable R̄ that d-separates R̄ from F , where
n is the number of observed variables. While Lemma 5.2 ensures the correctness of Algorithm 2,
Lemma 5.3 connects Algorithm 1 with Proposition 5.1 through the use of possible parent sets.
Lemma 5.2. Given a distribution P defined over a set of CIs based on a conditionally closed set
C, for any X,Y ∈ V and Z ∈ C, if (X ⊥⊥ Y |Z)P , (X ⊥̸⊥ W |Z)P , then no DAG faithful to P
contains the edge W → Y .

Lemma 5.3. Let M be the graph returned by Algorithm 2, F is not adjacent to X in Daug if and
only if F is d-separated with X given PossPaM (X) in Daug .

Next, we briefly discuss the trade-off between computational efficiency and sample complexity in
Algorithm 1. As noted by Corollary 5.4, a larger set C allows the C-PC algorithm to conduct more
CI tests, potentially including high-order tests. While this tends to result in a sparser graph, it

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Root Cause Analysis with Causal
Graphs (RCG)
input Observational data D, interventional data D⋆,

a C-essential graph G, a required number of root
causes l.

output top l root causes
1: D ← Concatenate D and D⋆ with F
2: G←MARGINAL-INVARIANCE(D,G)
3: for X ∈ V do
4: IX ← Estimate I(F ;X|PossPaG(X))
5: end for
6: Vs ←Sort X ∈ V by IX in descending order
7: Return the first l root causes from Vs.

Algorithm 2 MARGINAL-INVARIANCE
input Observational and interventional data distri-

bution P , a C-essential graph G = (V,E), CI
tester.

output G
1: for X,Y ∈ V do
2: if (F ⊥⊥ X)P and (F ⊥̸⊥ Y)P then
3: If X ← Y is in G, remove X ← Y
4: If X − Y is in G, orient X → Y
5: If Xo—oY is in G, orient Xo→ Y
6: If X ←oY is in G, orient X ↔ Y
7: end if
8: end for
9: Return G

also increases the time needed to learn the causal graph during normal operations and requires more
samples for reliable CI tests. The goal is to reduce the set of possible parents during normal operation
by conducting more informative CI tests based on data reliability. Although our method can leverage
advancements in consistent CMI estimators for high-dimensional datasets (Mukherjee et al., 2020;
Li et al., 2023), a smaller set of possible parents will reduce the time needed to compute CMI during
critical failure situations. We provide more discussion on this topic in the Appendix H.
Corollary 5.4. Given two graphs M1,M2 returned by Algorithm 2 based on two different C-
essential graphs εC1

(D) and εC2
(D), if C1 ⊂ C2, then |PossPaM1

(X)| ≥ |PossPaM2
(X)|.

6 EXPERIMENTS

In this section, we evaluate RCG’s accuracy by addressing two key questions: 1) Does a causal
graph help RCG identify the root cause? 2) How quickly can RCG find the root cause? We then dis-
cuss our implementation setup and present the results. We provide additional results in Appendix J.

Implementation. To generate experimental data, we followed a streamlined approach (Ikram et al.,
2022; Lin et al., 2024), using pyagrum (Ducamp et al., 2020) to create random causal graphs.
We then generated samples for both observational and interventional settings by perturbing the data
generation process of a randomly selected node. To ensure robustness, each experiment was repeated
100 times, with results reported as mean and standard error. In RCA literature, a key metric for
evaluating effectiveness is accuracy at top-l, defined as the probability of identifying the root cause
within the top l ranked causes. Hence, we report top-l accuracy along with the execution runtime.

For our experiments, we implemented the following baselines:

• RUN (Lin et al., 2024): It constructs a causal graph using neural Granger causal discov-
ery with contrastive learning. It ranks the nodes by PageRank with a personalized vector
according to the learned graph.

• MI: A simple approach that sorts each node based on its mutual information with F.

• RCD (Ikram et al., 2022): A recent method that uses CI tests to identify the root cause.

• RCG: A prototype of Algorithm 1, which uses C-PC to learn a causal graph. We use a
postfix to indicate how C is chosen, so RCG-k means that the input C-essential graph to
Algorithm1 was learned using C-PC with C containing all conditioning sets of size up to k.

To demonstrate the value of graphical structure, we first present an experiment where all baselines
used the ground truth graph as input. The results with graphs learned from data are shown in Ap-
pendix J.2. We also compare three variants of RCG: RCG(IGS)2, which takes a DAG as input and
identifies the root cause per Lemma 4.3; RCG-2; and RCG(CPDAG), which uses the essential graph

2For IGS, we referenced the recent findings from the POMS paper (Shangqi et al., 2023), but the authors
declined to share their code in a way that can be made public. Consequently, we implemented an older, simpler
version from (Tao et al., 2019). For a runtime comparison, please see Theorem C.1 and C.2 in Appendix.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 25 50 75 100
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

@
l

Top-1

5 25 50 75 100
Nodes

Top-3

5 25 50 75 100

Top-5
RUN MI RCD RCG(IGS) RCG-2 RCG(CPDAG)

(a) Top-l accuracy of RCG compared to baselines.

5 25 50 75 100
Nodes

100

101

102

103

104

Ex
ec

ut
io

n
Ti

m
e

(m
s)

RUN
MI
RCD

RCG(IGS)
RCG-2
RCG(CPDAG)

(b) The execution time.

Figure 2: The results demonstrate that RCG with RCG-2 consistently provides better accuracy com-
pared to RCD. While MI struggles due to its inability to condition on the parents of each node,
whereas RCD is capable of conditioning on other nodes but lacks information about the causal
structure. In contrast, RCG overcomes these challenges by learning a causal graph and using CMI
to rank the nodes effectively.

generated by the PC algorithm (Spirtes et al., 2000). Furthermore, we used 10,000 samples for the
normal period and only 100 samples for the post-failure dataset.

Figure 2 shows the top-l accuracy and runtime of different approaches with l = 1/3/5. Notably,
the accuracy of RCG (IGS) declines sharply, despite offering the lowest runtime among all CI-
based methods. This drop occurs because IGS assumes every query is perfect, but in our context,
running a CI test can yield incorrect results depending on sample availability. Consequently, IGS
makes erroneous decisions, resulting in poor performance as the number of nodes increases. This
highlights that while IGS presents strong theoretical results, it struggles with imperfect CI tests,
where a single error can lead to cascading failures. Similarly, RUN performs poorly due to its
PageRank personalization algorithm, which incorporates arbitrary constraints not applicable to our
experimental setup, such as assuming that leaf nodes are more likely to be the root cause. As a
result, even with the ground truth DAG, RUN fails to identify the root cause.

Comparing RCD and RCG, we find that RCG-2 generally achieves better accuracy. With 100 nodes,
RCG-2 identifies the root cause in the top-1 position with an accuracy of 56%, surpassing RCD’s
43%. This can improve to 65% if an accurate essential graph is learned. The superior performance
of RCG-2 stems from its sample-efficient graph learning using C-PC. However, RCG-2 also exhibits
the highest runtime because, with k = 2, it can only run CI tests where the size of the separating
set is 2. As discussed in Section 5, controlling the size of the separating sets affects graph sparsity;
smaller k values lead to denser graphs. At k = 2, we observe a substantial number of spurious edges
that could be removed by conditioning on a larger separating set. This increase the set of potential
parents for each node, subsequently raising the runtime for CMI calculations.

Nonetheless, the runtime can be reduced if an accurate sparse graph is learned during normal opera-
tions. This is evident from the runtime of RCG (CPDAG), where the input essential graph is learned
from k = n− 2 (with n as the number of nodes). Thus, RCG offers a trade-off between the number
of observational samples and the runtime for identifying the root cause post-failure. More observa-
tional samples result in a sparser graph, which increases runtime before the failure but ultimately
reduces runtime after the failure.

7 CASE STUDY

Sock-shop. This section demonstrates the effectiveness of RCG using the Sock-shop application, a
microservice-based replica of a web app for selling socks. The system consists of 13 microservices,
with 5 being the most critical and user-facing. Although Sock-shop is microservice-based, our
method remains system-agnostic. We used the dataset from Ikram et al. (2022), which includes two
failure types: CPU hog and memory leak. The dataset contains 50 instances, each running for 5
minutes in both normal and failure conditions. Each experiment was repeated 50 times, and we
report the mean top-l accuracy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

MI cRCA RUN BARO RCD RCG-0 RCG-C RCG-1 RCG-
Expert

top-1

Carts 0.79 0.80 0.00 1.00 0.56 0.54 0.67 0.80 0.30
Catalogue 0.11 0.40 0.00 1.00 0.18 0.97 0.43 0.10 0.81
Orders 0.36 0.40 0.00 1.00 0.68 0.72 0.82 0.40 0.96
Payment 0.27 0.40 0.00 1.00 0.65 0.78 0.84 0.29 0.93
User 1.00 1.00 0.00 1.00 1.00 0.72 0.90 1.00 0.87
Avg. 0.51 0.60 0.00 1.00 0.61 0.75 0.73 0.52 0.77

top-3

Carts 1.00 0.80 0.42 1.00 0.87 0.55 0.74 1.00 1.00
Catalogue 0.92 0.60 0.39 1.00 0.47 1.00 0.73 0.57 1.00
Orders 1.00 0.40 0.07 1.00 0.92 0.73 0.85 1.00 1.00
Payment 1.00 0.40 0.14 1.00 0.88 0.78 0.88 1.00 1.00
User 1.00 1.00 0.06 1.00 1.00 0.78 0.94 1.00 1.00
Avg. 0.98 0.64 0.22 1.00 0.77 0.75 0.83 0.91 1.00

top-5

Carts 1.00 1.00 0.62 1.00 0.82 0.55 0.75 1.00 1.00
Catalogue 0.93 0.60 0.58 1.00 0.51 1.00 0.89 0.82 1.00
Orders 1.00 0.60 0.15 1.00 0.87 0.74 0.86 1.00 1.00
Payment 1.00 0.40 0.20 1.00 0.86 0.78 0.88 1.00 1.00
User 1.00 1.00 0.11 1.00 1.00 0.82 0.97 1.00 1.00
Avg. 0.99 0.72 0.33 1.00 0.81 0.78 0.87 0.96 1.00

Table 1: The table shows the top-l accuracy of different baselines on the data collected from sock-
shop application after injecting CPU hog to a given microservice.

MI cRCA RUN BARO RCD RCG-0 RCG-C RCG-1 RCG-
Expert

top-1

Carts 0.87 0.20 0.02 1.00 0.58 1.00 1.00 0.87 0.36
Catalogue 0.10 0.20 0.00 1.00 0.20 0.98 0.49 0.08 0.49
Orders 1.00 0.00 0.00 1.00 1.00 0.98 0.99 0.99 0.95
Payment 0.99 0.40 0.00 1.00 0.93 0.91 0.97 0.98 1.00
User 0.98 0.40 0.00 1.00 1.00 0.76 0.91 0.98 0.97
Avg. 0.79 0.24 0.00 1.00 0.74 0.93 0.87 0.78 0.75

top-3

Carts 1.00 0.60 0.40 1.00 0.76 1.00 1.00 1.00 1.00
Catalogue 0.98 0.25 0.30 1.00 0.46 0.99 0.73 0.64 1.00
Orders 1.00 0.00 0.09 1.00 0.96 0.99 0.99 0.99 1.00
Payment 1.00 0.40 0.10 1.00 0.98 0.91 1.00 1.00 1.00
User 1.00 0.62 0.11 1.00 1.00 0.78 0.94 1.00 1.00
Avg. 1.00 0.37 0.20 1.00 0.83 0.93 0.93 0.93 1.00

top-5

Carts 1.00 0.80 0.66 1.00 0.77 1.00 1.00 1.00 1.00
Catalogue 0.99 0.52 0.60 1.00 0.49 1.00 0.85 0.80 1.00
Orders 1.00 0.00 0.16 1.00 1.00 0.99 0.99 1.00 1.00
Payment 1.00 0.40 0.19 1.00 0.96 0.91 1.00 1.00 1.00
User 1.00 0.67 0.26 1.00 1.00 0.87 0.99 1.00 1.00
Avg. 1.00 0.48 0.37 1.00 0.84 0.95 0.97 1.00 1.00

Table 2: The table presents the top-l accuracy of various baselines on data collected from the Sock-
shop application after injecting a memory leak failure into a specific microservice.

For the Sock-shop scenario, we considered state-of-the-art RCA baselines, including causal-
RCA (Xin et al., 2023) (shown as cRCA), RUN (Lin et al., 2024), BARO (Pham et al., 2024),
and RCD. Since RCG requires a causal graph, we used C-PC, with postfixes indicating how C was
chosen. For example, RCG-k refers to using all conditioning sets up to size k, where k ∈ {0, 1}.
We also introduced RCG-C, which avoids certain conditioning sets that may lead to faithfulness vi-
olations due to large support and finite samples. Additionally, we constructed a causal graph based
on the system’s call graph, denoted as RCG-Expert, to leverage expert knowledge for root cause
identification.

Table 1 and 2 compares the top-l accuracy of RCG with different baselines on the Sock Shop dataset.
The results align with those from the synthetic data experiments in Section 6. Notably, RCD and
RCG-0 perform similarly because, with k = 0, C-PC is limited to marginal CI tests, producing a
dense C-essential graph. This results in more possible parent nodes, forcing RCG to condition on
more variables, which can obscure the true root cause. However, when k = 1, RCG outperforms
RCD by allowing C-PC to use separating sets of size one. Increasing k improves graph learning
but demands larger sample sizes for reliable CI tests. RCG-C strikes a balance by refining the graph
after k = 0, selectively conditioning on nodes with fewer states. Additionally, the system call graph
shows that when a high-quality causal graph can be learned from observational data, RCG achieves
strong target identification accuracy.

BARO achieved high top-1 accuracy on the Sock-shop data for both failure types. However, it dis-
regards the correct causal order in the data-generating mechanism and is limited to continuous data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Outage Nodes Normal
Samples

Failure
Samples

Duration
(hours)

A 152 4783 918 15
B 141 4626 1217 20
C 149 3464 110 2
D 146 7165 567 5

Outage RCG-0 RCG-1 RCG-2 MI BARO

A 7 - - - 9
B 1 6 - 9 6
C 1 1 1 1 8
D 5 5 6 3 -

Table 3: (Left) Summary of outages from a real-world production application. (Right) Rank of the
root cause among the top 10 nodes for each baseline, with a rank of 1 indicating the highest-ranked
node and a dash indicating the root cause was not found. RCG consistently outperforms MI and
BARO at k = 0, but higher values of k lead to a less reliable causal graph and decreased consis-
tency. MI and BARO underperform by disregarding ancestral relationships and focusing solely on
individual node changes.

As shown in Appendix J.3, BARO yields suboptimal results even with continuous data compared to
RCG, which utilizes correct causal knowledge.

Real Datasets.

To assess the effectiveness of RCG and competing approaches, we collected data from a real-world
production application over a seven-month period (January to July 2024), during which four outages
were reported. For each incident, Software Reliability Engineers (SREs) documented key details,
including outage duration, detection time, resolution method, and root cause. A summary of these
outages is shown in the left table of Table 3. To identify the root cause, we presented the SREs with
the top 10 ranked nodes from each baseline and asked them to confirm if the true root cause was
among them. We report the rank of the root cause for each incident, where a lower rank indicates
better performance by the method.

The right table in Table 3 compares the performance of MI, BARO, and RCG on the real-world
dataset. The results show that RCG consistently outperforms both MI and BARO. With k = 0,
RCG ranked the root cause within the top 5 nodes in three out of four cases. In contrast, BARO
often ranked the root cause near the bottom and failed to identify it entirely in one case, highlighting
the limitations of methods focused solely on detecting noticeable changes. This also underscores
the drawbacks of relying on a single point of the distribution (such as the median), which may not
accurately capture the shift between the two distributions. MI ranked the root cause in the top 3 for
two outages but missed it in one case, likely due to the causal structure resembling a tree, which MI
handles well due to data processing inequality. We also compared RCG at k = 0 and k = 1, finding
that increasing k did not consistently improve accuracy. In some cases, accuracy declined due to
less reliable CI tests with larger separating sets, leading to incorrect parent node conditioning and
inaccurate rankings.

In real-world applications, finding the right balance between accuracy and the informativeness of CI
tests can be challenging. To address this, we propose an approach, RCG⋆, which combines results
from different values of k instead of selecting a single one. For example, one could take the top
nodes from RCG-0 and combine them with the top nodes from RCG-1 until reaching a total of l
nodes. However, we leave the exploration of this combined approach for future work.

8 CONCLUSION

Identifying the root cause of system failures is a critical challenge in software systems. We argue
that leveraging the causal structure of a system can provide valuable insights for diagnosing failures.
We first demonstrate the value of the causal graph by showing that it can significantly reduce the
number of invariance tests required. We show the lower bound on the number of marginal CI tests
required to identify the root cause given the correct causal graph for any algorithm that uses solely
marginal invariance tests. We then argue that the system’s normal operational time can be leveraged
to learn a partial causal graph. Based on this, we introduce an algorithm that systematically uses the
partial causal graph to identify the root cause with a linear number of invariance tests. Empirical
results show that our approach outperforms state-of-the-art methods, improving detectability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Álvaro Brandón, Marc Solé, Alberto Huélamo, David Solans, Marı́a S Pérez, and Victor Muntés-
Mulero. Graph-based root cause analysis for service-oriented and microservice architectures.
Journal of Systems and Software, 159:110432, 2020.

Alfonso Capozzoli, Fiorella Lauro, and Imran Khan. Fault detection analysis using data mining
techniques for a cluster of smart office buildings. Expert Systems with Applications, 42(9):4324–
4338, 2015.

Federico Castelletti, Guido Consonni, Marco L Della Vedova, and Stefano Peluso. Learning markov
equivalence classes of directed acyclic graphs: an objective bayes approach. 2018.

Sarthak Chakraborty, Shaddy Garg, Shubham Agarwal, Ayush Chauhan, and Shiv Kumar Saini.
Causil: Causal graph for instance level microservice data. In Proceedings of the ACM Web Con-
ference 2023, pp. 2905–2915, 2023.

Pengfei Chen, Yong Qi, Pengfei Zheng, and Di Hou. Causeinfer: Automatic and distributed perfor-
mance diagnosis with hierarchical causality graph in large distributed systems. In IEEE INFO-
COM 2014-IEEE Conference on Computer Communications, pp. 1887–1895. IEEE, 2014.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of machine
learning research, 3(Nov):507–554, 2002.

Max Chickering, David Heckerman, and Chris Meek. Large-sample learning of bayesian networks
is np-hard. Journal of Machine Learning Research, 5:1287–1330, 2004.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4027–
4035, 2021.

Martin Drasar and Tomas Jirsik. It operations analytics: Root cause analysis via complex event
processing. In 2019 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), pp. 741–742. IEEE, 2019.

Gaspard Ducamp, Christophe Gonzales, and Pierre-Henri Wuillemin. aGrUM/pyAgrum : a Tool-
box to Build Models and Algorithms for Probabilistic Graphical Models in Python. In 10th
International Conference on Probabilistic Graphical Models, volume 138 of Proceedings of Ma-
chine Learning Research, pp. 609–612, Skørping, Denmark, September 2020. URL https:
//hal.archives-ouvertes.fr/hal-03135721.

Scott Emmons, Coburn Watson, and Brendan Gregg. A microscope on microservices. netfli
xtechblog.com/a-microscope-on-microservices-923b906103f4/, 2022.
Netflix Technology Blog.

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. Sage: practical and
scalable ml-driven performance debugging in microservices. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 135–151, 2021.

Chang Gong, Di Yao, Jin Wang, Wenbin Li, Lanting Fang, Yongtao Xie, Kaiyu Feng, Peng Han, and
Jingping Bi. Porca: Root cause analysis with partially. arXiv preprint arXiv:2407.05869, 2024.

Daniel Holbach. Sock-shop, a microservice demo application. https://github.com/ocp-p
ower-demos/sock-shop-demo, 2022.

Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi, and Murat Kocaoglu.
Root cause analysis of failures in microservices through causal discovery. Advances in Neural
Information Processing Systems, 35:31158–31170, 2022.

Amin Jaber, Murat Kocaoglu, Karthikeyan Shanmugam, and Elias Bareinboim. Causal discovery
from soft interventions with unknown targets: Characterization and learning. Advances in neural
information processing systems, 33:9551–9561, 2020.

11

https://hal.archives-ouvertes.fr/hal-03135721
https://hal.archives-ouvertes.fr/hal-03135721
netflixtechblog.com/a-microscope-on-microservices-923b906103f4/
netflixtechblog.com/a-microscope-on-microservices-923b906103f4/
https://github.com/ocp-power-demos/sock-shop-demo
https://github.com/ocp-power-demos/sock-shop-demo

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kathryn M Kellogg, Zach Hettinger, Manish Shah, Robert L Wears, Craig R Sellers, Melissa
Squires, and Rollin J Fairbanks. Our current approach to root cause analysis: is it contributing to
our failure to improve patient safety? BMJ quality & safety, 2016.

Murat Kocaoglu. Characterization and learning of causal graphs with small conditioning sets. In
Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), pp. 1–12, 2023.

Wai-Yin Lam, Bryan Andrews, and Joseph Ramsey. Greedy relaxations of the sparsest permutation
algorithm. In Uncertainty in Artificial Intelligence, pp. 1052–1062. PMLR, 2022.

Robert J Latino. How is the effectiveness of root cause analysis measured in healthcare? Journal of
Healthcare Risk Management, 35(2):21–30, 2015.

Kenneth Lee, Bruno Ribeiro, and Murat Kocaoglu. Constraint-based causal discovery from a col-
lection of conditioning sets. In 9th Causal Inference Workshop at UAI 2024, 2024.

Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
inference-based root cause analysis for online service systems with intervention recognition. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 3230–3240, 2022.

Shuai Li, Yingjie Zhang, Hongtu Zhu, Christina Wang, Hai Shu, Ziqi Chen, Zhuoran Sun, and
Yanfeng Yang. K-nearest-neighbor local sampling based conditional independence testing. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 23321–23344. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/fi
le/48db67447e92539501bd71645ff33b72-Paper-Conference.pdf.

Cheng-Ming Lin, Ching Chang, Wei-Yao Wang, Kuang-Da Wang, and Wen-Chih Peng. Root cause
analysis in microservice using neural granger causal discovery. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pp. 206–213, 2024.

JinJin Lin, Pengfei Chen, and Zibin Zheng. Microscope: Pinpoint performance issues with causal
graphs in micro-service environments. In Service-Oriented Computing: 16th International Con-
ference, ICSOC 2018, Hangzhou, China, November 12-15, 2018, Proceedings 16, pp. 3–20.
Springer, 2018.

Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang, and Ping Wang. Automap:
Diagnose your microservice-based web applications automatically. In Proceedings of The Web
Conference 2020, pp. 246–258, 2020.

Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu, Yiyin Zhang, Chenyang Jia,
Zhaogang Wang, and Dan Pei. Localizing failure root causes in a microservice through causality
inference. In 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS), pp.
1–10. IEEE, 2020.

Joris M Mooij, Sara Magliacane, and Tom Claassen. Joint causal inference from multiple contexts.
Journal of Machine Learning Research, 21(99):1–108, 2020.

Sudipto Mukherjee, Himanshu Asnani, and Sreeram Kannan. Ccmi: Classifier based conditional
mutual information estimation. In Uncertainty in artificial intelligence, pp. 1083–1093. PMLR,
2020.

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

Judea Pearl. Causal inference in statistics: An overview. 2009.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Emilija Perković, Markus Kalisch, and Maloes H Maathuis. Interpreting and using cpdags with
background knowledge. arXiv preprint arXiv:1707.02171, 2017.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/48db67447e92539501bd71645ff33b72-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/48db67447e92539501bd71645ff33b72-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Causal inference on time series using
restricted structural equation models. Advances in neural information processing systems, 26,
2013.

Luan Pham, Huong Ha, and Hongyu Zhang. Baro: Robust root cause analysis for microservices
via multivariate bayesian online change point detection. Proceedings of the ACM on Software
Engineering, 1(FSE):2214–2237, 2024.

Juan Qiu, Qingfeng Du, Kanglin Yin, Shuang-Li Zhang, and Chongshu Qian. A causality mining
and knowledge graph based method of root cause diagnosis for performance anomaly in cloud
applications. Applied Sciences, 10(6):2166, 2020.

Raanan Y Rohekar, Shami Nisimov, Yaniv Gurwicz, and Gal Novik. Iterative causal discovery in
the possible presence of latent confounders and selection bias. Advances in Neural Information
Processing Systems, 34:2454–2465, 2021.

Marc Schaaf, Gwendolin Wilke, Topi Mikkola, Erik Bunn, Ilkka Hela, Holger Wache, and
Stella Gatziu Grivas. Towards a timely root cause analysis for complex situations in large scale
telecommunications networks. Procedia Computer Science, 60:160–169, 2015.

Rajen D Shah and Jonas Peters. The hardness of conditional independence testing and the gener-
alised covariance measure. 2020.

Lu Shangqi, Wim Martens, Matthias Niewerth, and Yufei Tao. Partial order multiway search. ACM
Transactions on Database Systems, 48(4):1–31, 2023.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear
non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7(10),
2006.

Peter Spirtes. An anytime algorithm for causal inference. In International Workshop on Artificial
Intelligence and Statistics, pp. 278–285. PMLR, 2001.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social
science computer review, 9(1):68, 1991.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and search. MIT
press, 2000.

Yufei Tao, Yuanbing Li, and Guoliang Li. Interactive graph search. In Proceedings of the 2019
International Conference on Management of Data, pp. 1393–1410, 2019.

Dongjie Wang, Zhengzhang Chen, Yanjie Fu, Yanchi Liu, and Haifeng Chen. Incremental causal
graph learning for online root cause analysis. In Proceedings of the 29th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, pp. 2269–2278, 2023a.

Dongjie Wang, Zhengzhang Chen, Jingchao Ni, Liang Tong, Zheng Wang, Yanjie Fu, and Haifeng
Chen. Interdependent causal networks for root cause localization. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5051–5060, 2023b.

Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang, Selcuk Kopru, and Tao
Xie. Groot: An event-graph-based approach for root cause analysis in industrial settings. In
2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.
419–429. IEEE, 2021.

Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Disheng Pan, Yuan Wang, and Pengfei Chen.
Cloudranger: Root cause identification for cloud native systems. In 2018 18th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 492–502. IEEE,
2018.

Kaitlynn M Whitney and Charles B Daniels. The root cause of failure in complex it projects:
Complexity itself. Procedia Computer Science, 20:325–330, 2013.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Marcel Wienöbst and Maciej Liskiewicz. Recovering causal structures from low-order conditional
independencies. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
10302–10309, 2020.

Li Wu, Johan Tordsson, Jasmin Bogatinovski, Erik Elmroth, and Odej Kao. Microdiag: Fine-grained
performance diagnosis for microservice systems. In 2021 IEEE/ACM International Workshop on
Cloud Intelligence (CloudIntelligence), pp. 31–36. IEEE, 2021.

Ruyue Xin, Peng Chen, and Zhiming Zhao. Causalrca: causal inference based precise fine-grained
root cause localization for microservice applications. Journal of Systems and Software, 203:
111724, 2023.

Karren Yang, Abigail Katcoff, and Caroline Uhler. Characterizing and learning equivalence classes
of causal dags under interventions. In International Conference on Machine Learning, pp. 5541–
5550. PMLR, 2018.

Jiji Zhang. On the completeness of orientation rules for causal discovery in the presence of latent
confounders and selection bias. Artificial Intelligence, 172(16-17):1873–1896, 2008.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

A GRAPH NOTATIONS

Definition A.1. A graph D = (V,E) consists of a set of nodes (variables) V and a set of edges
E. We use (X,Y) to denote an edge between a variable X and another variable Y in D. We
consider graphs that contain only directed (→) and undirected (−) edges. A directed graph has only
directed edges. A partially directed graph may have both undirected and directed edges. A graph
D′ = (V′,E′) is a subgraph of D = (V,E) and D is a supergraph of D′ if V′ ⊆ V and E′ ⊆ E.
D′ is an induced subgraph of D if E′ are all edges in E between nodes in V′.
Definition A.2 (Path). Two vertices in a graph are said to be adjacent if there is an edge between
them. Given a partially directed graph D, a path from V0 to Vn in D is a sequence of distinct vertices
⟨V0, V1, . . . , Vn⟩ such that for 0 ≤ i ≤ n − 1, Vi and Vi+1 are adjacent. It is called a causal (or
directed) path from V0 to Vn in D if Vi is a parent of Vi+1 for 0 ≤ i ≤ n− 1.
Definition A.3 (Colliders). A consecutive triple of nodes ⟨X,Y, Z⟩ on a path is called a collider if
both the edge between X and Y and the edge between Y and Z have arrowheads pointing to Y . If
additionally X and Z are not adjacent, it is called unshielded collider. Any other consecutive triple
is called a non-collider. If additionally, the two end vertices of the triple are not adjacent, it is called
a unshielded non-collider.
Definition A.4 (Ancestrality). In a graph D, for any two nodes X,Y in D, if there is a directed edge
X → Y , then X is a parent of Y and Y is a child of X in D. If there is a causal path from X to Y ,
then X is called an ancestor of Y and Y is called a descendant of X . We denote a set of parents of X ,
a set of children of X , a set of ancestors of X , a set of descendants of X and a set of non-descendants
of X in D as PaD(X), ChD(X), AnD(X), DeD(X) and NDeD(X) respectively. By convention,
X is both an ancestor and a descendant of X in D. X is called a possible parent of Y , denoted as
PossPaD(X), if any of the following edges is in D: {X − Y,Xo→ Y,X → Y,Xo—oY }. A
source (or root) node has no parents. A sink node does not have any child.

In general, constraint-based algorithms can only learn up to an equivalence class of models, a set of
DAGs that induce the same conditional independencies via d-separation, which gives the following
definition.
Definition A.5 (Markov Equivalence). Two DAGs D1, D2 with the same set of vertices are Markov
equivalent if for any three disjoint set of vertices X,Y,Z, X and Y are d-separated by Z in D1

if and only if X and Y are d-separated by Z in D2. A set of DAGs that encode the same set
of conditional independence induced only by the causal Markov assumption is called the Markov
equivalence class. Denote the Markov equivalence class of a DAG D by [D].
Definition A.6. (Essential Graph) The essential graph of a DAG D has the same skeleton as D,
with directed edges Xi → Xj if such edge direction between Xi and Xj holds for all DAGs in [D],
and undirected edges otherwise.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The essential graph is also called the completed partially directed acyclic graph (CPDAG) (Perković
et al., 2017; Castelletti et al., 2018). Lee et al. (2024) defines the following set to restrict the condi-
tioning sets used by all CI tests and the corresponding Markov equivalence class.
Definition A.7 (Conditionally Closed Sets). For a DAG D = (V,E), let I = {Ii} be a set of CI
statements of the form Ii = (X,Z, Y), i.e., (X ⊥⊥ Y |Z) or (X ⊥̸⊥ Y |Z), where X,Y ∈ V,Z ⊂ V.
A set C is called conditionally closed if the following holds

1. ∅ ∈ C and

2. ∃X,Y ∈ V, (X,C, Y) ∈ I ⇒ (A,C, B) ∈ I for all A,B ∈ V and for all C ∈ C

Generally, a DAG is only identifiable up to its Markov equivalence class since different DAGs can
generate the same observational distributions. Here, an equivalence class of DAGs learned based on
conditional independence relations restricted to C is defined as follows.
Definition A.8 (C-Markov equivalence). Two DAGs D1, D2 are C-Markov equivalent if for any
three disjoint subsets X ⊂ V, Y ⊂ V,Z ∈ C, X and Y are d-separated by Z in D1 if and only
if X and Y are d-separated by Z in D2, where C is conditionally closed. The set of DAGs that
encode the same set of conditional independence induced only by the causal Markov assumption
with conditioning sets from C is called the C-Markov equivalence class. We denote two DAGs
D1, D2 that are C-Markov equivalent as D1 ∼C D2.

Lee et al. (2024) defines a graphical representation that characterizes the set of d-separation relations
based on C via the notion called C-closure.
Definition A.9 (C-covered). Given a DAG D = (V,E) and a conditionally closed set C, a pair of
variables X,Y is said to be C-covered if there exists no separating set C in C to d-separate X and Y
in D, i.e., ̸ ∃C ∈ C s.t. (X ⊥⊥ Y |C)D.

Definition A.10 (C-closure). For a DAG D and a conditionally closed set C, the C-closure of D,
denoted as SC(D), is a graph that has the following properties:

1. If: X,Y are C-covered in D
(i) if X ∈ AnD(Y), then X → Y in SC(D), (ii) if Y ∈ AnD(X), then Y → X in SC(D),
(iii) else X ↔ Y in SC(D).

2. Else: X,Y are not adjacent in SC(D).

The relationship between a DAG and C-closure graph is described by the following lemma, which
says that all d-separation relations based on C hold in a DAG also hold C-closure.
Lemma A.11. Lee et al. (2024) C-closure graph SC(D) of a DAG D entails the same d-separation
statements conditioned any C ∈ C as the DAG, i.e., (X ⊥⊥ Y |C)D ⇔ (X ⊥⊥ Y |C)SC(D),∀C ∈ C.
Theorem A.12. Lee et al. (2024) Two DAGs D1, D2 are C-Markov equivalent if and only if SC(D1)
and SC(D2) are Markov equivalent.

The representation of a set of Markov equivalence classes of C-closure graphs is called the C-
essential graph.
Definition A.13. [edge unions: —, o—o, o→] The edge union operations of a set of C-closure
graphs are defined as: (i) X — Y := X → Y ∪ X ← Y , (ii) X o—o Y := X → Y ∪ X ←
Y ∪X ↔ Y , (iii) X o→ Y := X → Y ∪X ↔ Y . We use ∗ to denote a wildcard mark of any of
the following marks: a tail, an arrowhead, and a circle.
Definition A.14 (C-essential graph). For any DAG D, the edge union of all C-closure graphs that
are Markov equivalent to SC(D) is called the C-essential graph of D, denoted as εC(D).

Note that C-essential graph is a supergraph of the essential graph. The more conditioning sets that
are included in C, the closer that the C-essential graph will be like the essential graph. For learning
Daug , we need to leverage distributional invariances across the normal and anomalous datasets via
the following two assumptions. For a more detailed discussion on these assumptions, please see
Jaber et al. (2020).
Assumption A.15 (Ψ-Markov conditions). Let P denote an ordered tuple of distributions and let I
be an ordered tuple of the children of F-NODE. P is called Ψ-Markov relative to a graph Daug =
(V,E) if the following holds for Y,Z,W ⊆ V:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1. For Ii ∈ I: Pi(y|w, z) = Pi(y|w) if Y ⊥⊥ Z|W in Daug

2. For Ii, Ij ∈ I: Pi(y|w) = Pj(y|w) if Y ⊥⊥ K|WK in DaugWK,R(W)

, where K := (Ii\Ij)∪(Ij\Ii), WK := W∩K,R := K\WK, and R(W) ⊆ R are non-ancestors
of W in Daug .

Assumption A.16 (c-faithfulness). A tuple of distributions P are said to be c-faithful to Daug if the
converse of each of the Ψ-Markov conditions holds.

B RELATED WORK

Root Cause Analysis in Microservices. Root Cause Analysis (RCA) is done both online (Wang
et al., 2023a) and offline (Deng & Hooi, 2021), often relying on system dependency graphs (Chen
et al., 2014). Previous approaches have used statistical techniques, deep neural networks, and graph
representation (Brandón et al., 2020; Capozzoli et al., 2015; Ma et al., 2020). For instance, (Lin
et al., 2018) uses z-scores to compare the distributions of normal operation and anomalous system
data. The method finds the root cause by identifying nodes that deviate the most between two
distributions, but it imposes normality assumptions on the data and it is sensitive to outliers. Li et al.
(2022) also uses similar techniques with a call graph provided by expert knowledge to adjust the
scores. Pham et al. (2024) improves this idea by using median and interquartile range instead, but
the method is not applicable to discrete distributions. Wang et al. (2023b) used both individual and
topological time series data to capture interdependencies between microservices, while Xin et al.
(2023) introduced a gradient-based causal structure learning method to generate weighted causal
graphs and developed a root cause inference method called CausalRCA. Recently, Lin et al. (2024)
proposed RUN, a method that forecasts time series by constructing a neural network for each system
metric and then uses the forecasted data to build a Granger causal graph. During the diagnosis stage,
RUN, like other algorithms, applies a weighted personalized PageRank algorithm to traverse the
graph and identify the root cause. A closely related work to ours is RCD (Ikram et al., 2022),
where Ikram et al. (2022) presented a causal framework that treats failure as an intervention. They
developed a hierarchical approach to causal discovery by randomly partitioning the set of observed
variables and using a series CI tests in each partition to produce a set of potential root causes. This
approach is particularly relevant to our work, as it also employs CI tests to localize and pinpoint
the failure’s root cause. However, despite the innovative contributions of these recent studies, we
argue that a critical aspect has been overlooked: the opportunity to utilize normal operation periods
to develop a more efficient and effective RCA method for failure periods.

Causal Discovery with Bounded Conditioning Set Size. Given that the use of CI tests is a central
aspect of our work, we provide a brief overview of recent advances in causal discovery, particularly
those focused on bounding the size of CI tests. Causal discovery often relies on a series of CI tests
to determine relationships between variables. However, this approach can be problematic, as the
statistical power of CI tests diminishes with a finite sample size or when the conditioning set is
large (Shah & Peters, 2020). A promising direction in addressing this issue has been the exploration
of methods to restrict the size of the conditioning set. In the absence of latent confounders, Wienöbst
& Liskiewicz (2020) introduced a sound and complete algorithm known as Low-Order Causal In-
ference (LOCI), which learns a graphical representation based on CI relations of order k or lower.
Similarly, Kocaoglu (2023) provided a novel characterization of the graphical representation termed
the k-essential graph, along with a sound learning algorithm to construct it. Building on these ideas,
Lee et al. (2024) proposed an approach that further restricts the conditioning sets for all CI tests so
long these tests include all marginal tests. Our objective in this work is to integrate these recent
advancements to develop and utilize a more robust causal graph than the current state-of-the-art in
RCA literature.

C THEOREMS AND PROOFS

For the sack clarity, we first provide the Theorem 1 from Shangqi et al. (2023) and Theorem 2
from Tao et al. (2019). Shangqi et al. (2023) term the IGS problem as the POMS problem and they
refer to a DAG as an input graph.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Theorem C.1 (Shangqi et al. (2023)). For the POMS problem, let n represent the number of vertices
in the input graph D and d denote the maximum vertex out-degree in D. Both of the following
statements are true:

• There is an algorithm that can find the target in O(log1+k n+ (d/k) log1+d n) probs.

• Any POMS algorithm must perform Ω(log1+k n + (d/k) log1+d n probs to find the target
in the worse case.

Theorem C.2 (Tao et al. (2019)). Both of the following statements are true about the IGS problem:

• DFS-interleave asks at most ⌈log2 h⌉ · (1 + ⌊log2 n⌋+ (d− 1) · ⌈logd h⌉ questions.

• Any algorithm must ask at least (d− 1) · ⌈logd h⌉ questions in the worst case.

We provide the pseudocode of DFS-interleave, which has been modifed for RCA, in Algo-
rithm 7.
Lemma 4.1. Given a causal graph D, if (F ⊥⊥ X)P for some X ∈ V, then A ̸∈ ChDaug

(F) for
all A ∈ AnD(X), where P is any joint distribution between variables on Daug .

Proof. For the sake of contradiction, suppose F → A in Daug for some A ∈ AnD(X). Since A is
an ancestor of X in D, there must be a directed path q from A to X in D. Thus, q must also exist
in Daug . Consider the path obtained by concatenating F → A with q in Daug . This path must be
d-connecting in Daug . Thus, it must be that (F ̸⊥⊥ X)Daug

. From interventional faithfulness, we
have that (F ̸⊥⊥ X)P , which is a contradiction.

Lemma 4.2. Given a causal graph D, if (F ̸⊥⊥ X)P for some X ∈ V, then then Q ̸∈ ChDaug (F)
for all Q ∈ NAnD(X), where P is any joint distribution between variables on Daug .

Proof. For the sake of contradiction, suppose F → Q in Daug for some Q ∈ NAnD(X). Since
Q is a non-ancestor of X in D, without loss of generality, there are several cases: (i) there exists a
directed path q from X to Q in G (ii) there is no path between Q and X in D and (iii) any path p
between X and Q must have a collider on p in D.

For case (i), q must also exist and be directed in D. By concatenating the path from X to Q and
F → Q, we see the path from F to X is blocked. Thus, we have (F ⊥⊥ X)D, which implies
(F ⊥⊥ X)P by Assumption A.15, which is a contradiction.

For case (ii), there is no path between X and Q in D, which implies (F ⊥⊥ X)D so that we reach
the same contradiction.

For case (iii), every collider on any path p between Q and X must also be in D such that we have
(F ⊥⊥ X)D by concatenating F → Q with p, which implies (F ⊥⊥ X)P by Assumption A.15,
which is a contradiction.

Lemma 4.3. Consider a DAG D = (V,E) with a single sink node and D′ be a DAG by reversing
every edge direction in E, let Q(X) be a query to the oracle on whether some X ∈ V has a directed
path to an unknown target node R ∈ V.

Q(X) = yes⇔ (F ̸⊥⊥ X)P (1)

. Therefore, if Q(X) = yes, then X ∈ AnD′(R). If Q(X) = no, then X ∈ NAD′(R).

Proof. Consider some nodes X ∈ V, suppose (F ⊥⊥ X)P , then X ∈ NDeD(R) by Lemma
4.1. Note that NDeD(R) = NAnD′(R) due to DeD(R) = AnD′(R) by the given conditions
for D and D′. Therefore, X ∈ NAnD′(R). As NAnD′(R) ⇔ Q(X)= no. We have that (F ⊥
⊥ X)P ⇒ Q(X) = no. Similarly, suppose (F ̸⊥⊥ X)P , then X ∈ DeD(R) by Lemma 4.2. As
DeD(R) = AnD′(R), we have that (F ̸⊥⊥ X)P ⇒ X ∈ AnD′(R), which is equivalent to Q(X) =
yes.

Theorem 4.4. Given a causal graph D with a single sink node, any algorithm the only uses marginal
invariance tests must perform Ω(log2 n+ d log1+d n) many tests to find the single root cause in the
worst case, where d is the maximum in-degree of D and n is the number of nodes. There exists an
algorithm that finds the root cause with O(log2 n+ d log1+d n) marginal invariance tests.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. This follows from Lemma 4.3 and Theorem 1 in (Shangqi et al., 2023), which says that
any algorithm must ask Ω(log2 n + d log1+d n) queries to identify the target node selected by an
adversary in a DAG D′ with a single root node for the problem of IGS, where d is the maximum
out-degree in D′ and there is an algorithm that can find the target node in O(log2 n + d log1+d n)
number of queries.

The following lemma is similar to Lemma 1 in Wienöbst & Liskiewicz (2020) but its setup is based
on CIs restricted to the conditionally closed set C.
Lemma 5.2. Given a distribution P defined over a set of CIs based on a conditionally closed set
C, for any X,Y ∈ V and Z ∈ C, if (X ⊥⊥ Y |Z)P , (X ⊥̸⊥ W |Z)P , then no DAG faithful to P
contains the edge W → Y .

Proof. For the sake of contradiction, assume that there is DAG that contains the directed edge from
W to Y . Since (X ⊥̸⊥W |Z)P , we have that X is d-connecting with W given Z, concatenating this
d-connecting path with W → Y , we have that X is also d-connecting with W given Z, which is a
contradiction.

Lemma 5.3. Let M be the graph returned by Algorithm 2, F is not adjacent to X in Daug if and
only if F is d-separated with X given PossPaM (X) in Daug .

Proof. We will prove the if (⇒) direction.

We first give a critical insight. We note that if F-NODE points to any variable that is a collider H on
some paths p in Daug , then running marginal tests must have allowed us to orient Fo→ H ←oU
and Fo→ H ←oQ for some variables U,Q on p in the given εC(D) due to Lemma 5.2. Thus, we
call this resulting graph M rather than εC(D). If F is marginally independent with all members in
the adjacency set of H , then the result follows.

Suppose there is more than one node being marginally dependent on F . We call this set Z. Then, we
know F must have a directed path to all such nodes Z ∈ Z in Daug as there is no incoming edges to
F and each of these nodes is marginally dependent with F . We will prove the claim that if F is not
adjacent to Z in Daug , then F is d-separated with Z given PossPaM (Z) in Daug for all Z ∈ Z.

For the sake of contradiction, assume that F is d-connecting with Z given PossPaM (Z) in Daug .
First, we note that PossPaM (Z) must contain all parents of Z in Daug . Since there exists a directed
path from F to Z, we call this path r as shown below:

F → T → . . .→W → ...→ Z. (4)

Then, since PossPaM (Z) must contain all parents of Z, we consider two cases: (i) there exists a
backdoor active path from F to Z by concatenating with a subpath of r as follows:

F → T → . . .→W ← Q→ . . .→ Z (5)

and case (ii): there exists a d-connecting path from F to Z given some variables K as follows

F → T → . . .→W → . . .→ K ← Z (6)

Case (i) - there exists a backdoor active path from F to Z by concatenating with a subpath of r: We
will first show a contradiction in case (i). Note that we cannot have Q ∈ AnDaug (Z). To see that,
suppose Q and Z is C-covered, then Q must be in PossPaM (Z) as (F ̸⊥⊥ Z)P so that Algorithm 2
will not change the orientation of this edge. Suppose they are not C-covered, there exists a member
along this path from Q to Z conditioned on which d-separates Q and Z, which contradicts with the
fact there is an active backdoor path. Thus, there exists a collider U1 on the path from Q to Z as
follows.

F → T → . . .→W ← Q→ . . .→ U1 ← . . . Z (7)
Then, a member in DeDaug

(U1) must be in PossPaM (Z) in order for the path in (7) to be a d-
connecting path from F to Z. Consider U1 is a child of Z in Daug and the node U2 that is closest
to U1 to form U2 → U1 ← Z in Daug . If U2 and Z are not C-covered, then ⟨U2, U1, Z⟩ must be
unshielded in M . Then, U1 cannot be in PossPaM (Z) as Z∗→ U1 must have been oriented as an

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

unshielded collider in M , which is a contradiction. If U2 and Z are C-covered, then U2 is adjacent
to Z in M . We will consider two cases: (a) U2 ̸∈ PossPaM (Z) and (b) U2 ∈ PossPaM (Z).

Case(a): U2 ̸∈ PossPaM (Z): Suppose U2 ̸∈ PossPaM (Z), then it must be that U2 ←∗Z in M .
Then, we have a collider ⟨U3, U2, Z⟩ on the path from W to Z, where U3 is the next closest node to
U2 on the same path. If ⟨U3, U2, Z⟩ is unshielded in M , then the C-essential graph provided would
have oriented U3∗→ U2∗→ U1 in M by using the first Meek rule. Then, using acyclicity (second
Meek rule) infers that Z∗→ U1 in M such that U1 ̸∈ PossPaM (Z). Since we have Z∗→ U2

in M , there exists a C-closure graph SC(D′) of some causal graph D′ that is C-Markov equivalent
to Daug by Theorem A.12 and Z ∈ AnD′(U2). The path F → W ← Q → U2 concatenating
this directed path from Z to U2 cannot be a d-connecting path from F to Z given PossPaM (Z)
because the child of Z on this path would not be in PossPaM (Z) as U1 is also a child of Z.
Hence, we reach a contradiction. Suppose ⟨U3, U2, Z⟩ is shielded, we see that the same argument
repeats by picking the next closest node to U3 until we have reached that ⟨Q,Uj , Z⟩ is shielded
for some j, if Q ∈ PossPaM (Z), then we will also reach a contradiction because the path in (7)
will no longer be active from F to Z given PossPaM (Z). We will see that it is impossible to
have Q ̸∈ PossPaM (Z) either. Suppose Q ̸∈ PossPaM (Z), then there must exist Z∗→ Q in
M . However, this is also a contradiction for the following reason: any DAGs that is C-Markov
equivalent to Daug must have F → . . .→W ← Q as F has a directed path to W and no incoming
edges. Having Z∗→ Q in M implies, for some DAG D′′, there exists a C-closure graph SC(D′′)
that is Markov equivalent to SC(Daug) has Z → Q. We see that there will be a directed cycle in D′′

as F must have a directed path to Z and F → . . .→W ← Q and Z has a directed path to Q.

Case(b): U2 ∈ PossPaM (Z): Suppose U2 ∈ PossPaM (Z). Consider the node that is closest to
U2 in the path in (7) from Q to Z. We call this node U3. Since U2 ∈ PossPaM (Z), ⟨U3, U2, Z⟩
cannot be an unshielded collider on the path from Q to Z in M . That implies ⟨U3, U2, Z⟩ must be
shielded. We can repeat this argument by picking the next closest node until the next closest node
is Q so that we have ⟨Q,Uj , Z⟩ being shielded for some j. Then, the same argument as in case (a)
repeats, reaching a contradiction.

Case (ii): there exists a d-connecting path from F to Z given some variables K: Now, we consider
the case (ii) with the path in (6). Consider the node closest to K. We call this node K1 such that
⟨K1,K, Z⟩ form a collider on the path in (6) in Daug . If ⟨K1,K, Z⟩ is unshielded in M , then K
cannot be in PossPaM (Z) as Z⋆ → K would have been oriented by C-PC. Suppose ⟨K1,K, Z⟩
is not unshielded in M . Consider the node closest to K1. We call this node K2 If ⟨K2,K2, Z⟩ is
unshielded in M , then K cannot be in PossPaM (Z) as Z∗→ K would have been oriented by C-PC.
We can see this repeated argument until the closest node to Ki for some i is T . Then, T must be in
PossPaM (Z). Therefore, F is d-separated from Z given PossPaM (Z), which is a contradiction,
blocking the path from W to Z such that F is d-separated from Z given PossPaM (Z), which is a
contradiction.

For the only if direction, for the sake of contradiction, assume F and X is adjacent in Daug . Since
F and X are d-separated given the possible parents set of X in M , then there is no d-connecting
path from F to X given the possible parents set of X , which is a contradiction as F is adjacent to
X .

Corollary 5.4. Given two graphs M1,M2 returned by Algorithm 2 based on two different C-
essential graphs εC1(D) and εC2(D), if C1 ⊂ C2, then |PossPaM1(X)| ≥ |PossPaM2(X)|.

Proof. Since C1 ⊂ C2, C-PC will conduct more CI tests based on C2, which can result in a sparser
C-essential graph, it follows that |PossPaM1(X)| ≥ |PossPaM2(X)| for all X ∈ V.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D ALGORITHMS

Algorithm 3 C-PC Lee et al. (2024)
input Observational data V, a conditionally closed set C, CI tester
1: Initiate a complete graph M among the set of observed variables with circle edge o—o.
2: Find separating sets SX,Y for every pair X,Y ∈ V by conditioning on C ∈ C.
3: Update M by removing the edges between pairs that are separable.
4: Orient unshielded colliders of M : For any induced subgraph Xo—oZo—oY or Xo→ Zo—oY or

Xo—oZ ←oY , set Xo→ Z ←oY for any non-adjacent pair X,Y where SX,Y does not contain Z.
5: M ← kPC Orient(M)
6: return M

Algorithm 4 kPC Orient Kocaoglu (2023)

input Mixed graph M
1: M ← FCI Orient(M) {See Algorithm 5}
2: For any variable X that has no incoming edges, construct the sets B,Q :

B = {Y ∈ Ne(X) : Xo→ Y },
Q = {Z ∈ Ne(X) : Xo—oZ}

and define sets B⋆ as the set of variables that are non-adjacent to any of the nodes in Q and Q⋆

as the set of variables that are non-adjacent to other variables in Q:

B⋆ = {Y ∈ B : Y,Z are non-adjacent ∀Z ∈ Q},
Q⋆ = {Z ′ ∈ Q : Z ′, Z are non-adjacent ∀Z ′ ̸= Z,Z ′ ∈ Q}

3: R11 : Orient Xo→ Y as X → Y , ∀Y ∈ B⋆
4: R12 : Orient Xo—oY as X—Y , ∀Z ∈ Q⋆

5: return M

Algorithm 5 FCI Orient Zhang (2008)

input Mixed graph M
1: Apply the orientation rules ofR1,R2,R3 of Zhang (2008) to M until none applies.
2: Apply the orientation rules ofR8,R9,R10 of Zhang (2008)
3: return M

Algorithm 6 CONSTRUCT-HEAVY-PATH-DFS-TREE Tao et al. (2019)

input DAG D = (V,E)
output A heavy-path-DFS-tree T

1: Create a stack S with the root node R in D and mark R visited.
2: repeat
3: J ← get the top member in the stack.
4: if J has any child A that has not been visited previously then
5: A′ ← Find the child that can reach the highest number of nodes that have not been visited

via a directed path.
6: Push A′ into the stack S and mark it visited.
7: else
8: Pop J out of the stack S.
9: end if

10: until S is empty

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 7 Modified IGS (DFS-Interleave Tao et al. (2019)) for RCA

input DAG D = (V,E), interventional data D, CI tester,
output A root cause R

1: if D has more than one sink node then
2: D ← Add a dummy vertex S to D where all the sink nodes in D point to S.
3: end if
4: D ← Reverse all the edges in D
5: T ← CONSTRUCT-HEAVY-PATH-DFS-TREE(D) {See Algorithm 6}
6: R̂← Select the root of T
7: repeat
8: π ← Select the leftmost R̂-to-leaf path of T
9: U ← Perform binary search on π to find the last node U that gives (F ⊥̸⊥ U)P .

10: W ← Find the leftmost child of U in T where (F ̸⊥⊥W)P .
11: if W does not exists then
12: return U
13: else
14: update R̂←W
15: end if
16: until R̂ has not been updated.

E SAMPLE RUN OF RCD IKRAM ET AL. (2022)

X1 X2 X3

X4F

Figure 3: An example to show how RCD works. RCD would need increase the size of the separating
set to 2 to find the root cause (X2). However, we can leverage the causal graph to know precisely
the separating set for every node.

RCD is based on the observation that a failure in a microservice can be treated as an intervention in
the underlying causal graph. By treating the root cause as the interventional target, RCD leverages
recent advances in causal discovery to identify the root cause. Consistent with the broader causal
discovery literature, RCD determines the interventional target (the root cause) through a series of CI
tests. RCD operates by introducing a special node, referred to as F, into the dataset and connecting
it to every other node in a complete undirected graph. The algorithm’s primary goal is to trim down
the children of F, as the true root cause will ultimately be the sole remaining child. However, due
to the lack of information about the underlying graphical structure, RCD must condition on every
possible set of variables until it identifies a separating set that can exclude a potential node as the
root cause.

For instance, consider the ground truth causal graph shown in Figure 3, where the root cause is
X2. Initially, RCD constructs an undirected graph with F having outgoing edges to every node. It
begins with a separating set of size 0 and executes all possible CI tests. After conducting the tests
(F ⊥⊥ X1)P and (F ⊥⊥ X4)P , RCD removes the edges between F and both X1 and X4. At this
point, only two candidates for the root cause remain: X2 and X3. To narrow it down to the true root
cause, RCD increases the size of the separating set. If it tests X2, it runs (F ⊥̸⊥ X2|X3)P . Since
X2 is the root cause, it cannot be independent of F. When testing X3 by running (F ⊥̸⊥ X3|X2)P ,
conditioning on X2 opens a backdoor path from F to X3, preventing its elimination. RCD then
increases the size of the separating set once more and runs (F ⊥⊥ X3|X2, X4)P , which removes
the edge between F and X3. Finally, RCD stops, identifying X2 as the root cause.

Since RCD lacks access to the causal graph, it must perform CI tests on all possible conditioning
sets (up to size 2) to identify the root cause, resulting in an exponential growth in tests and higher
computational costs. To address this, RCD limits the conditioning set size using a hyperparameter,
though this can lead to incomplete results. We propose that knowing the causal graph can signif-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Z Y Q

W J

(a) Ground truth
D

Z Y Q

W J

(b) M after Step
4

Z Y Q

W J

(c) M after Step 5
with R11 applied
to J

Z Y Q

W J

(d) M after Step 5
withR12 with ap-
plied to W

Figure 4: (a)-(d): Given C = {∅, {Y }}, this is an example of the execution of Algorithm 3. Particu-
larly, 4(d) shows the output of C-PC for learning the ground truth in 4(a).

icantly reduce the number of required CI tests. A causal graph provides precise separating sets,
allowing the root cause to be identified with at most n CI tests, where n corresponds to the number
needed for validation of the structure.

F SAMPLE RUN OF C-PC ALGORITHM AND INTERPRETATIONS OF
C-ESSENTIAL GRAPH

As C-PC is highly relevant to our algorithm. We give a sample run of C-PC algorithm as in Lee
et al. (2024) to demonstrate how it works in Figure 4. The ground truth is provided in Figure 4(a).
Suppose we let C = {∅, {Y }}. It means that one will only conduct all marginal independence tests
and CI tests with conditioning set {Y }. The resulting graphical representation after finishing step
4 of Algorithm 3 is in Figure 4(b). The definition of various marks on the graph is provided in
Definition A.13. Then, by applying some orientation rules in step 5 of Algorithm 3, we can obtain
the final output shown by Figure 4(d).

We will use the output of C-PC in figure 4(d) to illustrate the meaning of a C-essential graph.
The interpretation of this graphical object known as C-essential graph is that it represents a set
of conditional independence relations induced by the ground truth in Figure 4(a) with respect to
the set C = {∅, {Y }}. These CI relations are (Z ⊥⊥ J)P , (W ⊥⊥ J)P , (Z ⊥⊥ Q|Y)P , (Q ⊥⊥
J |Y)P , (W ⊥⊥ Q|Y)P , (Z ⊥⊥ Q|Y)P . Both the arrowheads and directed edges e.g. J → Y in
Figure 4(d) are invariant across all the DAGs that are C-Markov (see Definition A.8) to the ground
truth by Lemma A.11 and Theorem A.12. An undirected edge Z −W denotes that there exists a
C-closure graph that has Z → W and another C-closure graph that has W → Z within the same
Markov equivalence class. Please see Definition A.10 for the relationships between DAGs and C-
closure graphs. As C-essential graph represents a set of C-closure graphs, the edge union operation
(see Definition A.13) is then used to represent different orientations in these C-closure graphs that
are Markov equivalent.

G AN EXAMPLE THAT SHOWS THE BENEFITS OF LEMMAS 4.1 AND 4.2

We will use Figure 5 to illustrate how Lemmas 4.1 and 4.2 may help identify the root cause, which
is X1 in this case, with less than n invariance tests. We can start by arbitrarily picking a variable for
testing conditional independence with F . Suppose we select X2 to test whether (F ⊥⊥ X2)P . By
Assumption A.16, we will observe (F ̸⊥⊥ X2)P . Then, Lemma 4.2 says that X3 cannot be the root
cause. Suppose we pick X1 to test for conditional independence, then we will observe (F ⊥⊥ X1)P .
Then, by Lemma 4.1, we know that X5 cannot be the root cause either. Then, we are only left with
X4 to test for conditional independence. This results in a total of 3 marginal independence tests,
which is less than n = 5.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

X1 X2 X3

X4F

X5

Figure 5: An example to show how Lemma 4.1 and 4.2 helps identify the root cause with a few
invariance tests given a causal graph, where X1 is the root cause.

H DISCUSSION ON THE TRADE-OFF BETWEEN SAMPLE COMPLEXITY OF
LEARNING C-ESSENTIAL GRAPH AND COMPUTATIONAL EFFICIENCY OF
COMPUTING CMI

We will use Table 4 to illustrate the trade-off between the sample complexity and computational
efficiency of the proposed algorithm RCG for RCA. We use D to denote the ground truth DAG. We
use C0 to denote C = {{∅}}. We use C1 to denote C = {{∅}, {W}, {J}, {T}, {Z}, {Y }, {Q}}.
We use C2 to denote C = {{∅}, {W}, {J}, {T}, {Z}, {Y }, {Q}, {W,Z}, {W,Q}, {W,Y },
{W,J}, {W,T}, {Z, Y }, {Z, J}, {Z, T}, {Z,Q}, {Y, J}, {Y, T}, {Y,Q}, {J, T}, {J,Q}, {T,Q}}.
These sets are defined for Algorithm 3 to obtain the respective C essential graphs during the normal
operation time and RCG can then take these graph objects as input for RCA post-failure.

We see that as we increase the number of conditioning sets in C, the resulting C-essential graph will
become sparser. During the failure time, RCG will conduct an additional n marginal invariance tests
to further refine the graph objects shown by Table 4 depending on the defined C. Thus, the possible
parents of each observed variable will potentially get smaller. This will increase the computational
efficiency and reduce the sample complexity of computing conditional mutual information in RCG
during the failure time. However, as C gets larger, the sample complexity and time complexity also
increase for using C-PC during the normal operation time. Hence, there is a trade-off between learn-
ing C-essential graphs during normal operation time and computing conditional mutual information
post-failure in terms of sample and time complexity.

Ground truth D Choice of C C0 C1 C2

Z Y Q

W J T

C-essential graph
Z Y Q

W J T

Z Y Q

W J T

Z Y Q

W J T

Table 4: A table that shows the trade-off between sample complexity and computational efficiency
before and after failure for RCA of the proposed algorithm RCG using different C to learn C-essential
graphs.

I DISCUSSION ON CHALLENGES OF INCORPORATING C-ESSENTIAL GRAPHS
FOR RCA WITH CI TESTS ONLY

In this section, we first show how a partial causal graph represented by C-essential graph learned
from observed data before the failure period can facilitate an efficient RCA method with CI tests
under the faithfulness assumption. Then, we discuss three difficulties of incorporating a C-essential
graph for RCA.

Given a C-essential graph of a DAG D1 shown in Figures 6(a) and 6(b) and by assumption A.16, we
will show that it is possible to run a single CI test to identify the root cause during the fault period.
To illustrate this concept, suppose an algorithm can pick on X1 and test the CI relation (F ⊥⊥ X1)P .
Since X2, X3, X4 are non-ancestors of X1 in ε{{∅}}(D1) and (F ⊥̸⊥ X1)P , one can infer that X1

must be a child of F in the ground truth. Hence, X1 is the root cause.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

X1 X2 X3

X4F

(a) D1aug

X1 X2 X3

X4

(b) ε{{∅}}(D1)

X1 X2

X3F

(c) D2aug

X1 X2

X3

(d) ε{{∅}}(D2)

X1 X2 X3

F

(e) D3aug

X1 X2 X3

(f)
ε{{∅},{X2}}(D3)

Figure 6: 6(a) - 6(b): an example shows how a C-essential graph learned from observed data can
be used to find root cause more efficiently where C = {{∅}}. 6(e) - 6(d): an example shows how
a C-essential graph may not help identify root causes with more CI tests since it does not have any
orientations. 6(c) - 6(f): an example shows that not all C-essential graphs that have no orientations
are equally informative for RCA, where

In contrast, we will show how RCD (Ikram et al., 2022) is inefficient in terms of the number of
CI tests used to identify root causes in this example and how the worst case for an algorithm that
leverages partial causal structure still outperforms RCD in its best case. Suppose the ground truth
DAG augmented by F-NODE is shown in Figure 6(a). Note that the best case for RCD must have
tested 6 CI statements since the following CI statements must be observed based on the design of
RCD in order to conclude X1 to be root cause: (F ⊥⊥ X4)P , (F ⊥̸⊥ X2)P , (F ⊥⊥ X2|X1)P ,
(F ⊥̸⊥ X3)P and (F ⊥⊥ X3|X2)P (or (F ⊥⊥ X3|X1)P). Otherwise one will need to test CI relation
between F and X1 by conditioning on all subsets of the power set of {X2, X3, X4}. However, if we
compare with the best case of an algorithm that leverages partial causal structure, it only requires
to observe a single CI statement: (F ⊥̸⊥ X1)P . Note that even in the worst case, it only takes at
most 4 CI statement, i.e., (F ⊥⊥ X4)P , (F ⊥̸⊥ X3)P , (F ⊥̸⊥ X2)P , (F ⊥̸⊥ X1)P in order to conclude
X1 as it first searches through all marginal tests and can leverage the graph structure of ε{{∅}}(D1)
learned from observed data.

However, there are a few challenges in incorporating a C-essential graph for RCA. First, it is not clear
how one should select a variable initially in a graph for testing conditional independence. Consider
the same example in Figure 6(b), if X3 is selected first instead of X1 for testing the CI relation
(F ⊥⊥ X3)P , then one should observe (F ⊥̸⊥ X3)P , implied by assumption A.16. Unfortunately,
this test result does not eliminate the possibility that X3 can be the root cause. It also does not give
information to exclude X1, X2, X4 from being the root cause. This shows that, given a C-essential
graph, the number of CI tests needed for RCA depends on both the graphical structure and the actual
root cause location.

Second, some C-essential graphs may not show any orientations. This posits a challenge that one
may not hope to use fewer CI tests for RCA even when a partial causal structure is learned from
observational data. For example, in Figure 6(d), F is d-connecting with all observed variables.
Unlike the example in Figure 6(b), even when we have exhausted all marginal CI tests among the
observed variables and F during the failure period, we cannot utilize any ancestral relationships in
the graph structure to determine which variable cannot be the root cause.

Third, all C-essential graphs that do not have any orientations may not be equally informative for
RCA. For instance, if the C-essential graph is the graph shown in Figure 6(f), according to Figure
6(e), we see that (F ⊥⊥ X1)P and (F ⊥̸⊥ X2)P hold based on assumption A.16. One can infer that
i.) F cannot point to X1 due to (F ⊥⊥ X1)P , ii.) F does not have a directed path to X1 and iii.) F
has a directed path to X2. Therefore, X1 −X2 can further be oriented as X1 → X2 in Figure 6(f)
with interventional data. Since all the unshielded colliders in Figure 6(f) should have been oriented
by C-PC (see line 4 in Algorithm 3), X2 −X3 can then be further oriented as X2 → X3, resulting
in X1 → X2 → X3. Hence, we can conclude X2 to be the root cause as X2 is the parent of X3. As
such, the C-essential graph in Figure 6(f) is more informative than the one in Figure 6(d) for RCA.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

5 25 50 75 100
Nodes

0

200

400

600

800

1000

1200

1400

of

 C
I t

es
ts

Order of CI tests
0
1
2
3+

Figure 7: The number of CI tests executed by RCD and the size of the separating set used in those
tests. As the number of nodes increases, RCD relies on higher-order CI tests to identify the root
cause. However, these higher-order tests are less reliable with limited samples, which diminishes
RCD’s effectiveness.

5 25 50 75 100

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

@
l

Top-1

5 25 50 75 100
Nodes

Top-3

5 25 50 75 100

Top-5
MI RCD RCG-0 RCG-1 RCG-2

(a) Top-l accuracy of RCG compared to baselines.

5 25 50 75 100
Nodes

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(m
s)

MI
RCD
RCG-0

RCG-1
RCG-2

(b) The execution time.

Figure 8: Top-l accuracy and the runtime of RCG compared to the baselines. The input graph in this
experiment were learned from the data using C-PC.

J ADDITIONAL EXPERIMENTS

J.1 RCD WITH HIGHER-ORDER CI TESTS

Figure 7 illustrates the number of CI tests executed by RCD alongside the size of the separating sets
used. RCD identifies the root cause by gradually increasing the size of these sets. However, the
statistical power of CI tests diminishes with larger separating sets, particularly when sample sizes
are limited, as is often the case in RCA, where quick failure resolution is crucial (Shah & Peters,
2020; Kocaoglu, 2023). This reliance on higher-order CI tests leads to poorer performance with an
increasing number of nodes, as discussed in Section 6 of the main paper. In contrast, RCG mitigates
this issue by using C-PC, which is more effective than full graph learning, and after a failure, it relies
solely on n marginal invariance tests.

J.2 EXPERIMENTS WITH SAMPLED VERSION

Figure 8 illustrates the performance of RCG in comparison to MI and RCD. Similar to the experi-
ment using the ground truth causal graph, we utilized 10,000 samples for the observational dataset
and only 100 samples for the interventional dataset. Additionally, we included RCG-0 and RCG-
1 to demonstrate the performance across different values of k for C-PC, where k determines the
size of the maximum separating set within C. We did not include RUN in this experiment, as it
requires continuous data, while our dataset in this experiment is discrete. Furthermore, RCG(IGS)
and RCG(CPDAG) were omitted since we cannot derive a complete DAG from the samples, and
learning the full CPDAG from the samples is exceedingly time-consuming Ikram et al. (2022).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

5 25 50 75 100
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

@
L

Top-1

5 25 50 75 100
Nodes

Top-3

5 25 50 75 100
Nodes

Top-5

CMI BARO

Figure 9: Average top-l accuracy of CMI compared to BARO with l ∈ 1, 3, 5 over 100 repeated
experiment per graph size. The results demonstrate that CMI with correct causal knowledge con-
sistently provides better accuracy compared to the state-of-the-art algorithm BARO even when the
distribution is only continuous. Both observational and interventional sample sizes are 100n for
n ∈ {5, 25, 50, 75, 100}.

The results align with our earlier findings presented in the main paper. RCD exhibits poor perfor-
mance because it lacks access to causal relationships, leading it to condition on all nodes until a
separator is found. This results in lower accuracy for RCD. In contrast, RCG yields better results as
the value of kk increases. Notably, RCG-1 and RCG-2 consistently outperform RCD, while RCG-0
occasionally produces results similar to RCD, but sometimes fails to identify the root cause. This
inconsistency arises because RCG-0 struggles to learn a sufficiently sparse graph, resulting in con-
ditioning on a larger set of nodes, which diminishes the reliability of the conditional independence
test.

J.3 LINEAR GAUSSIAN ADDITIVE MODELS WITH BARO

We want to demonstrate the merit of correct causal knowledge and do so by comparing our proposed
method with access to a correct directed acyclic graph of the underlying system with one of the state-
of-the-art methods called BARO Pham et al. (2024).

As BARO is restricted to data where median and interquartile range can be computed, we provide
a synthetic experiment that generates DAGs of size n ∈ {5, 25, 50, 75, 100}. The sample size for
observational data and interventional is proportional to the number of variables e.g. 100n. A root
cause is randomly assigned and there are at least k descendants randomly assigned to the root cause
where k > 0. Then, there is a probability of 0.7 that there exists a confounder between the root
cause and one of its descendants. Then, directed edges are randomly assigned between a pair of
nodes that are not the root cause and its descendants with a probability of 0.6 while acyclicity
is maintained. Each variable that has no parents follows a standard Gaussian distribution. Any
variable that has parents will take a weighted sum of its parents with an additive standard Gaussian
noise. The weight from each parent is sampled from a uniform distribution between 0.5 and 1.5
over the size of the graph. If the root cause variable does not have any parents, then it follows
a Gaussian distribution with mean sampled from a uniform distribution between −10 and 10 and
standard deviation sampled from a uniform distribution between 1.5 and 10. Otherwise, it is a
weighted sum of its parents plus a noise term that follows a Gaussian distribution with mean sampled
from a uniform distribution between −10 and 10 and standard deviation sampled from a uniform
distribution between 1.5 and 10. We repeat the experiment for 100 times per graph size. We provide
the exact index of the data point that follows the interventional distribution for BARO. We discretize
the dataset with k-bins discretizer in scikit-learn (Pedregosa et al., 2011) with the setting:
k = 3, encode = ordinal, strategy=kmeans. We compute I(X;F |PossPaD(X)) by
counting the frequencies for each node X given a correct DAG. We rank each node by sorting
I(X;F |PossPaD(X)) for each X in descending order. This approached is denoted as CMI. We
limit both the observational and interventional sample sizes to 100 for each size of the graph.

From Figure 9, we see that the use of conditional mutual information with the correct causal knowl-
edge consistently outperforms BARO under a limited sample across all graph sizes. There is almost
0.4 average top-1 accuracy difference for the small graph of size 5. The difference becomes small

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

as the graph size increases. This is expected as the data gets noisier with larger graphs due to the
experimental setup. We see that our approach achieves 100% average top-3 accuracy for graphs with
5 variables. This experiment shows the benefits of having correct causal knowledge in the presence
of spurious correlation.

27

	Introduction
	Background
	Problem Formulation
	RCA with a Known Graph
	RCA with an Unknown Graph
	Experiments
	Case Study
	Conclusion
	Graph Notations
	Related Work
	Theorems and Proofs
	Algorithms
	Sample Run of RCD ikram2022root
	Sample Run of C-PC Algorithm and Interpretations of C-essential graph
	An Example that shows the benefits of Lemmas 4.1 and 4.2
	Discussion on the trade-off between sample complexity of learning C-essential graph and computational efficiency of computing CMI
	Discussion on challenges of incorporating C-essential graphs for RCA with CI tests only
	Additional Experiments
	RCD with Higher-Order CI tests
	Experiments with Sampled Version
	Linear Gaussian Additive Models with BARO

