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ABSTRACT

Large language models have achieved remarkable success in multilingual machine
translation, yet they encounter persistent difficulties in low-resource languages,
especially those with unique scripts and complex morphology, arising from the
lack of subword-level segmentation. We propose Multilingual Translation Policy
Optimization (MtPO), a comprehensive three-stage framework: continued pre-
training grows low-resource vocabularies, improving compression and inference
efficiency; curriculum SFT raises task difficulty while preserving both general and
specialized translation skills; and RL optimization counters length bias and diver-
sity collapse in GRPO, reinforced with RLVR. The RL component supplements
semantic rewards with fast deterministic constraints on length ratio, structural
token retention (HTML/Markdown), target-language validity, and code-mixing
to harden models against messy real-world prompts. MtPO couples entropy-
tempered advantages, temporal decay, asymmetric clipping, and token-wise re-
ward normalization to sustain early exploration before settling, while RLVR en-
forces reliable outputs without harming translation quality. Experiments con-
firm notable gains in tokenization efficiency, translation quality, and exploration—
exploitation balance, marking a substantive step forward for multilingual models
serving underrepresented languages and practical deployments.

1 INTRODUCTION

Neural machine translation has substantially advanced through the integration of large language
models (LLMs). However, their real-world deployment remains constrained by three fundamental
limitations: insufficient support for low-resource languages, disproportionately high computational
costs, and fragile performance in generating outputs for structured or mixed-language content.
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Current multilingual systems, including state-of-the-art models like GPT-4 (OpenAl et al.l [2024),
PalLM 2 (Anil et al.,|2023)), DeepSeek (DeepSeek-Al et al.,2025), and Qwen2.5 (Yang et al.||[2024),
demonstrate impressive capabilities in high-resource languages but exhibit significant performance
degradation on low-resource languages. These models use tokenizers and pre-training corpora opti-
mized for high-resource scripts, leaving languages with distinct writing systems and morphological
structures systematically underserved. For languages such as Khmer, Myanmar (Burmese), and
Thai, this mismatch manifests as dramatically longer token sequences, increased inference latency,
and unstable translation quality due to insufficient representation in both vocabulary and training
data.

Prior work has tackled these challenges from two directions. Instruction-tuned chat models pursue
breadth: open releases such as Apertus, Tower-Plus, and Aya emphasize transparency and multi-
domain utility, while commercial systems expose translation via general-purpose conversational
interfaces. In parallel, specialized MT stacks, such as Seed-X (Cheng et al.| 2025a), Qwen-MT,
Hunyuan-MT (Zheng et al.| [2025)), and region-focused efforts like COMPASS-V2, SEA-LION,
Sailor2 (Dou et al) 2025a), and SealLLMs, curate domain data, bespoke decoding, or bilingual
reinforcement learning to maximize fidelity. These approaches advance the state of multilingual
translation, yet each falls short in production settings, where reliance on fixed translation-style in-
structions results in overly narrow and inflexible use cases.

Core challenges and limitations. Despite significant advances in multilingual NLP, three funda-
mental issues continue to limit the effectiveness of current approaches for low-resource languages:

(1) Tokenization inefficiency: Existing tokenizers, designed primarily for English and other high-
resource languages, perform poorly on morphologically rich and non-segmented scripts. For in-
stance, a typical Khmer sentence requires 3 to 4 times more tokens than its English equivalent when
processed by standard multilingual tokenizers. This inefficiency directly translates to increased com-
putational costs, longer inference times, and memory bottlenecks that lead to significant resource
wastage in constrained environments.

(2) Training data imbalance: While general-purpose LLMs achieve broad language coverage,
their pre-training distributions remain heavily skewed toward English and other high-resource lan-
guages. This imbalance persists even after supervised fine-tuning, resulting in models that struggle
with low-resource languages’ unique linguistic phenomena, cultural contexts, and domain-specific
terminology.

(3) Reinforcement learning challenges: When applying reinforcement learning to improve trans-
lation quality, existing methods often suffer from entropy collapse and length bias. Models trained
with standard RL objectives tend to generate overly verbose or repetitive outputs, while failing
to maintain the structural integrity required for real-world applications (such as preserving HTML
markup or maintaining appropriate language targeting). Related RL-based translation efforts include
ExTrans (Wang et al., |2025).

To resolve these bottlenecks, we introduce Multilingual Translation Policy Optimization (MtPO),
a unified pipeline that couples tokenizer expansion, balanced continued pre-training, and entropy-
aware reinforcement learning. MtPO is complemented by Reinforcement Learning with Ver-
ifiable Rewards (RLVR), a guardrail suite that applies deterministic length, format, language-
identification, and code-mixing checks during optimization. Techniques such as multilingual test-
time scaling (Bajpai & Chakrabortyl [2025) address decoding-time improvements but do not resolve
training-time structural failures. The resulting system preserves the breadth of instruction-tuned
LLMs while achieving translation robustness comparable to specialized MT services.

Contributions. Our work delivers three technical advances: (1) a systematic tokenizer audit and
expansion strategy that substantially improves decoding efficiency across eight low-resource lan-
guages, while maintaining robust coverage for English; (2) a reinforcement learning objective that
integrates temperature consistency, asymmetric clipping, and entropy-shaped credit assignment to
avert exploration collapse during translation-oriented reinforcement learning; and (3) an RLVR-
based filtering mechanism that enforces structural constraints while simultaneously maintaining
high-quality semantic rewards.

MtPO’s holistic design yields strong empirical gains. In Table 3} LLM-7B-MtPO achieves state-
of-the-art average BLEU scores across 90 FLORES-Plus directions while preserving competitive
zero-shot accuracy on reasoning benchmarks such as BBH, CMMLU, and HellaSwag. These results
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demonstrate that principled tokenizer augmentation and entropy-aware policy optimization can close
the gap between instruction-tuned LLMs and production-grade multilingual MT.

2 RELATED WORK

Recent multilingual LLMs aim to strengthen translation alongside general instruction following,
either by dedicated specialization or by carefully combining both objectives. Aperfus empha-
sizes openness, transparency, and broad multilingual coverage—including many lower-resource lan-
guages—rather than introducing explicit translation-specific prompt templates or “hooks” (Team)
2025). TOWER+ extends TOWER to balance translation specialization with general-purpose capa-
bilities via a staged recipe comprising continued pretraining, supervised fine-tuning, preference op-
timization, and reinforcement learning with verifiable rewards(Rei et al., [2025). Similarly, EMMA-
500 and LLaMAX demonstrate effective approaches to massively multilingual adaptation(Ji et al.,
2025; [Lu et al., [2024), while Aya provides instruction fine-tuned multilingual capabilities(Ustiin
et al.,[2024).

Regional Models for ASEAN Languages. Several initiatives specifically target Southeast Asian
languages with curated data and alignment efforts. COMPASS-V2 focuses on SEA languages (and
e-commerce scenarios), combining curated corpora, tokenizer, and architecture choices to sustain
quality across diverse tasks (Maria, 2025). SEA-LION (Ng et al., 2025)), Sailor2 (Dou et al.,2025b),
and SeaLLMs 3 (Zhang et al.,|2024) broaden SEA coverage and cultural alignment through continual
pretraining, staged instruction tuning, and region-aware sampling. Babel (Zhao et al.,[2025)), a broad
multilingual LLM including SEA languages, shows how expanded coverage and efficient scaling can
complement regional efforts.

Dedicated Machine Translation Systems. Pure machine translation models push quality forward
with specialized architectures that prioritize bilingual fidelity. Seed-X (Cheng et al.,2025b), Qwen-
MT (Qwen, 2024) and Hunyuan-MT (Hunyuan, 2024) show that translation-centric designs can rival
commercial systems. Recent compact models such as X-ALMA (Xu et al., 2025) further improve
efficiency through modular adapters and selective rejection mechanisms, highlighting optimization
levers that remain effective at smaller scales. These systems establish strong translation baselines
and reveal architectural ingredients that can be ported to more general models.

Limitations vs. MtPO. Earlier “traditional” MT pipelines—phrase-based SMT systems exemplified
by Moses (Koehn et al.,|2007) and early neural MT architectures such as GNMT or bilingual Trans-
former models (Wu et al., 2016;|Vaswani et al.,2017)—provide high BLEU on bilingual corpora but
expose three disadvantages relative to MtPO. (1) Their vocabularies are fixed to word alignments
or SentencePiece models trained on Euro-centric data, so segmentation for ASEAN morphologies
remains brittle, limiting compression benefits when expanding to agglutinative or code-mixed in-
puts. (2) Their objectives target translation fidelity alone; dialog grounding, instruction following,
or formatting guarantees must be handled by downstream components, which makes them unreli-
able when users interleave translation with general-purpose reasoning. (3) Reinforcement learning
or minimum-risk training in these systems optimizes metric surrogates (BLEU, TER) without verifi-
able constraints, leaving practical failure modes—overlong responses, markup corruption, language-
ID drift—unaddressed at decode time. In contrast, MtPO’s tokenizer-aware continued pretraining,
unified SFT+RL stack, and RLVR constraints allow a single policy to cover translation, instruction
following, and safety-critical formatting in low-resource languages.

RL for Machine Translation. Early reinforcement learning adaptations such as minimum risk
training directly optimized sequence-level metrics to narrow the gap between training and eval-
uation (Shen et al.l 2016). More recent work revisits preference-driven optimization for transla-
tion: contrastive preference optimization sharpens reward shaping for machine translation outputs
(Xu et al.l |2024a), RLHF pipelines are tailored for cost-sensitive translation preference modeling
(Xu et al.} 2024b)), and preference-driven alignment strategies further refine translation quality (Zhu
et al., [2024). Diagnostic studies interrogate the weaknesses of RL-based objectives and evaluation
protocols (Wu et al., 2018)), while multilingual preference optimization extends these ideas across
languages (Dang et al.| [2024).
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3 METHODS

PIPELINE OVERVIEW

We integrate continued pre-training, entropy-aware reinforcement learning, and verifiable con-
straints into a unified MtPO pipeline: expand the tokenizer, refresh the model with additional pre-
training, and finish with SFT plus RLVR to support downstream alignment.

TOKENIZER-AWARE CONTINUED PRETRAINING

Continued pre-training adapts large language models to specialized domains while retaining broad
linguistic competence(Conneau et al., 2020a). For low-resource settings, vocabulary design remains
decisive: intreoducing language-specific tokens better captures morphological structure(Conneau
et al.l |2020b; [Fan et al) |2020; Devlin et al.l 2019), directly addressing tokenization inefficiency
through improved subword segmentation(Sennrich et al., |2016; [Kudo & Richardson, 2018])). Stage
1 (Vocabulary Expansion). We expand the Qwen2.5-7B tokenizer(Yang et al., [2024) by adding
language-specific tokens for eight low-resource languages, creating the Qwen2.5-7B-8Langs tok-
enizer, following established multilingual practices(Team) 2022)). Stage 2 (Balanced Training). A
1:1 balance between English and low-resource corpora preserves English proficiency while enhanc-
ing support for low-resource languages. The expanded tokenizer adds 3k—4k tokens per targeted
language, achieving 2.1 x—5.4x compression improvements Table |1} which translate to reduced in-
ference latency and improved throughput.

POST-TRAINING OPTIMIZATION WITH RLVR

Supervised Fine-Tuning. Post-training combines supervised fine-tuning and reinforcement learn-
ing without additional submodules. Our SFT stage trains on a 7M-sample mixture (5:1 general in-
structions vs. multilingual data) under a three-phase curriculum—(1) basic instruction following,
(2) ASEAN language translation, and (3) merged translation+instruction tasks—with sampling
gradually shifting from simple to complex. The reward model captures both translation quality
and instruction-following capability, following RLHF best practices(Ouyang et al.l 2022} Ziegler
et al., 2019), and uses ten preference categories spanning accuracy, fluency, terminology, format,
and code-mixing (Appendix [A.3).

RLVR Motivation and Components. Deployment logs reveal four dominant failure modes: (i)
translations that exceed length budgets, (ii) markup corruption on HTML/Markdown inputs, (iii)
drifting from the target language or heavy code mixing, and (iv) reward hacking where semantic
quality drops despite good BLEU proxies. MtPO therefore wraps reinforcement learning in a verifi-
able reward layer. Reinforcement Learning with Verifiable Rewards (RLVR) augments the semantic
reward Ry, with deterministic verifiers 7y, that are cheap to evaluate and influence optimization
through sample selection:

RRLVR (.13, y) = Rm‘(3:7 y)
+ )\len T]en(l’, y) + )\fmt T'fmt (IL', y)
+ Niid 71id (¥) + Amix Tmix (Y)- ey

where x and y denote the source and target translations, R, (z,y) is the semantic translation re-

ward from the preference model, and Ajen, Afme, Aiids Amix are weighting coefficients for each verifier.
Each verifier targets one failure mode: (i) rien enforces p = |y|/|z| € [, 8], (i) 7 preserves
HTML/Markdown markers, (iii) rj;4 runs a lightweight language-ID model to confirm ¢; with con-
fidence above 64, and (iv) rnix penalizes intra-sentence code mixing. Detailed formulas appear in
Appendix All verifiers operate on strings, so they remain model-agnostic and run as batched
regex/LID checks. For each prompt we sample K candidates, score with Rriyr, and keep the top G
diverse hypotheses to preserve exploration while discarding violations before optimization.

Alignment Objective. The corresponding objective combines the clipped surrogate with entropy
regularization:
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where 6 denotes the policy parameters, 7 is the temperature for sampling, D is the training data
distribution, (g,a) are query-answer pairs, {0;}&, are G' candidate outputs sampled from the old
policy wgold, 0;| denotes the length of candidate i, t indexes token positions, €,y and €nigh are clipping
bounds, and § is the entropy regularization coefficient. The objective uses
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Here 77 ,(6) is the importance ratio comparing the current policy 7§ to the old policy 77 at token
0i.t, Ri denotes the token-level reward from the preference model(Liu et al., 2024), AE“ZICIOJFH)
is the entropy-modulated advantage estimator, « is the entropy scaling coefficient, 7 1s the entropy
decay factor, € is a small constant for numerical stability, and H (7 (0;¢ | ¢,0i <)) is the entropy
of the policy at position t. The advantage estimator (defined above) normalizes by group mean and
microbatch standard deviation, ensuring heterogeneous prompts share comparable gradient scales.
The entropy multiplier (1 + aH~") keeps early tokens exploratory before gradually tightening.
The same temperature 7 is used in both sampling and importance ratios, preserving the martin-
gale property required for stable critic-free RL. Combined with global length normalization, these
changes remove the verbosity bias typical of GRPO objectives. MtPO introduces three architec-
tural choices: (1) asymmetric clipping with layered entropy shaping, maintaining high entropy at
the beginning of decoding but allowing sharper updates later; (2) microbatch-level normalization,
stabilizing advantages across diverse prompts and keeping the surrogate length-invariant; and (3)
constraint-aware data filtering through RLVR, replacing DAPO’s hand-crafted length penalties
with verifiable filters so the optimizer never trains on samples violating production policies. De-
tailed derivations appear in Appendix [A.4] and ablations in Section [4] confirm each component’s
Opiiikiditibn Recipe. Algorithm [T] summarizes one MtPO iteration: it collects trajectories with

temperature-controlled sampling, computes entropy-aware advantages and temperature-consistent
ratios, then aggregates losses with global length normalization plus an entropy floor.

Algorithm 1 Multilingual Translation Policy Optimization (MtPO)

Require: Initial policy parameters 6y, temperature 7, entropy coefficient 3, entropy decay -y, entropy scaling
«a, clipping parameters €jow, €high

1: Initialize 6 < 6y

2: while not converged do

3 Sample translation prompts (g, a) ~ D and set Ooiq < 6

4 for each g do
5: Sample G candidates {0;}&.; ~ gy, (+1q) using temperature 7
6 Compute token rewards R; ; with the reward model
7 Normalize rewards: fgroup = mean({Ri :}< 1), Tmicrobaren = Std({Ri ¢} 1)
8 for each o; and position ¢ do
9 Hi < H(mo(0iz | g, 0i,<t))

10: Ay ¢ Ditteow (4 ;Y

O microbatch €
T
g (04,¢19,0i <t)

11: ri,t — wgold(oi,t\q:oi,<t)

12: L‘il,'tp — min(Tz‘T,tAi,h clip(r7 4,1 — €ow, 1 + ﬂ‘igh)Ai’t)
13: end for

14:  end for

15 N« 39 o

16: Lo —% Zi,t Lil’ltp - ﬂ% Zi,t H(mo(- | q,0i,<t))
17: Update 6 < 0 — nVoLmwo

18: end while

19: return 6
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Alignment Theoretical Properties. We now analyze MtPO through the lens of policy-optimization
theory (Schulman et al.,2017) and multilingual modeling dynamics (Conneau et al., 2020b)), focus-
ing on (i) the geometry of the surrogate gradient, (ii) the integration of deterministic verifiers, and
(iii) the effect of entropy shaping on tokenizer efficiency.

Gradient geometry. The surrogate gradient adopted by MtPO is

VoTupo = E Zwi,t(977—) Vglogmg(oie | q,0i<t)| 3)

it

where w; ; contains both the clipped importance ratio and the entropy-modulated advantage. A
key distinction from PPO/GRPO is global normalization: MtPO normalizes token-level advantages
across all sampled hypotheses such that )., w;, = 0. This eliminates the verbosity bias intro-
duced by per-sequence normalization, ensuring that long responses do not disproportionately influ-
ence gradient direction. The entropy-dependent scaling (1 + «Hyv') further shapes the gradient
landscape: high-entropy prefixes encourage broad exploration early in decoding, while the decay
factor ~* gradually sharpens updates, improving stability without requiring a value critic.

Constraint integration RLVR (Eq.|1) introduces deterministic verifiers into MtPO’s sampling pro-
cess. For each prompt, K candidates are generated from the old policy 7y, scored by the com-
posite reward Rrrvr, and only the top-G diverse and constraint-satisfying hypotheses are used for
optimization. Because the verifiers operate solely on the output strings—via length ratios, markup
preservation, language-ID checks, and code-mixing penalties—the filtering step is model-agnostic
and computationally negligible. Importantly, determinism ensures that discarding invalid hypothe-
ses does not introduce estimator bias: the gradient in Eq. [3] remains unbiased with respect to the
feasible hypothesis space. This property aligns with the empirical 95% constraint-satisfaction rate
reported in Table[2]

Tokenizer efficiency MtPO’s entropy multiplier also provides a theoretical interpretation of
vocabulary-adoption behavior under the expanded tokenizer. Let Ny denote the number of newly
activated subword types during decoding. Then

0

EE[NHBW] =aH~"- E[r] (0)], ()
showing that early high-entropy states accelerate exploration over the expanded vocabulary, partic-
ularly for low-resource languages whose morphological units were newly introduced in Section [3]
The decay factor v¢ prevents uncontrolled sequence growth, ensuring that increased lexical diversity
does not translate into verbosity. This aligns with the compression and latency improvements in
Table[T]and the empirical trends in Figure 3]

Overall, MtPO forms a principled alignment framework whose gradient structure, verifier-based fil-
tering, and entropy-driven vocabulary dynamics jointly yield stable, length-invariant, and constraint-
aware multilingual optimization.

4 EXPERIMENTS

We validate MtPO across six dimensions: tokenization efficiency (Table [T} Section [4.1)); token
usage dynamics (Section @; RLVR constraint verification (Section @); ablations versus PPO,
GRPO, DAPO, RLOO, and Reinforce++ under varied KL control (Section @; length-control
strategies with explicit penalties (Section {f.6); and overall translation and reasoning performance
on 90 FLORES-Plus directions and four benchmarks (Section [4.7).

4.1 TOKENIZATION COMPARISON

Tokenization efficiency. To evaluate the effect of vocabulary expansion on low-resource lan-
guages, we compare the tokenization behavior of the original Qwen2.5-7B tokenizer with our
Khmer-augmented tokenizer. Figure [2| presents a representative Khmer passage tokenized under
both vocabularies. The baseline tokenizer fragments the text into 402 subwords due to insufficient
coverage of Khmer morphemes, whereas our expanded tokenizer reduces this to 103 tokens by in-
troducing language-specific units that capture common orthographic patterns.
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(a) Qwen2.5-7B tokenizer output (402 tokens) (b) Khmer-augmented tokenizer output (103 tokens)

Figure 2: Tokenization comparison on a Khmer passage; Khmer-specific subwords curb over-segmentation
and improve compression.

This case study illustrates the qualitative effect of targeted vocabulary expansion: low-resource
languages benefit disproportionately from improved morphological coverage, resulting in shorter
and more semantically coherent token sequences.

4.2 TOKEN EFFICIENCY ANALYSIS

Corpus-level compression. To quantify the effect of vocabulary expansion beyond single-passage
case studies, we evaluate corpus-level tokenization efficiency on FLORES-Plus. Figure [3| reports
output/input token ratios across nine translation directions, while Table[I]summarizes the vocabulary
growth and compression gains for all expanded languages.

Across all settings, MtPO with the expanded tokenizer produces consistently shorter sequences than
the baseline system. The effect is particularly pronounced for low-resource languages, where im-
proved morphological coverage yields 3-5x compression gains and thus directly reduces compute
requirements during both training and inference.

Token Efficiency Heatmap

Light-TLLM-7B-MtPO - 0.50 0.72 0.73 0.

.77 0.72 0.80 0.62 --

1.1
R 0.50 - 0.73 0.77 - o.ao --- 1'0
0.9

Seed-X-PPO-7B - X X X X
-0.8
e 0.55 - 0.78 0.62 - o.ss ---
-0.6

]
English Thai Vietnamese  Indonesian Lao Malay Khmer Myanmar Filipino

Model

Hunyuan-MT-78 - 0.75

Token Efficiency (Output/Input)

Translation Language Pairs

Figure 3: Output/input token ratios on FLORES-Plus; the expanded tokenizer yields the shortest sequences
across nine language pairs.

Taking Figures 2] and [3] together with Table [I] MtPO’s vocabulary expansion cuts Khmer tokens by
about 4 x, boosts FLORES-Plus compression ratios by up to 5.4, and proportionally lowers train-
ing and inference compute—especially for the smallest corpora—while maintaining performance
on high-resource languages.

4.3 CONSTRAINT VERIFICATION PERFORMANCE

We benchmark RLVR on four constraint checks (language, length, format, code mixing); the scores
appear in Table

Table [2] shows MtPO reaching 95.3% overall constraint accuracy, clearly ahead of general chat
models and competitive translation systems, confirming RLVR’s reliability.
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Table 1: Tokenizer diagnostics for expanded low-resource languages (CR: tokens/char; ACR: absolute gain;
Speedup: multiplicative gain; corpus size in billions).

Language Added tokens OldCR  New CR ACR  Speedup Corpus size (B)

Languages without additional tokens

Filipino - 3.02 3.01 -0.01 1.00 2.77
Indonesian - 3.28 3.28 0.00 1.00 3.34
Malay - 3.19 3.19 0.00 1.00 3.12
Vietnamese - 3.40 3.40 0.00 1.00 3.67
Languages with MtPO vocabulary expansion

Khmer 3712 0.85 3.49 2.64 4.09 0.92
Lao 3359 0.85 3.05 2.20 3.59 0.26
Mongolian 4240 0.78 2.79 2.01 3.59 1.45
Myanmar 3226 0.69 2.87 2.18 4.17 1.58
Tamil 3942 0.93 2.85 1.92 3.07 2.97
Thai 2958 1.79 297 1.18 1.66 2.76
Tibetan 3920 0.75 4.03 3.28 5.39 0.17
Uyghur 3524 1.38 2.46 1.08 1.79 0.23

Table 2: RLVR constraint verification performance across different models. Best scores in bold.

Model Lang. Length  Format  Mixing Overall
Light-TLLM-7B-MtPO 97.8 99.2 92.15 92.3 95.3
Qwen2.5-7B-Instruct 92.0 97.0 51.8 62.8 75.9
Gemma3-27B-IT 97.4 91.6 42.1 90.9 80.5
Qwen-MT-Plus 97.6 99.8 82.5 94.8 93.6
Seed-X-PPO-7B 97.6 79.8 79.0 90.3 86.6
DeepSeek-V3 95.4 95.7 67.6 95.0 88.4
Hunyuan-MT-7B 91.8 90.7 71.1 96.2 87.4

4.4 PoLiCcY OPTIMIZATION ALGORITHM COMPARISON
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Figure 4: Six RL algorithms across three KL regimes (18 runs).

For the ablations, we benchmark MtPO against PPO (Schulman et al., [2017), GRPO (Liu et al.,
2025), DAPO (Liu et al.| [2024), RLOO, and Reinforce++ (Hu et al., |2025) under K2, K3, and no-
KL configurations (18 runs total) to disentangle the contributions of global length normalization,
entropy-aware advantages, and asymmetric clipping, with entropy and response-length diagnostics
as the primary endpoints.

Figure [ presents eighteen runs spanning six policy-optimization algorithms (PPO, GRPO, DAPO,
RLOO, Reinforce++, MtPO) evaluated under the K2, K3, and no-KL regimes from Section [3} K2
uses the moving-target KL controller from Reinforce++ and DAPO, K3 enforces a fixed KL bud-
get, and the no-KL condition isolates stability when only entropy regularization is active. MtPO
matches PPO-like stability while avoiding the failure modes of other critic-free methods. In line
with [de Oliveira et al.| (2025), GRPO’s lack of a critic and sequence-level normalization leads to
two pathologies—rapid entropy collapse and uncontrolled response-length growth—which we also
observe: baselines either collapse under K3 or inflate lengths under no-KL.
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MtPO mitigates these instabilities via the mechanisms in Section[3} a position-aware entropy sched-
ule that decays with depth and temperature-consistent importance ratios that align sampling and
optimization distributions. The schedule preserves high exploration entropy early while tightening
later, and the ratios prevent explosion when KL control is relaxed. Consequently, MtPO maintains
high entropy and stable lengths across all KL settings—surpassing PPO in late-stage entropy re-
tention. Because RLVR enforces length, markup, and language constraints deterministically, these
results justify deploying the entropy-regularized no-KL configuration in practice: MtPO uses the
full KL budget for lexical diversity, avoids critic-related instability, eliminates KL-target tuning, and
remains robust even under the stricter K2/K3 regimes.

4.5 TOKEN USAGE TRAINING DYNAMICS

4 == MtPO (w/ Entropy)
— PPO
- == MtPO (w/o Entropy Loss)

= MtPO (W/ Entropy)
- = PPO
= MtPO (w/o Entropy Loss)

Total Length

New Token Count

0

100 200 300 400 500 0 100 200 300 400 500
Training Steps Training Steps
(a) New tokens per count (b) Total response length

Figure 5: MtPO adopts new vocabulary faster than PPO while keeping total response length stable.

Figure 3] tracks new token usage and response length during MtPO training compared to standard
PPO. MtPO uses more new tokens without length inflation. We inspect how the expanded vocabu-

lary affects training dynamics, tracking new-token usage and response length during MtPO training
versus PPO.

4.6 LENGTH CONTROL STRATEGY ANALYSIS
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Figure 6: MtPO with/without overlength penalty. The penalty shortens outputs but destabilizes training.

Figure[6]isolates the effect of the DAPO-style overlength penalty by comparing MtPO runs with and
without the additional term. Although the penalty shortens outputs, it provokes sharp entropy oscil-
lations, intermittent reward spikes, and eventual collapse. We therefore depend on RLVR structural
checks for length control, avoiding direct length penalties that compromise training stability.

4.7 OVERALL PERFORMANCE

We evaluate MtPO on FLORES-Plus (90 ASEAN language directions) using sacreBLEU, COMET,
and chrF, and on general benchmarks (BBH, CMMLU, HellaSwag, MMLU), all with the Light-
TLLM-7B family and the tokenizer/training recipe from Section 3]

MtPO achieves the strongest overall performance across all translation directions, with particularly
impressive gains on en—xx translation (32.7 BLEU) where our method provides a 1.1 BLEU im-
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[0 BLEU: Qwen-MT-plus® BLEU: Others [ General Benchmark: Gemmas3-27b-it General Benchmark: Others [ Speed: Hunyuan-MT-78* Speed: Others
Translation (sacreBLEU/COMET/chrF) General Capabilities (%)
Model XX—en en—xx XX—XX Avg. BBH CMMLU HellaSwag MMLU
Multilingual Chat Models
Gemma3-27B-IT 36.8/0.882/62.87 30.7/0.875/54.15 22.3/0.847/47.53 24.7/0.854/49.73 55.9 55.9 55.9 56.0
Qwen3-8B 31.1/0.862/58.45 23.3/0.799/46.42 14.4/0.752/36.80 16.9/0.767/39.93 63.8 60.8 26.0 51.3
Qwen2.5-7B-Instruct 24.8/0.498/19.41 17.4/0.455/15.58 9.2/0.449/14.50 11.6/0.454/15.10 54.4 64.1 85.2 40.9
Apertus-8B-Instruct 32.5/0.870/60.51 25.7/0.802/46.63 15.6/0.750/36.86 18.3/0.767/40.22 49.2 453 64.2 452
Tower-Plus-9B 28.2/0.825/54.73 18.3/0.671/37.74 9.8/0.615/29.33 12.5/0.641/32.74 40.4 572 73.1 42.1
Translation-Focused Models
Qwen-MT-Plus 34.0/0.881/60.10 29.6/0.869/53.44 19.6/0.839/45.79 22.1/0.846/48.19 - - - -
Seed-X-PPO-7B 25.9/0.786/51.61 22.6/0.708/36.33 10.5/0.638/24.72 13.3/0.660/28.57 - - - -
Hunyuan-MT-7B 24.6/0.839/55.24 23.4/0.862/48.38 14.8/0.802/39.53 16.6/0.812/41.99 - - - -
Translation-Focused without LLM Models
Google Translate 41.2/0.884/65.68 32.2/0.842/55.70 23.2/0.820/47.94 25.9/0.828/50.49 - - - -
NLLB-200 38.1/0.875/62.95 28.3/0.845/52.13 19.7/0.830/44.92 22.4/0.836/47.45 - - - -
Our Models
Light-TLLM-7B-MtPO w/o CPT 33.3/0.862/56.82 31.7/0.863/51.82 21.4/0.822/43.60 23.7/0.837/46.86 59.7 62.0 835 47.6
A (MtPO — w/o CPT) +2.8/+0.019/+5.92 +1.0/+0.019/+4.40 +1.7/40.032/+5.20 +1.2/40.022/+4.08 +1.2 +1.2 +1.7 +0.9
Light-TLLM-7B-SFT 35.4/0.875/59.82 32.0/0.875/52.94 22.7/0.839/44.46 24.3/0.849/48.26 59.6 61.4 83.7 472
A (MtPO — SFT) +0.7/+0.006/+2.92 +0.7/40.007/+3.28 +0.4/+0.015/+4.34 +0.6/+0.010/+2.68 +1.3 +1.8 +1.5 +1.3
Light-TLLM-7B-MtPO 36.1/0.881/62.74 32.7/0.882/56.22 23.1/0.854/48.80 24.9/0.859/50.94 60.9 63.2 85.2 48.5

Table 3: Overall performance comparison on translation and instruction-following benchmarks.

provement over the next best system. The results demonstrate several key advantages: (1) Multi-
lingual gains: Significant improvements on xx—xx translation (23.1 BLEU), which is particularly
challenging due to limited parallel training data. (2) Capability preservation: Strong performance
on general reasoning benchmarks (BBH: 60.9%, CMMLU: 63.2%, HellaSwag: 85.2%, MMLU:
48.5%) shows that translation specialization does not compromise broad capabilities. (3) Efficiency:
Our model achieves competitive performance with 7B parameters compared to much larger models
like Gemma3-27B-IT. The consistent improvements across diverse language pairs and task types
validate the effectiveness of our unified approach to multilingual translation optimization. Detailed
per-language BLEU/COMET/chrF scores are provided in Appendices[A.6][A7] and[A-§]

Training configurations and evaluation metrics are detailed in Appendix [A.5]

5 CONCLUSION

In this work, we have presented a comprehensive approach to extending foundation models to low-
resource languages through Multilingual Translation Policy Optimization (MtPO). Our methodology
addresses three critical challenges in multilingual model development: tokenization efficiency, bal-
anced multilingual training, and effective reinforcement learning for translation tasks. In addition,
our Reinforcement Learning with Verifiable Rewards (RLVR) adds deterministic checks on length
ratio, structural tokens, language targeting, and mixing to substantially reduce real-world failure
modes without harming general translation quality.
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A SUPPLEMENTARY MATERIAL

A.1 TOKENIZER EXPANSION DETAILS

Table [T] in Section [.1] reports detailed tokenizer diagnostics for the expanded low-resource lan-
guages, showing compression ratios and efficiency improvements achieved through vocabulary ex-
pansion.

A.2 DETAILED RLVR FORMULATIONS

The Reward Learning with Verifiable Rewards (RLVR) framework combines semantic translation
quality signals with deterministic, verifiable constraints. The complete reward function is defined
as:
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Rrive(2,y) = Rne(@, ¥) + Nien Tien (%, ¥) + Mme Tome (2, V)
+ Mia 71id(¥) + Amix Tmix (¥) @)

where R, represents the semantic translation reward and each verifiable term is defined as follows:

A.2.1 LENGTH RATIO REWARD

The length ratio reward 7, (, y) constrains output length relative to input:

+1, if p € [o, B]
Tlen(zv y) =94 “Olen * maX(O, pP— 6)7 lfp > ﬁ (6)
—0en - max(0, — p), ifp<a

where p = % is the length ratio, [a, 8] defines the acceptable ratio range (typically [0.5, 2.0] for
most language pairs), and oje, > 0 controls the penalty strength for violations.

A.2.2 FORMAT VALIDITY REWARD

For inputs containing structural tokens (HTML, Markdown, etc.), the format validity reward
rme (2, y) is computed as:

rfmt(xy y) = Wpreserve * fpreserve(xv y) — Whoroken * fbroken(y) (7)
where:
__ |struct_tokens(x)Nstruct_tokens(y)| . .
* foreserve (2, y) = Tstruct_wokens(z)] measures the preservation ratio of structural
tokens

* foroken(y) counts syntax violations (unclosed tags, broken lists, malformed code fences)
detected by lightweight parsers

* Wpreserves Whroken > 0 are weighting factors

A.2.3 TARGET LANGUAGE VERIFICATION

The language identification reward ry;4(y) verifies that the output matches the target language ¢;:

+1, if LID(y) = ¢; and confidence > 6y
—1g, otherwise

Tia(y) = { (8)

where LID(-) is a language identification model, 0};4 is the confidence threshold (typically 0.8), and
mia > 0 is the penalty for off-target language.

A.2.4 CODE-MIXING DETECTION

The code-mixing reward 7y (y) penalizes excessive mixing of languages within the output:

0, ifpmix(y) < Tmix
mix - ! 9
§ (y) {_Cmix : (pmix(y) - T mix); otherwise ©)

where pmix () estimates the proportion of non-£; segments or scripts in y, Tmix is the mixing tolerance
threshold (typically 0.1-0.2), and (,ix > 0 controls the penalty severity.
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A.2.5 IMPLEMENTATION DETAILS

All verifiable terms are designed to be computationally efficient and deterministic:

¢ Clipping: Each reward term is clipped to [—Cinax, Cimax| to prevent gradient explosions,
where Cihax = 5.0 in our implementation.

* Normalization: The final reward is normalized across the batch to maintain stable training
dynamics.

e Hyperparameters: We use Ay, = 0.3, Ay = 0.2, A\jig = 0.4, Anix = 0.3 as default
weights, tuned on validation sets.

The RLVR framework thus provides structured, interpretable constraints that complement learned
semantic rewards while maintaining computational efficiency during training.

A.3 REWARD MODEL ERROR CATEGORIES

In our reward model design, we systematically categorized translation errors into ten distinct types
to ensure comprehensive coverage of potential failure modes. This categorization framework was
essential for training a robust reward model that could effectively identify and appropriately score
various types of translation errors across multiple languages.

Table 4: Error categories for RM robustness

CategoryI Type Description
Accuracy Mistranslation, omission, over-translation, semantic misun-
derstanding
. Off-target Untranslated segments, wrong target language
Quality : Lo . .
Fluency Natural expression, comprehensibility, professionalism

Terminology Consistency, accuracy, omission of terms
Code-mixing Unreasonable language mixing within sentences

Repetition End-of-sentence, segment, instruction repetition
. Intent Machine misunderstanding of instructions
Instruction L P .
Leakage Output containing or translating instructions
Content Explanation Excessive explanations beyond translation
Format® Preservation Maintaining original formatting and punctuation

! Categories are non-exclusive; a sample may trigger multiple error types.
% Preservation includes punctuation, special markers, and structural tokens.

This comprehensive error categorization system enabled our reward model to provide nuanced feed-
back on translation quality, distinguishing between different types of errors and their relative sever-
ity. The framework was particularly important for low-resource languages where translation errors
can manifest in diverse and subtle ways.

A.4 DETAILED MTPO MATHEMATICAL DERIVATIONS

This section provides comprehensive mathematical details for the MtPO formulation presented in
the main text.

A.4.1 ADVANTAGE ESTIMATION AND NORMALIZATION

The MtPO advantage estimator is constructed as:

A, = R; . — Bi(q)
" Stdmicrobatch({Rj,t}JG:l) +e

(14 - H(mg(0i4q,0i,<t)) - ¥") (10)

where B(q) = meangmup({Rjyt}jG:l) is the groupwise baseline. This construction ensures:

¢ Zero-mean property: Zil fli,t = 0 almost surely for every position ¢, preserving the
fixed-point of policy gradient updates.

18



Under review as a conference paper at ICLR 2026

* Scale invariance: Microbatch standardization aligns estimator scale across batches, crucial
for stable clipping in multilingual settings where reward magnitudes vary substantially.

* Position-aware exploration: The entropy multiplier 1+« H (7 (0;.¢|q, 05, <¢))~" amplifies
early token contributions, reflecting their larger causal influence on sequence completion.

A.4.2 DuAL ENTROPY REGULARIZATION

MtPO employs two complementary entropy terms:

Local entropy : within /Ali,t for credit assignment modulation an
Global entropy : SE[H (74(-|q, 0;,<¢))] for exploration enforcement (12)

The local entropy term modulates credit assignment without introducing high-variance gradients,
while the global term enforces a lower bound on policy entropy. This dual structure prevents pre-
mature action distribution collapse observed in non-value baselines.

A.4.3 TEMPERATURE-CONSISTENT IMPORTANCE SAMPLING

The importance ratio admits the closed-form expression:

1 ; y 04 _1 7 y Ug
17,(6) = exp ( 0g (04,119, 0i,<t) . 08 Mo,y (04,219, 0 ,<t)> (13)

This formulation preserves the martingale property required for on-policy convergence analyses
while ensuring consistent temperature scaling across data collection and policy updates.

A.4.4 ASYMMETRIC CLIPPING ANALYSIS

The asymmetric clipping bounds (1 — €jow, 1+ €nigh) With €10w > enign reflect empirical observations:

* Downward sensitivity: Ratio decreases (policy becoming less likely to generate observed
tokens) correlate strongly with translation quality degradation.

» Upward tolerance: Moderate ratio increases often correspond to improved translation
fluency and adequacy.

* Typical values: €5, = 0.20, eyjgn = 0.28 based on extensive hyperparameter search.
A.4.5 COMPUTATIONAL OPTIMIZATIONS
For large vocabularies, entropy computation is approximated by:
H(mp(-|s) = — > wo(kls)logm(kls) (14)
ketop-20%

This approximation reduces computational overhead by 80% while maintaining sufficient accuracy
for gradient-based training, as the tail of the probability distribution contributes negligibly to entropy
estimates.

A.5 EXPERIMENTAL SETUP DETAILS

Models. We compare three checkpoints derived from our pipeline—continued pre-training only
(SFT w/0 CPT), continued pre-training followed by instruction tuning (SFT), and the full MtPO
stage—against both multilingual chat models (Gemma3, Qwen2.5/3, Aya, LLaMAX, etc.) and
translation-specialized systems (Hunyuan-MT-7B, Qwen-MT-Plus, Seed-X-PPO-7B).

Training budget. Continued pre-training consumes 200B tokens with adaptive multilingual sam-
pling, while MtPO uses 60k RL steps with per-step batch size of 128 samples. All RL baselines
share identical budgets to enable fair comparisons.
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Metrics.

Main results report sacreBLEU for three translation groups (xx — en, en — xx, and

xX — xx). General capabilities are measured with zero-shot accuracy. Significance is assessed with
paired bootstrap resampling across FLORES directions.

A.6 DETAILED BLEU BREAKDOWN

Table [3] reports the BLEU scores by source and target language pair across all evaluated models,
computed with the standard n-gram formulation(Papineni et al., 2002). Language names from the
original dataset are translated into English for readability.

Table 5: BLEU scores per source—target language pair.

Model BLEU Scores

Source Target

Gem3 SeedX QwenMT Huny MtPO Qw2.5 Qw3 Apert Aya Emma LLa3.1 LLaX3 Mistr Tower Google NLLB
Thai Malay 0.247 0.250 0.212 0.180 0.243 0.132 0.169 0.187 0.092 0.008 0.014 0.173 0.031 0.131 0.234 0.227
Thai Khmer 0.078 0.006 0.051 0.090 0.091 0.018 0.042 0.005 0.002 0.077 0.012 0.063 0.002 0.003 0.095 0.072
Thai Lao 0.174 0.012 0.133 0.007 0.199 0.010 0.067 0.026 0.003 0.006 0.005 0.066 0.003 0.005 0.147 0.174
Thai Burmese  0.102 0.002 0.135 0.121 0.161 0.013 0.048 0.095 0.001 0.067 0.015 0.047 0.003 0.002 0.116 0.066
Thai Filipino 0.234 0.020 0.179 0.156 0.214 0.066 0.130 0.169 0.054 0.029 0.091 0.149 0.026 0.092 0.148 0.211
Thai Indonesian 0.302 0.277 0.197 0.195 0.259 0.191 0.232 0.250 0.160 0.008 0.033 0.204 0.047 0.192 0.285 0.266
Thai Vietnamese 0.318 0.321 0.240 0.234 0.296 0.212 0.268 0.278 0.190 0.015 0.030 0.256 0.056 0.210 0.321 0.294
Thai English 0.327 0.298 0.262 0.231 0.312 0.274 0.291 0.282 0.168 0.061 0.037 0.273 0.145 0.287 0.325 0.316
Thai Chinese 0.266 0.184 0.260 0.214 0.243 0.217 0.241 0.231 0.137 0.053 0.111 0.176 0.072 0.234 0.281 0.147
Malay Thai 0.292 0.291 0.287 0.246 0.269 0.162 0.227 0.243 0.060 0.004 0.192 0.206 0.030 0.145 0.321 0.202
Malay Khmer 0.086 0.006 0.053 0.103 0.103 0.019 0.044 0.006 0.003 0.017 0.013 0.070 0.004 0.004 0.105 0.083
Malay Lao 0.183 0.015 0.144 0.009 0.231 0.016 0.061 0.028 0.006 0.005 0.006 0.073 0.005 0.008 0.168 0.197
Malay Burmese  0.118 0.003 0.146 0.134 0.174 0.016 0.056 0.107 0.001 0.021 0.016 0.050 0.004 0.002 0.115 0.079
Malay Filipino 0.259 0.027 0.229 0.208 0.273 0.079 0.159 0.203 0.099 0.028 0.177 0.207 0.050 0.125 0.048 0.274
Malay Indonesian 0.385 0.374 0.366 0.270 0.312 0.239 0.307 0.263 0.336 0.080 0.254 0.254 0.113 0.239 0.381 0.368
Malay Vietnamese 0.365 0.365 0.350 0.285 0.337 0.252 0.304 0.323 0.315 0.011 0.288 0.294 0.086 0.250 0.384 0.340
Malay English 0.440 0.438 0.441 0.341 0.435 0.373 0.397 0.413 0.379 0.079 0.363 0.402 0.274 0.421 0.504 0.466
Malay Chinese 0.280 0.185 0.280 0.259 0.262 0.227 0.255 0.244 0.224 0.059 0.203 0.189 0.101 0.250 0.329 0.167
Khmer Thai 0.265 0.043 0.228 0.183 0.243 0.090 0.089 0.179 0.015 0.013 0.090 0.180 0.014 0.072 0.272 0.177
Khmer Malay 0.237 0.054 0.200 0.155 0.234 0.070 0.141 0.171 0.032 0.093 0.005 0.160 0.017 0.072 0.245 0.239
Khmer Lao 0.141 0.010 0.100 0.008 0.209 0.009 0.009 0.001 0.006 0.013 0.005 0.059 0.006 0.006 0.149 0.176
Khmer Burmese  0.090 0.002 0.116 0.109 0.153 0.002 0.030 0.002 0.002 0.073 0.013 0.043 0.002 0.001 0.104 0.092
Khmer Filipino 0.229 0.015 0.174 0.141 0.221 0.048 0.104 0.159 0.033 0.011 0.018 0.148 0.015 0.054 0.217 0.216
Khmer Indonesian 0.279 0.062 0.238 0.168 0.260 0.096 0.183 0.223 0.044 0.082 0.008 0.180 0.022 0.095 0.291 0.266
Khmer Vietnamese 0.296 0.069 0.265 0.195 0.295 0.112 0.214 0.249 0.038 0.049 0.004 0.233 0.022 0.106 0.313 0.288
Khmer English 0.315 0.066 0.294 0.202 0.322 0.128 0.236 0.273 0.044 0.015 0.129 0.266 0.048 0.134 0.335 0.332
Khmer Chinese 0.238 0.014 0.211 0.165 0.227 0.095 0.175 0.180 0.050 0.053 0.027 0.153 0.022 0.113 0.262 0.143
Lao Thai 0.297 0.016 0.281 0.038 0.275 0.085 0.134 0.093 0.016 0.041 0.110 0.201 0.007 0.092 0.316 0.215
Lao Malay 0.275 0.016 0.222 0.039 0.284 0.062 0.164 0.191 0.037 0.109 0.015 0.144 0.010 0.076 0.280 0.267
Lao Khmer 0.087 0.002 0.042 0.041 0.109 0.009 0.011 0.002 0.004 0.053 0.009 0.065 0.005 0.004 0.103 0.084
Lao Burmese ~ 0.103 0.001 0.105 0.039 0.165 0.003 0.026 0.002 0.002 0.039 0.009 0.035 0.003 0.002 0.113 0.095
Lao Filipino 0.246  0.005 0.188 0.051 0.239 0.049 0.127 0.167 0.035 0.050 0.054 0.129 0.012 0.048 0.244 0.235
Lao Indonesian 0.314 0.018 0.228 0.040 0.292 0.072 0.196 0.231 0.047 0.067 0.042 0.157 0.014 0.087 0.333 0.296
Lao Vietnamese 0.329 0.023 0.270 0.039 0.314 0.087 0.229 0.259 0.040 0.057 0.032 0.217 0.013 0.096 0.350 0.301
Lao English 0.359 0.014 0.257 0.048 0.364 0.094 0.266 0.282 0.051 0.056 0.120 0.236 0.029 0.120 0.415 0.375
Lao Chinese 0.247 0.005 0.235 0.050 0.231 0.072 0.184 0.189 0.054 0.055 0.030 0.126 0.013 0.102 0.295 0.150
Burmese  Thai 0.228 0.015 0.203 0.145 0.204 0.046 0.040 0.157 0.005 0.013 0.080 0.123 0.007 0.036 0.249 0.162
Burmese ~ Malay 0.194 0.017 0.170 0.128 0.193 0.031 0.099 0.141 0.009 0.093 0.004 0.092 0.005 0.051 0.212 0.220
Burmese ~ Khmer 0.055 0.002 0.055 0.068 0.073 0.007 0.013 0.003 0.002 0.041 0.005 0.040 0.002 0.001 0.079 0.062
Burmese  Lao 0.113  0.004 0.092 0.004 0.169 0.003 0.015 0.010 0.003 0.023 0.002 0.039 0.001 0.001 0.129 0.149
Burmese  Filipino 0.200 0.006 0.155 0.124 0.188 0.031 0.077 0.140 0.013 0.084 0.055 0.096 0.009 0.039 0.197 0.205
Burmese  Indonesian 0.233 0.018 0.210 0.132 0.201 0.046 0.132 0.181 0.013 0.086 0.009 0.109 0.008 0.070 0.259 0.249
Burmese  Vietnamese 0.260 0.020 0.235 0.166 0.254 0.057 0.164 0.218 0.014 0.057 0.020 0.173 0.010 0.077 0.286 0.269
Burmese  English 0.263  0.020 0.254 0.173 0.268 0.061 0.181 0.229 0.016 0.046 0.153 0.198 0.023 0.104 0.317 0.304
Burmese  Chinese 0.207 0.004 0.191 0.140 0.189 0.049 0.132 0.163 0.013 0.326 0.063 0.124 0.010 0.091 0.244 0.131
Filipino Thai 0.298 0.246 0.280 0.226 0.267 0.134 0.205 0.218 0.051 0.008 0.173 0.197 0.025 0.125 0.320 0.238
Filipino Malay 0.317 0.277 0.211 0.225 0.326 0.131 0.203 0.193 0.146 0.095 0.180 0.229 0.052 0.171 0.376 0.422
Filipino Khmer 0.083 0.006 0.060 0.095 0.103 0.016 0.038 0.005 0.003 0.011 0.010 0.071 0.004 0.003 0.123 0.090
Filipino Lao 0.164 0.015 0.136 0.008 0.227 0.013 0.046 0.023 0.005 0.558 0.006 0.064 0.004 0.005 0.197 0.232
Filipino Burmese  0.122 0.003 0.128 0.132 0.168 0.015 0.050 0.093 0.002 0.019 0.017 0.050 0.004 0.002 0.128 0.122
Filipino Indonesian 0.375 0.300 0.263 0.231 0.336 0.176 0.229 0.246 0.245 0.161 0.221 0.261 0.078 0.203 0.332 0.362
Filipino Vietnamese 0.368 0.315 0.139 0.264 0.347 0.194 0.279 0.294 0.254 0.056 0.268 0.285 0.067 0.204 0.499 0.467
Filipino English 0.481 0.394 0.454 0.328 0.454 0.299 0.382 0.395 0.307 0.535 0.399 0.403 0.239 0.382 0.457 0.416
Filipino Chinese 0.287 0.129 0.271 0.237 0.267 0.191 0.237 0.236 0.175 0.029 0.185 0.184 0.084 0.235 0.396 0.205
Indonesian Thai 0.304 0.304 0.299 0.256 0.276 0.172 0.237 0.254 0.064 0.254 0.200 0.209 0.030 0.161 0.283 0.171
Indonesian Malay 0.332 0.351 0.313 0.268 0.299 0.220 0.262 0.240 0.163 0.037 0.222 0.215 0.083 0.228 0.245 0.218
Indonesian Khmer 0.085 0.006 0.064 0.102 0.101 0.018 0.045 0.006 0.003 0.119 0.012 0.078 0.004 0.004 0.085 0.065
Indonesian Lao 0.178 0.015 0.138 0.008 0.226 0.016 0.060 0.030 0.006 0.047 0.006 0.067 0.005 0.007 0.135 0.138
Indonesian Burmese  0.115 0.003 0.137 0.133 0.176 0.016 0.054 0.102 0.002 0.033 0.018 0.051 0.003 0.002 0.108 0.114
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Indonesian Filipino 0.262  0.025 0.236 0.209 0.273 0.085 0.170 0.211 0.101 0.081 0.181 0.211 0.049 0.124 0.214 0.189
Indonesian Vietnamese 0.371 0.377 0.362 0.296 0.349 0.270 0.321 0.341 0.350 0.491 0.310 0.307 0.087 0.270 0.299 0.241
Indonesian English 0.447 0.443 0.446 0.344 0.435 0.399 0.411 0.428 0.416 0.012 0.350 0.395 0.269 0.435 0.334 0.292
Indonesian Chinese 0.293 0.213 0.302 0.266 0.271 0.255 0.271 0.260 0.251 0.398 0.216 0.203 0.113 0.276 0.347 0.304
Vietnamese Thai 0.280 0.252 0.277 0.232 0.254 0.155 0.222 0.237 0.065 0.285 0.184 0.200 0.029 0.149 0.300 0.198
Vietnamese Malay 0.277 0.283 0.251 0.215 0.279 0.150 0.200 0.214 0.169 0.337 0.174 0.213 0.055 0.171 0.279 0.274
Vietnamese Khmer 0.079 0.006 0.052 0.099 0.093 0.018 0.043 0.005 0.003 0.365 0.013 0.065 0.003 0.004 0.096 0.078
Vietnamese Lao 0.167 0.014 0.137 0.008 0.211 0.014 0.054 0.026 0.005 0.415 0.007 0.067 0.005 0.007 0.155 0.179
Vietnamese Burmese  0.112 0.003 0.141 0.130 0.165 0.014 0.050 0.099 0.002 0.334 0.015 0.051 0.004 0.002 0.110 0.074
Vietnamese Filipino 0.261 0.024 0.207 0.187 0.251 0.075 0.147 0.198 0.092 0.345 0.171 0.188 0.040 0.113 0.249 0.244
Vietnamese Indonesian 0.330 0.312 0.304 0.231 0.298 0.224 0.269 0.294 0.304 0.353 0.226 0.253 0.084 0.236 0.345 0.316
Vietnamese English 0.376 0.376 0.364 0.290 0.365 0.334 0.345 0.345 0.353 0.242 0.237 0.326 0.226 0.352 0.421 0.385
Vietnamese Chinese 0.273 0.218 0.283 0.247 0.252 0.235 0.250 0.244 0.242 0.290 0.189 0.183 0.105 0.253 0.316 0.164
English Thai 0.341 0.348 0.345 0.286 0.320 0.200 0.272 0.308 0.074 0.304 0.235 0.236 0.034 0.184 0.376 0.238
English Malay 0.403 0.433 0.381 0.305 0.411 0.239 0.308 0.353 0.243 0.017 0.332 0.322 0.093 0.250 0.394 0.422
English Khmer 0.091 0.007 0.060 0.115 0.125 0.022 0.051 0.008 0.004 0.271 0.013 0.078 0.003 0.004 0.122 0.090
English Lao 0.205 0.017 0.172 0.010 0.274 0.017 0.075 0.034 0.006 0.242 0.006 0.074 0.005 0.007 0.197 0.232
English Burmese  0.129 0.003 0.166 0.153 0.208 0.019 0.066 0.126 0.002 0.183 0.020 0.062 0.004 0.002 0.128 0.122
English Filipino 0.354 0.031 0.297 0.250 0.352 0.120 0.220 0.294 0.132 0.350 0.272 0.270 0.069 0.177 0.332 0.362
English Indonesian 0.478 0.468 0.470 0.321 0.448 0.328 0.401 0.463 0.439 0.017 0.410 0.364 0.134 0.362 0.499 0.467
English Vietnamese 0.421 0.455 0.414 0.339 0.415 0.316 0.380 0.416 0.406 0.017 0.377 0.350 0.108 0.311 0.457 0.416
English Chinese 0.341 0.271 0.355 0.327 0.329 0.307 0.328 0.316 0.304 0.017 0271 0.242 0.183 0.350 0.396 0.205
Chinese ~ Thai 0.263 0.252 0.246 0.220 0.237 0.142 0.209 0.222 0.053 0.017 0.166 0.175 0.023 0.129 0.283 0.171
Chinese Malay 0.221 0.234 0.200 0.186 0.223 0.119 0.164 0.181 0.132 0.017 0.156 0.162 0.035 0.138 0.245 0.218
Chinese Khmer 0.073  0.006 0.062 0.090 0.087 0.018 0.036 0.005 0.004 0.017 0.010 0.063 0.002 0.005 0.085 0.065
Chinese  Lao 0.135 0.011 0.112 0.007 0.174 0.010 0.043 0.020 0.004 0.017 0.004 0.042 0.003 0.005 0.135 0.138
Chinese Burmese  0.097 0.002 0.133 0.122 0.164 0.014 0.055 0.101 0.001 0.017 0.016 0.048 0.002 0.002 0.107 0.114
Chinese Filipino 0.212 0.019 0.171 0.160 0.198 0.058 0.120 0.160 0.067 0.017 0.134 0.146 0.029 0.088 0.214 0.189
Chinese Indonesian 0.269 0.264 0.253 0.207 0.248 0.179 0.224 0.236 0.255 0.017 0.203 0.187 0.054 0.197 0.299 0.241
Chinese Vietnamese 0.306 0.319 0.289 0.258 0.292 0.181 0.274 0.276 0.288 0.017 0.248 0.247 0.060 0.222 0.334 0.292
Chinese English 0.301 0.282 0.292 0.256 0.292 0.273 0.288 0.275 0.290 0.017 0.271 0.255 0.187 0.306 0.347 0.304

A.7 DETAILED COMET BREAKDOWN

Table [6] reports COMET scores for every evaluated source—target direction across MtPO and all
baselines, complementing the BLEU breakdown in Appendix [A.6]

Table 6: COMET scores per source—target language pair.

Model COMET Scores

Source Target

Gem3 SeedX QwenMT Huny MtPO Qw2.5 Qw3 Apert Aya Emma LLa3.1 LLaX3 Mistr Tower Google NLLB
Thai Malay 0.8774 0.876 0.877 0.8729 0.8741 0.5088 0.8537 0.8627 0.7755 0.4776 0.7004 0.8471 0.5788 0.7917 0.8481 0.8572
Thai Khmer 0.7952 0.4917  0.7807 0.8126 0.8245 0.3895 0.6391 0.5416 0.3694 0.7217 0.5474 0.6985 0.4164 0.3355 0.7682 0.7884
Thai Lao 0.8223  0.51  0.7957 0.6894 0.8409 0.3552 0.6412 0.5743 0.3659 0.5655 0.5892 0.6166 0.3353 0.4796 0.7615 0.8295
Thai Burmese  0.8373 0.4567  0.8487 0.8498 0.8673 0.4155 0.6412 0.7807 0.3781 0.7714 0.5436 0.6405 0.388 0.3276 0.7535 0.8205
Thai Filipino 0.8401 0.655  0.8298 0.8244 0.8353 0.4611 0.7514 0.8136 0.5903 0.5316 0.7156 0.7974 0.5538 0.6924 0.749 0.819
Thai Indonesian  0.901 0.8988  0.8988 0.8907 0.8898 0.5243 0.8843 0.889 0.8209 0.4651 0.737 0.8678 0.6252 0.8546 0.8923 0.878
Thai Vietnamese 0.8892 0.8867  0.8896 0.883 0.8808 0.504 0.8762 0.8739 0.8117 0.4553 0.7257 0.8615 0.5719 0.8324 0.8776 0.8685
Thai English 0.8902 0.8863  0.8899 0.8782 0.8847 0.5233 0.8813  0.87 0.8069 0.685 0.6816 0.8731 0.7952 0.8778 0.8804 0.8743
Thai Chinese 0.8794 0.8745  0.8841 0.8778 0.8736 0.5127 0.8727 0.8684 0.7914 0.6146 0.8102 0.8473 0.7292 0.8671 0.873 0.819
Malay Thai 0.8692 0.8667  0.8694 0.8674 0.8553 0.4569 0.8367 0.8373 0.5409 0.5551 0.8041 0.8153 0.4664 0.7574 0.864 0.8242
Malay Khmer 0.7774 0.4523 0.759 0.8048 0.8129 0.3786 0.6218 0.5215 0.3672 0.6755 0.5314 0.6893 0.3848 0.3524 0.7558 0.7828
Malay Lao 0.8097 0.4699  0.7704 0.6461 0.8361 0.3476 0.5987 0.5413 0.3611 0.5203 0.3883 0.594 0.318 0.3955 0.7544 0.818
Malay Burmese  0.8333 0.4167  0.8383 0.849 0.8636 0.4207 0.6512 0.7796 0.3867 0.7784 0.542 0.6458 0.3925 0.3405 0.7315 0.828
Malay Filipino 0.8501 0.6247  0.8327 0.8404 0.8459 0.4362 0.7447 0.7946 0.6319  0.59 0.7674 0.8042 0.5606 0.6912 0.7353 0.8367
Malay Indonesian 0.9181 0.9182  0.9149 0.9138 0.9038 0.5051 0.9016 0.895 0.9023 0.6664 0.8935 0.8869 0.7003 0.8818 0.915 0.9072
Malay Vietnamese 0.8832 0.8841  0.8817 0.8806 0.8702 0.4708 0.8578 0.8556 0.8606 0.5954 0.8365 0.8432 0.5596 0.8107 0.8834 0.8639
Malay English 0.894 0.8932 0.893 0.8842 0.8918 0.4882 0.8794 0.8822 0.8715 0.6742 0.866 0.8804 0.8407 0.8778 0.8978 0.8907
Malay Chinese 0.8639 0.8635  0.8697 0.8708 0.8589 0.4868 0.8545 0.8447 0.8357 0.6041 0.8305 0.8276 0.7354 0.8468 0.8711 0.8098
Khmer Thai 0.8581 0.6512  0.8556 0.8462 0.8522 0.4609 0.7295 0.7711 0.4606 0.6524 0.6795 0.8166 0.4325 0.6588 0.8496 0.8123
Khmer Malay 0.8606 0.6687 0.857 0.846 0.8588 0.4826 0.8141 0.8376 0.5707 0.5084 0.4516 0.8246 0.513 0.6724 0.8368 0.8453
Khmer Lao 0.8063 0.4383  0.7616 0.6677 0.8396 0.4369 0.6654 0.4637 0.376 0.6479 0.4812 0.6119 0.4404 0.4293 0.754 0.8159
Khmer Burmese 0.81 0.4041  0.8207 0.8413 0.8579 0.4117 0.591 0.4325 0.392 0.604 0.5353  0.63 0.3885 0.3217 0.7387 0.8233
Khmer Filipino 0.8345 0.5475  0.8213 0.8137 0.8305 0.4754 0.7228 0.8023 0.5273 0.5005 0.4547 0.7842 0.5054 0.619 0.817 0.8128
Khmer Indonesian 0.8811 0.686  0.8747 0.8624 0.8743 0.4976 0.8353 0.8592 0.599 0.5223 0.4594 0.8408 0.5387 0.7165 0.8754 0.8613
Khmer Vietnamese 0.876 0.6836  0.8739 0.8591 0.8698 0.485 0.8359 0.853 0.5866 0.5455 0.4726 0.8424 0.4999 0.706 0.8678 0.8524
Khmer English 0.8748 0.6759  0.8714 0.8545 0.8763 0.5095 0.8424 0.8635 0.5871 0.4808 0.6344 0.8564 0.6086 0.7543 0.8669 0.8632
Khmer Chinese 0.8582 0.6376  0.8584 0.8474 0.8548 0.4873 0.825 0.8387 0.5706 0.5558  0.53 0.8174 0.5608 0.739 0.8543 0.8093
Lao Thai 0.8686 0.5347  0.8645 0.5859 0.8593 0.4395 0.7585 0.6251 0.4541 0.592 0.6764 0.8107 0.4399 0.6397 0.8663 0.8308
Lao Malay 0.8685 0.5192  0.8598 0.5998 0.867 0.4651 0.8148 0.8345 0.5581 0.4646 0.4544 0.8046 0.4622 0.6311 0.8527 0.853
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Source

Model COMET Scores

Target

Gem3 SeedX QwenMT Huny MtPO Qw25 Qw3 Apert Aya Emma

LLa3.1 LLaX3 Mistr Tower

Google NLLB

Lao

Lao

Lao

Lao

Lao

Lao

Lao
Burmese
Burmese
Burmese
Burmese
Burmese
Burmese
Burmese
Burmese
Burmese
Filipino
Filipino
Filipino
Filipino
Filipino
Filipino
Filipino
Filipino
Filipino
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Vietnamese
Vietnamese
Vietnamese
Vietnamese
Vietnamese
Vietnamese
Vietnamese
Vietnamese
Vietnamese
English
English
English
English
English
English
English
English
English
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese

Khmer 0.7796 0.357
Burmese  0.8237 0.3396
Filipino 0.8403 0.4352
Indonesian 0.8862 0.5362
Vietnamese 0.8777 0.5401
English 0.8793 0.5099
Chinese 0.8613 0.5356
Thai 0.8511 0.5809
Malay 0.8529 0.5939
Khmer 0.7468 0.4073
Lao 0.7794 0.4128
Filipino 0.8318 0.513
Indonesian 0.8727 0.6055
Vietnamese 0.8649 0.5947
English 0.8687 0.6009
Chinese 0.8519 0.5612
Thai 0.8605 0.8382
Malay 0.8777 0.8614
Khmer 0.7747 0.4293
Lao 0.8021 0.4473
Burmese  0.8343 0.3965
Indonesian 0.8988 0.8808
Vietnamese 0.872 0.8498
English 0.8841 0.8599
Chinese 0.8558 0.8225
Thai 0.8749 0.8739
Malay 0.9045 0.9063
Khmer 0.7823 0.4582
Lao 0.8096 0.4755
Burmese  0.8313 0.4219
Filipino 0.853 0.6329
Vietnamese 0.8903 0.8889
English 0.8997 0.8989
Chinese 0.8736 0.8725
Thai 0.8737 0.8633
Malay 0.8756 0.8758
Khmer 0.7882 0.4521
Lao 0.8138 0.4696
Burmese  0.8338 0.4176
Filipino 0.8316 0.621
Indonesian 0.9005 0.8999
English 0.8812 0.8817
Chinese 0.8774 0.8781
Thai 0.8951 0.8937
Malay 0.9022 0.9051
Khmer 0.8107 0.4166
Lao 0.8339 0.4387
Burmese 0.862 0.3756
Filipino 0.8611 0.6245
Indonesian 0.9254 0.9236
Vietnamese 0.9008 0.903
Chinese 0.891 0.8921

Thai 0.8748 0.8723
Malay 0.8679 0.8704
Khmer 0.787 0.4623
Lao 0.8054 0.4784

Burmese  0.8293 0.4281
Filipino 0.8235 0.6283
Indonesian 0.8918 0.8928
Vietnamese 0.8883 (0.8883
English 0.8749 0.8745

0.7379 0.5851 0.8223 0.4228 0.6395 0.4829 0.3845 0.6404
0.7731 0.6355 0.8592 0.3896 0.5821 0.4228 0.3871 0.7017
0.8244 0.6208 0.8343 0.4693 0.7274 0.7944 0.5273 0.4442
0.8772  0.608 0.8785 0.4753 0.8358 0.8525 0.5865 0.4798
0.8708 0.5909 0.8698 0.4635 0.8301 0.8424 0.571 0.4911
0.8737 0.5908 0.8807 0.4873 0.8407 0.8553 0.5803 0.5519
0.8574 0.5858 0.8576 0.4659 0.8196 0.8275 0.5594 0.5716
0.8523 0.8312 0.841 0.4595 0.6714 0.7998  0.43 0.6321
0.8516 0.8359 0.8425 0.4844 0.7907 0.8261 0.5439 0.5019
0.7621 0.786 0.8054 0.4037 0.5781 0.5215 0.3822 0.6282
0.7622 0.6343 0.8204 0.4153 0.5798 0.5099 0.3728 0.5964
0.8213 0.8111 0.8257 0.4853 0.7015 0.7943 0.5018 0.5176
0.8715 0.8512 0.8636 0.4964 0.8172 0.847 0.5667 0.527
0.8647 0.8437 0.8558 0.4813 0.8058 0.8341 0.5538 0.5142
0.871 0.8483 0.869 0.5134 0.8284 0.8573 0.5546 0.4874
0.8541 0.835 0.8433 0.4791 0.8073 0.8281 0.5319 0.5455
0.8561 0.8524 0.8456 0.4445 0.8054 0.8014 0.5221 0.5238
0.8617 0.8691 0.8722 0.458 0.7999 0.8118 0.7906 0.5144
0.7503 0.7947 0.8045 0.3853 0.5913 0.4993 0.3611 0.5651
0.7667 0.6351 0.8275 0.3457 0.5616 0.5115 0.3566 0.4764
0.8318 0.8455 0.8591 0.4183 0.6254 0.7175 0.3772 0.758
0.8832 0.8865 0.8871 0.4716 0.8227 0.8358 0.8294 0.5367
0.8662  0.86 0.8572 0.4492 0.8184 0.8266 0.8044 0.4842
0.8753 0.8659 0.878 0.4702 0.8509 0.8583 0.8147 0.5923
0.8552 0.8536 0.8453 0.4706 0.8271 0.8231 0.7776 0.532
0.8777 0.8738 0.8644 0.4638 0.8522 0.8514 0.5462 0.5688
0.9055 0.903 0.9035 0.5139 0.8968 0.897 0.8722 0.6736
0.7613 0.8062 0.8151 0.382 0.6241 0.5282 0.365 0.6913
0.7655 0.6464 0.8374 0.3468 0.5954  0.55 0.3618 0.5377
0.8374 0.8508 0.865 0.4237 0.652 0.7858 0.3862 0.7847
0.8365 0.8409 0.848 0.4428 0.7503 0.8096 0.6463 0.6079
0.8913 0.8875 0.8795 0.4782 0.8714 0.8732 0.8814 0.6108
0.9002 0.8895 0.8966 0.4962 0.8912 0.8932 0.893 0.6712
0.8797 0.8765 0.8665 0.4948 0.8672  0.86 0.8607 0.6167
0.8771 0.8708 0.8643 0.4677 0.8532 0.8519 0.5504 0.5145
0.8744 0.8729 0.8731 0.4887 0.8526 0.8542 0.8467 0.4586
0.7735 0.8122 0.8251 0.3805 0.6416 0.5395  0.37 0.7
0.7771  0.654 0.8418 0.3454 0.6021 0.5602 0.3608 0.5385
0.8424 0.8484 0.8636 0.4213 0.6532 0.7743 0.3811 0.7603
0.8129 0.8161 0.8256 0.4394 0.7284 0.7966 0.6192 0.5686
0.8985 0.894 0.8918 0.5098 0.8854 0.8887 0.8934 0.5278
0.8813 0.8729 0.8776 0.4936 0.8745 0.8746 0.8754 0.6089
0.8821  0.88 0.8709 0.5051 0.8729 0.8669 0.8691 0.6133
0.8979 0.8935 0.887 0.4773 0.8748 0.8746 0.5566 0.6488
0.9027 0.9015 0.9018 0.4878 0.8802 0.8894 0.8728 0.7139
0.7876 0.8359 0.8473 0.3943 0.6634 0.5549 0.3766 0.771
0.7963 0.6894 0.8657 0.3527 0.637 0.5758 0.3669 0.6124
0.8692 0.8779 0.8928 0.4439 0.6922 0.8214 0.398 0.8273
0.8431 0.8478 0.8526 0.4375 0.7625 0.8268 0.6438 0.5863
0.9256 0.9192 0.9152 0.5106 0.9092 0.9139 0.9172 0.6491
0.903 0.9 0.8912 0.4867 0.8895 0.8886 0.8942 0.6617
0.897 0.8987 0.8867 0.5055 0.8877 0.8772  0.88 0.6424
0.8753 0.8743 0.8671 0.4729 0.8543 0.8545 0.5446 0.5942
0.8673 0.8688 0.8687 0.4923 0.8496 0.8558 0.8394 0.5408
0.7701 0.8078 0.8251 0.3858 0.6328 0.5361 0.3679 0.7537
0.7673 0.6488 0.8351 0.3485 0.5973 0.5417 0.3599 0.591
0.847 0.8489 0.8667 0.4207 0.6734 0.7982 0.3822 0.7868
0.8105 0.8142 0.8196 0.4451 0.7311 0.7953 0.6251 0.5728
0.8933 0.8899 0.8862 0.5143 0.8821 0.883 0.8859 0.569
0.8898 0.8878 0.8833  0.49 0.8801 0.879 0.8825 0.4904
0.8779 0.8731 0.8751 0.5027 0.8738 0.8709 0.8722 0.6584

0.5064
0.5037
0.5359
0.5206
0.5183
0.6795
0.5444
0.6905
0.4221
0.5061
0.38
0.5707
0.4432
0.4647
0.7366
0.631
0.7758
0.8009
0.5112
0.3677
0.5324
0.8238
0.8029
0.8516
0.7996
0.8158
0.8954
0.5312
0.3846
0.5436
0.7784
0.8558
0.8736
0.8441
0.8187
0.8305
0.5408
0.3875
0.5443
0.7565
0.8641
0.8307
0.8495
0.8488
0.8822
0.557
0.4244
0.5743
0.8007
0.9056
0.8785
0.8713
0.8168
0.841
0.5263
0.3756
0.543
0.762
0.8731
0.8658
0.866

0.6895 0.4269 0.3454
0.6057 0.3894 0.3252
0.7672 0.4763 0.5864
0.817 0.4876 0.6709
0.8188 0.4642 0.6514
0.8317 0.5094 0.6973
0.7892 0.512 0.6763
0.7883 0.4255 0.6075
0.7981 0.4912 0.6526
0.6611 0.4895 0.3253
0.5671 0.2983 0.3732
0.7573 0.5029 0.5997
0.8176 0.5192 0.6989
0.8222 0.4872 0.6751
0.8461 0.5704 0.7379
0.8085 0.5252 0.7137
0.8047 0.4483 0.7238
0.837 0.5611 0.7679
0.6668 0.3642 0.3355
0.5847 0.2998 0.3739
0.6382 0.3842 0.3343
0.8565 0.6171 0.8012
0.8262 0.528 0.7597
0.8613 0.792 0.8423
0.809 0.6868 0.8132
0.825 0.4658 0.7675
0.8838 0.6599 0.8671
0.6892 0.3886 0.3423
0.589 0.3173 0.3909
0.653 0.3897 0.337
0.8132 0.5626 0.6966
0.8539 0.5656 0.8315
0.8852 0.8473 0.8896
0.841 0.7497 0.8632
0.8313 0.4651 0.7701
0.8506 0.6019 0.7902
0.6845 0.3931 0.344
0.6026 0.3374 0.3908
0.6409 0.3883  0.33
0.7892  0.54 0.6711
0.8754 0.6656 0.8556
0.8676 0.8268 0.8725
0.8485 0.7636 0.869
0.8462 0.4679 0.7985
0.8695 0.6266 0.807
0.7119 0.4127 0.3625
0.6003 0.3552 0.4038
0.6986 0.4256 0.3551
0.8105 0.5618 0.7025
0.8883 0.6879 0.8826
0.8631 0.588 0.841
0.8568 0.8237 0.8906
0.8283 0.4602 0.773
0.8381 0.5623 0.7818
0.6647 0.388 0.3429
0.5629 0.3116 0.3719
0.6467 0.3966 0.3376
0.7821 0.5481 0.6699
0.8626 0.6312 0.8519
0.8585 0.5601 0.8391
0.861 0.8454 0.8772

0.7699 0.7867
0.7462 0.821
0.8034 0.8186
0.8887 0.8663
0.8786 0.8557
0.8858 0.8703
0.8632 0.8073
0.8452 0.8112
0.8337 0.854

0.753 0.7675
0.7487 0.8024

0.805 0.8233
0.8724 0.8694
0.8621 0.8582
0.8723 0.8729
0.8519 0.8147
0.8522 0.8155
0.8551 0.8657

0.748 0.776
0.7417 0.8063
0.7275 0.8202
0.9005 0.8816
0.8697 0.849
0.8888 0.8752
0.8609 0.7949
0.8674 0.8328
0.8872 0.9005
0.7537 0.7866
0.7447 0.8172
0.7263 0.8284
0.8227 0.8412
0.8998 0.8856
0.8943 0.8738
0.8688 0.8263
0.8877 0.8426
0.8673 0.814
0.7593 0.7669
0.7413 0.7968
0.7321 0.8241
0.7917 0.8034
0.8943 0.8738
0.8881 0.8725

0.882 0.8654
0.8673 0.8140
0.8444 0.8533
0.7593 0.7669
0.7413 0.7968
0.7321 0.8241
0.7917 0.8034
0.8943 0.8738
0.8881 0.8725

0.882 0.8654
0.8751 0.8610
0.8709 0.8722
0.8751 0.8731
0.8787 0.8749
0.8779 0.8745
0.8709 0.8722
0.8584 0.8660

0.861 0.8454
0.8738 0.8772

A.8 DETAILED CHRF BREAKDOWN

Table [/| reports chrF scores for every evaluated source—target direction across MtPO and all base-
lines, complementing the BLEU and COMET breakdowns in Appendices[A.6]and [A.7]
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Table 7: chrF scores per source—target language pair.

Model chrF Scores

Source Target

Gem3 SeedX QwenMT Huny MtPO Qw2.5 Qw3 Apert Aya Emma LLa3.1 LLaX3 Mistr Tower Google NLLB
Thai Malay 58.31 57.57 55.44 55.74 57.95 23.09 51.79 53.82 4232 6.43 4.89 50.21 35.48 48.86 58.05 57.71
Thai Khmer 3693 285 34.34 39.40 42.28 13.25 28.35 15.82 11.60 35.03 18.45 3047 1.76 11.74 4198 41.85
Thai Lao 45.85 4.08 4123 248 48.60 11.28 31.41 18.32 10.51 2.03 479 27.54 321 9.20 46.82 48.23
Thai Burmese  39.40 0.71 42.25 44.15 46.55 17.47 29.83 36.38 10.15 31.80 16.20 25.48 15.08 11.84 4423 44.18
Thai Filipino 54.12 18.07 49.96 51.67 53.14 23.36 44.68 49.49 36.54 14.57 31.06 46.40 32.88 41.20 48.17 53.69
Thai Indonesian 60.90 58.45 58.20 56.20 57.78 21.94 55.93 57.70 48.26  9.50 10.19 52.13 37.91 52.99 60.14 58.28
Thai Vietnamese 52.90 53.38 51.56 49.98 51.14 14.68 48.79 50.00 41.03 9.84 596 46.57 28.68 44.09 54.21 52.74
Thai English 61.02 60.64 60.07 57.14 59.96 19.80 58.72 58.80 46.20 23.22  9.04 55.28 44.48 58.76 61.19 60.53
Thai Chinese 31.87 27.60 31.70 30.94 31.01 3.20 29.94 29.69 20.08 8.31 15.89 24.94 1553 29.27 31.84 28.46
Malay Thai 53.36 52.86 52.85 52.08 51.18 13.34 47.37 48.52 26.65 11.77 43.31 44.29 23.83 40.03 57.23 50.36
Malay Khmer 36.97 3.09 34.63 40.44 43.76 12.33 28.31 16.32 11.94 31.98 18.65 31.46 2.42 12.51 44.05 43.62
Malay Lao 45.17 443 40.82 3.34 50.31 10.65 28.23 17.24 11.31 3.19 10.82 26.76 4.77 10.64 49.35 50.17
Malay Burmese  39.99 0.74 43.32 4490 47.39 17.23 30.36 36.98 9.68 35.66 16.96 26.26 15.65 11.78 44.11 46.74
Malay Filipino 5542 18.43 52.66 54.52 56.27 21.98 45.69 49.79 39.83 21.55 47.66 50.01 36.99 42.75 4836 57.09
Malay Indonesian 65.20 65.01 63.80 61.35 60.58 21.69 59.59 56.78 61.51 25.02 56.17 56.29 48.39 55.05 63.15 62.29
Malay Vietnamese 55.33 56.22 54.47 52.57 53.08 14.26 50.20 51.44 50.92 16.92 48.43 49.16 32.45 45.34 59.37 57.40
Malay English 68.09 68.67 67.91 63.93 68.02 19.21 64.47 66.24 62.65 2537 59.14 64.38 57.52 65.84 73.87 70.94
Malay Chinese 33.12 29.00 31.53 34.08 32.77 3.04 31.07 30.44 28.42 7.76 27.53 26.77 19.15 30.84 3590 28.89
Khmer Thai 50.66 26.66 49.50 47.13 49.32 14.24 21.20 39.45 17.69 1.22 23.59 42.75 19.35 31.55 52.70 48.06
Khmer Malay 57.18 34.42 54.93 52.70 56.98 22.29 48.81 51.73 29.39 3.02 1.86 48.78 28.70 38.75 57.92 57.29
Khmer Lao 4279 345 35.02 3.11 49.58 0.30 327 1351138 273 451 2589 250 7.73 4745 49.78
Khmer Burmese  35.89  0.59 40.14 4271 46.24 0.10 17.48 231 9.73 0.53 1470 24.77 5.36 10.78 43.80 44.55
Khmer Filipino 53.59 16.98 50.15 49.66 53.51 23.45 41.58 48.40 30.93 3.06 570 4527 27.92 36.05 51.17 53.41
Khmer Indonesian 59.00 34.15 56.89 52.88 57.64 22.09 51.10 55.20 29.48 3.07 244 49.52 29.73 41.20 60.16 58.68
Khmer Vietnamese 51.15 27.95 50.08 46.26 50.61 14.58 43.98 47.69 22.36 332  2.25 44.83 22.08 33.82 54.71 53.76
Khmer English 59.29 32.50 58.49 53.24 60.18 19.57 52.82 57.40 26.13 426 27.97 53.64 28.51 42.12 6145 61.57
Khmer Chinese 30.00 6.96 29.13 27.15 30.13  3.02 24.54 26.76 9.19 4.46 492 2290 9.16 1829 31.36 27.63
Lao Thai 53.51 19.50 51.94 21.41 52.14 13.95 27.72 22.10 16.61 226 31.72 43.82 11.28 3347 56.23 51.67
Lao Malay 59.08 22.21 54.99 28.71 59.59 21.8549.94 52.21 28.23 3.88 4.12 46.79 23.95 36.79 59.77 59.54
Lao Khmer 36.54  2.06 28.59 20.48 4429 135 4.05 433 11.75 3223 13.79 31.01 1.89 941 43.58 44.48
Lao Burmese  38.58 0.51 34.24 23.11 46.71 222 14.68 1.83 9.87 28.56 12.80 23.15 7.06 10.08 4446 4597
Lao Filipino 54.40 13.62 49.73 30.03 53.79 22.26 42.94 47.37 30.29 431 20.57 43.26 24.82 33.13 54.08 55.44
Lao Indonesian 60.41 22.94 57.05 28.00 58.86 21.38 51.30 54.34 28.56 533 13.34 46.90 25.10 38.26 63.01 60.97
Lao Vietnamese 52.59 19.44 49.90 21.93 51.63 14.10 44.69 46.63 21.58 6.29 9.14 42.32 18.66 31.00 55.83 54.82
Lao English 61.81 19.43 59.31 26.61 62.85 19.32 54.39 56.53 25.76 1591 34.17 50.04 19.60 37.94 65.50 65.03
Lao Chinese 30.81 3.73 29.58 10.58 30.84 2.76 24.66 2599 8.66 9.57 6.24 20.34 6.67 1540 33.00 28.06
Burmese  Thai 47.16 21.14 46.17 42.37 4492 13.89 11.29 38.64 9.29 0.34 2742 3741 16.76 21.56 49.26 45.76
Burmese = Malay 53.29 27.57 50.86 49.19 50.46 21.48 42.35 47.57 26.60 1.49  1.13 42.24 2473 34.03 52.57 54.14
Burmese  Khmer 3046 1.24 32.70 34.89 38.73 9.58 13.20 13.03 9.35 11.91 15.19 26.75 058 8.38 41.06 4091
Burmese  Lao 37.69 1.81 35.18 2.17 4353  1.36 11.39 12.73 945 071 893 2223 186 4.54 4339 4551
Burmese  Filipino 50.70 15.55 46.93 46.97 49.76 23.68 36.07 44.74 28.13 1.92 22.04 40.05 26.22 31.39 49.78 52.23
Burmese  Indonesian 54.89 27.10 53.13 49.02 52.79 21.34 44.79 50.34 26.33 1.88  2.67 43.39 2599 36.04 57.36 57.19
Burmese ~ Vietnamese 47.50 20.18 46.06 42.42 46.05 14.01 36.95 43.05 1894 2.79 6.41 39.11 1846 28.17 51.63 51.12
Burmese  English 54.77 24.86 54.24 50.03 54.89 19.04 46.01 52.76 23.31 4.48 37.96 47.85 22.74 36.26 59.78 59.61
Burmese  Chinese 26.61 3.54 25.57 23.23 25.38 2.57 19.35 2288 5.15 1.37 9.58 19.89 535 14.19 28.61 2545
Filipino Thai 53.40 49.08 51.53 50.86 50.61 13.56 45.07 44.51 2499 5.19 41.13 43.46 22.99 38.66 55.72 50.79
Filipino Malay 61.72 57.88 55.41 58.17 61.58 21.31 51.29 50.00 46.32 13.44 48.53 53.37 38.92 49.63 63.77 63.76
Filipino Khmer 37.65 3.02 34.33 39.91 4348 13.11 26.19 14.84 11.55 23.84 17.57 3043 235 11.78 43.59 4298
Filipino Lao 44.13 430 40.05 3.36 49.64 10.73 26.07 14.26 11.04 2.883 10.25 2594 3.51 10.24 49.72 51.63
Filipino Burmese  41.00 0.72 42.80 44.86 47.67 17.72 29.42 3235 9.97 3523 16.86 2591 16.33 12.08 44.17 4598
Filipino Indonesian 64.77 58.88 57.86 58.64 62.25 21.08 53.45 53.66 53.46 13.68 51.19 55.47 41.96 50.88 62.33 63.02
Filipino Vietnamese 55.96 52.48 54.48 51.84 53.71 14.38 47.83 49.48 46.47 851 45.87 48.03 30.29 4098 69.46 67.49
Filipino English 69.83 65.23 67.07 63.32 68.54 19.50 63.28 64.96 56.53 19.86 62.92 63.68 53.91 62.69 68.49 67.70
Filipino Chinese 33.77 24.61 32.59 32.88 3244 3.11 29.12 29.54 23.52 527 2540 2591 17.26 28.74 38.52 30.26
Indonesian Thai 54.04 53.80 53.81 52.75 51.67 13.47 48.42 49.46 27.09 15.13 44.18 45.05 23.74 41.73 54.29 50.39
Indonesian Malay 63.05 64.02 61.33 61.08 59.99 21.63 57.28 55.40 51.87 26.08 53.86 54.05 45.13 54.42 59.28 59.85
Indonesian Khmer 38.03 3.06 34.98 40.62 43.86 12.51 28.70 16.49 11.96 33.56 18.54 31.44 238 12.10 43.71 43.86
Indonesian Lao 4492 437 40.34 334 49.88 10.84 28.57 18.12 11.40 3.56 10.70 2595 491 10.58 48.43 49.68
Indonesian Burmese  39.74 0.74 43.01 44.92 47.61 17.74 30.47 36.80 9.74 35.53 17.05 26.71 15.57 11.73 43.90 46.35
Indonesian Filipino 55.76 18.46 53.84 54.60 56.55 22.48 46.61 51.09 40.23 22.55 48.60 50.58 37.14 42.64 54.69 5527
Indonesian Vietnamese 56.09 57.30 55.88 53.69 53.99 14.13 51.83 53.26 54.24 17.63 50.68 49.94 32.68 47.29 58.64 57.87
Indonesian English 68.76 69.61 68.91 64.53 68.30 19.29 66.24 67.76 66.56 23.37 58.49 64.47 58.53 67.42 69.08 68.05
Indonesian Chinese 34.31 30.61 35.10 34.69 33.35 3.17 32.39 32.25 31.22 8.05 28.97 27.71 19.90 33.13 36.69 32.47
Vietnamese Thai 52.08 51.11 51.82 50.84 49.69 13.41 46.88 47.69 26.84 7.92 42.06 44.06 23.52 40.36 55.90 53.40
Vietnamese Malay 58.92 59.02 57.46 57.08 58.73 21.97 53.08 54.03 49.44 1270 48.65 52.94 39.31 50.69 58.59 54.58
Vietnamese Khmer 36.87 298 34.46 39.68 42.72 1291 28.42 16.05 11.93 3252 18.62 29.75 293 11.56 4294 42.02
Vietnamese Lao 4371 431 39.96 3.28 48.54 11.03 27.71 17.35 11.17 3.78 11.07 27.03 6.03 10.78 48.12 48.98
Vietnamese Burmese  39.81 0.72 43.29 4472 46.84 17.83 30.05 36.46 9.88 33.16 16.80 25.80 16.36 11.48 43.78 45.22
Vietnamese Filipino 55.26 18.16 51.78 52.85 54.25 22.62 45.02 50.23 39.67 19.97 47.67 48.34 3528 4145 51.89 52.75
Vietnamese Indonesian 61.64 60.49 60.78 58.06 59.32 21.56 57.20 59.28 59.57 13.06 52.69 55.07 43.01 54.59 61.96 59.98
Vietnamese English 63.04 64.11 62.96 59.94 62.62 19.55 61.34 61.74 61.13 18.28 47.38 58.74 51.99 61.49 66.42 64.50
Vietnamese Chinese 32.58 30.33 33.39 33.04 31.93 3.21 30.84 30.32 3043 7.67 26.61 26.31 19.65 31.17 34.86 29.54
English Thai 57.35 58.17 57.66 55.98 55.67 13.53 51.56 54.39 28.15 26.87 47.61 47.63 24.60 44.77 61.71 56.87

Continued on next page
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Model chrF Scores

Source Target

Gem3 SeedX QwenMT Huny MtPO Qw2.5 Qw3 Apert Aya Emma LLa3.1 LLaX3 Mistr Tower Google NLLB
English Malay 67.96 70.11 66.79 64.40 68.27 21.84 61.20 64.03 55.77 38.52 6191 61.31 4559 57.47 6527 64.87
English Khmer 39.25  3.17 36.00 42.44 4724 13.15 30.25 17.79 11.99 42776 19.01 3237 225 12.65 47.22 47.37
English Lao 4745 452 4397 3.48 54.81 11.35 3098 19.74 11.37 537 994 2679 4.64 10.88 53.14 55.14
English Burmese  41.62  0.77 46.01 47.04 50.92 18.73 32.46 39.95 9.93 37.92 17.86 28.75 12.89 12.35 47.75 49.78
English Filipino 62.69 18.89 58.03 58.48 61.49 22.15 50.48 57.25 42.64 24.45 5521 54.44 40.19 46.58 61.76 63.47
English Indonesian 72.11 71.95 71.63 65.97 69.35 21.48 66.43 70.45 69.16 2721 66.70 62.73 49.80 64.17 72.87 71.32
English Vietnamese 60.22 63.73 60.76 57.44 59.39 14.77 56.80 59.15 58.75 25.15 56.24 53.56 35.58 50.93 67.26 65.16
English Chinese 38.76 35.69 40.14 40.23 38.92 3.27 37.68 36.97 36.09 16.85 33.68 31.56 26.24 39.93 41.98 35.57
Chinese ~ Thai 50.65 50.32 50.31 50.21 49.10 13.79 46.00 47.08 25.68 11.30 40.72 42.39 23.35 39.82 53.57 53.82
Chinese Malay 56.00 56.44 54.78 55.34 55.66 21.94 50.57 52.21 46.90 1525 49.21 49.16 37.00 48.52 56.57 57.11
Chinese Khmer 3526 279 34.32 38.86 41.11 13.39 27.16 15.29 11.82 36.97 17.32 2737 1.85 12.06 42.07 42.62
Chinese  Lao 40.85 3.98 37.65 2.75 4554 11.64 26.61 16.13 10.79 259 1047 22.86 3.22 10.74 46.14 47.79
Chinese Burmese  37.95 0.65 43.24 4416 46.27 18.41 31.30 37.31 9.82 32.06 16.70 25.56 1692 12.17 43.61 46.88
Chinese  Filipino 5246 17.92 49.42 51.45 51.48 2291 43.23 48.04 38.08 19.01 4573 4535 34.67 40.30 53.40 54.19
Chinese Indonesian 58.66 58.23 58.42 56.95 56.85 21.71 54.98 56.36 56.91 16.83 52.87 51.12 40.11 52.95 58.87 58.69
Chinese Vietnamese 51.93 53.63 51.93 51.14 50.58 14.12 49.15 49.83 50.40 10.73 46.70 45.82 30.03 44.79 54.92 53.85
Chinese  English 59.24 59.47 59.95 58.50 59.34 19.42 58.82 58.41 58.19 2599 56.75 54.82 51.87 60.06 60.59 61.49

A.9 CASE STUDY: TRANSLATION BEHAVIOR ANALYSIS

To illustrate the diversity of translation behaviors observed during data curation, Table [8] presents a
concrete example where the same Vietnamese idiom is translated by four different assistant config-
urations with varying decoding strategies.

Role Utterance

System You are a helpful assistant.

User Please translate the following sentence into English: Cho ngap phai ruoi

AssistantA By sheer chance.

AssistantB A dog yawns and catches a fly.

AssistantC The dog yawned and hit a fly (Literal meaning: when the dog yawns, it bumps into a
fly.)

This is a metaphor indicating that while doing something you intended to avoid or miss
someone or something, you unexpectedly ran into him or it. In other words, you tried
to steer clear but ended up encountering it anyway.

Comparable English idioms include things go contrary to one’s wishes” or ”the more
you try to hide it, the more obvious it becomes,” both signalling intention-outcome
mismatch.

AssistantD The dog hit a fly, the dog hit a fly—yes, it keeps hitting the same fly. That is literally
what it means, it just keeps saying the dog is hitting the fly again and again. (Repetitive
and partially incorrect.)

Table 8: Example conversation showing four different translation approaches: idiomatic, literal, explanatory,
and noisy outputs in response to the same Vietnamese idiom.

A.9.1 TRANSLATION QUALITY PATTERNS

Table [§]illustrates four distinct translation approaches, revealing key patterns in model behavior:

Optimal Translation (AssistantA): The response “By sheer chance” captures the idiomatic mean-
ing effectively while maintaining brevity. This represents the ideal translation—accurate and suc-
cinct without unnecessary elaboration.

Literal Translation (AssistantB): ”A dog yawns and catches a fly” preserves the original structure
but fails to convey the cultural meaning of the idiom, potentially confusing readers unfamiliar with
Vietnamese expressions.

Over-explanation (AssistantC): This response exemplifies the overgeneration problem frequently
associated with high entropy outputs. Despite being informative, the 72-word response significantly

24



Under review as a conference paper at ICLR 2026

diverges from the core translation objective. The model’s uncertainty manifests as excessive elabo-
ration.

Degraded Output (AssistantD): Features inaccuracies, repetition, and self-dialogue patterns. This
output typifies problems associated with excessive response length and high entropy, where the
model becomes trapped in loops of self-correction and redundant explanation.

A.9.2 ENTROPY-LENGTH CORRELATION

Our analysis reveals a strong correlation between response length and translation quality. Opti-
mal translations efficiently convey meaning without superfluous context or explanation. Longer
responses often coincide with increased token entropy, indicating model uncertainty that manifests
as verbose outputs.

These patterns align with our broader findings that entropy loss and response length serve as key
diagnostic indicators for translation quality. When models generate unnecessarily long responses,
they typically exhibit higher entropy across generated tokens—a sign of uncertainty that degrades
translation performance. MtPO addresses this by monitoring and constraining these metrics, guid-
ing models toward concise, accurate translations like AssistantA rather than verbose or literal ap-
proaches.

A.10 KL DIVERGENCE APPROXIMATION ANALYSIS

In our entropy diagnostics, we employ three Monte-Carlo estimators—k1, k2, and k3—to approx-
imate KL divergence between policy and reference distributions. Each estimator offers a distinct
bias-variance profile when computed from sampled translations.

A.10.1 METHOD COMPARISON

k1 Method (Naive Estimator): Directly uses the negative expectation of log ratios:

K= _E,., [log Z’g;] (15)

This estimator is unbiased but exhibits high variance and may yield negative values on small batches
even though KL divergence is non-negative.

k2 Method (Squared Log Ratio): Approximates KL divergence using the squared log ratio:

2= K., ng %)2] (16)

It introduces bias yet typically maintains lower variance. k2 corresponds to an f-divergence whose
second-order expansion matches KL divergence when p is close to q.

k3 Method (Bregman Divergence): Evaluates the expectation of an exponential transform:
p(z) p(fﬂ)}
K3=E;y |—/—= —1—log——= 17)
! [q(flf) q(x)

This estimator remains unbiased with comparatively low variance, measuring the vertical gap be-
tween log(x) and its tangent approximation.

A.10.2 PRACTICAL SELECTION
Choosing among these estimators depends on the desired bias-variance trade-off:

 k1: Unbiased but high variance; sensitive to entropy spikes.

» k2: Slightly biased yet low variance; reliable near convergence.

* k3: Unbiased with low variance; preferred default in our monitoring stack.
For MtPO’s training diagnostics, k2 and k3 deliver smoother curves than k1, particularly under en-
tropy collapse scenarios that arise during reinforcement learning. These approximation methods

build on established Monte Carlo techniques(Joschul 2020). Their stability provides more trustwor-
thy signals when tuning entropy regularization and reward scaling.
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A.11 LANGUAGE MODEL ASSISTANCE IN PAPER PREPARATION

In the preparation of this manuscript, we utilized Large Language Models (LLMs) to assist with
language polishing and writing optimization, following emerging practices in academic writing as-
sistance. Specifically, LLMs were employed for:

* Language fluency improvement: Enhancing sentence structure and expression to improve
readability and adherence to academic writing standards

* Grammar and spelling verification: Identifying and correcting potential grammatical
errors and spelling issues

* Terminology consistency: Ensuring consistent usage of technical terms throughout the
manuscript

* Clarity enhancement: Improving the articulation of complex concepts to make them more
accessible and comprehensible

This section contains additional information and supplementary materials. It is important to em-
phasize that all core technical content, experimental design, data analysis, and scientific conclusions
represent original work by the authors. LLMs were used solely as language polishing tools and did
not participate in any substantive research content creation or formation of academic viewpoints. All
technical contributions and innovations in this research stem entirely from the independent research
work of the author team.

We believe that the reasonable use of advanced language technology tools to enhance academic
writing quality, while maintaining academic integrity, represents beneficial practice that facilitates
better communication of research findings and promotes scholarly exchange.
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