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Abstract

Diffusion-based generative models have exhibited remarkable capability in the1

production of high-fidelity visual content such as images and videos. However,2

their performance is significantly contingent upon the quality of textual inputs,3

commonly referred to as "prompts". The process of traditional prompt engineering,4

while effective, necessitates empirical expertise and poses challenges for inexpe-5

rienced users. In this paper, we introduce PromptCoT, an innovative enhancer6

that autonomously refines prompts for users. The design of PromptCoT is based7

on the observation that, prompts resembling textual information corresponding to8

high-quality images within the training set tend to yield superior generation perfor-9

mance. As such, we fine-tune the pre-trained Large Language Models (LLM) using10

a curated text dataset comprising solely of high-quality visual content descriptions.11

By doing so, the LLM becomes capable of capturing the distribution of high-quality12

training texts, enabling it to generate aligned continuations and revisions to boost13

the original texts. Nonetheless, one drawback of pre-trained LLMs is their tendency14

to generate extraneous or irrelevant information. To enhance the alignment between15

the original text prompts and the refined counterparts, we leverage the Chain-of-16

Thought (CoT) mechanism. CoT can extract and amalgamate crucial information17

from the aligned continuation and revision, enabling reasonable inferences based18

on the contextual cues to produce a more comprehensive and nuanced final output.19

Considering computational efficiency, instead of allocating a dedicated LLM for20

prompt enhancement to each individual model or dataset, we integrate adapters21

that facilitate dataset-specific adaptation, leveraging a shared pre-trained LLM as22

the foundation for this process. By fine-tuning these adapters independently, we23

can adapt PromptCoT to new datasets with minimal increase in training cost and24

memory usage. We assess the performance of PromptCoT on widely-used latent25

diffusion models for image and video generation to validate the effectiveness. The26

results demonstrate significant improvements in key performance metrics.27

1 Introduction28

In recent years, deep generative models have made notable advancements, specifically with the29

introduction of diffusion probabilistic models (DPMs). These models have exhibited exceptional30

capabilities in generating a wide range of visually compelling and high-fidelity visual contents, such31

as images and videos, as evidenced by notable contributions in the literature [37, 12, 38, 36, 7, 28,32

32, 30].33

By harnessing textual inputs as conditional guidance, diffusion models have the ability to generate34

visual outputs that align with the corresponding input text, utilizing an iterative denoising procedure.35

This technological advancement has paved the way for revolutionary applications, including notable36

examples such as DALL-E 2 [28], Stable Diffusion [30], MagicVideo [50], among others.37
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Figure 1: Impacts of PromptCoT. (a) and (c) shows the images generated with the original text
prompts, and (b) and (d) show the images generated with the text prompts refined by PromptCoT.
The text prompt for (a), (b), (c) and (d) are: 1) "highly detailed portrait of a hopeful pretty astronaut
lady with a wavy blonde hair, by Jamini Roy , 4k resolution, nier:automata inspired, bravely default
inspired, vibrant but dreary but uplifting red, black and white color scheme!!! ((Space nebula
background))" ; 2) "Astronaut portrait of Silica from the game Bravely Default II by Jamini Roy",
and 3) "highly detailed portrait of a hopeful pretty astronaut lady with a wavy blonde hair, by Pablo
Picasso, 4k resolution, nier:automata inspired, bravely default inspired, vibrant but dreary but uplifting
red, black and white color scheme!!! ((Space nebula background))",and 4)"Portrait Of A Beautiful
Astronaut Girl Canvas Art Print" respectively.

Nevertheless, the quality of the generated content is intricately tied to the caliber of the textual38

prompts provided to the generative model. Human inputs tend to be informal and straightforward,39

which may impede the expression of the desired scene with the desired level of depth. Additionally,40

the text encoder within the generative model may not fully comprehend the semantic nuances present41

in the human-generated text, resulting in notable disparities between the encoded textual guidance42

and the user’s intended meaning. Diffusion probabilistic models (DPMs) are commonly trained on43

extensive text-vision pairs acquired through web-scraping techniques [35]. Our observation reveals44

that the distribution of the text dataset might not be congruent with the linguistic style employed by45

layman users. Furthermore, even in cases where the training text data aligns with the desired style,46

the quality can exhibit substantial variations due to the presence of meaningless words or extraneous47

information within the text data. This intricacy further complicates the establishment of a clear and48

unambiguous mapping between the text and the corresponding image.49

As a result, there is an immediate imperative to develop a methodology that can effectively align50

prompts, consequently augmenting the image generation performance in generative models. Although51

data cleaning and model fine-tuning have been considered potential solutions, these methods often52

entail drawbacks such as high costs, instability, and time intensiveness. Another alternative is manual53

prompt engineering, which involves refining prompts to optimize generation performance. However,54

this empirical task traditionally demands the expertise of experienced professionals, thereby posing a55

significant challenge for individuals lacking relevant experience.56

In our study, we observe a noticeable trend that prompts, which resemble those found in the training57

set, usually lead to superior generative performance. Stemming from this observation, we propose58

PromptCoT, a novel prompt booster that leverages the power of pre-trained Large Language Models59

(LLMs) and incorporates the Chain-of-Thought (CoT) mechanism to learn high-quality prompt60

expressions from the training texts of generative models. Specifically, we carry out the fine-tuning61

of LLaMA [40], a widely-used pre-trained Large Language Model, on two distinct datasets we’ve62

prepared. With a text-continuation dataset that appends aligned details to original prompts, and a63

text-revision dataset that rewrites original prompts to aligned prompts, we enable LLaMA to refine64

prompts that better match the distribution of the text data used for training the diffusion models. To65

further enhance the performance of LLMs by combining the advantages of both text-continuation66

and text-revision, we construct a dataset using the CoT mechanism assisted by ChatGPT. This CoT67

dataset is designed to enable LLMs to reason and generate text that follows a logical and coherent68

flow. By fine-tuning LLMs on this CoT dataset, we can enhance their reasoning ability and augments69

their capacity to generate high-quality text that is both contextually relevant and logically coherent.70

To accommodate the varying training sets of different generative models, we incorporate a parameter-71

efficient adaptation design into the training pipeline of PromptCoT, augmenting a pre-trained base72
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booster with specific lightweight adapters that are capable of aligning text distributions for various73

generative models across multiple tasks. We demonstrate the effectiveness of PromptCoT through74

extensive experiments on widely-used latent diffusion models for image and video generation,75

showing significant improvements in key performance metrics such as Fréchet Inception Distance,76

aesthetic score, and CLIP-similarity.77

Our main contributions are:78

• We propose PromptCoT, an innovative prompt refiner that aligns input prompts with the text79

distribution employed during the training of diffusion models. By accomplishing this alignment,80

PromptCoT effectively activates generative models and enhances their performance.81

• We explore a new optimization scheme for improving prompt quality by leveraging the power82

of pre-trained LLMs and CoT mechanisms. And we construct datasets to facilitate the learning of83

high-quality prompt distribution from the training texts of generative models.84

• We demonstrate that allocating a dedicated Large Language Model (LLM) for each diffusion85

model is not a requirement. Instead, we propose an innovative scheme where a set of lightweight86

adapter weights suffices for each dedicated diffusion model. These adapters can share a shared base87

pre-trained LLM, resulting in a considerable reduction in memory footprint.88

• We show the effectiveness of PromptCoT through extensive experiments on widely-used latent dif-89

fusion models for image and video generation, showing significant improvements in key performance90

metrics.91

2 Related Work92

2.1 Text-to-Image Generative Models93

Text-to-Image Generative Models operate by taking natural language descriptions as input and94

generating corresponding images as output. One of the recent popular model is DALL·E 2 [29].95

It utilize CLIP [26] to align the text and image embeddings. By conditioning the diffusion prob-96

abilistic generator on the textual embedding, DALL·E 2 is able to produce photorealistic images97

that correspond to the given textual description. Later, Google’s Imagen [32] and Parti [46] were98

proposed by gradually simulating the spread of noise into the original image to reveal the desired99

image. Specifically, both Parti and Imagen combine autoregressive and diffusion. The application100

of diffusion probabilistic models has also been extended to the domain of video generation. The101

Video Diffusion Model [13], built upon the foundations of diffusion models, enables the sequential102

generation of high-quality video frames. To address the substantial computational requirements103

associated with video generation, MagicVideo [51] was introduced, combining latent diffusion and104

attention models. MagicVideo utilizes a frame-wise lightweight adapter and an attention module to105

effectively adjust the image-to-video distribution and capture temporal dependencies across frames.106

2.2 Large Language Models107

Large Language Models (LLMs) are powerful deep learning models for various natural language108

processing tasks. The most popular LLMs are the GPT [27, 5] series models developed by OpenAI,109

which are based on the decoder component of the transformer architecture. Another LLM is Meta’s110

OPT [49], which is open-sourced and performs similarly in performance to GPT-3. However, GPT-3’s111

massive size of 175B parameters requires significant computing power and resources, which makes112

it challenging for researchers to explore. In contrast, LLaMA [40, 41], StableLM [2], as well as113

the instruction-following Alpaca model [39] are smaller and more performant, achieve comparable114

results to ChatGPT with far fewer parameters (7B). For specific tasks like conversational applications,115

ChatGLM [47, 9] can generate coherent and contextually relevant responses in dialogue systems.116

2.3 Parameter-Efficient Fine-Tuning117

The goal of parameter-efficient fine-tuning is to attain comparable performance to fine-tuning on a118

specific downstream task while using the fewest trainable parameters possible. According to [1],119

common pre-trained models generally have a very low intrinsic dimension, and LoRA [15] learns120

low-rank parameterizations to enhance tuning efficiency based on that. Except reducing the number121

of parameters needed for fine-tuning, other approaches try to attach pre-trained parameters to reduce122

training time. Adapter training [14, 24] utilizes dynamic pre-trained adapters for different tasks and123

languages to reduce adaptation time. Compacter [21] combines both concepts and builds on top of124

adapters, low-rank optimization, and parameterized hypercomplex multiplication layers.125
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2.4 Prompt Engineering126

Prompt Engineering is to optimize the outputs of language models with specific input prompts127

[4, 33, 20, 8]. Discrete text prompts [16] serve as starting points for the model’s language generation,128

and are used to generate responses in dialogue systems. Beyond discrete prompts, [17, 43] explores129

prompt tuning to learn soft prompts to perform specific downstream tasks, which provide more130

context-aware guidance to the model. [25] extends the idea of learning soft prompts and demonstrates131

that the implicit factual knowledge in language models was underestimated. Given that manually132

designing prompts can be cumbersome, automatically generating prompts gives a chance avoid133

intensive labor and enhance efficiency [33, 34]. [10] proposes to generate all prompt candidates134

and selectively incorporate them into each context using a refined strategy. [11] introduces a more135

efficient method to construct prompts with several sub-prompts that employs prompt tuning with136

rules without searching. Overall, prompt engineering is an efficient approach that helps bridge the137

gap between pre-training and fine-tuning.138

2.5 Chain-of-Thought139

Chain-of-Thought is a specialized tool designed for the task of multi-step reasoning and decision-140

making [44]. The traditional prompting method [4] performs poorly when it comes to tasks that141

require reasoning abilities. Inspired by the concept of using intermediate steps to solve reasoning142

problems [19, 6], the chain of thought method mimics a step-by-step thinking process and breaks143

down multi-step problems into intermediate steps, enabling the model to deduce more accurate144

results [23]. Additionally, [52] address the challenge of dealing with tasks that are more complex145

than example prompts, and proposes the least-to-most prompting approach which breaks down146

complex problems into smaller and easier subproblems. Moreover, [42] introduces self-consistency147

as a replacement for the greedy decoding algorithm, which samples and selects the most consistent148

reasoning paths to replace the greedy set.149

3 Method150

Figure 2: Pipeline of PromptCoT. (Left) We build three types of instruction patterns for training.
(Middle) We utilize adapters for multi-task adaptation. (Right) Results of t-continue, t2t booster and
PromptCoT.

3.1 Overview151

Text-to-image diffusion models serve as an illustrative example for showcasing the functionality of152

PromptCoT. However, it is important to note that the same methodology can be extended and applied153

to other diffusion-based generative models, including text-to-video and various other domains. In154
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the context of training text-to-image diffusion-based models, which involve image-text pairs and155

employ an iterative denoising process to reconstruct images based on corresponding prompts, our156

hypothesis posits that prompts aligned with high-quality images within the training set are more157

inclined to yield visually superior outputs. We randomly select 5 sets of 50 prompts corresponding to158

images with varying levels of quality from the Stable Diffusion training set, LAION [35], for image159

generation. The aesthetic score, an image quality metric introduced by [31], is used to represent160

the quality of individual images. As shown in Table 1, the generation performance is highly related161

to the prompts corresponding to the original image quality. For convenience, we refer to them as162

“high-quality prompts”. In the following sections, we explain the key components of PromptCoT,

Table 1: Comparison of Aesthetic Scores between Generated Images and Corresponding Training
Images.

Aesthetic Score
Training images 4-5 5-6 6-7 7-8
Generated images 5.2 5.5 6.1 6.3

163
which is a prompt booster that can align input prompts with high-quality prompts in the training set,164

and in turn, improve generation performance.165

3.2 Aligning Prompt Distribution with LLM166

LLMs are extremely powerful tools that are capable of generating human-like language and complet-167

ing tasks such as translation, summarization, question answering, etc. They are trained on massive168

amounts of text data and can learn from unstructured data to generalize to new tasks and domains.169

LLMs can also be fine-tuned on specific tasks with relatively small amounts of task-specific data,170

making them highly versatile. In this paper, we leverage this ability to align the distribution of171

high-quality prompts via fine-tuning a popular LLM LLaMA [40], on text continuation and revision172

tasks. To fine-tune LLaMA on text continuation, we use an instruction tuning template that includes173

incomplete text descriptions and a goal to provide a compelling continuation. The instruction tuning174

template is shown in Figure 3. We feed truncated text prompts placed in the input field to the LLM,175

supervised by the complete prompts. This enables the LLM to generate continuations containing176

more details.177

Figure 3: Template of text-continuation dataset (Up) and corresponding output (Bottom).

For text revision, we train the LLM to map human-like input texts to high-quality prompts. However,178

acquiring a large amount of human-written input text can be costly. Therefore, we leverage image179

captions from BLIP as a low-cost source of "human-like" input texts. The details of collecting180

and filtering data pairs are described in the later section. For training, we construct the instruction181

tuning template in Figure 4. The training pipeline is similar to continuation, but with the input being182

human-like prompts. As a result, we obtain a booster capable of performing revision tasks.183

3.3 Enhancement with CoT184

Instruction tuning enables the LLM to add details and align text distribution, however, it tends to185

generate extraneous information that degrades performance. As such, we introduce the Chain-of-186

Thought (CoT) mechanism in the pipeline to address this issue. We set up five steps to make the187
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Figure 4: Template of text-revision dataset (Up) and corresponding output (Bottom).

LLM yield the expected production: (i) Extract key information from the original prompt, such as188

visual medium and main elements, (ii) Leverage the text-continuation model to append reasonable189

details, (iii) Extract additional concepts (for example, the color scheme) from the extended prompt190

and emphasize crucial concepts, (iv) With improved key information and crucial concepts, the LLM191

can generate a fluent prompt, remaining to be aligned, (v) Leverage the text-revision model to align192

prompts to the specific distribution. This mechanism extracts and amalgamates crucial information193

from the aligned continuation and revision, enabling reasonable inferences based on the contextual194

cues. As a result, a more comprehensive and nuanced final output is produced.195

3.4 Multi-task Adaptation196

As the training set of different generative models can vary greatly, one approach to adapt to these197

new datasets is to fine-tune the entire LLM on the task-specific dataset. However, LLMs are typically198

models with billions of parameters, and allocating a dedicated LLM to each individual model proves199

impractical due to computational constraints. Moreover, there are plenty of text-to-image generative200

models trained on different datasets, and a single LLM cannot cover a diverse distribution of these201

datasets. As an alternative, we integrate adapters that facilitate dataset-specific adaptation, leveraging202

a shared pre-trained LLM as the foundation for this process. Adapters are lightweight modules that203

can be independently fine-tuned and subsequently added to the base model. Keeping adapters instead204

of the whole model significantly reduces memory usage, while enabling the adaptation of the LLM to205

different datasets.206

Figure 5: Composition of fine-tuning tasks including text-continuation, text-revision, text-CoT, and
self-instruction of Alpaca.
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3.5 Dataset Preparation207

We build three types of datasets: text-continuation, text-revision, and text-CoT.208

Text-continuation dataset. To create this dataset, we filter high-quality prompts from the training209

data of existing generative models, using criteria such as high CLIP similarity and proper length. In210

the case of the LAION dataset, we also consider aesthetic scores to ensure a higher quality of prompts.211

Once high-quality prompts are identified, we truncate a portion of the text, with the remaining front212

part assigned as input data. The LLM is then trained to generate the missing information and complete213

the text. This process enables the LLM to learn how to effectively continue text prompts in a manner214

that is consistent with the style and context of the original text.215

Text-revision dataset. The dataset consists of human-like texts and corresponding high-quality216

prompts which are described in the text-continuation dataset. To acquire human-like prompts, we217

leverage BLIP and CLIP-interrogator for image captioning. Furthermore, we calculate the text218

distance with the text encoder of CLIP, ensuring a score greater than 0.4 to guarantee semantic219

relevance between the two prompts.220

Text-CoT dataset. We use GPT-3.5-Turbo to build a task-specific dataset. Initially, we design a221

step-by-step interaction with GPT-3.5-Turbo to extract and guide the prompt booster to finish the222

alignment task, due to the fact that CoT is still difficult for alpaca with a simple finetuning on datasets223

above. Following the alpaca’s thought, 52k pairs are all generated from gpt-3.5-turbo.224

4 Experimental Results225

In this section, we first introduce the details on the datasets, pre-trained models, and the training226

hyperparameters used for all our experiments in Section 4.1. Then we demonstrate the results of227

applying PromptCoT to text-to-image and text-to-video pre-trained generative models in Section 4.2228

and Section 4.3 respectively.229

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 6: Generated images from prompts refined by different aligners. (a) and (h) show the images
generated with the original text prompts. (b-g) and (i-n) denote the images generated with text
prompts refine by ‘t-continue’, ‘t2t-blip’,‘t2t-inter’,‘davinci’,‘CoT_d’, and ‘CoT’ respectively.

4.1 Setup230

Dataset. For training, we build Text-revision and Text-continuation dataset from LAION-231

aes6plus [35], and Text-CoT dataset with the help of GPT-3.5-turbo. LAION-aes6plus is the subset232

of LAION, containing 12M image-text pairs with predicted aesthetics scores of 6 or higher. As a233

supplement, we also train with Text-revision, Text-continuation, and Text-CoT datasets from the234

WebVid-10M dataset [3] for video generation. For evaluation, we conduct experiments on COCO [18]235

validation set and MSR-VTT [45] for FID, FVD, aesthetic score, CLIP score, and PickScore.236

Models. The pre-trained LLaMA-7B is used as the base model and we employ the adapter design237

outlined in [48] to facilitate multi-task adaptation. Two versions of Stable Diffusion [31], v1.4 and238

v2.1, are used for image generation. MagicVideo [50] is used for video generation.239

Implementation Details. We finetune the LLaMA following alpaca’s [39] strategy and instruction240

pattern, which has been verified powerful for text generation tasks. We validate the viability of241
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our two initial ideas by finetuning three task-specific LLaMA for prompt refining works shown in242

experiments 2. One is trained on the self-constructed text-continuation dataset while the other two243

are trained on two types of text-revision dataset. While combining such basic methods by CoT, we244

include a dataset from alpaca, a subset of the text-continuation dataset, and the text-revision dataset245

with higher text similarity and the CoT dataset as a whole. We evaluate our alignment work on three246

diffusion models and on different parameters. Furthermore, we evaluate the portability of promptCoT247

through an adapter by comparing its performance with the fully-finetuned model.248

Table 2: Text-to-image generation performance. We evaluate the generation performance on Stable
Diffusion v1.4 and v2.1 on key metrics including aesthetic score, FID, IS, CLIP score and PickScore.

Generation
Model Booster Aesthetic

Score FID IS CLIP
Score

PickScore
(avg/recall)

baseline 5.40 59.15 39.13 ± 0.84 0.268 27.3%/35.7%
SD v1.4 t-continue 5.54 44.66 35.81 ± 0.96 0.290 39.5%/61.5%

ddim step=50 t2t-blip 5.62 40.77 38.56 ± 0.77 0.293 51.4%/77.5%
scale=7.0 t2t-inter 5.44 55.76 41.00 ± 1.17 0.271 34.3%/49.0%

cot_d 5.64 49.58 37.43 ± 0.94 0.289 40.6%/62.2%

baseline 5.60 58.02 37.51 ± 1.00 0.266 29.4%/41.7%
SD v2.1 t-continue 5.70 45.62 34.44 ± 0.71 0.287 44.3%/69.9%

ddim step=50 t2t-blip 5.79 40.59 37.38 ± 1.08 0.292 56.3%/82.5%
scale=7.0 t2t-inter 5.64 54.93 38.60 ± 0.85 0.269 37.1%/55.6%

cot_d 5.78 50.41 34.88 ± 0.95 0.290 42.9%/66.2%

baseline 5.60 58.17 36.37 ± 0.81 0.267 -
SD v2.1 t-continue 5.64 46.59 33.29 ± 0.68 0.287 -

ddim step=250 t2t-blip 5.76 40.89 36.16 ± 0.84 0.292 -
scale=12.0 t2t-inter 5.64 55.37 38.10 ± 1.16 0.269 -

cot_d 5.75 50.41 34.88 ± 0.94 0.290 -

Table 3: Text-to-image generation performance with adapters. We fine-tune adapters by 5 epochs
and compare them with fully fine-tuned Alpaca. Model with adapters achieves comparable results.

Model Booster Aesthetic
Score FID IS CLIP

Score PickScore

t-continue 5.70 45.62 34.44 ± 0.71 0.287 44.3%/69.9%
Alpaca t2t-blip 5.79 40.59 37.38 ± 1.08 0.292 56.3%/82.5%

epochs = 3 t2t-inter 5.64 54.93 38.60 ± 0.852 0.269 37.1%/55.6%
cot_d 5.78 50.41 34.88 ± 0.95 0.290 42.9%/66.2%

t-continue 5.69 48.00 35.8 ± 0.57 0.283 -
Adapter t2t-blip 5.70 46.86 38.0 ± 0.66 0.289 -

epochs = 5 t2t-inter 5.64 56.28 39.0 ± 0.64 0.269 -
cot_d 5.85 51.06 31.8 ± 0.65 0.251 -

4.2 Text-to-image Evaluation249

The COCO [18] validation set is the standard benchmark for evaluating text-to-image models. The250

key automated performance metrics used are FID to measure image fidelity, CLIP score, PickScore to251

measure image-text alignment, aesthetic score [22] to predict the aesthetic quality, and Inception Score252

(IS) to evaluate the diversity. We utilize two versions of Stable Diffusion for image generation with253

prompts from COCO and our PromptCoT. Table 2 presents the evaluation results for each metric with254

different single-function boosters including t-continue, t2t-blip, and t2t-inter, as well as a baseline.255

The results show that incorporating the alignment method proposed in our paper consistently improved256

the generated image quality across all metrics compared to the baseline. Among the single-function257

boosters, the t2t-blip booster demonstrates the best performance, as it is able to achieve alignment258

to a greater extent. For example, it transfers “Boxes of fruit displayed at an open-air market” to “A259

view of stalls selling fruit at the Harare International Market in Harare, Zimbabwe” by rephrasing260
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Table 4: Text-to-image generation performance. We compare finetuned CoT aligner and davinci-
003 model from OpenAI. All metrics are evaluated on a subset of the COCO validation dataset which
contains 1k images.

Booster Aesthetic
Score

CLIP
Score PickScore

baseline 5.62 0.231 16.8%/26.1%
tcontinue 5.72 0.285 37.8%/66.2%
t2t_blip 5.80 0.293 50.6%/81.5%
t2t_inter 5.66 0.269 30.7%/52.5%

cot_d 5.79 0.291 34.9%/59.5%
cot 5.80 0.293 36.4%/59.0%

davinci 5.69 0.277 26.0%/47.5%

the expression and adding reasonable details. In contrast, the t2t-inter booster, which has a similar261

function to t2t-blip, shows inferior performance, although it still outperforms the baseline. This could262

be due to the CLIP-interrogator used to create the text-revision dataset introducing irrelevant entities.263

Furthermore, we test with different factors of classifier-free guidance to prove the generality of our264

PromptCoT. Varying the scale of classifier-free guidance results in consistent performance.265

4.3 Text-to-video Evaluation266

In addition, we experiment with the text-to-video evaluation task to demonstrate the effectiveness of267

our approach. We employ two single-function boosters, t-continue, and t2t-blip on the WebVid-10M268

dataset [3]. For t2t-blip, we uniformly sample the video and randomly select five frames, which269

serve as input for the blip model and be used to generate the revision result. Then, we finetune270

the LLaMA model following alpaca’s [39] strategy and build prompts from MSR-VTT with the271

fine-tuned model. We use MagicVideo [50] as the base model to test the effectiveness of our prompts.272

The results are shown in Table 5. The results indicate that the boosters are effective in enhancing273

the quality of the generated videos compared to the baseline, at least they "do no harm". Among274

the boosters, the booster better aligns the prompts and achieves the best performance overall. For275

cot_d, we generate 21k data with the help of GPT-3.5-turbo. Similar to text, we utilize a chain of five276

questions to generate the expected production, but with subtle differences to encourage GPT-3.5-turbo277

to generate more video-related features, e.g., movement. Similar to text generation, we adopt a chain278

of five questions to generate the expected production for video prompts. However, there are subtle279

differences in the question prompts to encourage GPT-3.5-turbo to incorporate more video-related280

features, such as movement, into its generated content. For example, "a large passenger jet flying281

in the sky at sunset" can be refined to "Boeing 747 flying across a vibrant sunset backdrop in a282

captivating, cinematic 4K video. Slowly gaining altitude with wings tilting slightly, this footage283

captures the plane’s majesty". The scores of cot_d will be included in the supplementary material.284

Table 5: Text-to-video generation performance. We evaluate the generation performance on
MagicVideo on key metrics including FID, FVD, and CLIP score.

Model Dataset Booster FID FVD CLIP Score

MagicVideo MSR-VTT baseline 36.5 998 0.284
t-continue 33.2 951 0.296

5 Conclusion285

In this paper, we present PromptCoT, an innovative system designed to autonomously enhance the286

quality of prompts used in diffusion-based generative models, which are critical for high-fidelity287

visual content generation. PromptCoT leverages pre-trained Large Language Models (LLMs) and288

a unique Chain-of-Thought (CoT) mechanism to refine prompts, thereby improving the alignment289

between the original and refined prompts. To balance computational efficiency, we employ adapters to290

allow for efficient adaptation to new datasets or models. Our evaluations demonstrate that PromptCoT291

can achieve superior performance compared to the baselines.292
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