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Abstract
Autoregressive probability estimation of data se-
quences is a fundamental task in deep neural net-
works and has been widely used in applications
such as lossless data compression. Since it is a
sequential iterative process due to causality, there
is a problem that its process is slow. In this
paper, we propose Scale Causal Blocks (SCBs),
which are basic components of deep neural net-
works that aim to significantly reduce the compu-
tational and memory cost compared to conven-
tional techniques. Evaluation results show that
the proposed method is one order of magnitude
faster than a conventional computationally op-
timized Transformer-based method while main-
taining comparable accuracy.

1. Introduction
One of the basic tasks in deep neural networks is the
probability estimation of data sequences. Autoregressive
probability estimation, which is a simple task of predict-
ing the next data from past data sequences, is known to
achieve high accuracy when implemented by deep neural
networks. Autoregressive probability estimation can be ap-
plied to image (Mentzer et al., 2018; Minnen et al., 2018),
video (Lu et al., 2019; Mentzer et al., 2022), and lossless
compression (Bellard, 2021) by combining it with entropy
coding (Martin, 1979; Marpe et al., 2003; Duda, 2009).

Autoregressive probability estimation generally suffers
from slow processing since it is a sequential iterative pro-
cess due to the causality. One way to achieve high through-
put is multiplexing on a graphics processing unit (GPU).
To maximize the throughput of inference processing within
the limited resources of the GPU, it is necessary to avoid
the increase in computational complexity associated with
deeper layers and to reduce the required memory consump-
tion at higher multiplexing.
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Figure 1. Overview of receptive fields in Transformers and SCBs.
In Transformers, past contexts are considered by self-attention,
whereas in the proposed SCB, past contexts are considered by
both self-attention and convolution with scaling to improve com-
putational efficiency.

In this work, we propose Scale Causal Blocks (SCB), which
are basic deep neural network components for autoregres-
sive probability estimation that enables faster processing
compared to conventional techniques. Our main contribu-
tions are as follows.

• We proposed SCBs as the basic components for
the autoregressive probability estimation of data se-
quences. The computational cost was dramatically re-
duced while maintaining accuracy by combining con-
volution, scaling, and self-attention.

• We proposed inference algorithms with different par-
allelization strategies during training and inference.
Specifically, during training, convolution is utilized to
efficiently train long sequences in the context direc-
tion, and during inference, the weights of the convo-
lutional layer are converted into a simple linear layer
for faster processing by batch parallelization.

• Through our experiments, we demonstrated that
the proposed algorithm can achieve faster inference
throughput with comparable accuracy compared to the
Linear Transformer.

Again, our goal is to establish efficient network compo-
nents at a reasonable accuracy, not to achieve state-of-the-
art accuracy. This perspective is now particularly important
for bit cost reducing tasks such as compression tasks.
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2. Related Works
This section describes related research on modeling with
deep neural networks for data sequencing.

Transformer-based Models: The conventional Trans-
former (Vaswani et al., 2017) is computationally ineffi-
cient for processing long data sequences, as the compu-
tational cost of a self-attention is O(N2) for the length
N of the data sequence. In regard to this issue, sev-
eral methods have been proposed to improve the effi-
ciency of the self-attention calculation (Child et al., 2019;
Kitaev et al., 2020; Katharopoulos et al., 2020; Ma et al.,
2021; Tay et al., 2022). In particular, Linear Transformer
(Katharopoulos et al., 2020) can reduce the order of com-
putational cost of self-attention on a layer to O(N). Also,
research on very deep Transformer methods is progress-
ing, and it is now possible to construct large-scale models
(Wang et al., 2022). However, the overall computational
cost increases in proportion to the number of layers L, mak-
ing the overall cost equivalent to O(NL).

CNN-based Models: Since Transformer is based on a lin-
ear layer, it cannot consider any other data than the current
position (except self-attention). In contrast, convolutional
neural network (CNN) can consider the neighboring data
sequence if the kernel size K is greater than 2. Wavenet
(Oord et al., 2016) is a CNN-based model for modeling
long receptive field data sequences KL through dilated
convolution. Caching the intermediate results of the dilated
convolution can reduce the redundant computation of the
feature map during inference (Ramachandran et al., 2017).
However, an exponentially large number of caches relative
to the number of layers is required, and it is difficult to in-
crease the multiplicity of inference processing beyond the
order of thousands due to the limited amount of memory on
GPUs. In addition, the overall computational cost increases
in proportion to the number of layers L, that is the same as
with Transformers.

3. Scale Causal Blocks
In light of the above background, we proposed SCBs as the
basic components of deep neural network for the autore-
gressive probability estimation of data sequences.

3.1. Scaling Causal Convolution with Self-attention

SCB has a unique feature that combines convolution, scal-
ing, and self-attention for autoregressive probability mod-
eling of data sequences at low computational cost.

Building blocks: The structures of the two basic build-
ing blocks that make up the SCB, which we call Down-
scale Block (DB) and Upscale Block (UB), are shown in
Fig. 2. DBs/UBs handle scaling, the reduction/expansion
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Figure 2. Architecture of SCB.

of a feature map to the context dimension, and it is key
function for reducing computational cost. Each block in-
puts a tensor x(l) and a list of short-cut path tensors s(l) =
[â(1), · · · , â(l)] and outputs x(l+1) and s(l+1) at the lth
block layer. The DB halves the size of the tensor x in the
context dimension, and the UB doubles its size. A typical
configuration using these blocks is to connect multiple lay-
ers of DBs followed by multiple layers of an equal number
UBs such that the sequence length of the first input N and
the last output match.

DBs process an input tensor x(l) ∈ RB×Cin×N by a
one-dimensional convolutional neural network (1D CNN)
where B is the batch size and then produce two types of
outputs: half-downscaled tensor x(l+1) ∈ RB×Cout×N/2

and short-cut path tensor â(l+1) ∈ RB×Cout/2×N ap-
pended on s(l+1), as shown in Fig. 2. The short-cut
path tensor is processed with a masked linear attention
(Katharopoulos et al., 2020). UBs first concatenate an in-
put tensor x(l) ∈ RB×Cin×N and short-cut path tensor
â(l) poped from s(l) using the padding and deleting ten-
sor operations shown in Fig. 2. Pad(1 : 0) represents
one zero padding on the left side of the context dimen-
sion, and Delete(0 : 1) represents one deletion from the
right side. The UBs then process the concatenated tensor
by a 1D CNN and finally produce a twice-upscaled tensor
x(l+1) ∈ RB×Cout×2N . In each block, the kernel size K
of the 1D CNN is 2 and the stride size is 1. The exponen-
tial linear unit (ELU) (Clevert et al., 2015) is used as the
activation function.

Scaling with Down / Up operations: In DBs and UBs,
the operations that reduce and expand the context dimen-
sion are Down and Up. Our method aims to achieve these
operations fast and without any arithmetic operations by
replacing elements of the context dimension with the chan-
nel dimension (where C is the size), similar to PixelShuffle
(Shi et al., 2016) in the image processing field. For more
detail, see the appendix B.
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Self-attention on short-cut path: Since SCB has a short-
cut path similar to U-net (Ronneberger et al., 2015), we
utilize it in the output sl of each DB as a direct input
to the corresponding UB, without processing of deeper
blocks that have been reduced in the context dimension.
In this way, it can avoid missing granularity information
in the context dimension. We apply masked linear atten-
tion (Katharopoulos et al., 2020) to the feature maps of the
short-cut path a (split tensor) to further improve the predic-
tion accuracy at a low computational cost. For more detail,
see the appendix C.

Weight sharing of deep layers: Due to the characteristics
of SCBs, the data size of the feature map in the context
dimension halves each time it goes to deeper layer, which
makes it difficult to achieve stable training on these blocks.
Therefore, we propose a method for sufficient training with
fewer parameters that shares the weights of deep layers
of the block by taking advantage of the characteristics of
CNNs that can process even if the input size is changed in
multi-scale.

3.2. Fast Inference Algorithm

This section describes the processing of SCB during infer-
ence. The two main features are explained below.

Convolution into Linear: During learning, the SCB
uses convolution to efficiently learn long sequences in the
context direction (i.e., the batch multiplicity is relatively
small). In contrast, during inference, the batch multiplicity
increases to achieve high throughput since it is a iterative
sequential process. During inference, the weights are con-
verted to the linear layer format, which enables efficient
procesing with a high batch multiplicity.

Minimal caching: SCB is more memory efficient because
it does not maintain a large amount of cache even in deep
layers. For the dilated convolutions, exponential large
cache size of context in deeper layer, whereas for SCBs,
each layer requires only constant cache size since the con-
text is extended by scaling. In addition, since attention is
applied only to features in the shortcut paths, less memory
is required for the iterative attention process in SCBs than
Linear Transformers.

The detail algorithms are described in the appendix A.

3.3. Cost Estimations

We investigated the potential of the SCB by estimating its
computational and memory costs and comparing it with
conventional methods.

Computational Cost: The relationship between the num-
ber of layers and floating operations (FLOPs) for SCB and
other methods is shown in Fig. 3. The number of channels
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Figure 3. Computational cost.
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Figure 4. Memory cost.

is assumed to be Cin, Cout = 256 and is the same for all
network types. This assumption also holds for the exper-
imental results that follow, which show that the networks
have approximately the same prediction accuracy. Increas-
ing the number of layers not only increases the nonlinearity
of the processing and improves the expressiveness of the
network but also increases the receptive field in the convo-
lution, which is advantageous because it means that longer
contexts can be considered. The computational complexity
increases with the number of layers in general as indicated
by orange and grey curves, but as we can see in Fig. 3, the
computational cost of the SCBs saturates with respect to
the increase in the number of layers.

Memory Cost: CNNs and attentions other than simple
linear layers require cache memory to hold intermediate
data (context) during inference. The capacity of this cache
memory is proportional to the multiplicity (number of
batches) during inference, so it must be smaller to achieve
high multiplicity. The relationship between the number of
layers and intermediate cache memory cost for SCB and
other methods is shown in Fig. 4. In the case of dilated
convolution, the amount of cache memory used increases
exponentially with the number of layers, but the cost of the
SCBs is only proportional to the number of layers. Fur-
thermore, since attention is applied only to the features in
short-cut paths, it reduces both the dimensionality of the
channels of the attention networks and the number of atten-
tion mechanisms compared to conventional linear attention
networks, and thus requires less memory for the iterative
attention process in SCBs.

4. Experimental Results
This section presents the results of experimental studies on
the effectiveness of SCB. Lossless block compression is a
simple task that divides data into blocks of a fixed length
N , treats each block simply as a bit sequence x1, ..., xN ∈
{0, 1}, and autoregressively estimates probabilities by a
model for entropy coding.

The model θ is trained by an average of the Kullback-
Leibler divergence of the ground truth probability distribu-
tion p(x) and the estimated probability distribution qθ(x),
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Table 1. Experimental results of probability estimation of lossless block compression task (values in parentheses are standard deviations).

Method Bpd (Theoretical compression rate) Throughput Cost Parameters

Genomics MRI Physics [Mbit/sec] [MFLOPs/bit] [Mparms]

Linear Transformer
0.218
(0.004)

0.418
(0.007)

0.213
(0.002)

0.143
(0.0002) 12.8 12.6

SCB (proposed) 0.217
(0.006)

0.419
(0.004)

0.137
(0.004)

2.613
(0.0039) 0.7 2.8

Table 2. Experimental results of compression ratio. (values in parentheses are standard deviations)

Method Compression ratio

Genomics MRI Physics

gzip -9 with 8192 bits block 0.464 (0.000) 0.749 (0.000) 0.481 (0.000)
gzip -9 with no block 0.332 (0.000) 0.635 (0.000) 0.334 (0.000)
SCB (Proposal) 0.222 (0.006) 0.425 (0.004) 0.143 (0.004)

as
L = Ei[KL(p(xi)||qθ(xi|x1, ..., xi−1))]. (1)

Entropy coding using the estimated probability can en-
code with bitrate approximately equal to the negative log-
likelihood (Ho et al., 2019). This loss L is equal to the neg-
ative log-likelihood (and also it is equal to cross-entropy)
when p(x) is equal to one-hot encodings of the ground truth
bits. So L can be treated as the theoretical average com-
pression ratio and bits per dimension (bpd). The process-
ing throughput of the compression task is important from a
practical point of view because one of the main objectives
of compression is to reduce storage costs. If the through-
put of the compression process is slow, more time spent to
occupy computing resources such as GPUs, which results
in the effect of reducing storage costs by compressing data
will be offset by the computational costs.

4.1. Experimental Conditions

We experimented with SCB on this task to determine
whether SCB can handle probability prediction at high
speed. We utilized three different types of open datasets
(Genomics (EMBL, 2016), MRI (Alomair et al., 2015),
and Physics (Baldi et al., 2016)) to evaluate the bpd
and the processing speed of the probability estimation
model. We compared the results to the Linear Transformer
(Katharopoulos et al., 2020) as a baseline. In our experi-
ment, the size was set to 1,024 bytes (N = 8192 bits).
In the SCB experiment, the DB and UB were configured
to be coupled with ten layers each, and the channel sizes
Cin and Cout were set to 256. And the weights of the 1D
CNNs of DBs after the 6th DB layer are shared, and the
corresponding UB layers are also shared. We used a single
NVIDIA®V100 for each experiments.

4.2. Comparison of Computing Effeciency

We measured throughput with a batch multiplicity of 8,192.
Table 1 lists the results. As we can see, the SCB achieves a
speedup of more than one order of magnitude over the con-
ventional Linear Transformer with an equivalent bpd and
less parameters. These results are supported by the fact that
the estimated computational cost (MFLOPs/bit) of SCBs
is smaller than that of Linear Transformers. The Physics
dataset achieves a lower bpd with SCB. Please see the ap-
pendix D for details.

4.3. Comparison of Compression Ratios

A comparison of the compression ratios with gzip
(Deutsch, 1996), a common conventional compression, is
shown in Table 2. SCB allows partial encode/decode in
8192 bits units due to block compression. The SCB com-
pression ratio includes the coding overhead. SCB has an
advantage in the compression ratio even when compared to
gzip without block compression (full-file compression) in
the highest compression mode (option -9).

5. Conclusion
In this work, we proposed SCBs as the basic components
for autoregressive probability estimation of data sequences.
The computational cost was dramatically reduced while
maintaining accuracy by combining the convolution, scal-
ing, and self-attention. Experimental evaluations demon-
strated that the proposed algorithms can achieve faster in-
ference throughput to the Linear Transformer.

We believe it could reduce the environmental impact on so-
ciety by reducing the consumption of storage and network
bandwidth in the future.
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A. Details of Inference Argorithms
Algorithms 1 and 2 are the inference algorithms of SCB. The architecture in Fig. 2 is essentially a process during learning,
while these algorithms are a process during inference. Although they have different parallelization policies, they are
equivalent in terms of results and computational complexity. The details are omitted since the operation has already been
outlined in Fig. 2, but we briefly go over the notable parts of the inference process in the following.

Since this is an autoregressive inference, the tensor x ∈ RB×Cin at a certain location in the context dimension is used
as the input of DBs and UBs. The initialize process sets initial values for the variables (cx, cs, cx1, and cx2) used as
the caches of intermediate data in DBs and UBs before data sequence processing (corresponding to the Pad operations in
Fig. 2). These variables are internal static variables in each block and are maintained during data sequence processing.
By using these caches and concatenating the calculation results, equivalent processing to convolution can be done in
the sequential processing of inference while increasing the multiplicity in the batch dimension (e.g., to several thousand
or more). The cat and split are operated for the context dimension. The linearfromconv is a process that replaces the
convolution layer with a linear layer. Specifically, the convolution process can be viewed as a linear layer with KCin

channels as input and Cout channels as output, so the parameters of the convolution kernel are converted into those of the
linear layer. This eliminates the process for dimensional conversion of tensors, and allows for faster processing. The effect
of reducing the computational complexity of the deeper layers by scale with decreasing the size of the feature map of the
context dimension corresponds to the fact that, in the inference, the linearfromconv process and the attention process are
executed less frequently as the layers of the block become deeper (due to the conditional branching of the algorithm), so
the frequency of execution decreases.

Algorithm 1 Inference of down-scale block.
Require: x ∈ RB×Cin , s

(Initial: cx ← 0B×Cin , cs ← None)
Ensure: x ∈ RB×Cout , s

1: if x is None then
2: append(s,None)
3: return None, s
4: end if
5: t← cat(cx,x) {t ∈ RB×2Cin}
6: cx ← x
7: x← t
8: x← linearfromconv(x) {x ∈ RB×Cout}
9: x← elu(x)

10: x,a← split(x) {x,a ∈ RB×Cout/2}
11: â← attention(a) + a
12: append(s, â)
13: if cs is None then
14: cs ← x
15: x← None
16: else
17: x← cat(cs,x)
18: cs ← None
19: end if
20: return x, s

Algorithm 2 Inference of up-scale block.
Require: x ∈ RB×Cin , s

(Initial: cx1, cx2, cs ← 0B×Cin/2)
Ensure: x ∈ RB×Cout , s

1: â← pop(s)
2: if â is None then
3: return x, s
4: end if
5: if x is None then
6: x← cat(cx1, cs, cx2, â) {x ∈ RB×2Cin}
7: else
8: t← cx2
9: cx1, cx2 ← split(x)

10: x← cat(t, cs, cx1, â) {x ∈ RB×2Cin}
11: end if
12: cs ← â
13: x← linearfromconv(x) {x ∈ RB×Cout}
14: x← elu(x)
15: return x, s
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B. Details of Up/Down Operation
In DBs and UBs, the operations that reduce and expand the context dimension are Down and Up. Assume a tensor x ∈
RC×N (batch dimension is omitted because it is simply multiplexed), where each element of x is denoted as x1,1 · · ·xC,N .
The Down operation is then defined as

Down(x) =



x1,1 x1,3 · · · x1,N−1

...
...

. . .
...

xC,1 xC,3 · · · xC,N−1

x1,2 x1,4 · · · x1,N

...
...

. . .
...

xC,2 xC,4 · · · xC,N


2C×N/2

, (2)

And the Up operation is defined as

Up(x) =

 x1,1 xC/2+1,1 · · · x1,N xC/2+1,N

...
...

. . .
...

...
xC/2,1 xC,1 · · · xC/2,N xC,N


C/2×2N

. (3)

C. Details of Masked Linear Attention
We apply masked linear attention (Katharopoulos et al., 2020) to the feature maps of the short-cut path a (split tensor) to
further improve the prediction accuracy at a low computational cost. In this section, Masked Linear Attention reported
in (Katharopoulos et al., 2020) is explained for the estimation of the computational and memory costs in the next section.
The batch dimension and layer notations are omitted for simplicity. Catt,H,D, and M = Catt/H denote the number of
the channel dimensions, heads, query dimensions, and value dimensions, respectively. Note that Catt is equivalent to Cin

for Linear Transformer, while for SCBs, Catt is equivalent to Cout/2.

First, an input tensor a ∈ RCatt×N is projected to the queries Q(h) ∈ RN×D, the keys K(h) ∈ RN×D, and the values
V(h) ∈ RN×M by weight matrices W(h)

Q ,W
(h)
K ∈ RCatt×D and W

(h)
V ∈ RCatt×M for each head h = 0, · · · , (H − 1) as

follows:

Q(h) = aTW
(h)
Q

K(h) = aTW
(h)
K

V(h) = aTW
(h)
V . (4)

From here, a subscript ∗i is introduced to represent the i-th position in the context dimension (e.g. Q(h)
i is a vector whose

shape is RD). Next, the attention memory S
(h)
i ∈ RD×M and the normalizer memory Z

(h)
i ∈ RD is calculated as

S
(h)
i =

i∑
j=1

ϕ(K
(h)
j )V

(h)T
j (5)

Z
(h)
i =

i∑
j=1

ϕ(K
(h)
j ), (6)

where ϕ(x) is a function defined by ϕ(x) = elu(x) + 1. Note that ϕ(K(h)
j )V

(h)T
j in Eq. (5) is an outer product, not a

matrix multiplication.

After that, the scaled dot-product attentions A(h)
i ∈ RM are calculated for each head and the self attention Ai ∈ RCatt is
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projected by a weight matrix WA ∈ RCatt×Catt as

A
(h)
i = Ṽ

(h)
i =

ϕ(Q
(h)
i )TS

(h)
i

ϕ(Q
(h)
i )TZ

(h)
i

(7)

Acat = cat(A
(0)
i , · · · ,A(H−1)

i )

Ai = WAAcat, (8)

where Ṽ
(h)
i represents the updated values.

In the case of SCBs, the short-cut path tensor â is calculated as

âi = Ai + ai. (9)

D. Analysis of Prediction Accuracy
In the Physics dataset, SCBs showed singularly higher prediction accuracy than Linear Transformers. We therefore ana-
lyzed the prediction accuracy in the Physics dataset, which is csv files consist of floating-point data. Figure 5 shows the
input data sequence of floating-point data in ascii text format (horizontal axis) and theoretical compression ratio (vertical
axis) in the Physics dataset. For visibility, bitwise compression ratios are averaged into bytes. The latter half of the floating
point data beyond the number of significant digits of the floating point formed a pattern that appeared in common with
other data points, indicating that SCB was able to learn longer patterns than Linear Transformers, resulting in improved
prediction accuracy, i.e., a higher theoretical compression ratio.
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Figure 5. Physics (HEPMASS) dataset analysis.
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E. Preliminary Experimental Results
Table 3 also shows a comparison of the experimental results when SCB scale is disabled/enabled and when self-attention
is disabled/enabled. The results show that scaling and self-attention were effective for bpd reduction. This is because the
SCB scale has the effect of expanding the receptive field and also self-attention works efficiently.

Table 3. Preliminary experimental results of scale and self-attention using Genomics dataset (values in parentheses are standard devia-
tions).

Methods Bpd Cost [Mflop/dim]

No scale and attention 0.291 (0.002) 1.4
No scale 0.259 (0.005) 2.1
No attention 0.241 (0.009) 0.5
Full (Proposal) 0.217 (0.006) 0.7

F. Details of Estimations
F.1. Computational costs

Operations in the Masked Linear Attention and LinearFromConv are provided in Table 4 and Table 5, respectively.

Table 4. Computational costs of Masked Linear Attention.

Operation Details Computational costs Note
[FLOPs/bit/layer]

aTW
(h)
Q

RCatt × RCatt×D

(H times) CattDH Eq. (4)

aTW
(h)
K

RCatt × RCatt×D

(H times) CattDH Eq. (4)

aTW
(h)
V

RCatt × RCatt×M

(H times) CattMH Eq. (4)

ϕ(K
(h)
j )V

(h)T
j

RD ⊗ RM

(H times) DMH Eq. (5)

ϕ(Q
(h)
i )TS

(h)
i

RD × RD×M

(H times) DMH Eq. (7)

WAAcat RCatt × RCatt×Catt C2
att Eq. (8)

Table 5. Computational costs of LineaFromConv.

Operation Details Computational costs
[FLOPs/bit/layer]

LinearFromConv R(K∗Cin) × R(K∗Cin)×Cout KCinCout

Under the conditions used in the main text, the parameters shown in Table 4 and Table 5 can be described by only using
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Cin and H as follows:

D(LT) = Cin/H

M (LT) = Cin/H

C
(LT)
att = Cin

D(SCB) = Cin/2H

M (SCB) = Cin/2H

C
(SCB)
att = Cin/2

Cout = Cin (10)

First, we explain the computational costs of the Linear Transformer η(LT). In addition to the operations provided in
Table 4, there is a FeedForward operation in each layer. The FeedForward operation consists of RC

(LT)
att × RC

(LT)
att ×4C

(LT)
att

and R4C
(LT)
att × R4C

(LT)
att ×C

(LT)
att , which is equivalent to 2 × 4(C

(LT)
att )2 FLOPs per bit per layer. From the above, η(LT) is

calculated as

η(LT) = [2C
(LT)
att D(LT)H + C

(LT)
att M (LT)H + 2D(LT)M (LT)H + (C

(LT)
att )2

+2× 4(C
(LT)
att )2]L [FLOPs/bit]. (11)

By applying Eq. (10), η(LT) is summarized as

η(LT) =

(
12 +

2

H

)
C2

inL [FLOPs/bit]. (12)

Next, we explain the computational costs of SCBs η(SCB). The UB process consists of just a LinearFromConv while the
DB process consists of a LinearFromConv and a Masked Linear Attention. Additionally, lth layer is computed 1/2l times
per bit in SCBs. From the above, η(SCB) is calculated as

η(SCB) = [2C
(LT)
att D(LT)H + C

(LT)
att M (LT)H + 2D(LT)M (LT)H + (C

(LT)
att )2]

×
(
1 +

1

2
+ · · · 1

2L/2−1

)
+(KCinCout)× 2

(
1 +

1

2
+ · · · 1

2L/2−1

)
[FLOPs/bit]. (13)

By applying Eq. (10), η(SCB) is summarized as

η(SCB) =

(
2 +

1

H
+K

)(
2− 1

2L/2−1

)
C2

in [FLOPs/bit]. (14)

Lastly, we explain the computational costs of dilated convolutions η(DC). Since each layer consists of just a LinearFrom-
Conv, η(DC) is calculated as

η(DC) = KCinCout × L

= KC2
inL [FLOPs/bit]. (15)

F.2. Memory costs

The required memory for Masked Linear Attention, SCBs, and dilated convolutions is listed in Table 6, Table 7, and
Table 8, respectively.
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Table 6. Memory costs of Masked Linear Attention.

Description Shape Requried memory
[dim/batch/layer]

Attention memory S
(h)
i RD×M (×H pcs.) DMH

Normalizer memory Z
(h)
i RD (×H pcs.) DH

Table 7. Memory costs of the cached results in SCBs.

Block Description Shape Requried memory
[dim/batch/layer]

DB
cx
cs
s(l)

RCin

RCout/2

RCout/2

Cin

Cout/2
Cout/2

UB
cx1
cx2
cs

RCin/2

RCin/2

RCin/2

Cin/2
Cin/2
Cin/2

Table 8. Memory costs of dilated convolutions.

Description Shape Requried memory
[dim/batch/layer]

Caluculated results of each layer Cin (×2l pcs.) Cin × 2l

Similar to the previous section, the memory costs (elements per dim) of the Linear Transformer β(LT), SCBs β(SCB), and
the dilated convolutions β(DC) is calculated as follows:

β(LT) = (D(LT)M (LT)H +D(LT)H)× L

=

(
C2

in

H
+ Cin

)
L [dim/batch], (16)

β(SCB) = (D(SCB)M (SCB)H +D(SCB)H)× L

2

+

(
Cin + 2

Cout

2

)
× L

2

+

(
3
Cin

2

)
× L

2

=

(
C2

in

8H
+ 2Cin

)
L [dim/batch], (17)

β(DC) = Cout × (20 + 21 + · · ·+ 2L−1)

= Cin(2
L − 1) [dim/batch]. (18)

Note that the memory costs per layer in DBs (L/2 layers) and in UBs (L/2 layers) differ since only DBs have the linear
attention process.
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G. Expremental details
G.1. Expremental Conditions

We experimented with SCB on this task to determine whether SCB can handle probability prediction at high speed. We uti-
lized three different types of open datasets (Genomics (EMBL, 2016), MRI (Alomair et al., 2015), and Physics (Baldi et al.,
2016)) to evaluate the bpd and the processing speed of the probability estimation model. We compared the results to the
Linear Transformer (Katharopoulos et al., 2020) as a baseline. Lossless block compression divides chunks of data into
blocks of a fixed size for faster loading by partial decoding and parallel processing. In our experiment, the size was set
to 1,024 bytes (N = 8192 bits). In the SCB experiment, the DB and UB were configured to be coupled with ten layers
each, and the channel sizes Cin and Cout were set to 256. And the weights of the 1D CNNs of DBs after the 6th DB layer
are shared, and the weights of the UB layers corresponding to the short-cut path of the shared DB layers are also shared
among these UBs. In the Linear Transformer experiment, we set the embedding size to 256, the number of heads to 8,
and the number of layers to 16, as in the experimental configuration described in (Katharopoulos et al., 2020). In both
experiments, as with the general Transformers (Vaswani et al., 2017), the input bits were embedded to a 256-dimensional
value and positional encoding was added. As a final layer, a linear layer with one output channel and a Sigmoid function
were applied. The model was trained to output a probability that the bit is 1. We used the ADAM optimizer (Kingma & Ba,
2014) with a learning rate of 1.0e−4 for training and a batch size of 8. The training iteration was 200,000. We implemented
the experimental code on Pytorch and used the library for fast transformer implementations (Katharopoulos et al., 2020)
for the masked linear attention part. The experiments were performed with 32-bit floating-point arithmetic simply for the
sake of pure method comparison. We used a single NVIDIA®V100 for each experiments.

G.2. Evaluation Datasets

The details of the datasets used in the lossless block compression evaluation experiments are shown in Table 9.

Table 9. Details of evaluation datasets.
Dataset Items Description

Genomics Name Illumina HiSeq 2000 paired end sequencing GSM1080195:
mouse oocyte 1 Mus musculus RNA-Seq (EMBL, 2016)

URL https://www.ebi.ac.uk/ena/

File (train) SRR689233 1.fastq (3.87 GB)
(md5: 56cb883e8b42344384b9e4ccc90ec9db)

File (test) SRR689233 2.fastq (3.87 GB)
(md5: 92439bb6745f4abbf46b99efcbf20a02)

MRI Name In vivo High Angular Resolution Diffusion-weighted Imaging of
Mouse Brain at 16.4 Tesla (Alomair et al., 2015)

URL https://dataverse.harvard.edu/

File (train) in-vivo-DWI-EPI.tar (0.94 GB)
(md5: 4b247a403110dceb9631b365cee42813)

File (test) invivo-insitu-experiment.tar (0.76 GB)
(md5: 5eb5203b0fca67411f39c2377336605b)

Physics Name HEPMASS Dataset (Baldi et al., 2016)

URL http://archive.ics.uci.edu/

File (train) all train.csv (5.18 GB)
(md5: 5b1fc2dafe14aa2f661cc3de5ccf3984)

File (test) all test.csv (2.59 GB)
(md5: 414f886d007f18b1eb97257a36120389)


