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Abstract

Pre-trained language models derive substan-
tial linguistic and factual knowledge from the
massive corpora on which they are trained,
and prompt engineering seeks to align these
models to specific tasks. Unfortunately, exist-
ing prompt engineering methods require sig-
nificant amounts of labeled data, access to
model parameters, or both. We introduce a new
method for selecting prompt templates without
labeled examples and without direct access to
the model. Specifically, over a set of candidate
templates, we choose the template that maxi-
mizes the mutual information between the input
and the corresponding model output. Across
8 datasets representing 7 distinct NLP tasks,
we show that when a template has high mutual
information, it also has high accuracy on the
task. On the largest model, selecting prompts
with our method gets 90% of the way from the
average prompt accuracy to the best prompt
accuracy and requires no ground truth labels.

1 Introduction

It is well-known that large pre-trained language
models (LMs) learn substantial linguistic (Liu et al.,
2019; Amrami and Goldberg, 2018) and factual
world knowledge (Petroni et al., 2020; Bosselut
et al.; Bouraoui et al.; Zuo et al., 2018), achiev-
ing state-of-the-art performance on classic NLP
tasks like closed-book question-answering, senti-
ment analysis, and many other tasks (Radford et al.,
2019; Devlin et al., 2019; Raffel et al., 2019). The
largest models can do this in a few-shot way—being
trained only with generic, semi-supervised objec-
tives and “taught” tasks with just instructions and
a few examples of the task provided via a natural
language “prompt” in the context window (Brown
et al., 2020). This suggests that pre-training equips
them to potentially do many tasks that can be for-
mulated as natural language generation, if only they
can be primed in the right way.
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Figure 1: Performance of template selected by our max-
imum mutual information method (MI) compared to the
the worst, mean, median, and best prompt on GPT-3
Davinci (175B). Our method performs at almost oracle
levels, without labels or access to model weights.

Such priming is not a trivial task. The few-shot
learning breakthrough can give the impression that
if the LM is given a sensible prompt, the model will
“understand” what is meant and perform well on the
task if it has the capacity. However, LMs can gener-
ate substantially different probability distributions—
and thus text—given two distinct prompts that ap-
pear semantically invariant (e.g., alternative order-
ing of options, lexical changes like capitalization,
and general rephrasing (Zhao et al., 2021; Lu et al.,
2021)). This can lead to surprisingly high variance
in performance from prompt to prompt. Clearly,
some prompts are better than others for aligning a
model to a task.

Prompt engineering is a nascent field that aims
to find such aligning prompts (Reynolds and Mc-
Donell, 2021). While “prompt” refers to any lan-
guage passed to the model via the context window,
a template refers to a NL scaffolding filled in ac-
cording to raw data, resulting in a prompt. Thus,
prompt engineering includes finding high-quality
templates (i.e., those with high test accuracy). Gen-



erally, this is done by validation set accuracy opti-
mization: a template is chosen from a set of candi-
dates given their performance on a set of labeled
examples. In order to do this reliably, many labeled
examples are needed. These can be challenging
to procure for some tasks and impossible for oth-
ers. Some recent methods optimize prompts using
backpropagation, which requires access to model
weights. By using mutual information, our method
allows prediction of a prompt’s performance with-
out labels or access to model parameters.

Mutual information (MI) is a metric that quan-
tifies the shared information between two random
variables (see Section 3.2). We demonstrate that
the mutual information between a prompt and a
language model’s output can serve as a useful sur-
rogate for the test accuracy of a template. To justify
this method, we generate a diverse set of 20 tem-
plates per dataset and show that for each template,
mutual information and accuracy are highly cor-
related. These results are strongest on the largest
models we study and hold across eight datasets
representing seven NLP tasks; our method chooses
prompts that, on average, get 90% of the way from
mean accuracy to maximum accuracy and even
selects the best prompt on three of eight datasets.

This suggests that, across a variety of NLP tasks,
mutual information can be used to select one of the
best prompts from a set of candidate prompts, even
without making use of model weights or ground
truth labels. In the following pages, we outline each
step of our general method for generating and eval-
uating templates so that it can easily be ported to
any other task. Code is available at [URL removed
for anonymity - code attached with submission].

2 Related Work

The promise of language models and the chal-
lenge of aligning them has given rise to the field of
“prompt engineering”’, which seeks to construct the
best prompt given a task and a language model (Liu
et al., 2021a). The best performance on prompt
engineering is often achieved using backpropaga-
tion in continuous prompt embedding space (Lester
et al., 2021; Li and Liang, 2021; Gu et al., 2021;
Liu et al., 2021b; Zhang et al., 2021) in contrast
to generating a discrete set of prompts by hand
and testing them. While optimizing in continu-
ous prompt space via backprop allows for similar
performance to model-tuning (at least at higher
model sizes) (Lester et al., 2021), not all models

are publicly available. Thus, these methods are
only feasible for those who have direct access to
the model and can perform backprop on it. Prompts
optimized in continuous space are also not inter-
pretable in natural language, making it harder to
transfer insights from prompts that work well for
one task to another task. These methods also re-
quire labeled examples, while ours does not.

Other selection protocols not based on gradient
flow can include cross-validation or minimum de-
scription length, as in (Perez et al., 2021). These
methods yield prompts that perform marginally bet-
ter than average in terms of test accuracy.

Mutual information has been used in n-gram
clustering, part-of-speech tagging, probing classi-
fiers, and LM training objective reframing (Brown
et al., 1992; Stratos, 2019; Voita and Titov, 2020;
Kong et al., 2019). Ours is the first work of which
we’re aware to apply MI to prompt engineering.

3 Methods

At the most abstract, our method is as follows (see
Appendix A for a more thorough description):

s a

1. Generate a set of K prompt templatizing
functions.

2. Playground a couple of examples to
ensure that templates give roughly ex-
pected output.

3. Estimate mutual information for
each template given a set of inputs
X1, X2, ...XN X.

4. Choose template(s) based on mutual in-
formation and perform inference.

We find it useful to unify all the tasks we study
within a single framework, which we describe in
Section 3.1. We also justify our use of mutual
information as a surrogate for prompt quality and
specify how we estimate it in Section 3.2.

3.1 Task Definition

In order to demonstrate our method’s widespread
applicability and general effectiveness, we vali-
date it across many datasets and tasks. This re-
quires us to estimate mutual information and accu-
racy, and this is most straightforward in the case
where, given a context, a language model produces
just one probability distribution P(t,|context =
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Figure 2: We choose 6 € {6;}X | and templatize a sampled instance from the dataset X. We pass this prompt
through the language model via g, yielding a probability distribution over the model’s tokens Ty,. The collapsing
function ¢y sums the weight given to each token corresponding to each possible answer ¥y € Y and normalizes,
giving a probability distribution P(Y |x;), which we can use to estimate mutual information or obtain a guess for y;.

t1,t2,...,t,—1). This is in contrast to other experi-
mental setups that use multi-token sampling meth-
ods (e.g., beam search). Any NLP task is tractable
in this framework so long as the output space con-
sists of a set of options that each start with a unique
token. In this case, the language model can “give”
an answer by assigning probability to tokens that
begin giving each of these answers (invariant to lex-
ical variation like capitalization and leading/trailing
spaces). While, for open-ended tasks, this method
might artificially inflate accuracy if the model starts
to give a wrong answer that happens to start with
the same token as the correct one, we find that this
difference is small and does not affect our results.'
Irrelevant tokens (with which none of the desired
answers begin) are ignored, and the resulting col-
lapsed probabilities are normalized. We term this
approach One-token Response (OTR). Although
our method isn’t limited to OTR tasks, we choose
tasks that can be cast as OTR tasks for simplicity

'Oour open-ended datasets are SQUAD, LAMBADA, and
ROCStories, and none of these seemed more likely than ROC-
Stories to exhibit this issue. We reran our experiment on
ROCStories by sampling with temperature O until reaching a
space, and only counted responses as accurate if they exactly
matched the corresponding ground truth labels. Results were
virtually unchanged: accuracy decreased by only 0.03 on aver-
age, and the correlation between mutual information and test
accuracy increased by 0.04, from 0.68 to 0.72.

and to reduce computational expense. Many NLP
tasks fit within this framework, although a few do
not (e.g., machine translation and summarization).
This basic approach is in common use (Brown et al.,
2020), but we formalize it for clarity below.

Generally, the OTR framework casts a natural
language task as a classification problem with raw
data input x; € X and output P(Y|x;), a probabil-
ity distribution over targets. In order to use a lan-
guage model ¢ for this task, a templatizing function
fo : X — Lis needed to map raw data into natural
language prompts. g4 : L — T, maps prompts
to a probability distribution over T}, the token set
represented by the model tokenizer. Finally, a col-
lapsing function ¢y : Ty, — P(Y'|x, 0, ¢) yields an
estimate of P(Y'|X):

PY[x,0,9) = co(gs(fo(x))),x € X

We also refer to P(Y'|x, 0, ¢) as P(Y| fp(x)).

The above pipeline can be specified in many
ways using different 6 and ¢ (see Figure 2), which
will result in different accuracies. Our ultimate aim
is to select the best 6 given ¢». Whereas past prompt
engineering methods rely on scores calculated by
comparing model answers and ground truth, our
method selects § by maximizing mutual informa-
tion, which requires no ground truth labels.

ey



3.2 Mutual Information

Mutual information is a measure of the amount of
shared information between two random variables
(Cover and Thomas, 2006); in other words, it is the
reduction in entropy that is observed in one random
variable when the other random variable is known.

We expect mutual information to serve as a good
criterion for comparing prompts. Previous work
has shown that large networks trained with cross-
entropy loss are calibrated (e.g., a 60% confidence
corresponds to a 60% chance of the model being
correct) when in the early-stopped (~ 1 epoch)
regime (Jiet al., 2021), but become miscalibrated in
the overfit regime (Nakkiran and Bansal, 2020). Ac-
cording to (Brown et al., 2020), GPT-3 was trained
for a different number of epochs on each corpus in
its training data. We calculate it was trained for an
average of 1.57 epochs, so we have reason to be-
lieve that GPT-3 is generally well-calibrated. Thus,
we postulate that a prompt that elicits a very confi-
dent response (high mutual information) from the
language model is more likely than a less confident
prompt to score well.

We denote the mutual information between ran-
dom variables X and Y as I(X;Y) and the entropy
of X as H(X) = — [y P(x)log(P(x))dx.
The mutual information between X and Y is de-
fined as Dx1(P(x,y)||Px ® Py ), and can be rewrit-
ten as H(Y) — H(Y|X) (the reduction in entropy
in Y given knowledge of X).

Using the OTR framework, we fix a model ¢
and generate a diverse set of K prompt templa-
tizing functions fg,, f,, ..., fo,, along with their
corresponding collapsing functions ¢y, . Treating
fo(X) := {fo(x),x € X} as a random variable,
we can calculate I(fg(X);Y") and use it as a cri-
terion for selecting prompt templatizing functions
with which to do inference.

We hypothesize that a 6; with higher mutual
information will align a language model to a task
better than a 6; with lower mutual information.
Formally, we select § = argmax,{I(fs(X);Y)}.

Mutual information is estimated as:

I(fo(X);Y) = H(Y) - H(Y|fo(X)) ()

where each term is estimated in expectation using
draws x; ~ X and Equation 1 as follows:

N
mmwﬂ<§ZPwmwm> ®
i=1

Base | Size

Dataset Task Y| Acc. | Nup
SQuAD Open Book QA Ty|l| ~0 16K
LAMBADA Cloze Tyl| ~0 | 5K
ROCStories Cloze Tel| ~0 | 52K
CoQA Closed Book QA 5 0.2 9K
IMDB Sentiment 2 | 05 |50k
Analysis
Reading
BoolQ Comprehension 2 0.5 16K
COPA Choice of P_osmve 2 05 1K
Alternatives
WiC Word in Context 2 0.5 5K

Table 1: All datasets used in our experiments. |Y| is the
size of the label space and IV, is the size of the dataset
we sample from (after any modifications).

N
HIY (X)) = 5 S°HP o)) 4

Thus, the marginal entropy H (Y) is the entropy
of the mean of the conditional distributions, and
the conditional entropy H (Y| fg(X)) is the mean
of entropies of the individual conditional distribu-
tions.

This definition gives us another reason to expect
that mutual information will work well. Since mu-
tual information is the marginal entropy minus the
conditional entropy, maximizing mutual informa-
tion is equivalent to maximizing marginal entropy
and minimizing conditional entropy. Thus, MI is
high for templates that are, on average, less biased
towards any given answer (high marginal entropy)
and templates with outputs the model is confident
about (low conditional entropy). These attributes
are desirable in constructing prompts, and we postu-
late that maximizing mutual information will yield
a well-aligned template.

Looking at it another way, by the data pro-
cessing inequality (Cover and Thomas, 2006),
I(fo(X):Y) < I(X;Y). Thus, I(fo(X);Y)
gives a lower bound for I(X;Y), and the high-
est mutual information is the tightest lower bound.
The prompt corresponding to this lower bound pre-
serves the most information between X and Y.

4 Experimental Setup

4.1 Datasets

We validate the efficacy of our prompt engineer-
ing method with experiments on eight well-known
NLP datasets>~SQuAD?2.0 (Rajpurkar et al., 2018),

"Datasets are listed in descending order here and through-
out the paper, first by |Y'|, and then by method performance.



Distributions over Template Accuracies
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Figure 3: Distributions of accuracies over K = 20 templates for each model/dataset pair, compared to the prompts

selected with MI (translucent red dots).

LAMBADA (Paperno et al., 2016), ROCStories
(Mostafazadeh et al., 2016), CoQA (Talmor et al.,
2018), IMDB (Maas et al., 2011), BoolQ (Clark
et al., 2019), COPA (Gordon et al., 2012), and
WiC (Pilehvar and Camacho-Collados, 2018))—that
span seven unique NLP tasks (see Table 1). We
used a random sample of N = 500 samples from
each dataset for our experiments.3 For ROCStories,
which consists of a set of five sentence stories, we
randomly masked a word from each story in order
to use the data for masked word prediction (cloze).

We made minor changes to two of the datasets
in order to cast the associated tasks into OTR. For
the SQuAD dataset, we dropped all questions that
did not have a one word answer, and for the CoQA
dataset, we dropped all questions that had answer
choices that started with a shared first word (e.g, the
dog, the cat, the monkey). Both of these changes
were to decrease ambiguity about which option the
model was choosing given its output token distri-
bution for a single token.

4.2 Models

We assess the performance of our method on eight
models ranging in size from 124 million to 175
billion parameters. Specifically, we use two sizes
of GPT-2 (Radford et al., 2019) (124M, 1.5B), the

3We sampled from the train sets of CoQA and SQuAD;
the train and validation sets of WIC, COPA, and BoolQ; the
full datasets of ROCStories and IMDB; and the test set for
LAMBADA.

largest GPT-Neo (Black et al., 2021) model (2.7B),
GPT-J (Wang and Komatsuzaki, 2021) (6B), and
the four sizes of GPT-3 (Brown et al., 2020) (Ada,
Babbage, Curie, and Davinci). We assume (as in
(Perez et al., 2021)) that these named models are
the four largest models in (Brown et al., 2020), with
parameter counts 2.7B, 6.7B, 13B, and 175B re-
spectively. Each model was trained in a generative
manner to do next-token prediction.

5 Results

In this section, we analyze our experiments. First,
we look at our method’s ability to select high-
accuracy prompts across models and datasets (Sec-
tion 5.1). Next, we correlate template mutual in-
formation and accuracy in Section 5.2. In Section
5.3 we explore the robustness of MI and use en-
sembling to improve it. Finally, we compare the
tranferability of prompt templates selected with MI
from model to model in Section 5.4.

5.1 Template Selection Performance

We first define baselines against which we compare
our approach. Other prompt engineering methods
generally require either access to model weights, la-
beled data (validation set selection), or both (back-
prop/continuous prompt embedding methods). Our
method does not require these, so we instead com-
pare to random and oracle baselines. A random
template selection method would give us the aver-
age accuracy of our template set (in expectation),



Correlation between MI and Accuracy

1.00

SQuAD 0.96
0.75
LAMBADA 0.96
- 0.50
ROCStories Y y b 0.7
-0.25
CoQA
- 0.00
IMDB 0.3
--0.25
BoolQ 5 -0.18 0.13 -0.05
~-—0.50
COPA 0.18 -0.29 0.27 03 -0.18 03
-0.75
WiC - 0.33 -0.06 0.07 0.04 -0.15 -0.19 -0.37 -0.1
l 1 1 i | | l | - —1.00
\'\‘S’ q)‘.\,\& ,,)-.b/'\% «,“Gb 0‘.’1;\?’ 3’1:\$ ru.\b% '\W@
& &S &

Figure 4: Correlations are more consistently high across
all tasks for the largest models, suggesting that our
method is most useful at those model sizes.

while an oracle selection method would give us
the best accuracy every time. To understand how
our MI method compares to these two baselines
for each dataset, refer to Figure 1, where we ana-
lyze performance on GPT-3 175B. On each of the
eight datasets, mutual information selects a prompt
template that outperforms both the mean and me-
dian accuracies (random baseline performance). In
three of the eight datasets, mutual information se-
lects the best (highest accuracy) template from the
20 proposed (equivalent to oracle performance).
Given our method’s promising performance with
GPT-3 175B, it is natural to ask how it performs
with smaller models. Figure 3 shows the accu-
racy distributions over prompt templates for each
dataset/model pair. With every model, MI gives
above-average performance on several datasets.
Although MI is more likely to select a high ac-
curacy template for larger models, it is a good
criterion even for smaller models on all but two
datasets, COPA and WiC. Note that, for these two
datasets, none of the templates do significantly bet-
ter than chance (~50%) besides the largest model
on COPA, which is in line with previous work.*
Thus, we observe that mutual information performs
best when there is a high-signal prompt to select
from, and worse when all prompts are low-signal.
When considering all datasets but these, MI se-

*Our template’s best accuracy is 54% for WiC, and 78.2%
for COPA, which is similar to previous work (WiC: (Brown
et al., 2020) - 49.4%, (Perez et al., 2021) - 54.1%; COPA:
(Brown et al., 2020) - 92.0%, (Perez et al., 2021) - 84.8%).

Mutual Information vs. Accuracy with GPT-3 175B

SQuAD LAMBADA

0.8

S
%o
1

0.6 4

o
=N
!

Accuracy

S
'S
1

044, 20

ROCStories
® o

@

o

I
IS
1

Accuracy

S
o
1

o
s

S
0
i

Accuracy

g
=N
!

L

WwiC

Accuracy

0.025 0.01 0.02 0.03
Mutual Information (nats)

Figure 5: Each dot represents a template and its average
mutual information and accuracy over N = 500 task
instances. Linear best fit (by mean standard error) lines
are included to show overall trends.

lects an above average prompt 83% of the time for
all models; for the largest two models, MI selects
an above average template 100% of the time (even
including WiC and COPA).

5.2 Correlation between Template Mutual
Information and Accuracy

In Section 5.1, we see how the MI selected tem-
plate does in terms of accuracy compared to all
other templates. We have not discussed, however,
how generally mutual information and accuracy
are correlated, except that the highest MI template
tends to have anomalously high accuracy. Here, we
establish that their correlation is high across all tem-
plates for the largest models. Each of the K = 20
templates has two corresponding measures: aver-
age accuracy and average mutual information. We
can use these pairs to correlate MI and accuracy
via Pearson’s R.

We see in Figure 4 that the correlations are
surprisingly high for the majority of models and
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represents accuracy over each of the (250) ensembles of 5 templates from

the 20 templates associated with the dataset. Each plot also includes lines representing the average accuracy of all
single templates for the dataset, the accuracy of the ensemble of all 20 templates, and the accuracy of the ensemble
of the top 5 templates chosen by MI. In only one case does all-20 beat top-5-MI, and it does so at 4 x the cost.

datasets. For SQuUAD, LAMBADA, ROCStories,
and CoQA, this pattern holds across all model sizes;
for the remainder, results are good on larger mod-
els and are much less reliable on smaller models.
Overall, this is evidence that as mutual information
increases, so does accuracy. In other words, mutual
information can be used to make an educated guess
about accuracy without having to use any ground
truth labels, especially on larger models.

5.3 Method Robustness and Ensembling

We now explore the robustness of our method. To
do this, we consider the question: what if we had
included a different subset of templates, especially
not including the top MI template? Figure 5 con-
tains average mutual information/accuracy data for
all K = 20 prompt templates on GPT-3 175B (sim-
ilar plots for other models are found in Appendix
C). For SQuAD, LAMBADA, ROCStories, CoQA,
BoolQ, and IMDB, the results are robust; the top
few prompt templates (by MI) are all high perform-
ers. For COPA and WiC, the performance is more
brittle, and excluding the top-MI template would
have resulted in a large drop in accuracy. This at-
tests, first of all, to the utility of generating a diverse
slate of templates as recommended in Appendix A,
but also to the risk that outliers could compromise
the effectiveness of the method.

A comprehensive discussion of remedies for out-

liers is beyond the scope of this paper, but it is
an important concern. Considering the strength of
MI/accuracy correlations, one simple approach is
to ensemble the top 5 MI templates.

To compare this principled top-5 ensemble to
other possible ensembles of templates, we do the
following for each dataset: First, we take all (250)
subsets of 5 templates from all 20 templates; sec-
ond, we calculate the accuracy of each ensemble,
and plot this distribution’s kernel density estimate,
which models the p.d.e. of the random variable “ac-
curacy of 5 random templates ensembled together”;
lastly, we compare the accuracy of the top-5-MI
templates with the accuracy of the ensemble of all
20 templates and the average accuracy of all tem-
plates (equivalent to the average accuracy of the 20
points in each scatterplot in Figure 5). The results
are shown in Figure 6.

We would expect both the full and the MI ensem-
bles to beat the average accuracy across templates.
Surprisingly, we found that the top-5 mutual infor-
mation ensemble does at least as well as the full
ensemble in all but one case, IMDB, where the
difference is just 0.03. Two reasons to use mutual
information are, then, that 1) the MI ensemble gets
as good or better a result as ensembling all prompt
templates and 2) at a fourth of the experimental
cost.

In short, ensembling by MI is a cheap and effec-
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Figure 7: For each model/dataset pair, accuracies are normalized linearly so that 0 is the average prompt accuracy
and 1 is the highest test accuracy. Using the prompt chosen by either MI or test accuracy on each selection model,
average performance across datasets is reported for each inference model.

tive way to guard against anomalous high mutual
information/low accuracy templates.

5.4 Transferability across Models

Finally, we explored how well-chosen templates
generalize between models. There are several rea-
sons for doing this. First, model transfer can be
useful if more powerful models can only be used
selectively (because of cost or access), either for
prompt template selection or for inference, and
other models must be used in the rest of the work-
flow. Additionally, studying model transfer can
shed light on the universality of template qual-
ity across models of different sizes and training
regimes.

Concretely, we choose templates by maximizing
either test accuracy (oracle) or mutual information
(our method) using a selection model ¢;, and then
calculate test accuracy using a different inference
model ¢;. We calculate absolute test accuracy and
then normalize it such that 0 and 100 correspond to
the average and maximum scores across templates
for a model/dataset pair. We average our results
across datasets and present the results in Figure 7.

MI performance is best when the largest model
(GPT-3 175B) is used as both the selection and
inference model: on average, MI scores 90% on
this normalized scale. Additionally, performance
is most consistently high when the largest models
are used either for selection or inference. But the
vast majority of transfer scores are well above 0
(only one negative average gain out of 64 trans-

fer permutations), suggesting that transfer is often
reasonable, and that similar templates work across
models given a task.

Overall, we have observed that prompt selec-
tion by mutual information is surprisingly effective
across a variety of datasets and model sizes. This
method works best on larger models and for tasks
that the LM is capable of performing. Given the
high diversity of tasks that we have explored, we
expect this method to transfer well to many other
NLP tasks, including ones where there are few or
no ground truth labels.

6 Conclusion

In this paper, we introduce a method for selecting
prompts that effectively align language models to
NLP tasks. Over a set of candidate prompts, our
method selects the template that maximizes the mu-
tual information between the input and the model
output. We demonstrate that 1) mutual information
is highly correlated with test accuracy and 2) select-
ing a prompt based on mutual information leads
to significant accuracy gains over random choice,
approaching oracle performance on GPT-3 175B,
and it does so across model sizes and tasks.

Whereas other methods rely on ground truth
labels and/or direct model access, ours requires
neither. Many applications characterized by lack
of computational resources, limited model access
(e.g., inference only), and lack of ground truth data
prohibiting testing of candidate prompts become
feasible with our method.
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A Prompt Engineering Process

In this section, we will step through our method
in detail. Again, note that this method uses no
ground truth labels and does not require gradient
updates or access to the model parameters. Given
a task that can be represented in natural language
with the OTR framework, the only requirements
for our approach are a) several candidate prompt
templates and b) some instances (X) on which to
do inference.

1. Generate a set of K prompt templatizing
functions with corresponding collapsing func-
tions. Each prompt template function fy, should
take in an input from the dataset and output a
prompt ready for processing by the language model.
Each template must also have a collapsing function
cp,, that takes the language model output and pro-
duces a distribution over targets. Prompt template
functions should be chosen to be as diverse as pos-
sible to increase the probability of finding a range
of low- to high-quality prompts. For example, we
use templates that frame input from datasets as test
questions, back and forth dialogue between friends,
Python code, test answer banks, etc. A sample of
the prompt templates used in this work is provided
in Appendix B. A good resource for coming up
with prompt template function ideas is the OpenAl
API examples collection®.

2. Playground. For each chosen fy,, calculate
94( fo, (x)) for a few dataset samples. Do not look
at associated ground truth labels for these samples.
Simply check to ensure that g, puts high probabil-
ity on the tokens one would expect given fp, that
could be reasonably collapsed by cg, into P(Y).
For example, on the BoolQ reading comprehension
task, the language model predicts the answer to
a yes/no question related to a corresponding pas-
sage. Given this task, we would expect the highest
probability to be on tokens like “Yes” or “No”. A
poor prompt template, on the other hand, might
put the highest probability on unrelated tokens like
“I”, “think”, or “\n”. Revise or replace any template
that fails to put high probability mass on the tokens
expected.

3. Estimate mutual information for each tem-
plate fy, . Choose how many data points NV to use
for estimating mutual information for each tem-
plate function. A higher NV will allow for estima-

Sbeta.openai.com/examples
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tion of mutual information based on a more repre-
sentative sample of the dataset at the cost of more
language model computation. Sample /N samples
from your dataset. Since we do not require any Y
labels, one could even choose the X’s on which
you desire to do inference (as we do). Then, for
each sample = and each template fy, , calculate
P(Y|fo(x)) using Equation 1. Use the output to
estimate mutual information for each prompt tem-
plate with Equation 2.

For all of our experiments, cy takes in a distribu-
tion of tokens g4 ( fp, (+)) and a mapping between
the set of possible ground truth labels for fy, ()
and model vocabulary 7. For a sentiment analysis
task, that mapping would be from the ground truth
labels “positive” and “negative” to the expected
tokens “positive” and “negative” respectively. If
a given prompt template for sentiment analysis
was phrased as a yes/no question, the mapping
for that prompt template would be from “positive”
and “negative” to “yes” and “no” respectively. Our
c function returns a probability over Y (target label
space), and the highest probability label is treated
as the prediction. To keep things simple, the values
in our map are always single tokens. See examples
in Appendix B.

4. Choose prompt template(s) to use for infer-
ence based on mutual information. For choosing
a single prompt template to use for inference, select
the template with highest estimated mutual infor-
mation. With an increased computational budget,
one could also ensemble the top p prompt tem-
plates, as we describe in Section 5.3.

5. Use chosen prompt template(s) to perform
inference Use chosen prompt template(s) f; to cal-
culate c;(g¢(f;(x)) for each dataset sample. Infer-
ence can be done with the language model used for
estimating mutual information or a smaller model if
cost is prohibitive (for information on performance
statistics with this approach, see Figure 7).

B Template Examples

The following are example template fys provided
for each dataset. We include the highest accuracy
template, but all templates used can be found at
[GitHub URL removed for anonymity. Our code
is included in a ZIP file in our submission]. In
blue, we highlight the data that is filled in from
X; [lli€d, we highlight the area where we ask the


https://beta.openai.com/examples
https://beta.openai.com/examples
https://beta.openai.com/examples
https://beta.openai.com/examples

model to predict the next token; everything that is
not highlighted is static from instance to instance.

We also include the token sets used in the col-
lapsing functions, if applicable.

B.1 SQuAD

Mutual Information: 4.950, Accuracy: 0.820

TASK: Answer the questions below using the phrasing from the
context.

CONTEXT: As of the census of 2000, there were 197,790 people,
84,549 households, and 43,627 families residing in the city. The
population density was 3,292.6 people per square mile (1,271.3/km).
There were 92,282 housing units at an average density of 1,536.2 per
square mile (593.1/km). The racial makeup of the city was 38.3%
White, 57.2% African American, 0.2% Native American, 1.3% Asian,
0.1% Pacific Islander, 1.5% from other races, and 1.5% from two
or more races. Hispanic or Latino of any race were 2.6% of the
population.

QUESTIONS:
1) In 2000, how many families lived in Richmond?

Answer: “43,627”

2) What percentage of the Richmond population of 2000 was Pacific
Islander?
Answer: “|

Collapsing token sets: None, all tokens are con-
sidered.

B.2 LAMBADA

Mutual Information: 4.984, Accuracy: 0.782:

Fill in blank:

Alice was friends with Bob. Alice went to visit her friend L >
Bob

“I would speak to you privately,” Bowen said, casting a glance around

at the others milling about.

The worry in her eyes deepened, but she nodded hesitantly and
awaited Bowen’s directive.

He led her through the great hall, annoyance biting at him when he saw
no place where people weren’t congregated. He stepped outside the
back of the keep, where, finally, he spied an area near the bathhouses,
where it was quietand ____. ->|

Collapsing token sets: None, all tokens are con-
sidered.

B.3 ROCStories

Mutual Information: 3.859, Accuracy: 0.538

Fill in the blank for the following sentences.

“Marissa loved pokemon go game. It is the biggest thing right
now. She had done so much more walking since she started playing
it. She walked all day and evening sometimes. She walked almost 10
miles in two days.” -> “Marissa loved|

Collapsing token sets: None, all tokens are con-
sidered.
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B.4 CoQA

Mutual Information: 0.600, Accuracy: 0.590

Instructions: For each question below, choose the answer from the
answer bank corresponding to the question that best answers the
question.

Question 1 Answer Bank:
caterpillar

ladybug, bunny, goldfish, leopard,
Question: What animal would be most dangerous for a human to
encounter in the wild?

Answer: leopard

Question 2 Answer Bank:
depression, relief

wrong, pleasure, encouragement,

Question: If you’re still in love and end up stopping being married to
your partner, what emotion are you likely to experience?
Answer:|

Collapsing token sets: {A: "wrong’, B: "pleasure’,
C: ’encouragement’, D: ’depression’, E: ’relief’ }

B.S IMDB

Mutual Information: 0.175, Accuracy: 0.944):

P1: How was the movie?

P2: John Cassavetes is on the run from the law. He is at the bottom
of the heap. He sees Sidney Poitier as his equal and they quickly be-
come friends, forming a sort of alliance against a bully of a foreman
played by Jack Warden.

As someone who has worked in a warehouse myself when I was
younger, I can tell you that the warehouse fights, complete with tum-
bling packing cases and flailing grappling hooks are as realistic as it
gets. I've been in fights like these myself, although no one got killed.

The introduction of Sidney Poitier’s widow is a variation on Shake-
speare’s Shylock “Do I not bleed?” This is an anti racist film, which,
at the time, was much needed.

All the three principle characters - Warden, Cassavetes and Poitier -
are superb, with Warden the most outstanding of the three.

P1: Would you say your review of the movie is negative or positive?
P2: I would say my review review of the movie is|

Collapsing token sets: {Positive: "positive’, Nega-
tive: ‘negative’}

B.6 BoolQ

Mutual Information: 0.077, Accuracy: 0.778

Given the passage and question, please answer the question with yes
or no.

”’Turn on red — In Canada, left turn on red light from a one-way road
into a one-way road is permitted except in some areas of Quebec, New
Brunswick, and Prince Edward Island. Left turn on red light from a
two-way road into a one-way road is permitted in British Columbia but
only if the driver turns onto the closest lane and yields to pedestrians
and cross traffic.”’, ”’Can you turn left on red in canada?”” ->""Yes™
”’Pyruvic acid — Pyruvic acid (CHCOCOOH) is the simplest of the
alpha-keto acids, with a carboxylic acid and a ketone functional group.
Pyruvate (/paruvet/), the conjugate base, CHCOCOOQO, is a key interme-
diate in several metabolic pathways.””, *’Is pyruvic acid and pyruvate
the same thing?"”” -> "’

Collapsing token sets: {True: ’Yes’, False: "No}




B.7 COPA
Mutual Information: 0.044, Accuracy: 0.782

For the following premises, choose the alternative that is either a cause
or result of the premise, and justify your answer.

Premise: The man broke his toe. What was the CAUSE of this?
Alternative 1: He got a hole in his sock.

Alternative 2: He dropped a hammer on his foot.

Answer: Alternative 2. Getting a hole in your sock would not break
your toe, unless there is additional information. Dropping a hammer
(which is a heavy object), on the other hand, would almost certaintly
break your toe. Thus, the best answer is Alternative 2.

Premise: I tipped the bottle. What happened as a RESULT?
Alternative 1: The liquid in the bottle froze.

Alternative 2: The liquid in the bottle poured out.

Answer: Alternative 2. Tipping a bottle causes liquid to fall out, not
to freeze. Freezing is caused by being placed in a cold place. Pouring
out (Alternative 2) is correct because it makes the most sense.

Premise: I knocked on my neighbor’s door. What happened as a
RESULT?

Alternative 1: My neighbor invited me in.

Alternative 2: My neighbor left his house.

Answer: Alternative 1. When you knock on a neighbor’s door, it is
likely that if they are home they will answer and invite you in. It does
not make much sense, however, that a neighbor would leave their
house without explanation. Therefore, Alternative 1 is the best result
of the premise.

Premise: My foot went numb. What happened as a RESULT?
Alternative 1: I put my shoes on.

Alternative 2: I shook my foot.

Answer: Alternative]

Collapsing token sets: { Alternative 1: ’1°, Alter-
native 2: ’2’}

B.8 WiC
Mutual Information: 0.036, Accuracy: 0.520

Classify whether the following two sentences’ use of the word has the
same meaning or not.

Word: bright

Usage 1: He is a bright child

Usage 2: The sun is very bright today
Meaning: different

Word: didacticism

Usage 1: The didacticism of the 19th century gave birth to many great
museums.

Usage 2: The didacticism expected in books for the young.
Meaning:|

Collapsing token sets: {Same: ’same’, Different:
“different’ }

C Additional Figures
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Mutual Information vs. Accuracy for each Dataset and Model
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Figure 8: Mutual information plotted against accuracy per prompt for each dataset using GPT-3 175B with linear
best fit (by MSE) lines to show overall trends
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