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Abstract

Pre-trained language models derive substan-001
tial linguistic and factual knowledge from the002
massive corpora on which they are trained,003
and prompt engineering seeks to align these004
models to specific tasks. Unfortunately, exist-005
ing prompt engineering methods require sig-006
nificant amounts of labeled data, access to007
model parameters, or both. We introduce a new008
method for selecting prompt templates without009
labeled examples and without direct access to010
the model. Specifically, over a set of candidate011
templates, we choose the template that maxi-012
mizes the mutual information between the input013
and the corresponding model output. Across014
8 datasets representing 7 distinct NLP tasks,015
we show that when a template has high mutual016
information, it also has high accuracy on the017
task. On the largest model, selecting prompts018
with our method gets 90% of the way from the019
average prompt accuracy to the best prompt020
accuracy and requires no ground truth labels.021

1 Introduction022

It is well-known that large pre-trained language023

models (LMs) learn substantial linguistic (Liu et al.,024

2019; Amrami and Goldberg, 2018) and factual025

world knowledge (Petroni et al., 2020; Bosselut026

et al.; Bouraoui et al.; Zuo et al., 2018), achiev-027

ing state-of-the-art performance on classic NLP028

tasks like closed-book question-answering, senti-029

ment analysis, and many other tasks (Radford et al.,030

2019; Devlin et al., 2019; Raffel et al., 2019). The031

largest models can do this in a few-shot way–being032

trained only with generic, semi-supervised objec-033

tives and “taught” tasks with just instructions and034

a few examples of the task provided via a natural035

language “prompt” in the context window (Brown036

et al., 2020). This suggests that pre-training equips037

them to potentially do many tasks that can be for-038

mulated as natural language generation, if only they039

can be primed in the right way.040

SQuAD

LAMBADA

ROCStorie
s

CoQA
IM

DB
BoolQ

COPA WiC
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Mutual Information Prompt vs. Others

Min
Mean
Median
MI (Ours)
Max

Figure 1: Performance of template selected by our max-
imum mutual information method (MI) compared to the
the worst, mean, median, and best prompt on GPT-3
Davinci (175B). Our method performs at almost oracle
levels, without labels or access to model weights.

Such priming is not a trivial task. The few-shot 041

learning breakthrough can give the impression that 042

if the LM is given a sensible prompt, the model will 043

“understand” what is meant and perform well on the 044

task if it has the capacity. However, LMs can gener- 045

ate substantially different probability distributions– 046

and thus text–given two distinct prompts that ap- 047

pear semantically invariant (e.g., alternative order- 048

ing of options, lexical changes like capitalization, 049

and general rephrasing (Zhao et al., 2021; Lu et al., 050

2021)). This can lead to surprisingly high variance 051

in performance from prompt to prompt. Clearly, 052

some prompts are better than others for aligning a 053

model to a task. 054

Prompt engineering is a nascent field that aims 055

to find such aligning prompts (Reynolds and Mc- 056

Donell, 2021). While “prompt” refers to any lan- 057

guage passed to the model via the context window, 058

a template refers to a NL scaffolding filled in ac- 059

cording to raw data, resulting in a prompt. Thus, 060

prompt engineering includes finding high-quality 061

templates (i.e., those with high test accuracy). Gen- 062
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erally, this is done by validation set accuracy opti-063

mization: a template is chosen from a set of candi-064

dates given their performance on a set of labeled065

examples. In order to do this reliably, many labeled066

examples are needed. These can be challenging067

to procure for some tasks and impossible for oth-068

ers. Some recent methods optimize prompts using069

backpropagation, which requires access to model070

weights. By using mutual information, our method071

allows prediction of a prompt’s performance with-072

out labels or access to model parameters.073

Mutual information (MI) is a metric that quan-074

tifies the shared information between two random075

variables (see Section 3.2). We demonstrate that076

the mutual information between a prompt and a077

language model’s output can serve as a useful sur-078

rogate for the test accuracy of a template. To justify079

this method, we generate a diverse set of 20 tem-080

plates per dataset and show that for each template,081

mutual information and accuracy are highly cor-082

related. These results are strongest on the largest083

models we study and hold across eight datasets084

representing seven NLP tasks; our method chooses085

prompts that, on average, get 90% of the way from086

mean accuracy to maximum accuracy and even087

selects the best prompt on three of eight datasets.088

This suggests that, across a variety of NLP tasks,089

mutual information can be used to select one of the090

best prompts from a set of candidate prompts, even091

without making use of model weights or ground092

truth labels. In the following pages, we outline each093

step of our general method for generating and eval-094

uating templates so that it can easily be ported to095

any other task. Code is available at [URL removed096

for anonymity - code attached with submission].097

2 Related Work098

The promise of language models and the chal-099

lenge of aligning them has given rise to the field of100

“prompt engineering”, which seeks to construct the101

best prompt given a task and a language model (Liu102

et al., 2021a). The best performance on prompt103

engineering is often achieved using backpropaga-104

tion in continuous prompt embedding space (Lester105

et al., 2021; Li and Liang, 2021; Gu et al., 2021;106

Liu et al., 2021b; Zhang et al., 2021) in contrast107

to generating a discrete set of prompts by hand108

and testing them. While optimizing in continu-109

ous prompt space via backprop allows for similar110

performance to model-tuning (at least at higher111

model sizes) (Lester et al., 2021), not all models112

are publicly available. Thus, these methods are 113

only feasible for those who have direct access to 114

the model and can perform backprop on it. Prompts 115

optimized in continuous space are also not inter- 116

pretable in natural language, making it harder to 117

transfer insights from prompts that work well for 118

one task to another task. These methods also re- 119

quire labeled examples, while ours does not. 120

Other selection protocols not based on gradient 121

flow can include cross-validation or minimum de- 122

scription length, as in (Perez et al., 2021). These 123

methods yield prompts that perform marginally bet- 124

ter than average in terms of test accuracy. 125

Mutual information has been used in n-gram 126

clustering, part-of-speech tagging, probing classi- 127

fiers, and LM training objective reframing (Brown 128

et al., 1992; Stratos, 2019; Voita and Titov, 2020; 129

Kong et al., 2019). Ours is the first work of which 130

we’re aware to apply MI to prompt engineering. 131

3 Methods 132

At the most abstract, our method is as follows (see 133

Appendix A for a more thorough description): 134

1. Generate a set of K prompt templatizing
functions.

2. Playground a couple of examples to
ensure that templates give roughly ex-
pected output.

3. Estimate mutual information for
each template given a set of inputs
x1,x2, ...xN ∼ X .

4. Choose template(s) based on mutual in-
formation and perform inference.

135

We find it useful to unify all the tasks we study 136

within a single framework, which we describe in 137

Section 3.1. We also justify our use of mutual 138

information as a surrogate for prompt quality and 139

specify how we estimate it in Section 3.2. 140

3.1 Task Definition 141

In order to demonstrate our method’s widespread 142

applicability and general effectiveness, we vali- 143

date it across many datasets and tasks. This re- 144

quires us to estimate mutual information and accu- 145

racy, and this is most straightforward in the case 146

where, given a context, a language model produces 147

just one probability distribution P (tn|context = 148
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                   “In a predicament, 
   an animal might 
   choose flight or  
   what?”
    A. “leave home”
 B. “hunt for food”
 C. “smell prey”
 D. “feel pain”
 E. “fight for life”

Ground 
Truth       

“If asked the question
‘In a predicament, an 
animal might choose 
flight or what?’, and 
given the choices 
‘leave home’, ‘hunt for
food’, ‘smell prey’, 
‘feel pain’, and ‘fight 
for life’, I would say”

{' fight': 0.2791,
  ' Fight': 0.0648,
  ' Feel': 0.0584,  
  ' hunt': 0.0556,  
  ' feel': 0.0488,   
  .....                            
  ' flee': 0.0088,     
  ' leave: 0.0086,       
  ' Hunt': 0.0082,   
  ' smell': 0.0063}

  'leave': 0.08,
  'hunt': 0.11,
  'smell': 0.02,
  'feel': 0.19,
  'fight': 0.60

Data Prompt Token distribution

Collapsed
token

distribution

Mutual
Information

Accuracy

Ground Truth: 
E. “fight for life” 

Tφ

E. “fight for life”

Choices

Question
N

orm
alize

Common Sense Quiz Answer Key
Question 1: Where would people 
not typically go for fun?
A: theme park
B: movie theatre
C: carnival
D: waste management facility
E: beach
Correct Answer: D
Question 2: <Question>
A: <A>
B: <B>
C: <C>
D: <D>
E:  <E>
Correct Answer:

Given the following questions and 
choices, pick the choice that 
corresponds best to the question.
“I’m crossing the river, my feet are 
wet but my body is dry, where am 
I?“, “bridge, waterfall, valley, 
pebble, mountain”, -> “valley”
“In what Spanish speaking North 
American country can you get a 
great cup of coffee?“, “mexico, 
mildred’s coffee shop, diner, 
kitchen, canteen”, -> “mexico”
“<Question>“, 
“<A>, <B>, <C>, <D>, <E>” -> ”

questions,
choices,
answers

“What is France?”,
“[state,city,country,continent,
mountain range]”,
country

“<Question>”,
“[<A>, <B>, <C>, <D>, <E>]”,

If asked the question ‘<Question>’,
and given the choices ‘<A>’, 
‘<B>’, ‘<C>’, ‘<D>’, and ‘<E>’,
I would say

.....

Figure 2: We choose θ ∈ {θi}Ki=1 and templatize a sampled instance from the dataset X . We pass this prompt
through the language model via gϕ, yielding a probability distribution over the model’s tokens Tϕ. The collapsing
function cθ sums the weight given to each token corresponding to each possible answer y ∈ Y and normalizes,
giving a probability distribution P (Y |xi), which we can use to estimate mutual information or obtain a guess for yi.

t1, t2, ..., tn−1). This is in contrast to other experi-149

mental setups that use multi-token sampling meth-150

ods (e.g., beam search). Any NLP task is tractable151

in this framework so long as the output space con-152

sists of a set of options that each start with a unique153

token. In this case, the language model can “give”154

an answer by assigning probability to tokens that155

begin giving each of these answers (invariant to lex-156

ical variation like capitalization and leading/trailing157

spaces). While, for open-ended tasks, this method158

might artificially inflate accuracy if the model starts159

to give a wrong answer that happens to start with160

the same token as the correct one, we find that this161

difference is small and does not affect our results.1162

Irrelevant tokens (with which none of the desired163

answers begin) are ignored, and the resulting col-164

lapsed probabilities are normalized. We term this165

approach One-token Response (OTR). Although166

our method isn’t limited to OTR tasks, we choose167

tasks that can be cast as OTR tasks for simplicity168

1Our open-ended datasets are SQuAD, LAMBADA, and
ROCStories, and none of these seemed more likely than ROC-
Stories to exhibit this issue. We reran our experiment on
ROCStories by sampling with temperature 0 until reaching a
space, and only counted responses as accurate if they exactly
matched the corresponding ground truth labels. Results were
virtually unchanged: accuracy decreased by only 0.03 on aver-
age, and the correlation between mutual information and test
accuracy increased by 0.04, from 0.68 to 0.72.

and to reduce computational expense. Many NLP 169

tasks fit within this framework, although a few do 170

not (e.g., machine translation and summarization). 171

This basic approach is in common use (Brown et al., 172

2020), but we formalize it for clarity below. 173

Generally, the OTR framework casts a natural 174

language task as a classification problem with raw 175

data input xi ∈ X and output P (Y |xi), a probabil- 176

ity distribution over targets. In order to use a lan- 177

guage model ϕ for this task, a templatizing function 178

fθ : X → L is needed to map raw data into natural 179

language prompts. gϕ : L → Tϕ maps prompts 180

to a probability distribution over Tϕ, the token set 181

represented by the model tokenizer. Finally, a col- 182

lapsing function cθ : Tϕ → P (Y |x, θ, ϕ) yields an 183

estimate of P (Y |X): 184

P (Y |x, θ, ϕ) = cθ(gϕ(fθ(x))),x ∈ X (1) 185

We also refer to P (Y |x, θ, ϕ) as P (Y |fθ(x)). 186

The above pipeline can be specified in many 187

ways using different θ and ϕ (see Figure 2), which 188

will result in different accuracies. Our ultimate aim 189

is to select the best θ given ϕ. Whereas past prompt 190

engineering methods rely on scores calculated by 191

comparing model answers and ground truth, our 192

method selects θ by maximizing mutual informa- 193

tion, which requires no ground truth labels. 194
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3.2 Mutual Information195

Mutual information is a measure of the amount of196

shared information between two random variables197

(Cover and Thomas, 2006); in other words, it is the198

reduction in entropy that is observed in one random199

variable when the other random variable is known.200

We expect mutual information to serve as a good201

criterion for comparing prompts. Previous work202

has shown that large networks trained with cross-203

entropy loss are calibrated (e.g., a 60% confidence204

corresponds to a 60% chance of the model being205

correct) when in the early-stopped (∼ 1 epoch)206

regime (Ji et al., 2021), but become miscalibrated in207

the overfit regime (Nakkiran and Bansal, 2020). Ac-208

cording to (Brown et al., 2020), GPT-3 was trained209

for a different number of epochs on each corpus in210

its training data. We calculate it was trained for an211

average of 1.57 epochs, so we have reason to be-212

lieve that GPT-3 is generally well-calibrated. Thus,213

we postulate that a prompt that elicits a very confi-214

dent response (high mutual information) from the215

language model is more likely than a less confident216

prompt to score well.217

We denote the mutual information between ran-218

dom variables X and Y as I(X;Y ) and the entropy219

of X as H(X) = −
∫
x∈X P (x) log(P (x))dx.220

The mutual information between X and Y is de-221

fined as DKL(P(X,Y )||PX⊗PY ), and can be rewrit-222

ten as H(Y )−H(Y |X) (the reduction in entropy223

in Y given knowledge of X).224

Using the OTR framework, we fix a model ϕ225

and generate a diverse set of K prompt templa-226

tizing functions fθ1 , fθ2 , ..., fθK along with their227

corresponding collapsing functions cθk . Treating228

fθ(X) := {fθ(x),x ∈ X} as a random variable,229

we can calculate I(fθ(X);Y ) and use it as a cri-230

terion for selecting prompt templatizing functions231

with which to do inference.232

We hypothesize that a θi with higher mutual233

information will align a language model to a task234

better than a θj with lower mutual information.235

Formally, we select θ̂ = argmaxθ{I(fθ(X);Y )}.236

Mutual information is estimated as:237

I (fθ(X);Y ) = H(Y )−H(Y |fθ(X)) (2)238

where each term is estimated in expectation using239

draws xi ∼ X and Equation 1 as follows:240

H(Y ) ≈ H

(
1

N

N∑
i=1

P (Y |fθ(xi))

)
(3)241

242

Dataset Task |Y | Base
Acc.

Size
Nall

SQuAD Open Book QA |Tϕ| ∼ 0 16K
LAMBADA Cloze |Tϕ| ∼ 0 5K
ROCStories Cloze |Tϕ| ∼ 0 52K

CoQA Closed Book QA 5 0.2 9K

IMDB Sentiment
Analysis 2 0.5 50K

BoolQ Reading
Comprehension 2 0.5 16K

COPA Choice of Positive
Alternatives 2 0.5 1K

WiC Word in Context 2 0.5 5K

Table 1: All datasets used in our experiments. |Y | is the
size of the label space and Nall is the size of the dataset
we sample from (after any modifications).

H(Y |fθ(X)) ≈ 1

N

N∑
i=1

H(P (Y |fθ(xi)))) (4) 243

Thus, the marginal entropy H(Y ) is the entropy 244

of the mean of the conditional distributions, and 245

the conditional entropy H(Y |fθ(X)) is the mean 246

of entropies of the individual conditional distribu- 247

tions. 248

This definition gives us another reason to expect 249

that mutual information will work well. Since mu- 250

tual information is the marginal entropy minus the 251

conditional entropy, maximizing mutual informa- 252

tion is equivalent to maximizing marginal entropy 253

and minimizing conditional entropy. Thus, MI is 254

high for templates that are, on average, less biased 255

towards any given answer (high marginal entropy) 256

and templates with outputs the model is confident 257

about (low conditional entropy). These attributes 258

are desirable in constructing prompts, and we postu- 259

late that maximizing mutual information will yield 260

a well-aligned template. 261

Looking at it another way, by the data pro- 262

cessing inequality (Cover and Thomas, 2006), 263

I(fθ(X);Y ) ≤ I(X;Y ). Thus, I(fθ(X);Y ) 264

gives a lower bound for I(X;Y ), and the high- 265

est mutual information is the tightest lower bound. 266

The prompt corresponding to this lower bound pre- 267

serves the most information between X and Y . 268

4 Experimental Setup 269

4.1 Datasets 270

We validate the efficacy of our prompt engineer- 271

ing method with experiments on eight well-known 272

NLP datasets2–SQuAD2.0 (Rajpurkar et al., 2018), 273

2Datasets are listed in descending order here and through-
out the paper, first by |Y |, and then by method performance.

4



0.0

0.2

0.4

0.6

0.8

SQuAD

0.0

0.2

0.4

0.6

0.8
LAMBADA

0.0

0.2

0.4

ROCStories

0.2

0.3

0.4

0.5

0.6
CoQA

GPT-3: 1
75B

GPT-3: 1
3B

GPT-3: 6
.7B

GPT-J: 
6B

GPT-N
eo: 2

.7B

GPT-3: 2
.7B

GPT-2: 1
.5B

GPT-2: 1
24M

0.6

0.8

IMDB

GPT-3: 1
75B

GPT-3: 1
3B

GPT-3: 6
.7B

GPT-J: 
6B

GPT-N
eo: 2

.7B

GPT-3: 2
.7B

GPT-2: 1
.5B

GPT-2: 1
24M

0.4

0.5

0.6

0.7

BoolQ

GPT-3: 1
75B

GPT-3: 1
3B

GPT-3: 6
.7B

GPT-J: 
6B

GPT-N
eo: 2

.7B

GPT-3: 2
.7B

GPT-2: 1
.5B

GPT-2: 1
24M

0.5

0.6

0.7

COPA

GPT-3: 1
75B

GPT-3: 1
3B

GPT-3: 6
.7B

GPT-J: 
6B

GPT-N
eo: 2

.7B

GPT-3: 2
.7B

GPT-2: 1
.5B

GPT-2: 1
24M

0.450

0.475

0.500

0.525

WiC

Distributions over Template Accuracies
A

cc
ur

ac
y

Figure 3: Distributions of accuracies over K = 20 templates for each model/dataset pair, compared to the prompts
selected with MI (translucent red dots).

LAMBADA (Paperno et al., 2016), ROCStories274

(Mostafazadeh et al., 2016), CoQA (Talmor et al.,275

2018), IMDB (Maas et al., 2011), BoolQ (Clark276

et al., 2019), COPA (Gordon et al., 2012), and277

WiC (Pilehvar and Camacho-Collados, 2018))–that278

span seven unique NLP tasks (see Table 1). We279

used a random sample of N = 500 samples from280

each dataset for our experiments.3 For ROCStories,281

which consists of a set of five sentence stories, we282

randomly masked a word from each story in order283

to use the data for masked word prediction (cloze).284

We made minor changes to two of the datasets285

in order to cast the associated tasks into OTR. For286

the SQuAD dataset, we dropped all questions that287

did not have a one word answer, and for the CoQA288

dataset, we dropped all questions that had answer289

choices that started with a shared first word (e.g, the290

dog, the cat, the monkey). Both of these changes291

were to decrease ambiguity about which option the292

model was choosing given its output token distri-293

bution for a single token.294

4.2 Models295

We assess the performance of our method on eight296

models ranging in size from 124 million to 175297

billion parameters. Specifically, we use two sizes298

of GPT-2 (Radford et al., 2019) (124M, 1.5B), the299

3We sampled from the train sets of CoQA and SQuAD;
the train and validation sets of WIC, COPA, and BoolQ; the
full datasets of ROCStories and IMDB; and the test set for
LAMBADA.

largest GPT-Neo (Black et al., 2021) model (2.7B), 300

GPT-J (Wang and Komatsuzaki, 2021) (6B), and 301

the four sizes of GPT-3 (Brown et al., 2020) (Ada, 302

Babbage, Curie, and Davinci). We assume (as in 303

(Perez et al., 2021)) that these named models are 304

the four largest models in (Brown et al., 2020), with 305

parameter counts 2.7B, 6.7B, 13B, and 175B re- 306

spectively. Each model was trained in a generative 307

manner to do next-token prediction. 308

5 Results 309

In this section, we analyze our experiments. First, 310

we look at our method’s ability to select high- 311

accuracy prompts across models and datasets (Sec- 312

tion 5.1). Next, we correlate template mutual in- 313

formation and accuracy in Section 5.2. In Section 314

5.3 we explore the robustness of MI and use en- 315

sembling to improve it. Finally, we compare the 316

tranferability of prompt templates selected with MI 317

from model to model in Section 5.4. 318

5.1 Template Selection Performance 319

We first define baselines against which we compare 320

our approach. Other prompt engineering methods 321

generally require either access to model weights, la- 322

beled data (validation set selection), or both (back- 323

prop/continuous prompt embedding methods). Our 324

method does not require these, so we instead com- 325

pare to random and oracle baselines. A random 326

template selection method would give us the aver- 327

age accuracy of our template set (in expectation), 328
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Figure 4: Correlations are more consistently high across
all tasks for the largest models, suggesting that our
method is most useful at those model sizes.

while an oracle selection method would give us329

the best accuracy every time. To understand how330

our MI method compares to these two baselines331

for each dataset, refer to Figure 1, where we ana-332

lyze performance on GPT-3 175B. On each of the333

eight datasets, mutual information selects a prompt334

template that outperforms both the mean and me-335

dian accuracies (random baseline performance). In336

three of the eight datasets, mutual information se-337

lects the best (highest accuracy) template from the338

20 proposed (equivalent to oracle performance).339

Given our method’s promising performance with340

GPT-3 175B, it is natural to ask how it performs341

with smaller models. Figure 3 shows the accu-342

racy distributions over prompt templates for each343

dataset/model pair. With every model, MI gives344

above-average performance on several datasets.345

Although MI is more likely to select a high ac-346

curacy template for larger models, it is a good347

criterion even for smaller models on all but two348

datasets, COPA and WiC. Note that, for these two349

datasets, none of the templates do significantly bet-350

ter than chance (∼50%) besides the largest model351

on COPA, which is in line with previous work.4352

Thus, we observe that mutual information performs353

best when there is a high-signal prompt to select354

from, and worse when all prompts are low-signal.355

When considering all datasets but these, MI se-356

4Our template’s best accuracy is 54% for WiC, and 78.2%
for COPA, which is similar to previous work (WiC: (Brown
et al., 2020) - 49.4%, (Perez et al., 2021) - 54.1%; COPA:
(Brown et al., 2020) - 92.0%, (Perez et al., 2021) - 84.8%).
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Figure 5: Each dot represents a template and its average
mutual information and accuracy over N = 500 task
instances. Linear best fit (by mean standard error) lines
are included to show overall trends.

lects an above average prompt 83% of the time for 357

all models; for the largest two models, MI selects 358

an above average template 100% of the time (even 359

including WiC and COPA). 360

5.2 Correlation between Template Mutual 361

Information and Accuracy 362

In Section 5.1, we see how the MI selected tem- 363

plate does in terms of accuracy compared to all 364

other templates. We have not discussed, however, 365

how generally mutual information and accuracy 366

are correlated, except that the highest MI template 367

tends to have anomalously high accuracy. Here, we 368

establish that their correlation is high across all tem- 369

plates for the largest models. Each of the K = 20 370

templates has two corresponding measures: aver- 371

age accuracy and average mutual information. We 372

can use these pairs to correlate MI and accuracy 373

via Pearson’s R. 374

We see in Figure 4 that the correlations are 375

surprisingly high for the majority of models and 376
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Figure 6: For each dataset the KDE plot represents accuracy over each of the
(
20
5

)
ensembles of 5 templates from

the 20 templates associated with the dataset. Each plot also includes lines representing the average accuracy of all
single templates for the dataset, the accuracy of the ensemble of all 20 templates, and the accuracy of the ensemble
of the top 5 templates chosen by MI. In only one case does all-20 beat top-5-MI, and it does so at 4× the cost.

datasets. For SQuAD, LAMBADA, ROCStories,377

and CoQA, this pattern holds across all model sizes;378

for the remainder, results are good on larger mod-379

els and are much less reliable on smaller models.380

Overall, this is evidence that as mutual information381

increases, so does accuracy. In other words, mutual382

information can be used to make an educated guess383

about accuracy without having to use any ground384

truth labels, especially on larger models.385

5.3 Method Robustness and Ensembling386

We now explore the robustness of our method. To387

do this, we consider the question: what if we had388

included a different subset of templates, especially389

not including the top MI template? Figure 5 con-390

tains average mutual information/accuracy data for391

all K = 20 prompt templates on GPT-3 175B (sim-392

ilar plots for other models are found in Appendix393

C). For SQuAD, LAMBADA, ROCStories, CoQA,394

BoolQ, and IMDB, the results are robust; the top395

few prompt templates (by MI) are all high perform-396

ers. For COPA and WiC, the performance is more397

brittle, and excluding the top-MI template would398

have resulted in a large drop in accuracy. This at-399

tests, first of all, to the utility of generating a diverse400

slate of templates as recommended in Appendix A,401

but also to the risk that outliers could compromise402

the effectiveness of the method.403

A comprehensive discussion of remedies for out-404

liers is beyond the scope of this paper, but it is 405

an important concern. Considering the strength of 406

MI/accuracy correlations, one simple approach is 407

to ensemble the top 5 MI templates. 408

To compare this principled top-5 ensemble to 409

other possible ensembles of templates, we do the 410

following for each dataset: First, we take all
(
20
5

)
411

subsets of 5 templates from all 20 templates; sec- 412

ond, we calculate the accuracy of each ensemble, 413

and plot this distribution’s kernel density estimate, 414

which models the p.d.e. of the random variable “ac- 415

curacy of 5 random templates ensembled together”; 416

lastly, we compare the accuracy of the top-5-MI 417

templates with the accuracy of the ensemble of all 418

20 templates and the average accuracy of all tem- 419

plates (equivalent to the average accuracy of the 20 420

points in each scatterplot in Figure 5). The results 421

are shown in Figure 6. 422

We would expect both the full and the MI ensem- 423

bles to beat the average accuracy across templates. 424

Surprisingly, we found that the top-5 mutual infor- 425

mation ensemble does at least as well as the full 426

ensemble in all but one case, IMDB, where the 427

difference is just 0.03. Two reasons to use mutual 428

information are, then, that 1) the MI ensemble gets 429

as good or better a result as ensembling all prompt 430

templates and 2) at a fourth of the experimental 431

cost. 432

In short, ensembling by MI is a cheap and effec- 433
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Figure 7: For each model/dataset pair, accuracies are normalized linearly so that 0 is the average prompt accuracy
and 1 is the highest test accuracy. Using the prompt chosen by either MI or test accuracy on each selection model,
average performance across datasets is reported for each inference model.

tive way to guard against anomalous high mutual434

information/low accuracy templates.435

5.4 Transferability across Models436

Finally, we explored how well-chosen templates437

generalize between models. There are several rea-438

sons for doing this. First, model transfer can be439

useful if more powerful models can only be used440

selectively (because of cost or access), either for441

prompt template selection or for inference, and442

other models must be used in the rest of the work-443

flow. Additionally, studying model transfer can444

shed light on the universality of template qual-445

ity across models of different sizes and training446

regimes.447

Concretely, we choose templates by maximizing448

either test accuracy (oracle) or mutual information449

(our method) using a selection model ϕs, and then450

calculate test accuracy using a different inference451

model ϕi. We calculate absolute test accuracy and452

then normalize it such that 0 and 100 correspond to453

the average and maximum scores across templates454

for a model/dataset pair. We average our results455

across datasets and present the results in Figure 7.456

MI performance is best when the largest model457

(GPT-3 175B) is used as both the selection and458

inference model: on average, MI scores 90% on459

this normalized scale. Additionally, performance460

is most consistently high when the largest models461

are used either for selection or inference. But the462

vast majority of transfer scores are well above 0463

(only one negative average gain out of 64 trans-464

fer permutations), suggesting that transfer is often 465

reasonable, and that similar templates work across 466

models given a task. 467

Overall, we have observed that prompt selec- 468

tion by mutual information is surprisingly effective 469

across a variety of datasets and model sizes. This 470

method works best on larger models and for tasks 471

that the LM is capable of performing. Given the 472

high diversity of tasks that we have explored, we 473

expect this method to transfer well to many other 474

NLP tasks, including ones where there are few or 475

no ground truth labels. 476

6 Conclusion 477

In this paper, we introduce a method for selecting 478

prompts that effectively align language models to 479

NLP tasks. Over a set of candidate prompts, our 480

method selects the template that maximizes the mu- 481

tual information between the input and the model 482

output. We demonstrate that 1) mutual information 483

is highly correlated with test accuracy and 2) select- 484

ing a prompt based on mutual information leads 485

to significant accuracy gains over random choice, 486

approaching oracle performance on GPT-3 175B, 487

and it does so across model sizes and tasks. 488

Whereas other methods rely on ground truth 489

labels and/or direct model access, ours requires 490

neither. Many applications characterized by lack 491

of computational resources, limited model access 492

(e.g., inference only), and lack of ground truth data 493

prohibiting testing of candidate prompts become 494

feasible with our method. 495
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A Prompt Engineering Process665

In this section, we will step through our method666

in detail. Again, note that this method uses no667

ground truth labels and does not require gradient668

updates or access to the model parameters. Given669

a task that can be represented in natural language670

with the OTR framework, the only requirements671

for our approach are a) several candidate prompt672

templates and b) some instances (X) on which to673

do inference.674

1. Generate a set of K prompt templatizing675

functions with corresponding collapsing func-676

tions. Each prompt template function fθk should677

take in an input from the dataset and output a678

prompt ready for processing by the language model.679

Each template must also have a collapsing function680

cθk that takes the language model output and pro-681

duces a distribution over targets. Prompt template682

functions should be chosen to be as diverse as pos-683

sible to increase the probability of finding a range684

of low- to high-quality prompts. For example, we685

use templates that frame input from datasets as test686

questions, back and forth dialogue between friends,687

Python code, test answer banks, etc. A sample of688

the prompt templates used in this work is provided689

in Appendix B. A good resource for coming up690

with prompt template function ideas is the OpenAI691

API examples collection5.692

2. Playground. For each chosen fθk , calculate693

gϕ(fθk(x)) for a few dataset samples. Do not look694

at associated ground truth labels for these samples.695

Simply check to ensure that gϕ puts high probabil-696

ity on the tokens one would expect given fθk that697

could be reasonably collapsed by cθk into P (Y ).698

For example, on the BoolQ reading comprehension699

task, the language model predicts the answer to700

a yes/no question related to a corresponding pas-701

sage. Given this task, we would expect the highest702

probability to be on tokens like “Yes” or “No”. A703

poor prompt template, on the other hand, might704

put the highest probability on unrelated tokens like705

“I”, “think”, or “\n”. Revise or replace any template706

that fails to put high probability mass on the tokens707

expected.708

3. Estimate mutual information for each tem-709

plate fθk . Choose how many data points N to use710

for estimating mutual information for each tem-711

plate function. A higher N will allow for estima-712

5beta.openai.com/examples

tion of mutual information based on a more repre- 713

sentative sample of the dataset at the cost of more 714

language model computation. Sample N samples 715

from your dataset. Since we do not require any Y 716

labels, one could even choose the X’s on which 717

you desire to do inference (as we do). Then, for 718

each sample x and each template fθk , calculate 719

P (Y |fθ(x)) using Equation 1. Use the output to 720

estimate mutual information for each prompt tem- 721

plate with Equation 2. 722

For all of our experiments, cθ takes in a distribu- 723

tion of tokens gϕ(fθk(x)) and a mapping between 724

the set of possible ground truth labels for fθk(x) 725

and model vocabulary Tϕ. For a sentiment analysis 726

task, that mapping would be from the ground truth 727

labels “positive” and “negative” to the expected 728

tokens “positive” and “negative” respectively. If 729

a given prompt template for sentiment analysis 730

was phrased as a yes/no question, the mapping 731

for that prompt template would be from “positive” 732

and “negative” to “yes” and “no” respectively. Our 733

c function returns a probability over Y (target label 734

space), and the highest probability label is treated 735

as the prediction. To keep things simple, the values 736

in our map are always single tokens. See examples 737

in Appendix B. 738

4. Choose prompt template(s) to use for infer- 739

ence based on mutual information. For choosing 740

a single prompt template to use for inference, select 741

the template with highest estimated mutual infor- 742

mation. With an increased computational budget, 743

one could also ensemble the top p prompt tem- 744

plates, as we describe in Section 5.3. 745

5. Use chosen prompt template(s) to perform 746

inference Use chosen prompt template(s) fθ̂ to cal- 747

culate cθ̂(gϕ(fθ̂(x)) for each dataset sample. Infer- 748

ence can be done with the language model used for 749

estimating mutual information or a smaller model if 750

cost is prohibitive (for information on performance 751

statistics with this approach, see Figure 7). 752

B Template Examples 753

The following are example template fθs provided 754

for each dataset. We include the highest accuracy 755

template, but all templates used can be found at 756

[GitHub URL removed for anonymity. Our code 757

is included in a ZIP file in our submission]. In 758

blue, we highlight the data that is filled in from 759

X; in red, we highlight the area where we ask the 760
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model to predict the next token; everything that is761

not highlighted is static from instance to instance.762

We also include the token sets used in the col-763

lapsing functions, if applicable.764

B.1 SQuAD765

Mutual Information: 4.950, Accuracy: 0.820766
TASK: Answer the questions below using the phrasing from the
context.

CONTEXT: As of the census of 2000, there were 197,790 people,
84,549 households, and 43,627 families residing in the city. The
population density was 3,292.6 people per square mile (1,271.3/km).
There were 92,282 housing units at an average density of 1,536.2 per
square mile (593.1/km). The racial makeup of the city was 38.3%
White, 57.2% African American, 0.2% Native American, 1.3% Asian,
0.1% Pacific Islander, 1.5% from other races, and 1.5% from two
or more races. Hispanic or Latino of any race were 2.6% of the
population.

QUESTIONS:
1) In 2000, how many families lived in Richmond?
Answer: “43,627”

2) What percentage of the Richmond population of 2000 was Pacific
Islander?
Answer: “

767

Collapsing token sets: None, all tokens are con-768

sidered.769

B.2 LAMBADA770

Mutual Information: 4.984, Accuracy: 0.782:771
Fill in blank:
Alice was friends with Bob. Alice went to visit her friend ____. ->
Bob
“I would speak to you privately,” Bowen said, casting a glance around
at the others milling about.

The worry in her eyes deepened, but she nodded hesitantly and
awaited Bowen’s directive.

He led her through the great hall, annoyance biting at him when he saw
no place where people weren’t congregated. He stepped outside the
back of the keep, where, finally, he spied an area near the bathhouses,
where it was quiet and ____. ->

772

Collapsing token sets: None, all tokens are con-773

sidered.774

B.3 ROCStories775

Mutual Information: 3.859, Accuracy: 0.538776
Fill in the blank for the following sentences.
“Marissa loved _____ pokemon go game. It is the biggest thing right
now. She had done so much more walking since she started playing
it. She walked all day and evening sometimes. She walked almost 10
miles in two days.” -> “Marissa loved

777

Collapsing token sets: None, all tokens are con-778

sidered.779

B.4 CoQA 780

Mutual Information: 0.600, Accuracy: 0.590 781
Instructions: For each question below, choose the answer from the
answer bank corresponding to the question that best answers the
question.

Question 1 Answer Bank: ladybug, bunny, goldfish, leopard,
caterpillar

Question: What animal would be most dangerous for a human to
encounter in the wild?

Answer: leopard

Question 2 Answer Bank: wrong, pleasure, encouragement,
depression, relief

Question: If you’re still in love and end up stopping being married to
your partner, what emotion are you likely to experience?
Answer:

782

Collapsing token sets: {A: ’wrong’, B: ’pleasure’, 783

C: ’encouragement’, D: ’depression’, E: ’relief’} 784

B.5 IMDB 785

Mutual Information: 0.175, Accuracy: 0.944): 786
P1: How was the movie?
P2: John Cassavetes is on the run from the law. He is at the bottom
of the heap. He sees Sidney Poitier as his equal and they quickly be-
come friends, forming a sort of alliance against a bully of a foreman
played by Jack Warden.
As someone who has worked in a warehouse myself when I was
younger, I can tell you that the warehouse fights, complete with tum-
bling packing cases and flailing grappling hooks are as realistic as it
gets. I’ve been in fights like these myself, although no one got killed.

The introduction of Sidney Poitier’s widow is a variation on Shake-
speare’s Shylock “Do I not bleed?” This is an anti racist film, which,
at the time, was much needed.
All the three principle characters - Warden, Cassavetes and Poitier -
are superb, with Warden the most outstanding of the three.
P1: Would you say your review of the movie is negative or positive?
P2: I would say my review review of the movie is

787

Collapsing token sets: {Positive: ’positive’, Nega- 788

tive: ’negative’} 789

B.6 BoolQ 790

Mutual Information: 0.077, Accuracy: 0.778 791
Given the passage and question, please answer the question with yes
or no.
”’Turn on red – In Canada, left turn on red light from a one-way road
into a one-way road is permitted except in some areas of Quebec, New
Brunswick, and Prince Edward Island. Left turn on red light from a
two-way road into a one-way road is permitted in British Columbia but
only if the driver turns onto the closest lane and yields to pedestrians
and cross traffic.”’, ”’Can you turn left on red in canada?”’ -> ”’Yes”’
”’Pyruvic acid – Pyruvic acid (CHCOCOOH) is the simplest of the
alpha-keto acids, with a carboxylic acid and a ketone functional group.
Pyruvate (/paruvet/), the conjugate base, CHCOCOO, is a key interme-
diate in several metabolic pathways.”’, ”’Is pyruvic acid and pyruvate
the same thing?”’ -> ”’

792

Collapsing token sets: {True: ’Yes’, False: ’No} 793
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B.7 COPA794

Mutual Information: 0.044, Accuracy: 0.782795
For the following premises, choose the alternative that is either a cause
or result of the premise, and justify your answer.
Premise: The man broke his toe. What was the CAUSE of this?
Alternative 1: He got a hole in his sock.
Alternative 2: He dropped a hammer on his foot.
Answer: Alternative 2. Getting a hole in your sock would not break
your toe, unless there is additional information. Dropping a hammer
(which is a heavy object), on the other hand, would almost certaintly
break your toe. Thus, the best answer is Alternative 2.

Premise: I tipped the bottle. What happened as a RESULT?
Alternative 1: The liquid in the bottle froze.
Alternative 2: The liquid in the bottle poured out.
Answer: Alternative 2. Tipping a bottle causes liquid to fall out, not
to freeze. Freezing is caused by being placed in a cold place. Pouring
out (Alternative 2) is correct because it makes the most sense.

Premise: I knocked on my neighbor’s door. What happened as a
RESULT?
Alternative 1: My neighbor invited me in.
Alternative 2: My neighbor left his house.
Answer: Alternative 1. When you knock on a neighbor’s door, it is
likely that if they are home they will answer and invite you in. It does
not make much sense, however, that a neighbor would leave their
house without explanation. Therefore, Alternative 1 is the best result
of the premise.

Premise: My foot went numb. What happened as a RESULT?
Alternative 1: I put my shoes on.
Alternative 2: I shook my foot.
Answer: Alternative

796

Collapsing token sets: {Alternative 1: ’1’, Alter-797

native 2: ’2’}798

B.8 WiC799

Mutual Information: 0.036, Accuracy: 0.520800
Classify whether the following two sentences’ use of the word has the
same meaning or not.

Word: bright
Usage 1: He is a bright child
Usage 2: The sun is very bright today
Meaning: different

Word: didacticism
Usage 1: The didacticism of the 19th century gave birth to many great
museums.
Usage 2: The didacticism expected in books for the young.
Meaning:

801

Collapsing token sets: {Same: ’same’, Different:802

’different’}803

C Additional Figures804
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