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Abstract

With the incorporation of the UNet architecture,
diffusion probabilistic models have become a
dominant force in image generation tasks. One
key design in UNet is the skip connections be-
tween the encoder and decoder blocks. Although
skip connections have been shown to improve
training stability and model performance, we
point out that such shortcuts can be a limiting
factor for the complexity of the transformation.
As the sampling steps decrease, the generation
process and the role of the UNet get closer to the
push-forward transformations from Gaussian dis-
tribution to the target, posing a challenge for the
network’s complexity. To address this challenge,
we propose Skip-Tuning, a simple yet surpris-
ingly effective training-free tuning method on the
skip connections. For instance, our method can
achieve 100% FID improvement for pretrained
EDM on ImageNet 64 with only 19 NFEs (1.75),
breaking the limit of ODE samplers regardless
of sampling steps. Surprisingly, the improvement
persists when we increase the number of sampling
steps and can even surpass the best result from
EDM-2 (1.58) with only 39 NFEs (1.57). Compre-
hensive exploratory experiments are conducted to
shed light on the surprising effectiveness of our
Skip-Tuning. We observe that while Skip-Tuning
increases the score-matching losses in the pixel
space, the losses in the feature space are reduced,
particularly at intermediate noise levels, which
coincide with the most effective range accounting
for image quality improvement.

*Equal contribution 1The Hong Kong University of Science
and Technology 2Hong Kong University of Science and Technol-
ogy (Guangzhou) 3University of Chinese Academy of Sciences
4Academy of Mathematics and Systems Science 5Huawei Noah’s
Ark Lab 6University of Electronic Science and Technology of
China 7National University of Singapore. Correspondence to:
Tianyang Hu <hutianyang.up@outlook.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Over the past few years, Diffusion Probabilistic Models
(DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2020b) have garnered significant attention for their
success in generative modeling, especially high-resolution
images. A special trait of DPMs is that the training and
sampling are usually decoupled. The training target is the
multi-level score function of the noisy data, captured by the
UNet in denoising score matching. Various sampling meth-
ods are developed based on differential equation solvers to
generate new samples, enabling us to trade-off efficiency
against quality (discretization error) by choosing the number
of sampling steps. This leaves room for post-training mod-
ifications to the score net that may significantly improve
the diffusion sampling process. Many works have been
dedicated to efficient diffusion sampling with pre-trained
DPMs with as few steps as possible, e.g., through improved
differential equation solvers (Lu et al., 2022; Zhao et al.,
2023; Xue et al., 2023), better time step selections (Xue
et al., 2024), extra distillation training (Salimans & Ho,
2022; Song et al., 2023; Luo et al., 2023), etc. In this pa-
per, we unveil an important yet missing angle to improving
diffusion sampling by looking into the network architecture.

The concept of DPM (Sohl-Dickstein et al., 2015) long
predates their empirical success. Despite the elegant math-
ematical formulation, the empirical performance has been
lacking until the adoption of the UNet architecture for de-
noising score matching (Song & Ermon, 2019; Ho et al.,
2020). One distinctive feature of the UNet design is the
skip connection between the encoder and decoder blocks,
which was originally designed for image segmentation (Ron-
neberger et al., 2015). Nevertheless, numerous works have
since demonstrated its effectiveness in DPMs, and after
various architectural modifications, such skip designs are
still mainstream. When experimenting with the transformer
architecture, Bao et al. (2023) conducted comprehensive
investigations that the long skip connections can be help-
ful for diffusion training. However, such skip connections
may not be an ideal design choice for few-shot diffusion
sampling. As the sampling steps decrease, the generation
process or role of the UNet gets closer to the push-forward
transformations from Gaussian distribution to the target,
which essentially contradicts the goal of score matching.
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Pushing data-agnostic Gaussian distributions towards highly
complicated and multi-modal data distributions is extremely
challenging for the network’s expressivity (Xiao et al., 2018;
Hu et al., 2023). From this perspective, skip connections,
especially low-level ones, may restrict the UNet’s capacity
since they provide shortcuts from the encoder to the decoder.

To address the challenge, we propose Skip-Tuning, a simple
and training-free modification to the strength of the resid-
ual connections for improved few-step diffusion sampling.
Through extensive experiments, we found that our Skip-
Tuning not only significantly improves the image quality in
the few-shot case, but also is universally helpful for more
sampling steps. Surprisingly, we can break the limit of
ODE samplers in only 10 NFEs with EDM (Karras et al.,
2022) on ImageNet (Deng et al., 2009) and beat the heav-
ily optimized EDM-2 (Karras et al., 2023) with only 39
NFEs. Our method generalizes well across a wide range
of DPMs with various architectures, e.g., LDM (Rombach
et al., 2022) and UViT (Bao et al., 2023). Comprehensive
exploratory experiments are conducted to shed light on the
surprising effectiveness of our Skip-Tuning. Our findings
indicate that although the original denoising score matching
losses increase with Skip-Tuning, the counterparts in the
feature space decrease, especially for intermediate noise
values (sampling stages). The effective range coincides with
that for image quality improvement, as identified by our
exhaustive window search. Extensive experiments on fine-
tuning with feature-space score-matching are conducted,
showing significantly worse performance compared with
Skip-Tuning. Besides FID, we also experimented with other
metrics for generation quality, e.g., Inception Score, Preci-
sion & Recall, and Maximum Mean Discrepancy (MMD)
(Jayasumana et al., 2023). For instance, an investigation
of the inversion process shows that Skip-Tuned UNet can
result in more Gaussian inversed noise in terms of MMD
with various kernels.

This work contributes to a better understanding of the UNet
skip connections in diffusion sampling by showcasing a
simple but surprisingly useful training-free tuning method
for improved sample quality. The proposed Skip-Tuning is
orthogonal to existing diffusion samplers and can be incor-
porated to fully unlock the potential of DPMs.

2. Preliminary
Diffusion probabilistic models. DPMs (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2020b; Kingma
et al., 2021) add noise to data through the SDE

dxt = f(t)xtdt+ g(t)dwt,

where wt ∈ RD represents the standard Wiener process.
For any t ∈ [0, T ], the distribution of xt conditioned on x0

is a Gaussian distribution, i.e., xt|x0 ∼ N (αtx0, σ
2
t I). The

functions αt and σt are chosen such that xT closely approx-
imate a zero-mean Gaussian distribution with an identity
covariance matrix. Anderson (1982) demonstrates that the
forward process has an equivalent reverse-time diffusion
process (from T to 0). Thus the generating process is equiv-
alent to solving the diffusion SDE (Song et al., 2020b):

dxt =
[
f(t)xt − g2(t)∇x log qt(xt)

]
dt+ g(t)dw̄t, (1)

where w̄t represents the Wiener process in reverse time, and
∇x log qt(x) is the score function. Moreover, Song et al.
(2020b) also show that there exists a corresponding deter-
ministic process that shares the same marginal probability
densities qt(x) as (1):

dxt =

[
f(t)xt −

1

2
g2(t)∇x log qt(xt)

]
dt.

We usually train a score network sθ(x, t) parameterized
by θ to approximate the score function ∇x log qt(x) in (1)
by optimizing the denoising score matching loss (Vincent,
2011; Song et al., 2020b):

L = Et

{
ωtEx0,xt

[
∥sθ(xt, t)−∇x log q0t(xt|x0)∥22

]}
,

where ωt is a weighting function. While introducing stochas-
ticity in diffusion sampling has been shown to achieve better
quality and diversity (Karras et al., 2022; Xue et al., 2023),
ODE-based sampling methods (Song et al., 2020a; Zhang &
Chen, 2022; Lu et al., 2022; Zhao et al., 2023) are superior
when the sampling steps are fewer.

UNet. UNet is an architecture based on convolutional neu-
ral networks originally proposed for image segmentation
(Ronneberger et al., 2015) but recently proved successful
in score estimation (Song & Ermon, 2019; Ho et al., 2020).
The U-Net is composed of a group of down-sampling blocks,
a group of up-sampling blocks, and long skip connections
between the two. See Figure 1 for illustration. Inside the
UNet architecture of (Dhariwal & Nichol, 2021), it contains
16 layers of connections from the bottom to the top, where
the skip vectors d from the down-sampling component are
concatenated with the corresponding up-sampling vectors u.
Among these 16 layers, 10 of them have skip vectors that
share the same channels as the vectors in the correspond-
ing up-sampling component. In this work, we uncover the
significant improvement brought by manipulating the mag-
nitude of skip vectors in the sampling process and provide
detailed explanations of these enhancements.

3. Skip-Tuning for Diffusion Sampling
Consider the extreme case where single-step mapping di-
rectly generates images from random noises. Although this
case has been widely explored in the diffusion distillation
setting (Salimans & Ho, 2022; Song et al., 2023; Luo et al.,
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Figure 1. The UNet demonstration figure.

2023), the performance is far from optimal by pure sam-
pling methods without extra training. This limitation may be
traced back to the capacity of the UNet architecture. In the
one-step sampling setting, the UNet acts like a GAN genera-
tor (Goodfellow et al., 2014) doing push-forward generation.
With data-agnostic choices of the input distribution, the re-
quired transformation complexity can be huge, especially
when the target distribution is multi-modal or supported on
a low-dimensional manifold (Hu et al., 2023).

The skip connection of UNet, which connects the down-
sampling and up-sampling components, can be detrimental
to the push-forward transformation. To demonstrate, we
examine the relative strength that calculates the ratio of l2
norms between the down-sampling skip vector d versus the
up-sampling vectors u in each of the layers, i.e.,

propi = ∥di∥2/∥ui∥2.

Figure 2 demonstrates the layerwise propi of EDM, CD-
distilled EDM (Song et al., 2023) and DI-distilled EDM
(Luo et al., 2023). We found that the residual components
from the encoder are less pronounced for the distilled UNets.
To be more specific, the average layerwise l2 norm ratio,
i.e., 1

k

∑k
i (∥di∥2/∥ui∥2) for the base EDM model is 0.446,

while those for the distilled models are 0.433 for DI and
0.404 for CD, confirming our hypothesis.

Further, we verify the overall model complexity increase in
the distilled EDM network (CD and DI) versus the original
EDM on ImageNet 64 in Table 1. Specifically, we choose
the l2 norm of the model gradient (Hu et al., 2023; Negrea
et al., 2019; Li et al., 2019) to reflect the complexity of the
EDM network U , i.e.,

gradient norm(U) = Ex∥autogradx(U(x))∥2.

Motivated by this observation, we consider manually de-
creasing the skip connections to improve few-shot diffusion
sampling in a training-free fashion.
Definition 3.1 (Skip-Tuning). We introduce skip coeffi-
cient ρi’s to control the relative strength of the skipped

Figure 2. The layerwise down-sampling skip to up-sampling vec-
tors l2 norm proportion.

Table 1. Gradient norms of EDM and distilled EDM. The σ values
(noise standard deviation) are different because the two distilled
models have different initial sigma settings.

GRADIENT NORM

EDM (σ = 80) 0.1219
CD EDM (σ = 80) 0.3525
EDM (σ = 5) 0.9425
DI EDM (σ = 5) 8.4765

down-sampling outputs di. Specifically, we add ρi in the
concatenation of the di and ui, i.e., concatenate(di · ρi, ui).
In this work, we only consider ρ < 1.

Through carefully choosing ρ for pre-trained UNet, we can
mimic the approximately decreasing l2 norm ratio observed
in Figure 2. Specifically, we adopt the linear interpolation
of bottom and top layer ρbottom and ρtop to match with the
pattern(For instance, set the ρbottom as 0.5 and increase it
linearly towards 1.0 for ρtop), i.e.,

∆ρ =
(ρtop − ρbottom)

k
, ρi = ρbottom +∆ρ · i.

To demonstrate its effectiveness, we conduct experiments
with pre-trained EDM (Karras et al., 2022) on ImageNet 64.
We use the standard class-conditional generation following
the settings in (Karras et al., 2022), without extra guidance
methods (Dhariwal & Nichol, 2021; Ho & Salimans, 2022;
Ma et al., 2023b; Liu et al., 2024). The few-step sampling
results with the Heun and UniPC (Zhao et al., 2023) are
reported in Table 2. With less than 10 NFEs, our Skip-
Tuning can improve the FID by around 100%.
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Table 2. EDM Skip-Tuning with few-step sampling. ρ stands for
the linear interpolation from the bottom to the top layer.

SAMPLER STEP NFE FID

EDM HEUN 5 9 35.12
EDM (ρ:0.55 TO 1.0) HEUN 5 9 18.71
EDM UNIPC 9 9 5.88
EDM (ρ:0.68 TO 1.0) UNIPC 9 9 2.92

Remark 3.2 (Beyond existing architecture). The modified
skip coefficient cannot be absorbed into existing model pa-
rameters, due to the placement of the input within the group
normalization1, SiLU activation function, and convolution
function in the forward function. The nonlinearity of the
SiLU activation prevents the study of the skip coefficient
value within the convolution function.

Skip-Tuning offers extra flexibility to pretrained diffusion
models in a training-free fashion. Besides the surprising
effectiveness in few-shot diffusion sampling, we also test
out its performance for distilled UNet in one-step generation.
In Table 3, we can observe a significant improvement over
the baseline. It is worth mentioning that the ideal ρ for
distilled UNets are close to 1.0 (CD: 0.91; DI: 0.98) due
to the implicit reduction of skip connections through the
distillation process, as confirmed by the lower skip norm
proportion of distilled models in Figure 2.

Table 3. Skip-Tuning in distilled EDM (CD: Consistency Distil-
lation, DI: Diff-Instruct). *: results reported in original papers.
†: In our reproduction, we replaced flash attention with standard
attention for better GPU compatibility.

NFE FID

CD EDM* 1 6.20
CD EDM† 1 6.85
CD EDM†(ρ: 0.91 TO 0.96) 1 5.56
DI EDM* 1 4.24
DI EDM† 1 4.16
DI EDM†(ρTOP : 0.98) 1 3.98

In Figure 3, we demonstrate the monotone increase in the
complexity of the EDM network U by diminishing the down-
sampling vector d in the skip concatenation (ρ < 1), where
the model complexity is estimated by the gradient norm.

1Oftentimes, the concatenation will first go through a normal-
ization layer, e.g., GroupNorm in EDM. Our proposed Skip-Tuning
mainly affects the residual connection within each UNet block (de-
tails can be found in Appendix C)

Figure 3. The gradient l2 norm changes with skip coefficient ρ.

4. Breaking the ODE-Sampling Limit
Our proposed Skip-Tuning has demonstrated surprising ef-
fectiveness in improving few-shot diffusion sampling. A
natural question that follows is whether the improvement
can still be significant if we increase the number of sam-
pling steps. Current sampling methods are mostly based on
ODE solvers which discretize the diffusion ODE according
to specific schemes. As the sampling steps increase, the
discretization error approaches zero, and FID scores will
also saturate to a limit.

Remark 4.1. Most current distillation methods (e.g. Pro-
gressive Distillation Salimans & Ho (2022), Consistency
Model Song et al. (2023)) learn the map of ODE trajectory
from noise to data, which is simulated through the ODE-
sampling limit of the teacher model.

In this section, we further test the limit of Skip-Tuning
to see how it fares with the state-of-the-art DPMs, e.g.,
EDM (Karras et al., 2022), EDM-2 (Karras et al., 2023),
LDM (Rombach et al., 2022), UViT(Bao et al., 2023).

We begin with EDM on ImageNet, where existing literature
indicates that any ODE sampler, with arbitrary sampling
steps, cannot get FID below 2.2 (Karras et al., 2022). Sur-
prisingly, as showcased in Table 4, our Skip-Tuning EDM
surpasses the previous ODE-sampling limit with just 19
NFEs (FID: 1.75).

Furthermore, by increasing the sampling steps to 39 NFEs in
Table 5, our Skip-Tuning on the original EDM (Karras et al.,
2022) (FID: 1.57) can even beat the heavily optimized EDM-
2 (Karras et al., 2023) (FID: 1.58). Similar conclusions can
be drawn from the sampling results on AFHQv2 (Choi et al.,
2020; Karras et al., 2021) 64×64 in Table 6.
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Table 4. Skip-Tuning in EDM with ODE sampling. ρ in the bracket
stands for the linear interpolation from the bottom to the top layer.

SAMPLER STEPS NFE FID

EDM HEUN 10 19 3.64
EDM(ρ: 0.78 TO 1.0) HEUN 10 19 1.88
EDM UNIPC 19 19 2.60
EDM(ρ: 0.82 TO 1.0) UNIPC 19 19 1.75
EDM UNIPC 39 39 2.21
EDM(ρ: 0.83 TO 1.0) UNIPC 39 39 1.57

Table 5. ODE sampling limit. The EDM checkpoint for baseline
and the Skip-Tuning is from (Karras et al., 2022). The EDM-2-S
results are from (Karras et al., 2023).

NFE MPARAMS FID

EDM 79 296 2.22
EDM(ρ: 0.83 TO 1.0) 39 296 1.57
EDM-2-S 63 280 1.58

Table 6. Skip-Tuning in EDM with ODE sampling on AFHQv2
64×64.

SAMPLER STEPS NFE FID

EDM UNIPC 9 9 4.47
EDM(ρ: 0.75 TO 1.0) UNIPC 9 9 3.85
EDM UNIPC 19 19 2.13
EDM(ρ: 0.87 TO 1.0) UNIPC 19 19 2.03
EDM UNIPC 39 39 2.05
EDM(ρ: 0.90 TO 1.0) UNIPC 39 39 1.96

To demonstrate the stability of Skip-Tuning in enhancing the
sampling performance, we conduct experiments on varying
skip coefficients ρ under different steps of UniPC sampling
shown in Figure 4. The FID curves all exhibit U-shaped pat-
terns under different NFEs. For NFE = 9, the “sweet point”
of the skip coefficient for the U-shaped FID curve is be-
tween 0.65 and 0.70. This can be attributed to the increased
network complexity requirement in few-step settings. For
NFE = 39 (which converges well, as the FID of 2.21 for
ρ = 1 matches the result of 511 NFEs Heun sampling (Kar-
ras et al., 2022)), the ρ sweet point lies around 0.85. We
summarize the findings as follows:

• With a fixed skip coefficient, the FID score improves
monotonically as the number of sampling steps increases.

• For a given sampling step, there exists an optimal skip
coefficient range.

• With increasing sampling steps, the optimal skip coeffi-
cient monotonically increases towards a limit below 1.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Skip coef 

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

FI
D

ODE sampling limit of different skip coefficient

NFE = 9
NFE = 19
NFE = 39

Figure 4. ODE UniPC sampling results of different skip coeffi-
cients and steps.

Figure 5. The left-hand side 64x64 figures are sampled from ODE
10 steps (FID: 3.64); the right-hand side figures are sampled from
ODE 10 steps with Skip-Tuning ρ = 0.78 (FID: 1.88).

Besides EDM, our Skip-Tuning can also improve other
DPMs consisting of skip connection designs, including
LDM (Rombach et al., 2022) and UViT(Bao et al., 2023),
as presented in Table 7.

Table 7. Skip-Tuning in LDM and UViT in 256x256 ImageNet.

STEPS FID

LDM 5 12.97
LDM(ρ: 0.83 TO 1.0) 5 11.29
LDM 10 4.91
LDM(ρ: 0.95 TO 1.0) 10 4.67
LDM 20 4.25
LDM(ρ: 0.994 TO 1.0) 20 4.13
UVIT 50 2.32
UVIT(ρ: 0.82 TO 1.0) 50 2.21

In addition to the remarkable improvement in quantitative
metrics, Figures 5 and 6 visually demonstrate that Skip-
Tuning contributes to object and semantic enrichment. For
instance, the flower picture (right-hand side of first row) in
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Figure 6. The left-hand side 256x256 figures are sampled from
LDM in 10 steps (FID: 4.91); the right-hand side figures are sam-
pled from LDM 10 steps with Skip-Tuning ρ = 0.78 (FID: 4.67).

Figure 5 is decorated with leafy details and a more vibrant
yellow color after Skip-Tuning. We further test the effective-
ness of Skip-Tuning in text-to-image settings. We applied
Skip-Tuning in Stable Diffusion 2 2 to generate 768x768
images for evaluation, as shown in Figure 7. The skip coef-
ficient ρ = 0.8 and 20 sampling steps are used throughout
the experiments. Based on the comparisons in Figure 7,
Skip-Tuning primarily serves to repair objects and enhance
their semantic content.

5. Demystifying Skip-Tuning
In this section, we thoroughly examine how Skip-Tuning
contributes to diffusion model sampling. As emphasized
before, the training and sampling of DPMs are decoupled.
Now that Skip-Tuning offers significant post-training sam-
pling improvement, the first question to investigate is its
effect on diffusion training loss.

5.1. Denoising Score Matching

Consider the denoising score-matching loss below

Lpixel = Et

{
ωtEx

[
∥xθ(xt, t)− x∥22

]}
.

Table 8 compares the score-matching losses of the origi-
nal EDM and its checkpoints with Skip-Tuning (ρ = 0.8),
where we can see that Skip-Tuning makes the pixel loss

2checkpoints: https://huggingface.co/
stabilityai/stable-diffusion-2/blob/main/
768-v-ema.ckpt

Figure 7. The left-hand side 768x768 figures are sampled from
stable diffusion 2 with 20 sampling steps; the right-hand side
figures are sampled with Skip-Tuning ρ = 0.8.

worse. This is anticipated since the baseline EDM check-
point is optimized under this pixel loss Lpixel. Then, why
can the quality be significantly improved (FID improved
from 3.64 to 1.88) while the validation loss is higher? As it
turns out, instead of the original pixel space, Skip-Tuning
can result in a decreased denoising score-matching loss in
the feature space of various discriminative models f , as
described below:

Lfeature = Et

{
ωtEx

[
∥f(xθ(xt, t))− f(x)∥22

]}
.

Table 8 lists losses measured in the feature space of
Inception-V3 (Szegedy et al., 2016), ResNet-101 (He et al.,
2016) (trained on ImageNet with the output dimension of
2048), and CLIP-ViT (Radford et al., 2021) image encoder
(trained on web-crawled image-caption pairs and public
datasets; the output dimension is 1024). In the Skip-Tuning
setting, the score-matching losses in the feature space of
classifiers and the CLIP encoder all dropped, indicating
improved score-matching estimates in the discriminative
model feature space.

In Table 9, we extend the comparison of score-matching
loss in the ResNet101 feature space (LResNet-101) across dif-
ferent sampling σ levels. The results demonstrate that the
improvement in feature-space score-matching achieved by
Skip-Tuning is not uniform over time (σ) and is particularly
noticeable for intermediate noise values (sampling stages).
This observation serves as motivation for exploring time-
dependent Skip-Tuning in the next section.
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Table 8. EDM score-matching losses in pixel, discriminative fea-
ture, and CLIP image encoder space.

BASELINE SKIP-TUNINGρ : 0.8
(FID:3.64) (FID:1.88)

LPIXEL 0.5238 0.5253
LINCEPTION-V3 4.3466 4.3219
LRESNET-101 30.8421 30.7297
LCLIP-VIT 12.6432 12.4550

Table 9. Comparison of score-matching loss in the ResNet101 fea-
ture space (LResNet-101) between the baseline EDM and Skip-Tuning
EDM. The σ values are selected from 5 steps of ODE sampling.

σ BASELINE SKIP-TUNING

0.002 99.9295 99.5523
0.1698 27.1737 27.4448
2.5152 13.7342 13.6390
17.5278 14.2074 12.9545
80.0 12.6893 12.6827

5.2. Noise Level Dependence

In our exploration of the time-dependent properties of Skip-
Tuning, we aimed to identify the time interval that pro-
vides the greatest FID improvement during diffusion sam-
pling. To achieve this, we conducted an exhaustive window
search. By dividing the sigma interval [0.002, 80] into 13
non-overlapping sub-intervals, each consisting of only 4
steps of the sampling process, we performed Skip-Tuning
separately within each sub-interval. The original model was
used outside of these intervals. The exhaustive search results

0.00 0.00 0.01 0.02 0.05 0.12 0.27 0.60 1.36 3.07 6.94 15.6735.4180.00
Skip Intervals in EDM Sigma (Noise-Signal-Ratio)

1.7

1.8

1.9

2.0

2.1

2.2

2.3

FI
D

Exhaustive Window Search Result

Figure 8. Exaustive window search

in Figure 8 reveal that Skip-Tuning during the middle stage
of the σ range contributes the most to sampling performance.
This observation is consistent with the lower score-matching
loss in the ResNet101 feature space (LResNet-101) achieved
by Skip-Tuning at the middle σ stage, as shown in Table 9.

Besides, we further verify that different diffusion models

favor different time schedules of Skip-Tuning based on their
training objectives. Figure 11 in the Appendix displays the
two opposite linear interpolations of ρ across the sampling
time: “increasing ρ” represents ρ linearly increased from
value ρ0 at time 0 to 1.0 at time T while “decreasing ρ”
represents the ρ at time 0 linearly decreased from value 1.0
to ρ0 at time T . The rationale is that at different time steps,
the required complexity from the score network is differ-
ent. With noise prediction models such as LDM, the task
becomes easier as noise level σ increases while it is the op-
posite for data prediction models such as EDM. As we have
established that decreasing ρ increases the network com-
plexity, the ideal schedule for ρ should be correspondingly
inverse.

Table 10 compares the impact of different time-dependent ρ
orders on sampling performance. The EDM model favors
the decreasing ρ order, resulting in a smaller skip coeffi-
cient at time T (allowing less noise to pass through) and a
larger skip coefficient at time 0 (yielding increasingly clean
images). Conversely, the LDM and UViT models prefer
the increasing ρ order, indicating a reversed preference for
time-dependent skip coefficients.

Table 10. Comparison of ρ time-dependent order among EDM,
LDM, and UViT. The increasing order indicates a linear increase
of ρ from ρ0 to 1.0 over time 0 to T , while the decreasing order
signifies a linear decrease of ρ from 1.0 to ρ0 over time 0 to T .

STEPS INCREASING ρ DECREASING ρ

EDM(ρ0:0.78) 10 1.98 1.88
LDM(ρ0:0.95) 10 4.67 5.15
UVIT(ρ0:0.82) 50 2.21 2.47

5.3. Skip-Tuning vs Fine-Tuning

After revealing that Skip-Tuning contributes to score-
matching in the discriminative feature space, a natural ques-
tion occurs: can we achieve the same improvement by fine-
tuning the diffusion model based on score-matching loss in
feature space? To address this question, we conduct two
types of experiments, only fine-tuning the skip coefficient ρ
and full fine-tuning with all the UNet parameters. Surpris-
ingly, both results indicate that direct fine-tuning can lead to
sampling performance deterioration and is not comparable
to Skip-Tuning.

Fine-tuning ρ. Table 11 lists the sampling results ob-
tained after fine-tuning ρ using the score-matching loss in
ResNet101 feature space. Directly fine-tuning ρ will drive
some skip coefficients greater than 1, leading to a significant
decline in performance. The generated images are almost
noises, as indicated by the exploded FID. To eliminate the
possibility of ρ > 1, we then apply a Sigmoid function to
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constrain ρ ∈ (0, 1). The results are significantly improved
but not as good as direct Skip-Tuning.

Table 11. EDM skip coefficient ρ fine-tuned with score-matching
loss in ResNet101 feature space on ImageNet 64x64.

STEPS NFE FID

EDM 5 9 35.12
EDM ρ FINE-TUNED 5 9 215.09
EDM SIGMOID(ρ) FINE-TUNED 5 9 18.92
EDM 10 19 3.64
EDM ρ FINE-TUNED 10 19 112.15
EDM SIGMOID(ρ) FINE-TUNED 10 19 2.77

Full fine-tuning. Table 12 presents the fine-tuning of the
full network parameters of EDM checkpoint using a hybrid
loss combining vanilla score matching and score-matching
in the feature space. Initially, there was a slight performance
improvement, but as training progressed, it deteriorated.
Similarly, fine-tuning struggles to match the quality and
stability achieved by Skip-Tuning.

Lhybrid = Lpixel + Lfeature.

The experiment results show that naively incorporating the

Table 12. EDM fine-tuned with Inception-V3 modeling score-
matching loss.

MIMG NFE FID

EDM (INITIAL) 0 19 2.60141
EDM 4 19 2.58764
EDM 10 19 2.51128
EDM 30 19 3.81702
EDM 60 19 6.02844

Inception-V3 as a feature extractor in the fine-tuning loss
does not produce significant and consistent improvement
compared with Skip-Tuning. Our comparisons in this sec-
tion indicate that improving the score-matching loss in the
feature space is only one aspect of Skip-Tuning and its ef-
fectiveness cannot be encapsulated by naive fine-tuning. In
the next part, we take a look at how Skip-Tuning affects the
inverse process of diffusion sampling.

5.4. Inverse Process

Simulating the diffusion ODE from time 0 to time T , we
inverse the data to (approximately) a Gaussian noise. This
raises the question of whether skip tuning can improve the
results of the inversion process. We evaluate the distance be-
tween the inverted (pseudo) Gaussian noise and the ground
truth Gaussian distribution using Mean Maximum discrep-
ancy (MMD) as a metric. A brief introduction to MMD

can be found in Appendix B. Specifically, we inverse 10k
images to get 10k noises and calculate the MMD distance
between 10k generated noises and 10k ground truth noises.
The experiments are conducted several times and the aver-
age results are reported in Tabel 13. For each kernel, we
normalize the baseline result to 1.

dxt =

[
f(t)xt −

1

2
g2(t)∇x log qt(xt)

]
dt. (2)

Table 13. Comparison of MMD distance.
MMD KERNEL STEPS ρ = 1 ρ = 0.7

LINEAR KERNEL 9 1 0.9793
RBF KERNEL 9 1 1.0000
LAPLACIAN KERNEL 9 1 1.0000
SIGMOID KERNEL 9 1 0.9592
IMQ KERNEL 9 1 1.0143
POLYNOMIAL KERNEL 9 1 0.9912
COSINE KERNEL 9 1 0.9879

The results demonstrate that Skip-Tuning decreases the dis-
crepancy between the inverted noise and the standard Gaus-
sian noise under most kernels, aligning with the generating
process.

5.5. Relationship with Stochastic Sampling

Stochastic sampling can be viewed as an interpolation of
diffusion ODE and Langevin diffusion as follows:

dxt =

[
f(t)xt −

1

2
g2(t)∇x log qt(xt)

]
dt

− τ2(t)

2
g2(t)∇x log qt(xt)dt+ τ(t)g(t)dw̄t.

(3)

Stochastic sampling can surpass the ODE sampling limit
by injecting additional noise during sampling (Song et al.,
2020b; Karras et al., 2022; Xue et al., 2023). Karras et al.
(2022) asserts that the implicit Langevin diffusion in stochas-
tic sampling drives the sample towards the desired marginal
distribution at a given time that corrects the error in earlier
sampling steps. Xue et al. (2023) give an inequality on KL
divergence to show the superiority of stochastic sampling.

However, the stochastic strength τ(t) during stochastic sam-
pling affects the sampling. Karras et al. (2022) also provides
empirical results on the ImageNet-64 dataset: stochastic
sampling can improve the FID score of the baseline model
from 2.66 to 1.55, and from 2.22 to 1.36 for the EDM model.
They also observed that the optimal amount of stochastic
strength for the EDM model is much lower than the baseline
model. We conduct extra experiments to explore the effect
of the skip coefficient combined with stochastic sampling.
The experiment results are shown in Fig. 9, the sweet point
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of the stochastic strength decreases as the skip coefficient
decreases. We find that a slight Skip-Tuning can improve
the stochastic sampling for all stochastic strength (ρ = 0.95
over ρ = 1).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Stochastic strength

1.4

1.6

1.8

2.0

2.2

2.4

FI
D

SDE sampling result of different skip coefficient

Skip coef = 0.85
Skip coef = 0.9
Skip coef = 0.95
Skip coef = 1.0

Figure 9. Combination of skip tuning and stochastic sampling

6. Related Work
FreeU Most related to our work is FreeU (Si et al., 2023),
where the authors analyzed the contribution of skip con-
nection in the views of image frequency decomposition.
However, this does not capture the whole picture. In Figure
12 of the Appendix, we conduct wavelet transformation of
the original figures and compare the score-matching loss
of the pre-trained EDM checkpoint and its checkpoint with
skip connection diminished to 80% (ρ = 0.8) under pixel
and wavelet transformed space. The results in Table 15
reveal that, despite the FID improvement from 3.64 to 1.88,
the score-matching losses in all wavelet frequency spaces
increase. This suggests that the enhancement in generation
quality is not directly linked to a better score-matching loss
in the frequency space. On the other hand, our method does
not contain Fourier transform and inverse Fourier transform,
which requires additional computational cost. We add a
detailed analysis of the difference in the operation level with
FreeU in Appendix C. In terms of visual evaluation, we
compare Skip-Tuning with FreeU in Stable Diffusion 2 in
Figure 13 of the Appendix. We observe that FreeU mainly
changes the image aesthetics, enhancing image contrast and
highlighting the object but may lose fidelity; In contrast, our
Skip-Tuning contributes to object enrichment and quality
improvement without losing authenticity.

Diffusion architectures Efforts have been devoted to an-
alyzing diffusion model architectures and proposing im-
proved designs for improved training. Karras et al. (2023)
conducted extensive experiments and improved the well-
accepted ADM network in terms of weight normalization,
block design, and exponential moving averaging training
schedule. Huang et al. (2023) uncovers the impact of skip
connection in stabilizing and speeding up diffusion training.

Bao et al. (2023) points out that the design of skip concate-
nation plays a crucial role in achieving high-quality training.
SCedit (Jiang et al., 2023) incorporates a fine-tuned non-
linear projection component within the skip connection for
controllable image generation. In contrast, our Skip-Tuning
does not require extra model components to the existing
UNet, saving both the training and inference costs. In terms
of FID evaluation, SCedit does not exhibit a substantial
improvement compared to Skip-Tuning. Ma et al. (2023a)
analyzes the skip connection in improving self-supervised
learning as well. In clear contrast, Skip-Tuning is a post-
training design that significantly enhances the sampling
performance without additional training.

Evaluation metrics Evaluating the quality of generated
images is a challenging task. The FID metric has been
widely used for such a purpose. However, there is still a
perceivable gap between FID and human evaluation. Chong
& Forsyth (2020) highlighted the bias of FID in finite sam-
ple evaluation. Jung & Keuper (2021) assesses the less
sensitivity of FID to various augmentations and attributes
the Inception-V3 as the cause. Parmar et al. (2022) ana-
lyzes the impact of low-level preprocessing on FID metrics,
while Jayasumana et al. (2023) challenges the key assump-
tion of FID regarding normal distribution. To provide a
comprehensive evaluation of Skip-Tuning, we include other
metrics such as Inception Score (IS), Precision, Recall, and
Mean Maximum Discrepancy in Inception-V3 feature space
(IMMD) in Table 14.

Table 14. Other evaluation metrics
EDM EDM SKIP TUNING

FID↓ 2.21 1.57
IS↑ 47.55 57.64
PRECISION↑ 0.719 0.752
RECALL↑ 0.639 0.625
IMMD↓ 0.521 0.335

7. Discussion
Our proposed Skip-Tuning breaks the limit of ODE sam-
pling, improving both the existing UNet diffusion model
(teacher model) generation quality and enhancing the dis-
tilled diffusion model (student model) in one-step sampling.
Through extensive investigation, we attribute the success
of Skip-Tuning to improved score-matching in the discrim-
inative feature space and a smaller discrepancy between
inversed noise and ground truth Gaussian noise. These
findings not only deepen our understanding of the UNet
architecture but also demonstrate the remarkably useful na-
ture of Skip-Tuning as a post-training method for enhancing
diffusion generation quality. In future work, we will ex-
plore UNet inside models of different modalities to further
investigate its potential.
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Impact Statement
This paper presents work whose goal is to advance the field
of diffusion sampling. By enhancing the efficiency and qual-
ity of image generation, this method can democratize access
to high-quality visual content, benefiting industries such as
entertainment, education, and marketing. However, the po-
tential for misuse, such as creating realistic fake images and
deepfakes, poses ethical challenges. Therefore, establish-
ing robust ethical guidelines and detection mechanisms is
essential to balance innovation with responsibility, ensuring
these technologies serve the public good.
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Appendix

A. Other Details

Figure 10. The skip vector and up-sampling component norm proportion. The skip vector and up-sampling weights norm proportion.

Figure 11. The time-dependent linear interpolation of skip-coefficient ρ.

Table 15. Score-matching loss in pixel and frequency space. ’LL’, ’LH,’ ’HL’, and ’HH’ represent frequency spectrum ’Approximation’, ’
Horizontal detail’, ’Vertical detail’, ’Diagonal detail’ respectively.

BASELINE ρ = 0.8
(FID:3.64) (FID:1.88)

LPIXEL 0.5238 0.5253
LLL 1.6160 1.6221
LLH 0.2264 0.2267
LHL 0.2258 0.2260
LHH 0.1408 0.1409

B. Details on Mean Maximum Discrepancy (MMD)
Maximum Mean Discrepancy (MMD) (Gretton et al., 2006; 2012) is a kernel-based statistical test used as a two-sample test
to determine whether two samples come from the same distribution. The MMD statistic can be viewed as a discrepancy
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Figure 12. The wavelet transformation of figures. ’LL’, ’LH,’ ’HL’, and ’HH’ represent frequency spectrum ’Approximation’, ’ Horizontal
detail’, ’Vertical detail’, ’Diagonal detail’ respectively.

Figure 13. The comparison of Skip-Tuning and FreeU in Stable Diffusion 2 in generating text-to-images in 768x768 resolution with 20
sampling steps. FreeU is based on hyper-parameter settings reported by the author (b1:1.4, b2: 1.6, s1: 0.9, s2: 0.2). We fixed the skip
coefficient ρ = 0.8 of Skip-Tuning through all experiments to avoid manual fine-tuning.

between two distributions. Given distribution P and Q, a feature map ϕ maps P and Q to feature space F . Denote the
kernel function k(x, y) = ⟨ϕ(x), ϕ(y)⟩F , the MMD distance with respect to the positive definite kernel k is defined by:

MMD2(P,Q) = ∥µP − µQ∥2F = EP [k(X,X)]− 2EP,Q[k(X,Y )] + EQ[k(Y, Y )] (4)

In practice, we only have two empirical distributions P̂ =
∑m

i=1 δ(xi) and Q̂ =
∑n

i=1 δ(yi) independently sampled from
P and Q, we have the following unbiased empirical estimator of the MMD distance:

M̂MD
2
(P,Q) =

1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj) (5)

C. Details on Group Normalization in UNetBlock

def forward(self, x, emb):
orig = x
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x = self.conv0(silu(self.norm0(x)))

params = self.affine(emb).unsqueeze(2).unsqueeze(3).to(x.dtype)
if self.adaptive_scale:

scale, shift = params.chunk(chunks=2, dim=1)
x = silu(torch.addcmul(shift, self.norm1(x), scale + 1))

else:
x = silu(self.norm1(x.add_(params)))

x = self.conv1(torch.nn.functional.dropout(x, p=self.dropout, training=self.training))
x = x.add_(self.skip(orig) if self.skip is not None else orig)
x = x * self.skip_scale

if self.num_heads:
q, k, v = self.qkv(self.norm2(x)).reshape(x.shape[0] * self.num_heads, x.shape[1]

// self.num_heads, 3, -1).unbind(2)
w = AttentionOp.apply(q, k)
a = torch.einsum(’nqk,nck->ncq’, w, v)
x = self.proj(a.reshape(*x.shape)).add_(x)
x = x * self.skip_scale

return x

Group Normalization (Wu & He, 2018) is a normalization layer that divides channels into groups and normalizes the features
within each group. It is a natural question what is the effect of Skip-Tuning under the impact of the group normalization
layer? The UNetBlock takes the input of concatenation of linearly scaled features of skipped down-sampling parts and
upsampling parts. The linear scaling will vanish after the first group normalization layer in UNetBlock with at most one
exception group. However, the inner skip connection x = x.add_(self.skip(orig)if self.skip is not None

else orig) maintains the information of Skip-Tuning.

We conduct an experiment to verify that the proposed Skip-Tuning is approximately equivalent to only changing the scale in
orig variable. Specifically, we maintain the input of UNetBlock unchanged and multiply the scaling factor only on the
corresponding channels of orig variable. We adopt the settings in Tab. 5, which achieves 1.57 FID score with 39 NFEs. In
comparison, we do not observe a performance drop: only changing the scale in orig variable yields an FID score of 1.58.

We also experiment in another direction which only changes the scale of self.norm(0) variable and maintains the orig
variable invariant. Surprisingly, we also do not observe a performance drop: only changing the scale in self.norm(0)

variable yields an FID score of 1.57.
Remark C.1. FreeU (Si et al., 2023) adds an inflation coefficient (> 1) on the backbone features. The impact of the group
normalization layer on FreeU is similar. Thus we speculate that the inflation coefficient also works on orig variable. From
this viewpoint, the operations of Skip-Tuning and FreeU are different.

D. Additional Samples
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Figure 14. Image sampled from EDM model with ODE Heun sampling for 10 steps(19NFE). The random seed is set continuously from
33 to 40.

Figure 15. The left-hand side 256x256 figures are sampled from UViT 50steps(FID: 2.31), the right-hand side figures are sampled from
UViT 50steps with ρ = 0.82 (FID: 2.21).
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Figure 16. The left-hand side 256x256 figures are sampled from LDM 10steps(FID: 4.91), the right-hand side figures are sampled from
LDM 10steps with ρ = 0.95 (FID: 4.67).
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Figure 17. Image sampled from EDM model with NFE = 9 and ρ : 0.68 to 1.0 (FID = 2.92).
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Figure 18. Image sampled from EDM model with NFE = 9 and ρ : 1.0 to 1.0 (FID = 5.88).
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Figure 19. Image sampled from EDM model with NFE = 19 and ρ : 0.82 to 1.0 (FID = 1.75).
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Figure 20. Image sampled from EDM model with NFE = 19 and ρ : 1.0 to 1.0 (FID = 2.60).
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Figure 21. Image sampled from EDM model with NFE = 39 and ρ : 0.83 to 1.0 (FID = 1.57).
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Figure 22. Image sampled from EDM model with NFE = 39 and ρ : 1.0 to 1.0 (FID = 2.21).
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