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Abstract

Artificial neural networks (ANNs) are constructed using well-understood
mathematical operations, and yet their high-dimensional, non-linear, and
compositional nature has hindered our ability to provide an intuitive de-
scription of how and why they produce any particular output. A striking
example of this lack of understanding is our inability to design networks
that are robust to adversarial input perturbations, which are often imper-
ceptible to a human observer but cause significant undesirable changes in
the network’s response. The primary contribution of this work is to further
our understanding of the decision boundary geometry of ANN classifiers by
utilizing such adversarial perturbations. For this purpose, we define adver-
sarial subspaces, which are spanned by orthogonal directions of minimal
perturbation to the decision boundary from any given input sample. We find
that the decision boundary lies close to input samples in a large subspace,
where the distance to the boundary grows smoothly and sub-linearly as
one increases the dimensionality of the subspace. We undertake analysis to
characterize the geometry of the boundary, which is more curved within the
adversarial subspace than within a random subspace of equal dimensionality.
To date, the most widely used defense against test-time adversarial attacks
is adversarial training, where one incorporates adversarial attacks into the
training procedure. Using our analysis, we provide new insight into the
consequences of adversarial training by quantifying the increase in boundary
distance within adversarial subspaces, the redistribution of proximal class
labels, and the decrease in boundary curvature.

1 Introduction

Artificial neural networks (ANNs) have been highly performant on common machine learning
tasks, but their application space is limited by their susceptibility to adversarial attacks
(Szegedy et al., 2014), which underscores a general lack of understanding for how and why
they make their decisions. Examples produced by adversarial attacks are a worst-case
demonstration of an ANN’s inability to gracefully cope with identity-preserving shifts or
distortions of its inputs. To construct one, an adversary must perturb the input in a small
but specific way such that the output of the network changes significantly. Adversarial
perturbations are defined to have minimal length, resulting in inputs that are as close to the
network’s decision boundary as possible. Here, we present a method that uses an untargeted
adversarial attack objective to find the multi-dimensional subspace where an ANN’s decision
boundary is closest to any given input sample. The resulting adversarial subspace allows
us to visualize and understand ANN decision boundaries in terms of their curvature, their
shape, and their proximity to the input.
One existing technique to explain ANN classifications has relied on two-dimensional visualiza-
tions of the decision surface, although it suffers from a number of shortcomings, most notably
high-dimensional points resolving to the same projected location, distortions of distances,
and a lack of invertibility from the two-dimensional space back to the high-dimensional
decision space (Féraud & Clérot, 2002; Rauber et al., 2016; Rodrigues et al., 2019). A
popular alternative strategy is to investigate the decision boundary in the high-dimensional
input space itself, early attempts of which (Golland, 2001; Baehrens et al., 2010) lead the way
to the modern interest in adversarial attacks (Biggio et al., 2013; Szegedy et al., 2014). For
example, one can measure the distance to the decision boundary for random perturbation
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Figure 1: An adversarial subspace. (Left) For any given input example, we define a
subspace where the boundary is closest to the input. The white arrows depict our sampling
scheme, which uniformly samples directions within the adversarial subspace where we measure
the distance to the decision boundary. The perturbation images are rescaled for visualization,
but their `2 length is indicated on the axes. Each color corresponds to the class categories for
deer (class 4), dogs (class 5), and horses (class 7). This visualization is for an adversarially
trained ResNet-50. (Right) We then measure the curvature of the decision boundary, both
in the high-dimensional input space and in the adversarial subspace.
directions away from adversarial examples (Tabacof & Valle, 2016; He et al., 2018), or for
orthogonal directions which are proximal to an initial adversarial example (Tramèr et al.,
2017). Alternatively, much work has demonstrated the utility of visualizing two-dimensional
cross-sections of the decision space between adversarial examples and random orthogonal
directions (Warde-Farley & Goodfellow, 2016; Yu et al., 2019a) or orthogonal test set exam-
ples (Swirszcz et al., 2019). Unlike all of the existing approaches to characterize decision
boundaries in the input space, which rely on at most one adversarial direction per input, we
propose jointly defining a subspace of adversarial directions. The resulting analysis leads to
a general explanation of classifier decision boundaries, as well as adversarial susceptibility, in
the subspace where the boundary is closest to the input example.
As a further demonstration of the utility of our approach, we investigate the most widely
used technique for defending against adversarial attacks, so-called adversarial training. The
defense method requires including adversarial perturbations in the training process by either
augmenting the dataset with pre-computed examples (Ilyas et al., 2019) or by incorporating
an attack model into the training procedure (Goodfellow et al., 2014; Madry et al., 2018). It
has been recently demonstrated that adversarial training performs well on the CIFAR-10
machine learning dataset when enough resources are dedicated to hyperparameter tuning
(Gowal et al., 2020), although the performance is still far from that on unperturbed images.
We provide a new perspective on this defense by observing that it increases the distance to
the decision boundary in the entire adversarial subspace, even though the method utilizes
only a single adversarial perturbation per input sample. We additionally find that adversarial
training increases the number of alternative label regions in adversarial subspaces, and
changes the relative distribution of nearby alternate classes. Herein, we will focus on defining
the method and summarizing the subspace with a continued application of understanding
adversarial training.

2 Methods

In the following we will outline the novel methods employed in this study. Namely, the
method for finding adversarial subspaces is first described, and then we provide an overview
of how we measure decision boundary curvature (with a rigorous discussion given in Appendix
A). Our primary investigation was conducted using the CIFAR-10 dataset (Krizhevsky &
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Figure 2: Distances to the decision boundary. The distance to the decision boundary
for random perturbations within an adversarial subspace grows sub-linearly with increased
dimensionality. (Upper left) The dots indicate the adversarial perturbation length for that
dimension (i.e. along the perturbation axis), averaged across images. The box plots show the
distance to the decision boundary for uniformly-sampled directions within the n-dimensional
adversarial subspace, where n is increasing along the horizontal axis. The box indicates
the interquartile range, the whiskers indicate the 10% and 90% data percentiles, and the
solid horizontal lines indicate the mean. (Lower left) Same as the above, except now the
vertical axis indicates the ratio of the largest distance to the decision boundary divided by
the length of the given subspace dimension,. That this is small indicates that we rarely
sampled a boundary point more than 50% farther away than the largest adversarial dimension.
(Right) Distribution of boundary distances as one increases subspace dimensionality, i.e the
probability (vertical axis) of a sampled direction having a specific distance (horizontal axis).
Observe that the mean shifts to the right, and the variance increases proportionately, which
suggests that the distance smoothly increases from one dimension to the next.
Hinton, 2009) and compared two identical ResNet-50 ANNs (He et al., 2016) trained with
and without adversarial examples. The networks were modified and retrained using C1

activation functions for the curvature analysis (ELU with α = 1). Further dataset and model
details can be found in Appendix B. In Appendix C, we provide additional results on the
CIFAR-10 dataset, including a comparison with the WideResNet-70 architecture with Swish
activations from Gowal et al. (2020). In Appendix D we provide results on the MNIST
dataset, which demonstrates largely consistent trends across datasets. In Appendix E we
include control tests to establish the consistency of our result for different random seeds. All
measured distances are with respect to the `2-norm.

2.1 Finding adversarial subspaces

We aim to find the set of orthonormal vectors that span the subspace where an input
sample has minimal distance to the decision boundary. In order to achieve this, we follow
a greedy optimization approach to span an adversarial subspace up to a desired number
of dimensions. More precisely, consider some neural network, f , that receives an n-pixel
input image, x ∈ Rn, and produces an output vector of probabilities associated with l label
categories, ŷ ∈ Rl. For a given input, we wish to find an ordered set of orthogonal vectors, i.e.
∆ = [δ1, δ2, . . . , δm],m ≤ n, such that 〈δk, δm〉 = 0, ∀k < m. Thus for each vector, we want
to solve an optimization objective that minimizes ||δm||p, where ||δ||p = (

∑
i |δ|p)

1
p is the lp

norm. We expect the optimizer to explicitly and jointly consider the boundedness of the input
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domain, force the perturbations to be orthogonal, and produce perturbations that result in
new (incorrect) classifier outputs. Such an objective is intractable to solve for deep neural
networks, but is commonly approximated by the untargeted adversarial attack objective1,
which modifies the conditional to be subject to max

j 6=i
fj(x + δ) − fi(x + δ) > 0, where i is

the correct class index. The length of these vectors is nearly synonymous with distances to
the decision boundary, where the actual decision boundary would be an infinitesimal step
towards x from x+ δ. We must further relax the objective to a differentiable approximation
for finding a gradient based solution. While there are many such approximations, we opted
for a modification of that which was used by Szegedy et al. (2014) to find singular adversarial
directions, which is to minimize the inverse of the cross entropy loss (the training objective of
the model), weighed with a distance penalization term. Specifically, ` def= 1

LCE(x+δ) + κ · ||δ||p,
with the cross entropy loss defined as LCE(x) def= − log expfi(x)

exp
∑

j
fj(x)

. Using this loss term, we
can now define our objective function as implemented:

minimize 1
LCE(x+ δm) + κ · ||δm||p

subject to max
j 6=i

fj(x+ δm)− fi(x+ δm) > 0

x+ δm ∈ [0, 1]n

〈δk, δm〉 = 0, ∀k < m.

(1)

Intuitively, this maximizes the model loss with respect to the true class label while keeping
the perturbation as small as possible. The first constraint in Equation 1 is to ensure that
the image is adversarial2, the second keeps the perturbed images within the allowable pixel
bounds, and the last one enforces orthogonality of all found adversarial subspace dimensions.
We found the optimal value of constant κ in equation (1) with a binary search performed
during run time. The optimization problem was solved using the greedy interior-point
optimizer implemented by Ipopt (Wächter & Biegler, 2006).
Once the adversarial vectors are found, we conducted experiments to measure the distance
to the decision boundary in the space spanned by the vectors (i.e. within the adversarial
subspace). The experiment was repeated on 100 test images that were chosen to have equal
label representation (10 images per label) and to be correctly classified by both networks.
For each test image we found 50 orthogonal adversarial vectors, which allowed us to define a
sequentially growing list of adversarial subspaces with dimensionality increasing from 1 to
50. For a given image and subspace we sampled 100 directions via a linear combination of
normally distributed variables, which has been previously proven to provide an even sampling
(Muller, 1959). Finally, for each random direction we performed a binary search to find the
decision boundary.

2.2 Measuring decision boundary curvature

As before, let fi, fj : Rm → R be the functions corresponding to i and j-th logits of a neural
network, f . Let Fij def= fi − fj . Then the (i, j)-decision boundary is the set

Bij
def= {x ∈ Rn | Fij(x) = 0} = {x ∈ Rn | fi(x) = fj(x)}. (2)

The set Bij is defined independently of the sign of Fij (that is, Bij = Bji), although doing
so will produce a change of sign in our calculations. Therefore we will continue to follow the
above convention by identifying, at a point x, i with the correct label associated to x, and j

1Many works use “untargeted” adversarial attacks to refer to attacks that are actually targeted to
the second-most-likely output class (for example, Carlini & Wagner, 2017; Kurakin et al., 2017; He
et al., 2018; Chen et al., 2018). While these may be practically equivalent for a single perturbation,
they are not when finding multiple orthogonal directions. Therefore, we will use a more general
definition of untargeted attack, following (Tabacof & Valle, 2016; Finlay et al., 2019).

2Since we are not targeting any specific class, the first constraint avoids a completely uniform
output distribution (i.e. no class wins)
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Figure 3: Boundary visualizations. Each subplot visualizes a two dimensional cross-
section of the decision space for a naturally trained network. Each cross-section is spanned
by the vectors corresponding to the largest distance coefficient found for a given input
image (visualized as black arrows) and the according adversarial perturbation of the largest
dimension of the subspace from which the distance coefficient was retrieved. The red dots
indicate the position of the described adversarial perturbation. The number in the top right
corner depicts the distance coefficient of the cross-section (as reported in Figure 2, bottom
left panel). Areas of the cross-section that lie outside the image bounds are shaded.
with the incorrect label. This convention (which agrees with Moosavi-Dezfooli et al., 2018),
ensures that positive (resp. negative) curvature of Bij near x corresponds to Bij bowing
inward towards (resp. away from) x (see Figure 1 for an example of positive curvature). If
the curvature along Bij is zero near x then Bij is affine. The complete details of how our
calculations were derived, and numerical considerations therein, are relegated to Appendix A,
however we give a brief intuitive account below.
In our curvature analysis we use a method known as principal curvature decomposition to
understand the degree of linearity of the decision boundary. Since the decomposition is
performed on a level-set of the decision space, which in general is of codimension 1, it yields
n− 1 scalars and vectors, called the principal curvatures and principle curvature directions,
respectively. The curvature directions point in the directions of maximal and minimal
surface curvature, while the principal curvatures themselves indicate the signed magnitude
of the curvature. Similar to principal component analysis, which organizes the space as an
orthogonal basis of directions of maximal variance, principal curvature analysis organizes the
(tangential) space of the decision boundary into orthogonal directions of maximum curvature.
The principle curvatures and associated directions are the eigenvectors and eigenvalues of a
linear operator s : Rm → Rm called the shape operator.
In order to study the curvature over an adversarial (or random) subspace we introduce the
subspace pullback of s (

PT)∗s def= PsPT, (3)

where P ∈ Rm×n is an orthogonal projection, so that the image of PT spans the adversarial
subspace of Rm in question. This definition of

(
PT)∗s essentially restricts the shape operator

to a linear subspace of the tangential space and is motivated by the principles of differential
geometry, details of which can be found in Remark 1 and the surrounding material in
Appendix A. The pullback shape operator allows us to compare the amount of curvature in
the adversarial subspace to that of the entire response space.

3 Results

By definition, the distance to the decision boundary increases for each additional dimension of
an adversarial subspace. The circles in the top left panel of Figure 2 indicate these distances,
averaged across the test images, which are found by greedily minimizing Equation 1. The
distance to the decision boundary grows sub-linearly as one increases the dimensionality
of the subspace, with the fastest growth occurring in the first couple of dimensions. The
leftmost box plots of the top left panel in figure 2 as well as the Appendix Table 2 confirms
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Figure 4: Decision boundary curvature. All plots include data for 50 correctly classified
test images with evenly distributed labels and the first 10 adversarial subspace dimensions.
(A,B) The mean curvatures per boundary point are smaller when the boundary is separating
two test images (“test boundary”) than when it is separating a test image and an adversarial
image (“adversarial boundary”). (C) Scatter plot of the curvature profiles for all images
and directions with the adversarial boundary condition. The red inlay shows the full
dimensionality (i.e. same horizontal axis as the parent plot), but zoomed in (i.e. different
vertical axis limits) to emphasize that while both models have positive and negative curvature,
the adversarially trained boundary is more flat (i.e. linear). The data includes all adversarial
subspace boundary points per test image. (D,E) Curvature of adversarial point boundaries
when restricted to random or adversarial subspaces. Curvature in the adversarial subspace is
more extreme than when in an equal sized random subspace. The points indicate the mean
across test images and the error lines indicate the standard deviation.
that the mean initial perturbation distances are comparable to more traditional adversarial
attacks (Madry et al., 2018) and decision boundary distance estimates (Ding et al., 2020).
While this gives an idea of the lower-bound of distances to the decision boundary, it does
not provide information about the behavior of the boundary elsewhere in the subspace. To
better understand this, we uniformly sampled 100 random directions within a given subspace
and performed a binary search to find the decision boundary along those directions. We
only report distances for decision boundary points that are within the `inf allowable pixel
box, which was never fewer than 40% of the subspace samples (see Appendix C Figure 7).
The box plots in the top left panel of Figure 2 indicate the distribution of decision boundary
distances across the sampled directions and test images. There is no consistent `2-length of
an adversarial attack that makes an perturbation visible to a human observer, although in
general the perturbations were visible after around dimension 20 for the robust network and
beyond dimension 50 for the natural network (see Appendix C Figure 6 for examples). The
bottom left panel of Figure 2 plots a distance coefficient that is defined as the maximum
distance to the decision boundary within an adversarial subspace divided by the longest
vector defining the subspace (which is always associated with the highest dimension number).
For example, a value of 2 would indicate that the largest sampled distance is twice as far away
as the largest found adversarial perturbation. The adversarial trained network consistently
produces smaller coefficients, indicating that the boundary size is less variable between the
subspace axes. Finally, a complete description of the boundary distances is conveyed as
histograms in the rightmost panels, with dimensionality increasing from left to right, then
top to bottom. Together, this provides further evidence that the decision boundary grows
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consistently, without large variations in distance between the found adversarial subspace
axes.
In Figure 3 we visualize two-dimensional cross-sections of the decision surface. The horizontal
axis of each cross-section corresponds to an adversarial subspace perturbation, the black
arrow indicates the farthest decision boundary point, and the vertical axis is found by
orthogonalizing the direction of the farthest decision boundary point with respect to the
adversarial perturbation using one step of the Gram-Schmidt process. The cross-sections
are ordered according to the distance coefficient, which is displayed in the upper-right
corner. We emphasize that because these are cross-sections, they avoid the shortcomings
of typical low-dimensional decision space projections noted in the introduction. Among
the visualizations one can see examples of when the boundary increases smoothly from
one axis to the next, and also the more rare (as indicated by Figure 2) cases when the
boundary protrudes quite far from the origin when between the axes. From this analysis
we conclude that adversarial examples are not isolated or due to sharp protrusions into an
otherwise homogeneously labeled region. Rather, there exists a smooth increase in distance
to the decision boundary from the extreme case of an initially found adversarial example to
semantically differentiated images.

Table 1: Entropy of unique proximal
adversarial labels per class, averaged
across a balanced sampling of cor-
rectly labeled test images.

Label Natural Robust
airplane 1.70 1.81

car 1.01 1.26
bird 1.72 1.59
cat 1.56 1.97
deer 1.41 1.98
dog 1.51 1.82
frog 1.12 1.51
horse 1.63 1.78
ship 1.74 1.39
truck 1.79 1.88

In Figure 4 we measure boundary curvature for several
experimental conditions that vary the type of train-
ing, the location of the boundary, and the subspace
defining vectors. Panels A and B report the mean
curvature (i.e. the mean of the eigenvalues of the
shape operator) per point on the decision boundary.
Both model types have larger boundary curvature
for boundary points separating clean images from
adversarial images (adversarial boundary; Panel B)
when compared to boundary points separating un-
perturbed test set examples (test boundary; Panel
A). We additionally found that adversarial training
tends to linearize the decision boundary, both between
correctly labeled test images and near adversarial ex-
amples. Panel C is a scatter plot of the principal
curvatures (i.e. eigenvalues of the shape operator)
in the high-dimensional input space for all of the
adversarial boundary points. We consistently find
both positive and negative curvature at each bound-
ary point and for both training types. Using the pullback defined in Equation 3, we can
measure the subspace principal curvatures for random (Panel D) and adversarial (Panel E)
subspaces. The curvature within adversarial subspaces is notably larger than in random
subspaces. The difference in curvature values between naturally and adversarially trained
networks is less pronounced when limited to random subspaces – suggesting that much of the
linearization occurring during adversarial training is along directions aligned with adversarial
examples. The found boundary points can be the closest to the clean input even when there
is positive curvature, as long as the radius of curvature is greater than the distance to the
input. However, for naturally trained networks, adversarial boundary points tend to have
more negative mean curvature, both in the full input space (Panel B) and in the adversarial
subspace (Panel E).
In addition to the earlier comparisons between natural and adversarial network training,
we measured the diversity of adversarial classes near test samples. The leftmost subplot of
Figure 5 gives the number of unique adversarial classes found in the first 50 dimensions of
the adversarial subspaces, averaged across correctly labeled test images. The other plots
show the distribution of adversarial classes present in the subspaces with respect to the
origin label. These plots suggest that adversarial training results in an increased diversity of
alternate classes near any given test sample, which we further quantify by measuring the
discrete entropy of each distribution in Table 1. Thus, in addition to (or more probably as a
consequence of) increasing the distance to the boundary, adversarial training further modifies
the density of alternative class labels near test images. While this could be considered a
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Figure 5: Adversarial Class Composition. (Left) Within the adversarial subspaces of
randomly chosen test images we quantified how many unique adversarial classes exist. In
most cases adversarial training increases the diversity of alternate classes close to any test
image. (Right) Each plot shows the distribution of nearby alternate classes for each origin
class with natural and adversarial training. Adversarial training results in a more even
distribution of nearby classes for all categories except bird and ship.
desired effect, as it indicates that the robust network utilizes more of the high-dimensional
space, it also leads to behavior that is less matched to human behavior (something that is
often sought along with adversarial robustness). Indeed, while some categories, like “car”
and “truck” are intuitively adjacent, the distribution of classes generally failed to match any
clear intuitions. For example, observe the lack of symmetry between cars and trucks, or that
adversarial training switches the ”frog“ category’s most frequent alternate class from “bird”
to “cat”.

4 Related Work

Related adversarial subspace studies: The work of Tramèr et al. (2017) is most similar
to our adversarial decomposition, in that they reported the dimensionality of a subspace in
the proximity of a given adversarial perturbation, although they do not comment on the
class, number, or proximity of nearby orthogonal adversarial examples. Work from Ma et al.
(2018) measured the local intrinsic dimensionality (LID) of adversarial subspaces, which
indirectly estimates adversarial subspace dimensionality by measuring the distance from an
adversarial example to a batch of nearest unperturbed dataset examples. This idea has been
extended to algorithms for detecting adversarial examples (Ma et al., 2018; Mao et al., 2020),
although Athalye et al. (2018) generated adversarial examples with indistinguishable LID
scores from natural examples. In terms of understanding ANN classifiers, such an approach
leaves open the questions of how proximal the decision boundary is from input samples
in greater than one dimension or the actual dimensionality of adversarial subspaces. Our
approach is the first to examine the decision boundary where it is nearest to test samples by
defining adversarial subspaces using multiple orthogonal adversarial directions. Our emphasis
on the subspace where the decision boundary is closest to test images is also unique when
compared to work that characterizes the decision boundary in random directions, which will
be considerably farther away from the origin (e.g. Fawzi et al., 2016; Tabacof & Valle, 2016;
Liu et al., 2017; He et al., 2018). Finally, most of these studies perform a clipping operation
after defining or finding the desired directions, which results in a non-orthogonal set (see
Appendix F for a more detailed discussion). We overcome this problem by including the valid
pixel range as inequality constraints in the optimization process. Our work is complementary
to previous studies that investigate the relationship between adversarial robustness and input
dimensionality (Amsaleg et al., 2017; Simon-Gabriel et al., 2019), since the comparative
trends observed between robust and natural networks are relatively unchanged with small
(MNIST) or large (CIFAR) dimensional inputs.
Neuron response curvature: The use of response curvature to understand nonlinear
functions has a long history in neuroscience (for a review, see Gollisch & Herz, 2012) as well
as models of neural computation (e.g. Zetzsche & Krieger, 2001; Rust et al., 2005; Golden
et al., 2016; Cohen et al., 2020). The principal curvature decomposition was previously
employed in this context by Golden et al. (2019), who used it to understand invariance
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and selectivity of individual ANN neurons, and by Paiton et al. (2020), who first found a
relationship between individual neuron response curvature and adversarial robustness. Our
work is distinct from the aforementioned studies in that we investigate the curvature of
the decision boundary, as opposed to that of individual neurons. However, the relationship
between decision boundary curvature and adversarial robustness has been previously studied
by Moosavi-Dezfooli and colleagues, who provided a number of compelling results identifying
“an increasing [adversarial] vulnerability with respect to the curvature of the decision boundary”
(Moosavi-Dezfooli et al., 2018). As we discussed in the previous section, our analysis provides
support for hypotheses that go beyond the correlation between decision boundary curvature
and network robustness, in that we observe different boundary curvature in adversarial
subspaces than random subspaces or the full input space. We additionally note that while
previous work has utilized Riemannian curvature analysis to understand neural networks (viz.
Fawzi et al., 2016; Poole et al., 2016; Moosavi-Dezfooli et al., 2018; 2019; Golden et al., 2019),
each study measures different quantities without complete details of the derived formulas.
We demonstrate in Appendix G that these formulas do not find the correct level-set curvature
of simple manifolds. This together with our rigorous derivation and discussion in Appendix
A constitutes, to the best of our knowledge, the first principled and analytically supported
measurement of decision boundary curvature of trained nonlinear neural networks.

5 Conclusion

There is an ongoing debate on the cause, prevalence, and uniformity of adversarial examples.
Several studies have supported a hypothesis that most adversarial examples inhabit relatively
dense regions of the input space (Goodfellow et al., 2014; Tabacof & Valle, 2016; Moosavi-
Dezfooli et al., 2017a; He et al., 2018). However, other works have suggested that adversarial
examples live in isolated pockets or thin “spikes” of incorrect classification regions (Szegedy
et al., 2014; Yu et al., 2019b). Here we provide quantitative evaluation supporting the
hypothesis that decision boundaries are close to input samples in a large subspace. Additional
work has suggested that it is the linearity of deep neural networks that leads to adversarial
examples (Goodfellow et al., 2014), and that adversarial training leads to a less linear decision
boundary (Madry et al., 2018). However, more recent work has proposed the alternative:
that increasing decision boundary linearity causes increased robustness (Li et al., 2019b;
Moosavi-Dezfooli et al., 2019; Terjék, 2020; Sarkar & Iyengar, 2020). Our curvature analysis
confirms that adversarial training linearizes the boundary, which is also congruent with
hypotheses about the robustness benefits of smoothing the decision surface (Zhang et al., 2019;
Wu et al., 2020). We further compare the boundary curvature in adversarial subspaces and
random subspaces to show an increase in curvature in adversarial subspaces for both training
methods. Since we do not report the causal relationship between adversarial directions and
boundary curvature, our results have no impact on hypotheses for adversarial susceptibility
due to overfitting (Tanay & Griffin, 2016) or the perceptual quality of adversarial features
(Ilyas et al., 2019), although we see this as an interesting future direction of study.
Adversarial subspaces allow for a quantitative description of the nonlinear geometry and
class composition of the network decision boundary in the subspace spanned by its most
susceptible perturbation directions. They also assist in explaining the prevalence of adversarial
examples as well as the effects of adversarial training. Understanding this space better can
improve neural network performance with semi-supervised relabeling (Benato et al., 2018),
architecture design (Rauber et al., 2018), and adversarial robustness (Tramèr et al., 2017;
Moosavi-Dezfooli et al., 2019). Importantly, we also provide a quantitative and falsifiable
interpretability approach for understanding ANN decisions (Ribeiro et al., 2016; Vlassopoulos
et al., 2020), which is a necessary prerequisite for the technology to be applied to many
industries (Doshi-Velez & Kim, 2017; Leavitt & Morcos, 2020). We have identified an
interesting avenue for future work in performing a large-scale analysis of the adversarial
subspaces of various neural network architectures, as well as estimating decision boundary
geometry of non-smooth (e.g. ReLU or stochastic, Li et al., 2019a; Dapello et al., 2020) neural
networks (which requires adding a costly Hessian approximation step (Moosavi-Dezfooli
et al., 2019)).

9



Under review as a conference paper at ICLR 2022

Author Contributions

Acknowledgments

10



Under review as a conference paper at ICLR 2022

References
Laurent Amsaleg, James Bailey, Dominique Barbe, Sarah Erfani, Michael E Houle, Vinh

Nguyen, and Miloš Radovanović. The vulnerability of learning to adversarial perturbation
increases with intrinsic dimensionality. In 2017 IEEE Workshop on Information Forensics
and Security (WIFS), pp. 1–6. IEEE, 2017.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 274–283. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/athalye18a.html.

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen,
and Klaus-Robert Müller. How to explain individual classification decisions. The Journal
of Machine Learning Research, JMLR, 11:1803–1831, 2010.

Barbara Caroline Benato, Alexandru Cristian Telea, and Alexandre Xavier Falcão. Semi-
supervised learning with interactive label propagation guided by feature space projections.
In 2018 31st Conference on Graphics, Patterns and Images, SIBGRAPI, pp. 392–399.
IEEE, 2018.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time.
In Joint European conference on machine learning and knowledge discovery in databases,
pp. 387–402. Springer, 2013.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In 2017 IEEE symposium on security and privacy, pp. 39–57. IEEE, 2017.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-
net attacks to deep neural networks via adversarial examples. In Thirty-second AAAI
conference on artificial intelligence, 2018.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289,
2015.

Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Separability and geometry
of object manifolds in deep neural networks. Nature communications, 11(1):1–13, 2020.

Joel Dapello, Tiago Marques, Martin Schrimpf, Franziska Geiger, David D Cox, and James J
DiCarlo. Simulating a primary visual cortex at the front of cnns improves robustness to
image perturbations. BioRxiv, 2020.

Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Mma training:
Direct input space margin maximization through adversarial training. In International
Conference on Learning Representations, ICLR, 2020.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608, 2017.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of
classifiers: from adversarial to random noise. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
NeurIPS, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.
cc/paper/2016/file/7ce3284b743aefde80ffd9aec500e085-Paper.pdf.

Raphael Féraud and Fabrice Clérot. A methodology to explain neural network classification.
Neural networks, 15(2):237–246, 2002.

Chris Finlay, Aram-Alexandre Pooladian, and Adam Oberman. The logbarrier adversarial
attack: making effective use of decision boundary information. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4862–4870, 2019.

11

https://proceedings.mlr.press/v80/athalye18a.html
https://proceedings.neurips.cc/paper/2016/file/7ce3284b743aefde80ffd9aec500e085-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/7ce3284b743aefde80ffd9aec500e085-Paper.pdf


Under review as a conference paper at ICLR 2022

J R Golden, K P Vilankar, M C K Wu, and D J Field. Conjectures regarding the nonlinear
geometry of visual neurons. Vision research, 120:74–92, 2016.

James R Golden, Kedarnath P Vilankar, and David J Field. Selective and invariant features
of neural response surfaces measured with principal curvature. bioRxiv, 2019. URL
https://doi.org/10.1101/2019.12.26.888933.

Polina Golland. Discriminative direction for kernel classifiers. In Advances in neural
information processing systems, NeurIPS, volume 14, pp. 745–752, 2001.

Tim Gollisch and Andreas VM Herz. The iso-response method: measuring neuronal stimulus
integration with closed-loop experiments. Frontiers in neural circuits, 6:104, 2012.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering
the limits of adversarial training against norm-bounded adversarial examples. arXiv
preprint arXiv:2010.03593, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, CVPR, pp. 770–778, 2016.

Warren He, Bo Li, and Dawn Song. Decision boundary analysis of adversarial examples. In
International Conference on Learning Representations, ICLR, 2018.

Andrew Ilyas, Shibani Santurkar, Logan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features. In Advances in neural information
processing systems, NeurIPS, volume 32, 2019.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009. URL https://www.cs.toronto.edu/
~kriz/cifar.html.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale.
In International Conference on Learning Representations, ICLR, 2017.

Matthew L Leavitt and Ari Morcos. Towards falsifiable interpretability research. arXiv
preprint arXiv:2010.12016, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

John M. Lee. Introduction to Smooth Manifolds. Number 218 in Graduate Texts in
Mathematics. Springer, 2 edition, 2013. ISBN 978-1-4419-9981-8 978-1-4419-9982-5.

John M. Lee. Introduction to Riemannian Manifolds. Springer International Publishing, 2
edition, 2018. ISBN 978-3-319-91754-2.

Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Certified adversarial robustness
with additive noise. Advances in Neural Information Processing Systems, 32:9464–9474,
2019a.

Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B Grosse, and Jörn-Henrik
Jacobsen. Preventing gradient attenuation in lipschitz constrained convolutional networks.
Advances in neural information processing systems, NeurIPS, 32:15390–15402, 2019b.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial
examples and black-box attacks. In International Conference on Learning Representations,
ICLR, 2017.

12

https://doi.org/10.1101/2019.12.26.888933
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html


Under review as a conference paper at ICLR 2022

Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant
Schoenebeck, Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial
subspaces using local intrinsic dimensionality. In International Conference on Learning
Representations, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In International
Conference on Learning Representations, ICLR, 2018.

Jan R. Magnus and Heinz Neudecker. Matrix Differential Calculus with Applications in
Statistics and Econometrics. John Wiley, 1999. ISBN 978-0-471-98632-4 978-0-471-98633-1.

Xiaofeng Mao, Yuefeng Chen, Yuhong Li, Yuan He, and Hui Xue. Learning to characterize
adversarial subspaces. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2438–2442, 2020. doi: 10.1109/ICASSP40776.
2020.9052933.

Seyed-Mohsen Moosavi-Dezfooli. Geometry of adversarial robustness of deep networks:
methods and applications. PhD thesis, EPFL, 2019. URL https://infoscience.epfl.
ch/record/271933.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Univer-
sal adversarial perturbations. In Proceedings of the IEEE conference on computer vision
and pattern recognition, CVPR, pp. 1765–1773, 2017a.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard, and Stefano
Soatto. Analysis of universal adversarial perturbations. ArXiv e-prints, pp. arXiv–1705,
2017b.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard, and Stefano
Soatto. Robustness of classifiers to universal perturbations: A geometric perspective. In
International Conference on Learning Representations, ICLR, 2018.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard.
Robustness via curvature regularization, and vice versa. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, pp. 9078–9086, 2019.

Mervin E. Muller. A note on a method for generating points uniformly on n-dimensional
spheres. Commun. ACM, 2(4):19–20, April 1959. ISSN 0001-0782. doi: 10.1145/377939.
377946. URL https://doi.org/10.1145/377939.377946.

Dylan M Paiton, Charles G Frye, Sheng Y Lundquist, Joel D Bowen, Ryan Zarcone, and
Bruno A Olshausen. Selectivity and robustness of sparse coding networks. Journal of
Vision, 20(12):10–10, 2020.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.
Exponential expressivity in deep neural networks through transient chaos. Advances in
neural information processing systems, 29:3360–3368, 2016.

Paulo E Rauber, Samuel G Fadel, Alexandre X Falcao, and Alexandru C Telea. Visualizing
the hidden activity of artificial neural networks. IEEE transactions on visualization and
computer graphics, 23(1):101–110, 2016.

Paulo E Rauber, Alexandre X Falcao, and Alexandru C Telea. Projections as visual aids for
classification system design. Information Visualization, 17(4):282–305, 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?” explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 1135–1144, 2016.

Francisco Rodrigues, Mateus Espadoto, Roberto Hirata, and Alexandru C Telea. Constructing
and visualizing high-quality classifier decision boundary maps. Information, 10(9):280,
2019.

13

https://infoscience.epfl.ch/record/271933
https://infoscience.epfl.ch/record/271933
https://doi.org/10.1145/377939.377946


Under review as a conference paper at ICLR 2022

Nicole C Rust, Odelia Schwartz, J Anthony Movshon, and Eero P Simoncelli. Spatiotemporal
elements of macaque v1 receptive fields. Neuron, 46(6):945–956, 2005.

Anindya Sarkar and Raghu Iyengar. Enforcing linearity in dnn succours robustness and
adversarial image generation. In Igor Farkaš, Paolo Masulli, and Stefan Wermter (eds.),
Artificial Neural Networks and Machine Learning – ICANN 2020, pp. 52–64, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-61609-0.

Carl-Johann Simon-Gabriel, Yann Ollivier, Leon Bottou, Bernhard Schölkopf, and David
Lopez-Paz. First-order adversarial vulnerability of neural networks and input dimension.
In International Conference on Machine Learning, pp. 5809–5817. PMLR, 2019.

Grzegorz Swirszcz, Brendan O’Donoghue, and Pushmeet Kohli. Visualizations of decision
regions in the presence of adversarial examples. In ICLR Debugging Machine Learning
Models Workshop, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In 2nd International
Conference on Learning Representations, ICLR, 2014. URL https://openreview.net/
forum?id=kklr_MTHMRQjG.

Pedro Tabacof and Eduardo Valle. Exploring the space of adversarial images. In 2016
International Joint Conference on Neural Networks, IJCNN, pp. 426–433. IEEE, 2016.

Thomas Tanay and Lewis Griffin. A boundary tilting persepective on the phenomenon of
adversarial examples. arXiv preprint arXiv:1608.07690, 2016.

Dávid Terjék. Adversarial lipschitz regularization. In International Conference on Learning
Representations, ICLR, 2020.

Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. The
space of transferable adversarial examples. arXiv preprint arXiv:1704.03453, 2017.

Georgios Vlassopoulos, Tim van Erven, Henry Brighton, and Vlado Menkovski. Explaining
predictions by approximating the local decision boundary. arXiv preprint arXiv:2006.07985,
2020.

Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical programming,
106(1):25–57, 2006.

David Warde-Farley and Ian J Goodfellow. Adversarial perturbations of deep neural net-
works. In Tamir Hazan, George Papandreou, and Daniel Tarlow (eds.), Perturbations,
Optimization, and Statistics, pp. 311. MIT Press, 2016.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust
generalization. Advances in Neural Information Processing Systems, 33, 2020.

Fuxun Yu, Zhuwei Qin, Chenchen Liu, Liang Zhao, Yanzhi Wang, and Xiang Chen. In-
terpreting and evaluating neural network robustness. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 4199–4205.
International Joint Conferences on Artificial Intelligence Organization, 7 2019a. doi:
10.24963/ijcai.2019/583. URL https://doi.org/10.24963/ijcai.2019/583.

Tao Yu, Shengyuan Hu, Chuan Guo, Wei-Lun Chao, and Kilian Q Weinberger. A new
defense against adversarial images: Turning a weakness into a strength. In Advances in
Neural Information Processing Systems, NeurIPS, volume 32, 2019b.

Christoph Zetzsche and Erhardt Barth. Image surface predicates and the neural encoding
of two-dimensional signal variations. In Bernice E. Rogowitz and Jan P. Allebach (eds.),
Human Vision and Electronic Imaging: Models, Methods, and Applications, volume 1249,
pp. 209–216. International Society for Optics and Photonics, SPIE-Intl Soc Optical Eng,
oct 1990. doi: 10.1117/12.19667. URL 10.1117/12.19667">http://dx.doi.org/10.
1117/12.19667.

14

https://openreview.net/forum?id=kklr_MTHMRQjG
https://openreview.net/forum?id=kklr_MTHMRQjG
https://doi.org/10.24963/ijcai.2019/583
10.1117/12.19667">http://dx.doi.org/10.1117/12.19667
10.1117/12.19667">http://dx.doi.org/10.1117/12.19667


Under review as a conference paper at ICLR 2022

Christoph Zetzsche and Gerhard Krieger. Nonlinear mechanisms and higher-order statistics
in biological vision and electronic image processing: review and perspectives. Journal of
Electronic Imaging, 10(1):56–100, 2001.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jor-
dan. Theoretically principled trade-off between robustness and accuracy. In International
Conference on Machine Learning, pp. 7472–7482. PMLR, 2019.

15



Under review as a conference paper at ICLR 2022

A Boundary curvature analysis 16

B Dataset and models 21

C Additional CIFAR-10 results 21

D Additional MNIST results 24

E Seed consistency 27

F Comparisons to related work: Orthogonality and clipping 28

G Comparisons to related work: Decision boundary curvature 30

A Boundary curvature analysis

The following definitions are common. Our notation follows Lee (2013; 2018) for differential
geometry, and Magnus & Neudecker (1999) for linear algebra.

A.1 Introduction

In order to derive our main curvature expressions for a graph submanifold, we first introduce
some notation and recall some concepts.

Tangent Spaces If M is an n-dimensional smooth manifold then the tangent space at
p ∈M is a vector space TpM of derivations at p, which is isometric to Rn. In particular, TpM
is the set of directional derivative operators acting on the smooth real functions f : M → R.

The disjoint union of all of the tangent spaces is the tangent bundle TM def=
{{p} × TpM | p ∈M}. If we equip M with a smooth, bilinear, positive definite, sym-
metric form g : TM × TM → R then (M, g) is said to be a Riemannian manifold and g the
Riemannian metric tensor.
When it is unambiguous, denote by Γ(E) the smooth mappingsM → E (for some topological
space E). Most often we will refer to X(M) def= Γ(TM), and represent elements of X(M)
with the letters X,Y, Z.

Differentials If M and N are manifolds and F : M → N is differentiable, then the
differential of F at p ∈ M is the linear mapping denoted dFp : TpM → TpN , where the
action on tangent vectors is defined by

∀p∈M∀v∈TpM∀f∈C1(N) : dFp(v)f = v(f ◦ F )(p).

That is, the rate of change of the function f ◦ F in the direction v ∈ TpM at the point p.
As is common practice, we often omit the p subscripts for clarity.
The linear operator df is a linear functional when N in the above definition is R, and at
each p ∈M there exists a vector grad fp ∈ Tp. So that

∀p∈M∀v∈TpM : dfp(v) = g(grad fp, v),

and grad f ∈ X(M) is the associated vector field.

Connections A connection is an operator ∆: X(M) × X(M) → X(M), linear in its
first argument, and satisfying a product rule in its second. Surprisingly, a connection
uniquely defines a connection in each tensor bundle,3 (which we overload with ∆) (Lee, 2018,

3Including the (0, 0)-tensor bundle, that is, the smooth real functions on M .
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Prop. 4.15). Importantly for us, we have ∆

Xf = Xf for all X ∈ X(M) (for any connection).4
A Riemannian manifold always posesses a Levi–Cevita connection (Lee, 2018, §5), denoted
by ∇, which is the unique connection satisfying

∀X,Y,Z∈X(M) : ∇Xg(Y, Z) = g(∇XY,Z) + g(Y,∇XZ).

To f ∈ C2(M) we associate the Hessian operator ∇2f , which is a symmetric (0, 2)-tensor
field (Lee, 2018, Ex. 4.22) with ∇2f(X,Y ) def= ∇X df(Y ) for X,Y ∈ X(M). We have (via
Lee, 2018, Prop. 4.21)

∀X,Y ∈X(M) : ∇X df(Y ) = ∇X(∇Y f)−∇(∇XY )f = X(Y f)− (∇XY )f. (4)

Using the compatibility of ∇ with the metric we arrive at the following expression for the
Hessian, which will be useful later

∇2f(X,Y ) (4)= X(Y f)− (∇XY )f
= Xg(grad f, Y )︸ ︷︷ ︸
∇Xg(grad f,Y )

−g(grad f,∇XY )

= g(∇X grad f, Y ) + g(grad f,∇XY )− g(grad f,∇XY )
= g(∇X grad f, Y ). (5)

A.1.1 Submanifolds

If (M, g), (M̃, g̃) are two Riemanian manifolds with M ⊆ M̃ , then an injection ι : M ↪→ M̃
is called an inclusion mapping. If the inclusion is a smooth isometry, that is

∀u,v∈TM : g(u, v) = g̃(dι(u),dι(v)),

equivalently, g = ι∗g̃, then M is called a Riemanian submanifold of M̃ .
Using the inclusion map differential, we embed TM in TM̃ . If M , M̃ are of dimensions
m < n, then TpM occupies an m dimensional subspace of TpM̃ for each p ∈M . The normal
bundle is formed from the orthogonal compliment of TpM at each p ∈M , and is defined in
a similar way to the tangent bundle, denoted NM and having a dimension of n−m. For
vectors v ∈ TM̃ we have the decomposition v = v

⊥

+ v⊥ with v

⊥

∈ TM and v⊥ ∈ NM .
Some care must be taken when taking covariant derivatives in TM with the ambient
connection, formally

∀X,Y ∈TM : ∇̃XY def= ∇̃dι(X)dι(Y ),

where the overlines denote arbitrary smooth extensions of dι(X) and dι(Y ) to open neigh-
bourhoods of M in M̃ .

Second Fundamental Form Let M ⊆ M̃ be an embedded sumbanifold. The second
fundamental form is the (bilinear) mapping II : X(M)× X(M)→ Γ(NM) with II(X,Y ) def=(
∇̃XY

)⊥. If we equipM with a normal field N ∈ Γ(NM), then the scalar second fundamental
form is

IIN (X,Y ) def= g̃(N, II(X,Y )).

For the remainder we assume N is fixed. The shape operator s : X(M) → X(M) is the
endomorphism obtained from IIN that satisfifes

∀X,Y ∈X(M) : IIN (X,Y ) = g(sX, Y ), (6)

that is, by raising an index.
4That is, the action of a vector field through the connection agrees with the ordinary directional

derivative.
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Curvature Let s be the shape operator associated to a normal field on an embedded
submanifold M of dimension n. Then at p ∈ M , the (real) eigenvalues of s are called
principal curvatures and the eigenvectors are called principal directions at p. The Gaussian
curvature is the product of the principal curvatures, det(s), and the mean curvature is their
average, 1

n tr(s).

Assume (M, g) and (M̃, g̃) are Riemannian manifolds with an inclusion mapping ι : M ↪→ M̃
and M has the submanifold structure. Suppose M̃ posesses a shape operator (or any other
linear endomorphism) s̃ : TM̃ → TM̃ . The submanifold structure then gives us an operator
ι∗s̃ : TM → TM , the pullback of s by ι, via

∀X∈TM : ι∗sX = dι−1sdι(X).
Remark 1 (Euclidean subspace). We consider the special case of the Riemannian manifold
Rm. Suppose P : Rn → Rm is orthogonal (n ≤ m) and let s : Rm → Rm be a linear operator.
Then PT : Rn ↪→ Rm is an inclusion map and the subspace pullback of s to Rn is(

PT)∗s = PsPT.

We refer to the curvature quantities and directions of
(
PT)∗s with the suspace prefix. That

is, subspace principal curvature, subspace Gaussian curvature, and so on.

A.2 Hypersurfaces

Let (M, g) be an embedded submanifold of (M̃, g̃). Suppose F : U ⊆ M̃ → R is a local
defining function for M , that is, M ∩ U = F−1({0}) for an open U ⊆M . Choose arbitrary
X,Y ∈ X(M). From the connection product rule (Lee, 2018, p. 89)

∇̃X
(

1
|gradF | · gradF

)
= 1
|gradF | ∇̃X gradF +

(
X 1
|gradF |

)
· gradF.

Whence

g̃
(
∇̃XN,Y

)
=
g̃
(
∇̃X gradF, Y

)
|gradF | +

(
X

1
|gradF |

)
g̃(gradF, Y )︸ ︷︷ ︸

0

=
g̃
(
∇̃X gradF, Y

)
|gradF | . (7)

The zero in the underbrace follows because gradF ∈ NM and Y ∈ TM . The Weingarten
equation (Lee, 2018, Thm. 8.13(c)) yields sX = −∇̃XN , giving us

−IIN (X,Y ) (6)= −g(sX, Y ) = g̃
(
∇̃XN,Y

) (7)=
g̃
(
∇̃X gradF, Y

)
|gradF |

(5)= ∇̃
2F (X,Y )
|gradF | . (8)

A.2.1 The Curvature of a Graph Manifold

The notation and conventions of this section closely follow (Lee, 2018, §8). Let M be the
graph of a smooth function f : Rn → R, that is, M = {(x, f(x)) | x ∈ Rn}. Since f is smooth
M is indeed a manifold (Lee, 2013, Ex. 1.30, p. 20). We regard (M, g) as a Riemannian
submanifold of (Rn+1, 〈·, ·〉), with the inclusion map ι : M ↪→ Rn+1.

The function F : Rn+1 → R is a global defining function for M with F (x, t) def= f(x) − t.
Denote by ∇f the vector of partial derivatives of f , and by Hf and HF , the matrices of
second order partial derivatives of F and f , all with respect to usual coordinate frames, (xi),
on Rn and Rn+1. Then

∀X,Y ∈TM̃ : ∇2F (X,Y ) = 〈HF X,Y 〉.

At p ∈M the differential dιp has the Jacobian matrix(
Id ∇f(x1(p), . . . , xn(p))

)T
.
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We commit the mild sin of identifying dιp with its Jacobian and X,Y ∈ TM̃ with their
parameterizations under the coordinate frame, so that we may use the notation of matrix
multiplication.
In dropping the p-subscripts, the left inverse, (dι)−1, is has the parameterization(

(dι)T(dι)
)−1(dι)T =

(
Id +∇f ∇fT)−1(dι)T

.

Thus

(dι)T HF (dι) =
(

Id
∇fT

)T(HF 0
0 0

)(
Id
∇fT

)
= Hf ,

whence

(dι)−1 HF (dι) =
(
Id +∇f ∇fT)−1(dι)T HF (dι)

=
(
Id +∇f ∇fT)−1 Hf . (9)

We can now compute the shape operator of M associated to the unit normal field
gradF/|gradF |. Pick arbitrary X,Y ∈ TM . From (8) there is

−IIN (X,Y ) · |gradF | (8)= g̃(∇̃X gradF,dι(Y ))
= g
(
dι−1 ◦HF ◦dι(X), Y

)
, (10)

and, using the bilinearity of of g we have

g(sX, Y ) (6)= IIN (X,Y )(10)= −g(dι−1 HF dιX, Y )
|gradF | .

This, together with (9) yields the shape operator:

s = −
(
Id +∇f ∇fT)−1 Hf√

|∇f |2 + 1
. (11)

Whence the Gaussian and mean curvature are the scalar fields

−
det
((

Id +∇f ∇fT)−1 Hf

)(
|∇f |2 + 1

)n
2

and −
tr
((

Id +∇f ∇fT)−1 Hf

)
n
(
|∇f |2 + 1

) 1
2

(12)

respectively.

A.2.2 The Curvature of a Level-Set Manifold

We now consider the case where M is the level-set of a smooth function f : Rn → R so that
for some c ∈ R we have M = {x ∈ Rn | f(x) = c}. The following theorem can be used to
ensure the level-sets of f do indeed posses a manifold structure, which is a simplification of
the constant rank level-set theorem (Lee, 2013, Thm. 5.12) for our setting.
Theorem 1. Let f : Rn → R be a smooth function having constant rank r. Then the
level-sets of f are all smooth manifolds of codimension r.

We use the same construction as Lee (2013, Ex. 1.32, §5) to calculate the Gaussian and
mean curvature at a point (x0, y0) ∈ (Rn−1 × R) ∩M .
From the implicit function theorem (Lee, 2013, Thm. C.40) there are open connected
neighbourhoods U0×V0 ⊆ Rn−1×R with (x0, y0) ∈ U0×V0 and a smooth function g : U0 → V0
so that (U0×V0)∩M is the graph of g. That is, (U0×V0)∩M =

{
(x, g(x))

∣∣ x ∈ U0 ⊆ Rn−1}.
Consequentially the gradient of g has the structure

∀x∈U0 : f(x, g(x)) = c =⇒ D1f(x, g(x)) + D2f(x, g(x))∇g(x) = 0
⇐⇒ ∇g(x) = −[D2f ]−1(x, g(x)) D1f(x, g(x)). (13)
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Let ∂i def= ∂/∂xj and ∂2
ij

def= ∂2/∂xi ∂xj . Then for i, j ∈ [n− 1] and x ∈ U0

∂ig(x) = −(∂nf(x, g(x)))−1
∂if(x, g(x)), (14)

and

∂2
ijg(x) = 1

(∂nf)2

[
∂2
njf + ∂2

nnf∂jg
]
(∂if)− 1

∂nf

[
∂2
ijf + ∂2

njf∂jg
]

= − 1
∂nf

[
∂2
njf + ∂2

nnf∂jg
]
(∂ig)− 1

∂nf

[
∂2
ijf + ∂2

njf∂jg
]

= − 1
∂nf

[
∂2
njf∂ig + ∂2

nnf∂ig∂jg + ∂2
ijf + ∂2

njf∂jg
]

= − 1
∂nf

[
∂2
njf(∂ig + ∂jg) + ∂2

nnf∂ig∂jg + ∂2
ijf
]
, (15)

where every function on the right hand side is evaluated at either the point x or (x, g(x))
(depending on the function).5 If we let ∇̄ def= (∂/∂x1, . . . , ∂/ ∂xn−1)T, and H̄ be, similarly,
the (n−1)×(n−1) matrix of cross-partial derivatives, there are the more compact expressions
for (14) and (15):

∇g = − 1
∂nf
∇̄f,

and

Hg = − 1
∂nf

[(
∇g +∇gT) diag

(
∇̄∂nf

)
+ ∂2

nnf ·
(
∇g∇gT)+ H̄f

]
,

where the sum ∇g + ∇gT is to be interpreted as the matrix of pairwise sums of the
elements of ∇g:

(
∇g +∇gT)

ij

def= ∂g/∂xi + ∂g/∂xj . Then, as in Section A.2.1, F (x) def=
g(x1, . . . , xn−1)− xn is a local defining function for M on (U0 × V0) ∩M . The local graph
parameterization provided by g is φ : U0 →M with φ(x) def= (x, g(x)), and its differential has
the parameterization

dφ = (Id ∇g)T
.

Finally, mutatis mutandis, the shape operator is given by (11) and the Gaussian and mean
curvature can be computed as in (12).
Remark 2 (Numerical considerations). In order to compute the level-set curvature we needed
to apply the implicit function theorem. However, it may be difficult numerically to stabilize
the inverse operation in (13). To remedy this problem, one may apply a change of basis
before computing the quantities (14) and (15). Let B ∈ Rn×n be an orthogonal change of
basis operator. Then we apply all our operations to BTM def=

{
BTx

∣∣ x ∈M}.
Differentiating f̃ def= f ◦BT yields the revised quantities

∀x∈Rn : ∇f̃(x) = B · ∇f(BTx) and Hf̃ |x = BHf |(BTx)B
T.

5This is easy to do at x0 since (x0, g(x0)) = (x0, y0).
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Table 2: Accuracies of CIFAR models at different perturbation lengths

Dimension
ε 1 2 3 4 5 6 7 8 9 10
0 95.25% / 95.25% / 95.25% / 95.25% / 95.25% / 95.25% / 95.25% / 95.25% / 95.25% / 95.25% /

90.83% 90.83% 90.83% 90.83% 90.83% 90.83% 90.83% 90.83% 90.83% 90.83%
0.1 51.43% / 62.86% / 70.48% / 76.2% / 79.06% / 80.01% / 81.92% / 81.92% / 82.87% / 83.82% /

86.29% 90.83% 90.83% 90.83% 90.83% 90.83% 90.83% 90.83% 90.83% 90.83%
0.25 1.91% / 4.76% / 5.72% / 6.67% / 7.62% / 8.57% / 9.52% / 9.52% / 9.52% / 10.48% /

79.93% 89.01% 89.92% 90.83% 90.83% 90.83% 90.83% 90.83% 90.83% 90.83%
0.5 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% /

65.4% 84.47% 86.29% 87.2% 87.2% 87.2% 87.2% 87.2% 87.2% 87.2%
1 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% /

36.33% 54.5% 59.04% 61.76% 65.4% 69.03% 69.94% 70.85% 72.66% 73.57%
2 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% / 0.0% /

2.72% 5.45% 10.9% 12.72% 13.62% 14.53% 15.44% 15.44% 16.35% 17.26%

B Dataset and models

For the adversarial subspace analysis we used two identical ResNet-50 architectures (He
et al., 2016) and two identical WideResNet-70 architectures (Gowal et al., 2020). For each
architecture, one model was trained on the unmodified CIFAR-10 dataset (Krizhevsky &
Hinton, 2009). For the second model we additionally incorporated adversarial examples in
the training process, widely known as adversarial training. A training perturbation size ε of
0.5 was used. To perform the curvature analysis, we used twice-differentiable ELU activation
functions (Clevert et al., 2015) for both models, which had little impact on the clean or
adversarial accuracies.
In the analysis we include 100 CIFAR-10 test images, class-balanced, all unseen during
training, and correctly classified by both models. The optimization algorithm stopped after
finding 50 orthogonal adversarial vectors for all 100 test images. For the curvature analysis
we used a subset of 50 class-balanced images and 10 adversarial directions per image.
Additionally, we only considered one seed per CIFAR-10 model because we found that the
analysis on the MNIST trained models had little variation across seeds (see Appendix E).
The accuracy of both models at different perturbation lengths ε and dimensions is shown in
Table 2. Here, the first line of each row corresponds to the accuracy of the naturally trained
model, whereas the second line is referring to the adversarially trained model.
We repeated many of the experiments on the MNIST dataset (LeCun et al., 1998) and found
largely consistent results (see Appendix D).

C Additional CIFAR-10 results

Here we show additional analysis to complement our findings on the CIFAR-10 dataset.
Figure 6 shows five adversarially perturbed images and their corresponding original image
found for the two ResNet-50 models. We can see that that the perturbation length is
increasing with dimension number. Interestingly, while the adversarial categories may not
be semantically adjacent to the clean classes, the adversarially trained model seems to
require more semantically meaningful perturbations, e.g. the images of boats in the top row,
misclassified as cars, are perturbed to have elements looking like wheels. We can also see
that there is no clear, consistent `2-length of an adversarial attack that makes an image
ambiguous for a human observer. For example, the robust model example in the first (ship)
row of the adversarial 11 column pair has a perturbation length of 1.12 and could be mistaken
as a car on a first glance. In contrast, the robust model example in the fourth (horse) row of
the adversarial 1 column pair is still clearly identifiable as a horse with a larger perturbation
length of 1.2. This illustrates that the direction of the perturbation is as important as the
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airplane dog (0.08) dog (0.76) cat (0.12) dog (1.37) dog (0.14) dog (1.50) deer (0.14) dog (1.59) dog (0.15) dog (1.62)

horse dog (0.12) dog (1.20) dog (0.16) dog (1.92) cat (0.19) dog (2.08) bird (0.20) cat (2.16) cat (0.21) deer (2.26)

frog bird (0.25) dog (1.48) cat (0.38) deer (2.45) bird (0.43) airplane (2.64) cat (0.46) deer (2.76) cat (0.48) bird (2.90)

Adv 1 Adv 11 Adv 21 Adv 31 Adv 41

Figure 6: CIFAR-10 example adversarials. The panels show adversarial examples for
a given input image. Column pairs are sorted by adversarial dimension. Within a pair,
each column includes examples for the natural and robust models, respectively. The labels
below the images indicate the class assigned by the model. The numbers in brackets are the
`2-norms of the respective images.
perturbation magnitude itself, as was previously reported by (Goodfellow et al., 2014; Ilyas
et al., 2019), although assessing the “perceptual distance” is an open area of research.
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Figure 7: Ratio of out of bounds samples. We
uniformly sample the distance to the decision bound-
ary with increasing dimensionality per input image and
adversarial subspace dimension. We report the frac-
tion of directions pointing to out-of-bounds boundaries,
averaged across 100 images.

As was described earlier, we uni-
formly randomly sampled direc-
tions within adversarial subspaces
to measure the distance to the de-
cision boundary. Figure 7 shows
how many of the samples pointed
to decision boundaries that were
outside of the allowed input pixel
bounds.
Figure 8 shows that perturbation
lengths are increasing sublinearly
and monotonically with increasing
number of adversarial dimensions.
For the naturally trained model
there is also a much larger increase
of adversarial dimension with in-
creasing distance to distance to de-
cision boundary. This figure is dif-
ferent from e.g. Figure 2 in that it
displays the lengths of the adver-
sarial subspace axes, not the lengths of the random perturbations within these subspaces.
Note that in the right panel of this figure both models plateau at 50 dimensions because we
stopped the optimizer at this point.
We also provide additional, and more detailed information on the distributions of distances
to the decision boundary of randomly sampled vectors in adversarial subspaces in Figure 9.
Each subplot shows a subspace of increasing dimensionality, ascending left-to-right, then
top-to-bottom. We observe that the variance of the distances to the decision boundary of
randomly sampled vectors is smoothly increasing with dimensionality.
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Figure 8: Perturbation lengths and dimensionality. (left) The subfigure shows the
distribution of the n-th found adversarial perturbations across images. (right) We tested at
distance increments of 0.001 how many adversarial dimensions were found at that distance
per image. The lines represent the means over all test images and the color shaded areas
show the 10th and 90th percentiles.
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Figure 9: Distributions of distances to decision boundary. (A,B) Distributions for
natural model. (C,D) Distributions for adversarially trained model. (A-C) We show the
complete set histograms corresponding to Figure 2 dimensions. (C,D) Additionally, we
provide the mean-normalized histograms to corresponding to the histograms in A and C to
emphasize the smooth increase in variance of distances with increasing dimensionality.
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Figure 10: Distances to the decision boundary. Compare with Figure 2.
Additional model comparison

To show that our findings hold for different models, we present results for two different
architectures: a ResNet-50 (He et al., 2016) and a WideResNet-70-16, of which the latter is
the state-of-the-art adversarially trained network for CIFAR-10 images (Gowal et al., 2020).
Both architectures were trained with and without adversarial perturbations, resulting in 4
models overall. Figures 10 through 14 repeat analysis to compare natural and adversarial
trained models, but instead compare models of different architectures and constant training
procedure.
Figures 10, 11, and 14b show a comparison of the two naturally trained models. These
figures indicate that there is little difference between the two model architectures regarding
distance to the decision boundary and perturbation length over dimensions. Figures 12, 13,
and 14a show a comparison of the two adversarially trained models. Here, the figures show
that perturbation lengths as well as distances to the decision boundary are larger for the
WideResNet-70-16 compared to the ResNet-50. This is expected, as the WideResNet has
higher adversarial accuracy and thus larger perturbations are needed to fool it. At the level
of these aggregate statistics, the hyperparameter differences in adversarial training (Figure
12) have more of an effect than the model architecture differences themselves (Figure 10),
although all differences are much less pronounced than the differences between adversarially
and naturally trained networks (Figure 2).
The box plots depicting the distances to the decision boundary in Figures 10 and 12 show
that, for both architectures, the adversarial subspace is large, continuous, and increases
sublinearly in volume as the dimensionality is increased. The observation that this finding
is agnostic to model architecture is further supported by the similarity in distributions of
samples measuring the distance to decision boundary that can be seen on the right hand
side of the same figures. Thus, the observed trends and conclusions drawn from the analysis
provided in this study hold across architectures.

D Additional MNIST results

We conducted the same experiments described in Section 3 on networks trained with the
MNIST dataset. As a test set we used 500 images (50 per class), unseen in training and
correctly labeled by all investigated models.
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Figure 11: Perturbation lengths and dimensionality. Compare with Figure 8.
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Figure 12: Distances to the decision boundary. Compare with Figure 2.
In Figure 18 we can see that perturbation lengths are much larger for MNIST than for
CIFAR-10, although the relative increase in distances for the robust network is still present.
The optimization was in general more difficult with MNIST, likely due to the fact that the
images all live very close to the allowable input bounds. Specifically, the algorithm found
less than 30 adversarial dimensions for more than 95% of the test images (Figure 22), to be
compared with finding >50 dimensions for 100% of the CIFAR-10 test images.
That it is harder to fool the MNIST model can also be seen in Table 3: the accuracies of
both models are much higher for the same perturbation lengths than the accuracies of the
CIFAR-10 models. For the curvature analysis, on the other hand, we found that the overall
values were larger on CIFAR-10. Additionally, the adversarially trained model had more
decision boundary curvature within adversarial subspaces on MNIST than on CIFAR-10.
We noticed that most of the MNIST adversarials lie in a thin regions between the decision
boundary and the valid pixel box boundary (compare Figure 17 against Figure 3). Figure 15
shows that this leads to large rates of out of bounds samples when measuring the distance
to the decision boundary. For example, 90% of the time the decision boundary is outside the
valid pixel range in the 6 dimensional adversarial subspace of the naturally trained model.

25



Under review as a conference paper at ICLR 2022

5 10 15 20
nth adversarial perturbation

0.5

1

1.5

2

2.5
ad

ve
rs

ar
ia

l v
ec

to
r l

en
gt

h

ResNet-50
WideResNet-70-16

0 2 4
distance to decision boundary

0

5

10

15

20

di
m

en
si

on
 o

f a
dv

er
sa

ri
al

 s
pa

ce

Figure 13: Perturbation lengths and dimensionality. Compare with Figure 8.
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Figure 14: Ratio of out of bounds samples. Compare with Figure 7.

Table 3: Accuracies of MNIST models (seed 0) at different perturbation lengths

Dimension
ε 1 2 3 4 5 6 7 8 9 10
0 98.59% / 98.59% / 98.59% / 98.59% / 98.59% / 98.59% / 98.59% / 98.59% / 98.59% / 98.59% /

98.56% 98.56% 98.56% 98.56% 98.56% 98.56% 98.56% 98.56% 98.56% 98.56%
0.5 90.51% / 97.41% / 98.0% / 98.39% / 98.39% / 98.39% / 98.37% / 98.35% / 98.29% / 98.23% /

97.77% 98.56% 98.56% 98.56% 98.56% 98.56% 98.56% 98.56% 98.56% 98.56%
1 60.53% / 90.31% / 95.83% / 97.01% / 97.4% / 97.58% / 97.94% / 97.86% / 97.69% / 97.51% /

94.03% 98.36% 98.56% 98.56% 98.56% 98.56% 98.56% 98.56% 98.56% 98.56%
2 1.77% / 18.34% / 47.91% / 71.58% / 83.54% / 88.51% / 91.63% / 93.0% / 93.8% / 93.55% /

68.99% 89.3% 95.01% 96.59% 97.57% 97.69% 97.73% 97.72% 98.56% 98.56%
4 0.0% / 0.0% / 0.2% / 4.14% / 15.05% / 26.41% / 32.43% / 38.61% / 37.46% / 32.74% /

0.59% 9.46% 27.99% 46.52% 65.77% 76.32% 82.59% 83.94% 85.42% 80.16%
6 0.0% / 0.0% / 0.0% / 0.39% / 1.98% / 7.86% / 10.45% / 18.94% / 16.48% / 16.55% /

0.0% 0.0% 0.2% 7.69% 24.69% 37.51% 47.63% 48.86% 54.54% 40.74%
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Figure 15: Ratio of out of bounds samples. Compare to Figure 7.
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Figure 16: MNIST distances to the Decision Boundary. We repeated the distance
analysis from Figure 2 on the MNIST dataset Only test images with at least 8 adversarial
dimensions were included in this Figure
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Figure 21: Sampling size in adversarial
subspaces. The line shows the mean running
difference in distance to the decision boundary
means across 100 samples as one increases the
sample size from 5 to 100. The shaded area
depicts the standard deviation from the mean
line.

We trained the natural and robust MNIST
models with five different seeds and ex-
tracted adversarial subspaces for each model
to examine the influence of training seeds
on our results. Figure 22 shows that there
is slight variation in number of adversarial
subspace directions found by the optimizer.
However, the overall trend of bar heights is
similar across seeds and there are no signif-
icant outliers.
To further validate our results, we repeated
the experiment for Figure 16 (measuring
the length of the adversarial vector as
one increases dimensionality on the MNIST
trained networks) across five different seeds
per training type. The results are shown in
Figure 23. The variation across seeds for a
single image is smaller than the variation across images for a single seed, which can be seen
by comparing Figure 23 to Figure 16. In general, we also found that the results and trends
were consistent between MNIST and CIFAR-10 networks (with differences noted in Appendix
D). Thus, we considered one seed per CIFAR-10 model as sufficiently representative.
We also investigated the influence of random number generation relevant for sampling within
adversarial subspaces. As an empirical test, we varied the number of samples and measured
the change in mean distance to the decision boundary as one increases the number of samples.
This was repeated for 100 different 50-dimensional subspaces (i.e. subspaces for 100 different
test images) with the naturally trained CIFAR network. Figure 21 shows that the absolute
change decreases steadily to an average l2 distance of 0.004. Thus, the mean variation from
100 samples is much smaller than the general distance scales we are measuring throughout
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Figure 17: MNIST boundary visualizations. This figure is the MNIST version of Figure
3. Note that for MNIST, the decision boundary lies outside the valid pixel range more often
than for CIFAR.
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Figure 18: MNIST perturbation lengths and dimensions. Compare with Figure 8.
the paper. We also measured the variation in distances across random seeds for the sampling
process. To do this, we used 10 different seeds to generate 100 samples in a 50-dimensional
subspace corresponding to one test image. For each seed, we compute a mean distance,
averaged across 100 samples, giving us 10 values. The mean distance across seeds was 0.0933,
and the standard deviation was 0.0007. The standard deviation is less than 1% of the mean
and thus sufficiently small to consider an estimate with 100 samples as representative.

F Comparisons to related work: Orthogonality and clipping

One obstacle in finding proper adversarial subspaces spanned by orthogonal vectors is assuring
that perturbations do not cause pixel values to be out of the valid input boundaries [0, 1].
We noticed that many studies solve this problem by element wise pixel clipping. Here, we
show that pixel clipping is problematic when talking about the dimensionality of subspaces.
Element wise pixel clipping is a non-linear operation performed on a vector and can therefore
change its direction in the input space and its relative angle to other, fixed vectors.
To show that clipping has a non-negligible effect, we investigated relative angles of basis
vectors that span (sub-) spaces for 100 MNIST test images relevant for two studies.
First, in their work, Tramèr et al. (2017) propose the GAAS method. GAAS estimates the
dimensionality of adversarial subspaces by defining an orthogonal set of vectors aligned with
an attack vector to an input image. However, before passing the orthogonal basis vectors
to the model, a clipping operation is performed. Figure 24 (left) shows that this clipping
operation causes the input vectors to be non-orthogonal – orthogonality would constitute an
angle of 90° or π

2 . In fact, for the 100 sample images we tested, there is not a single vector
pair that is completely orthogonal. The author’s conclusions regarding the dimensionality
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Figure 19: MNIST example adversarials. Compare to Figure 6.

Figure 20: MNIST decision boundary curvature. Compare with Figure 4
of adversarial subspaces and transferable subspaces are therefore grounded on ill-defined
subspaces, spanned by non-orthogonal vectors.
In another study, He et al. (2018) estimate the distance to the decision boundary for the
complete input space of MNIST. For that, a basis of 784 vectors, spanning the whole input
space, is randomly generated. Again, the inputs are clipped before they are passed to
the model leading to the same problem as described earlier. And as before, there are no
orthogonal vector pairs, and angels are accumulated at much smaller values than π

2 as can be
seen in Figure 24 (right). We therefore note that it is not guaranteed that the input space is
evenly covered and that edges of the 784-dimensional hypercube (in the case of MNIST) are
arguably overrepresented.

29



Under review as a conference paper at ICLR 2022

0 10 20 30
found dimensions

0

200

400

n 
sa

m
pl

es

Natural models
seed

1
2
3
4
5

0 10 20 30
found dimensions

Robust models
seed

1
2
3
4
5

Figure 22: Optimization consistency on MNIST. The bars show number of samples
for which at least n dimensions were found during optimization. Different colors indicate
distinct seeds for model training.
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Figure 23: Distance consistency on MNIST. Box plots show the length of the adversarial
vector as one increases dimensionality. The data is computed for a single image, where the
variation comes from five different seeds used to initialize the networks before training. Note
that the variation is much smaller than the variation across images for a single seed, as can
be seen in Figure 16.
G Comparisons to related work: Decision boundary curvature

Table 4: Decision boundary curvature formulas present in the literature for a decision function
Fij : Rn → R. The generating matrix column refers to the matrix used to yield eigenvalues
for the principle curvatures, and is roughly comparable to the shape operator.

Reference Derivation Generating matrix P Dimension

Poole et al., 2016 None P HFij
P

|∇Fij |2
Id−∇Fij∇FT

ij

|∇Fij |2
n× n

Moosavi-Dezfooli et al., 2018 None P HFij P Not given n× n
Moosavi-Dezfooli et al., 2019 None Crossenetropy Hessian - n× n
Moosavi-Dezfooli, 2019, p. 90 None P HFij

P

|∇Fij |2
Id−∇Fij∇FT

ij n× n

This work Appendix A (11) using (15) - n− 1× n− 1

This section provides a detailed comparison of our analysis against previously published
works on the principal curvature analysis applied to decision boundaries. We include table 4
for a quick summary.
The use of differential geometry to understand the non-linear response properties of model
neurons has a long history in computational neuroscience, with early contributions made by
Zetzsche & Barth (1990). More recently, several works have specifically used Reimannian
geometry to measure the principal curvature of response manifolds (Fawzi et al., 2016; Poole
et al., 2016; Moosavi-Dezfooli et al., 2018; 2019; Golden et al., 2019). As we discuss in
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Figure 24: Clipping causes non-orthogonality. The histograms show angles between
vectors that define “subspaces” in the GAAS method proposed by Tramèr et al. (2017) (left)
and distance to decision boundary estimations by He et al. (2018).
Appendix A, certain smoothness assumptions are required for such an analysis. Our present
study, as well Poole et al. (2016) and Golden et al. (2019), avoid this problem by using
twice-differentiable activation functions. In the case of Golden et al. (2019), this was done
without retraining the network, while Poole et al. (2016) used nets with random weights.
We instead trained the twice-differentiable networks from scratch. Moosavi-Dezfooli et al.
used a finite-difference approximation to avoid the problem (described in Moosavi-Dezfooli
et al., 2019, , eq 1 and surrounding discussion). Another high-level difference, discussed in
detail in Appendix A, is the choice of measuring the response graph curvature (which is n
dimensional for n dimensional inputs) or the level-set curvature (which is n− 1 dimensional
for n dimensional inputs) of a given function. This difference was discussed in (Golden
et al., 2019, , at the end of Section 4 and in Figure 4), although their technical derivations
are limited only to the graph formulation. The other studies did not explicitly discuss this
difference. Importantly, though, the decision boundary is the level-set of the logit difference
function, as defined in Equation 2.
Several works from Moosavi-Dezfooli and colleagues explore decision boundary curvature and
its relationship to adversarial robustness (Fawzi et al., 2016; Moosavi-Dezfooli et al., 2017b;
2018; 2019; Moosavi-Dezfooli, 2019). Within these works they provide an inspired perspective
on explaining adversarial robustness in terms of the curvature of decision boundaries. Almost
all of the work is with respect to universal adversarial perturbations, which share a common
subspace (Moosavi-Dezfooli et al., 2017a), although Fawzi et al. (2016) alternatively look
at random subspaces. Their universal adversarial perturbation subspaces differ from our
adversarial subspaces in that theirs are defined by orthogonal directions that transfer well
across inputs instead of those that point to the nearest decision boundary for a given input.
Despite these differences, the stated quantity of interest, that is, the principle curvatures at
a point on the decision boundary is the same in their work as well as ours.
However, each of these papers have a slightly different analytic formula for estimating the
curvature of the boundary within a given subspace (Fawzi et al., 2016; Moosavi-Dezfooli
et al., 2017b), or in the high-dimensional input space (Moosavi-Dezfooli et al., 2018; 2019).
We found the most complete description to be given in Moosavi-Dezfooli (2019), which
summarizes a majority of the earlier work and applies the decision boundary curvature
analysis to both subspaces and the high-dimensional input space. Therein, Moosavi-Dezfooli
(2019, Section. 7.4) state the following formula, without derivation, for the shape operator
(in the notation of Section 2.2):

s = 1
|∇Fij(x)|2

P HFij
P,

where HFij
is the Hessian of the boundary function, Fij(x) def= fi(x) − fj(x), and P def=

Id−∇Fij(x)∇Fij(x)T is described as a projection operator. This formulation is similar to
that used by (Poole et al., 2016), with the only difference being that they use normalized
gradients in the projection operator.
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Table 5: Calculations from alternative attempts find incorrect principal curvature for a
level-set on a sphere of varying dimensionality and radius. The quantity reported is the
mean of the absolute difference between each computed principal curvature and the inverse
radius.

dimensionality-radius Moosavi et al. Poole et al. Ours
02 - 00.1 7.6e-01 5.0e+00 0.0e+00
02 - 01.0 2.4e+01 5.0e-01 0.0e+00
02 - 10.0 3.1e+04 5.0e-02 1.3e-17
05 - 00.1 7.2e-01 2.0e+00 2.2e-15
05 - 01.0 7.2e+01 2.0e-01 2.2e-16
05 - 10.0 7.9e+04 2.0e-02 3.8e-17
10 - 00.1 6.4e-01 1.0e+00 2.3e-15
10 - 01.0 1.5e+02 1.0e-01 2.2e-16
10 - 10.0 1.5e+05 1.0e-02 4.4e-17

Table 6: Calculations from alternative attempts find incorrect Gaussian curvature (i.e. the
product of the principal curvatures) for a Hyperboloid graph.

Analysis type Absolute error
Moosavi et al. 6.8e+00
Poole et al. 1.4e-03
Golden et al. 4.1e-10

Ours 4.1e-10

Our formulation differs from the above in several ways, the most important of which is that
they claim to transform the Hessian by projecting it onto the tangent space (as written
above), while we apply the implicit function theorem to parameterize the decision boundary
as the graph of a function (see Appendix Section A.2.2, Equation 13). For computing the
curvature of the decision boundary, exclusively projecting the Hessian is not going to result in
the correct calculations, since for the decision boundary (as defined in Section 2.2, Equation
2) you need a different normal than for the graph of the response function. More specifically,
the normal used for computing the shape operator of the graph surface is different from that
for computing the shape operator of the decision boundary. The latter has to be exclusively
in the pixel space, while the former always has a component in the direction of the function
response. Projecting the Hessian can restrict the computed curvatures in a certain subspace
of directions, but it cannot change the computed curvatures in said subspace. Another
important difference is their projection operator is computed directly from the gradient, and
thus has a dimensionality equal to the input dimensionality. To calculate the curvature of a
decision boundary, one needs a level-set formulation, which should have one fewer dimensions
than the input space.
The consequence of this difference can be made clear when looking at the curvature of an
n-dimensional sphere, as defined by the quadratic function:

F (x) = xTHx,

where x is the input point vector and H is the sphere’s Hessian (i.e. an identity matrix in
Rn×n). Given this function, the principal curvatures of the level-set at some radius, r, are
all known to be (up to a sign change) 1

r . However, we show in table 5 that the formulations
provided by Moosavi-Dezfooli (2019) and Poole et al. (2016) produced curvatures that are
often several orders of magnitude off from the correct values the case of high-dimensional
inputs. Due to the dimensionality issue above, we computed the average error across each
principal curvature, regardless of the number of curvatures reported, as they should all equal
1
r .
We additionally tested a graph formulation (defined in Section A.2.1), using a one-sheeted
hyperboloid. This formulation lives in the full space, so there is a principal curvature per
input dimension. However, we show similar errors in in Table 6. Note, that the formulation
from (Golden et al., 2019) matched our own, although they did not provide an equation
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for mapping this to the level-set curvature. Our own implementations were correct with
high precision on these and other experiments with known functions, all of which can be
replicated from our provided code. Finally, while the subspace projection methods proposed
by (Fawzi et al., 2016; Moosavi-Dezfooli et al., 2017b) potentially provide metrics related to
curvature in the subspaces they defined, we chose to instead derive our pullback method
described in Equation 3 from primary sources, as explained in Appendix A.
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