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Abstract
This paper addresses the problem of quantifying
diversity for a set of objects. First, we conduct
a systematic review of existing diversity mea-
sures and explore their undesirable behavior in
certain cases. Based on this review, we formulate
three desirable properties (axioms) of a reliable
diversity measure: monotonicity, uniqueness, and
continuity. We show that none of the existing
measures has all three properties and thus these
measures are not suitable for quantifying diversity.
Then, we construct two examples of measures that
have all the desirable properties, thus proving that
the list of axioms is not self-contradictory. Unfor-
tunately, the constructed examples are too compu-
tationally expensive (NP-hard) for practical use.
Thus, we pose an open problem of constructing a
diversity measure that has all the listed properties
and can be computed in practice or proving that
all such measures are NP-hard to compute.

1. Introduction
Diversity of a collection of objects is a concept that is widely
used in practice: image generation models are required to
generate a diverse sample of images for a given prompt,
recommender systems are required to output a diverse set
of suggestions for a query, molecule generation models
often aim at generating a collection of structurally diverse
molecules with a given property. Diversity can also play
an important role in assessing how representative a given
dataset is, e.g., in molecule generation (Xie et al., 2023) or
neural algorithmic reasoning (Veličković & Blundell, 2021;
Mahdavi et al., 2023); and Zhao et al. (2024) argue that
it is critical to provide a clear definition of diversity when
analyzing datasets. A well-defined diversity measure also
ensures informative sample selection in active learning (Ren
et al., 2021) or may guide the generation of meaningful
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synthetic data in augmentation (Mumuni & Mumuni, 2022).
Thus, being able to quantify diversity is important.

Traditional methods of assessing diversity may differ across
domains and tasks. In the image generation domain, diver-
sity ensures that at least some of the generated images can
fit a user’s preference. The average of pairwise distances be-
tween the output images is commonly used as a measure of
diversity. For instance, Ruiz et al. (2023) compute diversity
as the average LPIPS similarity between the output objects,
while Saharia et al. (2022) compute the average pairwise
SSIM between the first output sample and the remaining
samples. Similarly, in recommender systems, diversity en-
sures that at least some of the model outputs can fit a user’s
preference. The average pairwise distance between the out-
puts is a popular diversity measure in this domain (Alhijawi
et al., 2022). Another way of assessing diversity is via the
determinantal point process (DPP) approach that defines
diversity as the determinant of the similarity matrix (Wil-
helm et al., 2018). In the molecule generation domain, the
typical task is to generate a diverse collection of molecules
with some predefined properties. The underlying goal is to
explore the whole space of such possible molecules and pick
the best candidates, so diversity of the output collection en-
sures that generated molecules are not clustered in one area,
while other areas are unexplored. A common diversity mea-
sure here is also the average pairwise distance between the
outputs (Du et al., 2022), although sometimes the percent-
age of unique generated molecules is reported (Hoogeboom
et al., 2022). Finally, in a recent paper on generating struc-
turally diverse graphs (Velikonivtsev et al., 2024), a new
measure called energy is proposed as a better and more
reliable alternative to the average pairwise distance.

Note that in all the examples above, diversity can also be
thought of as coverage: the goal is to cover different areas
of the space of potentially valid outputs. Thus, in this paper,
we use the terms diversity and coverage interchangeably.
In the literature, there have been a few attempts to analyze,
compare, or suggest better measures of diversity (Xie et al.,
2023; Friedman & Dieng, 2023; Velikonivtsev et al., 2024).
However, as we show in this paper, the problem is still
underexplored.

We limit the scope of our research to the following setup: we
are given a collection of abstract objects and their pairwise
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distances (or pairwise similarities). We define a diversity
measure as a function that takes this collection as an input
and returns some value as an output.

First, we examine the existing diversity measures by pro-
viding examples of their undesirable behavior. Namely, we
show that existing measures may either lead to unexpected
results when comparing diversity of two datasets (i.e., as-
signing a higher score to a clearly less diverse dataset) or
lead to degenerate solutions when being optimized. Moti-
vated by these observations and previous studies on diversity,
we formulate three properties (axioms) that a good diversity
measure should have. Monotonicity requires that increasing
pairwise distances between the objects increases diversity
value. Uniqueness requires that having a duplicate in the col-
lection is worse for diversity than having any non-duplicate
object instead. The last property is continuity, which re-
quires diversity to be a continuous function of pairwise
distances. We check which of the existing measures possess
which properties, and find that none has all three. Then, we
prove that the list of axioms is not self-contradictory by con-
structing two examples of measures that satisfy all of them.
Unfortunately, the proposed measures are too computation-
ally expensive (NP-hard) to be used in practice. Finally, we
discuss why finding a diversity measure that has all three
desirable properties and is computationally manageable is
a non-trivial task. We leave the question of whether there
exists a computationally feasible measure satisfying all the
required axioms for future studies.

2. Measuring Diversity
In this section, we describe existing diversity measures. We
assume that we are given a collection of n (possibly du-
plicated) objects X = (x1, . . . , xn) and pairwise distances
(dissimilarities) between them such that dij ≥ 0 and dij = 0
iff xi and xj coincide. To maintain generality, we do not
require the triangle inequality to be satisfied by dij .

Table 1 lists existing diversity measures that we cover in
our study. As discussed above, arguably the most straight-
forward and widely-used way to quantify diversity is via
the average pairwise distance between the elements. Other
simple alternatives are the minimum and maximum pairwise
distances (often referred to as Bottleneck and Diameter, re-
spectively). Xie et al. (2023) argue that none of the simple
measures are suitable for diversity quantification and pro-
pose #Circles(t) which is defined as the maximum number
of non-intersecting circles of radius t/2 (for some t > 0)
with centers at some elements of X . A measure called
Energy(γ) is proposed by Velikonivtsev et al. (2024) as a
better alternative to the above measures. For γ = 1, this
measure equals the energy of a system of equally charged
particles. Hu et al. (2024) propose measuring diversity as
the length of the shortest Hamiltonian circuit; we further

Table 1. Known diversity measures

Measure Formula

Average 2
n(n−1)

∑
i<j

dij

SumAverage 1
n

∑
i<j

dij

Diameter max
i<j

dij

SumDiameter
∑
i

max
j ̸=i

dij

Bottleneck min
i<j

dij

SumBottleneck
∑
i

min
j ̸=i

dij

Energy(γ), γ > 0 − 1
n(n−1)

∑
i<j

1
dγ
ij

#Circles(t), t ≥ 0 max
C⊆[n]

|C| s.t. dij>t ∀ i̸=j ∈ C

Unique max
C⊆[n]

|C|
n s.t. dij>0 ∀ i̸=j ∈ C

HamDiv length of the shortest Hamiltonian circuit

Vendi Score exp

(
−
∑
i

λi log(λi)

)
DPP det(S)

RKE − log

(
1
n2

∑
i,j

s2ij

)
Species(q), 1̸=q≥0

(∑
i

(∑
j

sij

)q−1) 1
1−q

refer to this measure as HamDiv.

The remaining four measures are defined in terms of pair-
wise similarities sij instead of pairwise distances. All these
measures require sij to be a positive semi-definite similarity
function and usually require sii = 1. Vendi Score is pro-
posed by Friedman & Dieng (2023) and is calculated via
the formula specified in Table 1, where λ1, . . . , λn are the
eigenvalues of the scaled similarity matrix S/n and S is
the n× n matrix with entries sij . The simplest DPP-based
measure is computed as the determinant of the similarity
matrix S.1 The Rényi Kernel Entropy Mode Count (RKE) is
proposed by Jalali et al. (2023) and is defined as the negative
logarithm of the average squared similarity. Finally, diver-
sity of order q is proposed by Leinster & Cobbold (2012) to
measure the diversity of a population consisting of several
species. In our work, we refer to this measure as Species(q).
Here, the parameter q is any nonnegative number not equal
to 1. When applied to our setup (all elements having equal
weights), the measure Species(q) can be written as specified
in Table 1 (up to a constant multiplier).

Some previous works on measuring diversity analyze and
compare measures based on properties they do or do not
satisfy. We review these works in Section 4.4.

1In practice, more complex DPP-based diversity measures can
be used (Wilhelm et al., 2018). For instance, when such measures
are applied to recommender systems, the relevance scores of ob-
jects w.r.t user queries are usually mixed into the similarity matrix,
which we do not do here since we only consider diversity.
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Finally, there is a rich literature on submodular functions
that can also be used to quantify diversity (Bilmes, 2022).
However, submodular functions are not defined in terms of
pairwise distances and thus are out of scope of our study.
Also, some known submodular functions assume that we are
provided with a set (space) of all possible objects and can
sum, integrate, or iterate over all of them. This assumption
is quite restrictive and our framework does not rely on it.

3. Drawbacks of Popular Diversity Measures
In this section, we discuss why none of the measures defined
above can be reliably used to quantify diversity. For this,
we show intuitive examples of an undesirable behavior for
each measure. These examples serve as the main motivation
for our research and for the axioms we choose.

We start by discussing two usage scenarios of diversity mea-
sures. First, a diversity measure can be applied to a given
dataset to quantify its diversity. Thus, it should be able to
identify which dataset is more diverse. For instance, when
choosing between two recommendation algorithms, one can
be interested in comparing the diversity of the retrieved sets
of items. Second, diversity can be used as a goal of an opti-
mization process. For instance, Velikonivtsev et al. (2024)
generate sets of graphs that are maximally diverse and for
this purpose, the authors iteratively modify the set of graphs
by accepting modifications that improve a given diversity
measure. Thus, a good diversity measure should lead to
diverse configurations of elements when being optimized.

Below we examine the diversity measures listed in Table 1
from these two perspectives: comparison and optimiza-
tion. We say that a measure exhibits undesirable behavior
w.r.t. comparison if there exists a pair of datasets, such that
the first one is more diverse according to our intuitive per-
ception of diversity, yet the diversity measure assigns the
higher value to the second one. We say that a measure ex-
hibits undesirable behavior w.r.t. optimization if the dataset
with the maximum diversity according to this measure is not
maximally diverse according to our intuitive perception of
diversity. Note that if a measure exhibits undesirable behav-
ior w.r.t. optimization, it also exhibits undesirable behavior
w.r.t. comparison. Indeed, if a measure assigns the highest
value to some intuitively non-diverse set, this means that
it assigns a lower value to some set that is more intuitively
diverse, thus exhibiting undesirable behavior w.r.t. compar-
ison. The opposite is not necessarily true: some measures
can be suitable for optimization while being unable to reli-
ably compare two non-optimal configurations.

Note that we limit our research to the simple case when the
number of elements n is fixed; thus, in the examples below
all the configurations are of the same size.

Average and SumAverage Since Average and Sum-
Average differ only by a constant factor, we consider them
together. Consider two configurations of 16 points in the
unit square with Euclidean distance, as illustrated in the
figure below (in the configuration on the left, each of the
square’s corners contains 4 coinciding points). For the left
configuration, Average equals 0.91, which is the maximum
value among all possible configurations. For the right config-
uration, Average equals 0.71. Since the right configuration
is intuitively more diverse, this example shows undesirable
behavior of Average w.r.t. both comparison and optimiza-
tion. Informally, maximizing Average pushes all points to
the boundary of the space, leaving central areas empty.

Average: 0.91
SumAverage: 14.57

Average: 0.71
SumAverage: 11.42

Diameter and SumDiameter Consider two configura-
tions of 16 points in the unit square as shown below (in
the left configuration, two of the square’s corners contain
8 coinciding points each). Diameter for both configura-
tions equals 1.41, which is the maximum value among all
possible configurations. Since the right configuration is
intuitively more diverse, this example shows undesirable
behavior of Diameter w.r.t. both comparison and optimiza-
tion. Note that once a configuration contains two points at
the maximum distance from each other (in our case 1.41),
the positions of all other points do not influence Diame-
ter. While SumDiameter is expected to be a better diversity
measure (it takes more distances into account), the same
example demonstrates its undesirable behavior w.r.t. com-
parison and optimization since the left configuration has the
maximum possible SumDiameter value. Indeed, if there are
points x1 and x2 with the maximum distance between them,
we can make all other points coincide with x1 or x2, thus
maximizing SumDiameter.

Diameter: 1.41
SumDiameter: 22.63

Diameter: 1.41
SumDiameter: 19.04
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Bottleneck Bottleneck assigns any configuration without
duplicates a higher diversity value than any configuration
with duplicates. Consider two configurations of 16 points
in the unit square (in the right configuration of the figure
below, the bottom-left corner contains 2 coinciding points).
For the left configuration, Bottleneck equals 0.11, and for
the right configuration, Bottleneck equals 0. Since the right
configuration is intuitively more diverse, we see undesirable
behavior of Bottleneck w.r.t. comparison.

Bottleneck: 0.11
Energy(1): -5.05

Bottleneck: 0
Energy(1): 

SumBottleneck To a lesser extent, SumBottleneck has
similar drawbacks to Bottleneck. Consider two configura-
tions of 16 points in the unit square (in the left configuration,
15 points coincide in a corner of the square, and in the right
configuration, each point has one duplicate). For the left
configuration, SumBottleneck equals 0.1, and for the right
configuration, SumBottleneck equals 0. Since the right con-
figuration is intuitively more diverse, we see undesirable
behavior of SumBottleneck w.r.t. comparison.

SumBottleneck: 0.1 SumBottleneck: 0

Energy(γ) The drawback of this measure is that in the
presence of a duplicate, it takes the value −∞ and is insen-
sitive to all other pairwise distances. The same example as
for Bottleneck demonstrates undesirable behavior of Energy
w.r.t. comparison.

Note that the examples for Bottleneck, SumBottleneck,
and Energy demonstrate their undesirable behavior only
w.r.t. comparison. Intuitively, all these measures behave
well w.r.t. optimization since maximizing them enforces a
more uniform distribution by pushing away the closest ele-
ments (the examples for Energy optimization can be found
in Velikonivtsev et al. (2024)).

#Circles(t) To use this measure for a reasonable compar-
ison of two collections, one needs to determine an appro-
priate value of t. Indeed, if t is too high, both collections
will have diversity equal to 1, and if t is too low, both col-
lections will have diversity equal to their number of unique
elements. This complicates the use of this measure for both
comparison and optimization. Also, this measure is discrete
and thus difficult to optimize. Finally, computing the value
of this measure is NP-hard, which makes it impractical.

Unique Since this measure does not take into account pair-
wise distances between objects, it is essentially unsuitable
for comparison or optimization. Indeed, all collections with
pairwise distinct objects have the same diversity value 1.

HamDiv Similar to #Circles(t), the value of HamDiv is
NP-hard to compute, which makes it impractical. Addition-
ally, this measure is insensitive to increases in any pairwise
distances that are not part of the shortest Hamiltonian cir-
cuit, making it unsuitable for comparison. To illustrate its
undesirable behavior w.r.t. optimization, consider the fol-
lowing example. Take two configurations of 4 points on
the line segment [0, 1]: the first is 0, 0, 1, 1, and the second
is 0, 1

3 ,
2
3 , 1. Both configurations have HamDiv equal to 2,

which is the maximum possible value. However, the first
collection is intuitively less diverse than the second.

HamDiv=2 HamDiv=2

Vendi Score Consider points on a circle with cosine sim-
ilarity. Suppose the points x1, x2, x3 are arranged in this
order on the circle; the distance from x1 to x2 is 0.6 radians,
and the distance from x2 to x3 is 1.4 radians. Now, we
move x3 by 0.1 radians further away from x1 and x2. Intu-
itively, we expect that decreasing the similarity between x3

and the other elements should increase diversity. However,
the Vendi Score decreases from 1.941 to 1.916, which is an
example of undesirable behavior w.r.t. comparison.

x1

x2

x3

0.6

1.4

Vendi Score: 1.941

x1

x2

x3

0.6

1.5

Vendi Score: 1.916
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DPP Consider two positive semidefinite symmetric matri-
ces:

S =

 1 0.2 0.6
0.2 1 0.7
0.6 0.7 1

 , Ŝ =

 1 0.3 0.6
0.3 1 0.7
0.6 0.7 1

 .

The matrices S and Ŝ differ by an increase in s12 (and
symmetrically s21) from 0.2 to 0.3. Intuitively, we ex-
pect that increasing similarity between any two elements
must decrease diversity. However, det(S) = 0.278 and
det(Ŝ) = 0.312 > 0.278, which is an example of undesir-
able behavior of the DPP-based measure w.r.t. comparison.

RKE and Species(q) Consider points on a circle with
cosine similarity (see the figure below for an illustration).
Suppose the points x1, x2, x3 are arranged in this order on
the circle; the distance from x1 to x2 is 1.1 radians, the
distance from x2 to x3 is 0.4 radians. Now, we make x2 a
duplicate of x3. Intuitively, we expect that such a change
should decrease diversity. However, RKE increases from
0.564 to 0.584, which is an example of undesirable behavior
w.r.t. comparison. The same example illustrates undesirable
behavior w.r.t. comparison for Species(q) for various q (see
Appendix B).

x1

x2
x3

1.1
0.4

RKE: 0.564

x1

x2, x3

1.5

RKE: 0.584

4. Axiomatic Approach to Diversity Measures
Motivated by our analysis in Section 3, we formulate a list
of properties (axioms) that a reliable diversity measure is
expected to satisfy. First, we formally define diversity mea-
sures, then formulate their desirable properties and discuss
which existing measures have which properties, and finally
review desirable properties suggested in previous studies
and discuss how they relate to our setup.

4.1. Formal Definition of Diversity Measure

Assume that we are given a collection of n (possibly du-
plicated) objects X = (x1, . . . , xn) and pairwise distances
between them dij satisfying the following conditions:

1. ∀i, j : dij ≥ 0 and ∀i : dii = 0;

2. if dij = 0, then ∀k : dik = djk;

3. ∀i, j : dij = dji.

In terms of objects, the first property requires that the dis-
tance between any two objects is nonnegative, and distance
from an object to itself is 0. The second property requires
that if two objects coincide, then they must have equal dis-
tances to any other object. The third property is symmetry
of distance. Note that for generality, we do not require the
triangle inequality to be satisfied by dij .

A diversity measure is a function that takes as input any
such set of n objects and their pairwise distances and out-
puts a real number. We assume that diversity depends only
on distances dij and does not depend on the nature of the
objects xi itself. Thus, the input of our function can be fully
described as an n × n matrix D with entries dij . Denote
by Dn a subset of all n × n matrices satisfying the three
properties described above. Then, the diversity function is a
function from Dn to R. Since diversity is usually measured
for a multiset of objects, we also require permutation in-
variance: if we permute (or rename) the objects in X (with
correspondingly permuting the rows and columns of D),
the value of diversity should not change. Thus, we get the
following definition.

Definition 4.1. A diversity function is a permutation invari-
ant function from Dn to R.

Note that we assume the number of elements n to be fixed.
Thus, we do not aim to determine how diversity should
behave when the size of the dataset changes. Our paper
shows that even for this (simpler) case it is non-trivial to
construct a suitable diversity measure.

4.2. Axioms for Diversity

In this section, we formulate three axioms that we require
for a reliable diversity measure.

Axiom 1 (Monotonicity). A diversity function must be
strictly increasing w.r.t. all its arguments.

In other words, if we increase one or several pairwise dis-
tances while keeping all other distances fixed, the value of
diversity must increase. This axiom is natural since it repre-
sents the meaning of diversity: the more objects x1, . . . , xn

differ from each other, the greater diversity we expect. This
property is analogous to monotonicity in Velikonivtsev et al.
(2024), but has one important difference: we do not require
the objects in X to be pairwise distinct for monotonicity to
hold. This difference is critical for being able to compare
datasets: we want to be able to tell which configuration is
more diverse even if the datasets have duplicates. Otherwise,
we may get a measure with undesirable behavior, as shown
by the example for Bottleneck and Energy in Section 3.
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Axiom 2 (Uniqueness). Suppose we are given two
collections of objects (and their pairwise distances)
which differ only by one element: x1, . . . , xn−1, xn and
x1, . . . , xn−1, x

′
n. Suppose x′

n coincides with at least one
of x1, . . . , xn−1, while xn does not coincide with any of
x1, . . . , xn−1. Then, the diversity of the first collection must
be higher than that of the second collection.2

This property reflects our intuition that having a duplicate
(x′

n) in the multiset is worse for diversity than having a
unique element (xn) instead. Informally, we can say that
having x′

n does not help the multiset cover any new part of
the space since a copy of x′

n is already present, while having
xn covers some new area. Uniqueness allows one to avoid
an undesirable behavior when the collection with duplicates
has higher diversity than an intuitively more diverse collec-
tion without duplicates or even when the maximum diversity
is achieved by a degenerate configuration (which happens
to Average and Diameter, as shown in Section 3). Note that,
unlike the analogous property in Velikonivtsev et al. (2024),
our variant of uniqueness does not require all objects in X
to be distinct. Similar to considerations for monotonicity,
this modification is important for being able to compare
datasets even when they have duplicated elements.

Axiom 3 (Continuity). A diversity function must be contin-
uous.

This property was not present in previous works, but it is
natural to require, and we find it critical for a reliable diver-
sity measure. Indeed, in Appendix A we show that there
are examples of discontinuous functions that satisfy mono-
tonicity and uniqueness while still exhibiting undesirable
behavior. Thus, having only monotonicity and uniqueness
is insufficient.

4.3. Properties of Existing Measures

Table 2 shows which axioms are satisfied by the existing
measures listed in Table 1 (the proofs can be found in Ap-
pendix B). It can be seen that none of these measures has
all three desirable properties.3 This leads us to the main
question of the paper: does there exist a diversity measure
with all three desirable properties? In the next section, we
construct two examples of such measures, thus giving a pos-
itive answer to this question. We include these measures as
well as the computational complexities of all the measures
in Table 2.

2For simplicity, we formulate this property in terms of objects,
but it can be straightforwardly reformulated in terms of pairwise
distances.

3Note that Energy was reported in Velikonivtsev et al. (2024)
as having monotonicity and uniqueness, but it does not in our case
since we have stronger versions of these properties that require
them to hold even in the presence of duplicated elements.

4.4. Desirable Properties in Previous Works

Several papers analyze and compare diversity measures in
terms of properties they do or do not satisfy. For instance,
Xie et al. (2023) formulate three axioms. The first one
requires that diversity of a union of two sets must be higher
than the diversity of each of them. The second requires that
diversity of a union of two sets should be at most the sum of
their diversities. Note that both of these axioms constrain the
behavior of diversity when the number of objects changes
and thus do not apply in our setting with a fixed number
of objects. The last axiom requires that if we have only
two objects in X , then diversity must be strictly monotone
w.r.t. the pairwise distance between these objects. Note that
our monotonicity requirement generalizes this axiom.

Friedman & Dieng (2023) propose Vendi Score and list four
of its properties. One of the properties is called symmetry
and it is equivalent to our permutation invariance that we
require for all diversity measures. Another property requires
that a diversity measure is maximized when all pairwise sim-
ilarities are 0 and minimized when all pairwise similarities
are 1. This property is generalized by our monotonicity
axiom. The remaining two properties consider weighted
elements or samples of different sizes and thus do not apply
to our setup.

Velikonivtsev et al. (2024) address the problem of generat-
ing structurally diverse graphs and discuss what measures
of diversity are suitable for optimization. The authors for-
mulate two properties: monotonicity and uniqueness that
are slightly weaker variants of the corresponding properties
in our work (as discussed above in Section 4.2).

Leinster & Cobbold (2012) list several groups of properties
of Species(q). Partitioning properties do not apply to our
case since we consider the diversity only for a fixed number
of objects. From the Elementary properties group, Symme-
try corresponds to our requirement for diversity functions to
be permutation invariant, and the properties Absent species
and Identical species do not apply to our case (since we
consider n objects with equal weight and not n probabilities
summing to 1). From the group of properties named Effect
of species similarity on diversity, the only property applica-
ble in our case is Monotonicity, which is equivalent to our
monotonicity axiom.

To sum up, among the properties from previous works, the
ones applicable in our setting are monotonicity (in stronger
form from Velikonivtsev et al. (2024) and Leinster & Cob-
bold (2012) or weaker forms from Xie et al. (2023) and
Friedman & Dieng (2023)) and uniqueness, given that per-
mutation invariance is already incorporated in our definition
of a diversity function.
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Table 2. Properties of diversity measures

Measure Monotonicity Uniqueness Continuity Complexity

Average ✓ ✗ ✓ O(n2)
SumAverage ✓ ✗ ✓ O(n2)
Diameter ✗ ✗ ✓ O(n2)
SumDiameter ✗ ✗ ✓ O(n2)
Bottleneck ✗ ✗ ✓ O(n2)
SumBottleneck ✗ ✗ ✓ O(n2)
Energy(γ), γ > 0 ✗ ✗ ✓ O(n2)
#Circles(t), t ≥ 0 ✗ ✗ ✗ NP-hard
Unique ✗ ✓ ✗ O(n)
HamDiv ✗ ✗ ✓ NP-hard
Vendi Score ✗ ✗ ✓ O(n3)
DPP ✗ ✗ ✓ O(n3)
RKE ✓ ✗ ✓ O(n2)
Species(q) ✓ ✗ ✓ O(n2)

MultiDimVolume ✓ ✓ ✓ NP-hard
IntegralMaxClique ✓ ✓ ✓ NP-hard

5. Diversity Measures with All Desirable
Properties

In this section, we construct two different examples of
permutation-invariant measures that have all three desirable
properties.

MultiDimVolume For a given k, 2 ≤ k ≤ n, and a given
submultiset K of size k of the multiset X = {x1, . . . , xn},
calculate the product of all pairwise distances between the
elements of K. Note that this product equals zero if at least
two elements of K coincide. Then, for a given k, we take
the maximum of such products over all submultisets of size
k of X and denote this maximum as mk(X). We define the

diversity of X as
n∑

k=2

mk(X). Putting the above into one

formula, we get:

Diversity(X) :=

n∑
k=2

max
K⊆X
|K|=k

 ∏
xi,xj∈K

i<j

dij

 . (1)

The intuition behind this formula is that for a set K of size k,
the product of all pairwise distances between the elements of
K can be thought of as an analog of k-dimensional volume
of K (analogy comes from the fact that if two elements of
K coincide, then the volume equals zero). Thus, mk(X) is
the maximum ‘volume’ of a k-dimensional subset of X .

In Appendix C, we prove that MultiDimVolume satisfies
all the axioms. Unfortunately, computing Diversity(X) in
Equation (1) is NP-hard since calculating MultiDimVolume
allows one to solve the problem of finding the size of the

maximum clique in a graph, and this problem is known to
be NP-hard. We refer to Appendix C for the formal proof.

Let us also note that there are multiple ways to define
diversity based on the values mk(X). Indeed, we can

consider
n∑

k=2

f(mk(X)), where f is an arbitrary contin-

uous monotone function. In particular, one may consider

Diversity(X) =
n∑

k=2

mk(X)
2

k(k−1) . This modification is

natural since each summand is a product of k(k − 1)/2
terms. It follows from the proof in Appendix C that all such
modifications satisfy all the desirable properties.

IntegralMaxClique For a given threshold t ≥ 0, we
construct the following graph. The nodes are x1, . . . , xn.
Two nodes xi and xj are connected by an edge iff dij ≥ t,
and we assign dij as the weight of this edge. We find a
clique (complete subgraph) in this graph with the maximum
number of nodes. If there are several such cliques, we pick
the one with the maximum total weight of edges. For the
chosen clique, we calculate the total weight of its edges and
denote it by wt(X). Then, we define diversity as

Diversity(X) :=

∫ +∞

0

wt(X) dt. (2)

This integral is finite since wt(X) is bounded by
∑
i<j

dij ,

and if t > max
i<j

dij , then the constructed graph has no edges

and wt(X) = 0.

The intuition behind this formula is that wt(X) can be inter-
preted as the maximum diversity of a subset of X with the

7
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restriction that its elements should be at distance t or more
from each other.

In Appendix D, we prove that IntegralMaxClique satisfies
all the axioms. Unfortunately, computing Diversity(X) in
Equation (2) is NP-hard since, similarly to MultiDimVol-
ume, calculating IntegralMaxClique allows one to solve the
problem of finding the size of the maximum clique in a
graph. We refer to Appendix D for the formal proof.

By constructing the two examples above, we prove that
three desirable properties from our list do not contradict
each other. Unfortunately, the constructed examples are too
computationally complex for most practical applications.

6. Discussion
In the previous section, we prove that the three axioms
listed in Section 4.2 do not contradict each other. However,
we have not been able to construct a measure that satisfies
these axioms and is computationally feasible for practical
application. We pose this as an important open problem to
be addressed in future studies.

Let us provide some intuition on why it is hard to combine
monotonicity, uniqueness, and continuity in one function.
We first formulate the following proposition that shows an
additional restriction that these three axioms imply.

Proposition 6.1. Suppose a diversity function has unique-
ness and continuity. Let x1, . . . , xk be a set of k pairwise
different objects. Let C be a multiset of n− k objects, each
of which coincides with one of x1, . . . , xk. Then, diversity
of the multiset {x1, . . . , xk} ∪ C is the same for all such C.

We prove this proposition in Appendix E. Informally, Propo-
sition 6.1 states that the diversity of a set does not depend
on which elements are duplicated. This agrees well with our
intuition: duplicates do not provide any additional elements
and thus are not supposed to affect diversity. On the other
hand, constructing a measure that is continuous while ‘ignor-
ing’ duplicates is tricky since the object’s property of being
a duplicate is discontinuous. Indeed, we can move a dupli-
cate by any small ϵ > 0 and it stops being a duplicate, so our
measure should no longer ‘ignore’ it. In MultiDimVolume,
we address this problem by incorporating products of pair-
wise distances within subgraphs: any duplicate zeros the
corresponding products and thus the placement of a dupli-
cate does not affect the result. In IntegralMaxClique, we use
a threshold t to filter out small edges, and thus duplicates
do not affect the value for all t > 0.

The next proposition states that a diversity function satis-
fying all the axioms cannot be expressed in a certain form.
This particular form is motivated by the approach in Ve-
likonivtsev et al. (2024): the authors iteratively improve
diversity of a set by updating one element at a time. Thus,

they decompose a considered diversity function into the
fitness of one element and diversity of the rest of the ele-
ments. Such decomposition would allow one to make quick
updates of diversity (in linear time) when only one element
is updated. In the proposition below, we show that for a
proper diversity measure such decomposition cannot exist
if we assume additive aggregation.

Proposition 6.2. Assume that a diversity function can be
decomposed in the following way:

Diversity(X) = F (d12, d13, . . . , d1n) +G(x2, . . . , xn),

that is, the first term depends only on distances from one
object x1 to all other objects, and the second term depends
only on pairwise distances between the objects x2, . . . , xn.
Then, such a diversity function cannot simultaneously satisfy
monotonicity, uniqueness, and continuity axioms.

We prove this proposition in Appendix F. This is a negative
result showing why it can be difficult to construct a proper
diversity measure that is convenient for optimization. Note,
however, that this proposition is only proven for the additive
aggregations, thus other options are potentially possible.

Diversity measures in practice Let us note that even NP-
hard diversity measures can still be used in practice if a set
of items that need to be evaluated is sufficiently small. For
instance, if a recommender service returns a set of k = 100
items and we want to measure diversity of this set, then
an NP-hard measure having all the desirable properties can
potentially be used. Examples of diversity measures con-
structed in Section 5 demonstrate that there are several dif-
ferent options that can be used (e.g., MultiDimVolume and
IntegralMaxClique, along with their variations satisfying all
the properties). We cannot rule out any of these measures
based on their theoretical properties. Thus, a decision on
which measure should be used may depend on a particular
application. However, in this paper, we use the measures
MultiDimVolume and IntegralMaxClique only to prove that
our list of axioms is not self-contradictory. Evaluating these
measures in practical applications goes beyond the scope of
the current paper, which addresses the theoretical aspects of
diversity measures applicable to a wide variety of scenarios.

7. Conclusion
In this paper, we reviewed existing diversity measures and
demonstrated via intuitive examples that these measures
cannot be reliably used for evaluating diversity. Based on
these examples and previous research on diversity measures,
we formulated three simple axioms (desirable properties) for
a reliable diversity measure: monotonicity, uniqueness, and
continuity. It turns out that none of the previously known
measures has all these properties. We constructed two di-
versity measures that have all the desirable properties, thus
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proving that the axioms do not contradict each other. Unfor-
tunately, the constructed examples are too computationally
complex for practical use.

We leave for future research an important open problem of
constructing a diversity measure that has all three desirable
properties and is computationally feasible or proving that
such a measure cannot exist. While our study does not
answer this question, we believe that it gives some important
insights into measures of diversity that are frequently used
in practice. Being aware of what shortcomings a particular
measure has, one can use it more wisely. For instance, we
cannot advise using Energy for comparing diversities of
arbitrary datasets, while it can be safely used as a target for
optimization.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. The Necessity of Continuity Axiom
Consider any measure M that is monotone (e.g., Average). Let M ′ be an order-preserving transformation of M whose
range is [0, 1) (e.g., if M takes only non-negative values, we can take M ′(X) := 1 − e−M(X)). Then, the measure
Unique(X)+M ′(X) has both uniqueness and monotonicity. Essentially, Unique(X)+M ′(X) compares two configurations
in the following way:

• Count the number of unique elements in both configurations;

• If the numbers of unique elements are different, then the configuration with a bigger number is more diverse;

• If the numbers of unique elements are the same, compare configurations based on the measure M (or, equivalently,
M ′).

We argue that Unique(X) +M ′(X) is not a good diversity measure. To illustrate, consider any measure M that has the
monotonicity property (for instance Average), optimize it, and after that spread the elements a bit to make them unique.
Then, we get a (nearly) optimal configuration for Unique(X) +M ′(X) which is very similar to the optimal configuration
for M(X). However, the optimal solution for M(X) may be not diverse, as we show with the example for Average in
Section 3.

The discreteness of Unique(X) plays a crucial role in the construction above. A natural way to prevent the measures of the
form Unique(X) +M ′(X) from being considered good diversity measures is to require that diversity measures must be
continuous.

B. Properties of Diversity Measures: Proofs
Let us prove the statements about which measures possess which properties, as indicated in Table 2. Note that for some of
the measures, their monotonicity and uniqueness were analyzed by Velikonivtsev et al. (2024). However, since we modified
these properties, we need to formally check the new ones.

Average and SumAverage Monotonicity and continuity are trivial, as is the O(n2) complexity. To prove that uniqueness
does not hold, consider the example from Section 3: given 16 points in a square with Euclidean distance, the maximum
diversity is achieved when every vertex contains 4 objects, and replacing any of these duplicates by any other object will
decrease diversity.

Diameter and SumDiameter Consider a collection of three objects with pairwise distances 2, 2, 1. Increasing distance
1 to 2 does not change the diversity value, thus proving that monotonicity does not hold. For uniqueness, consider the
example from Section 3: given 16 points in a square with Euclidean distance, the maximum diversity is achieved when
two opposing vertices contain 8 objects each, and replacing any of these duplicates by any other object will not increase
diversity. Continuity is trivial, as is the O(n2) complexity.

Bottleneck and Energy(γ) Consider a collection of three objects, where x1 and x2 coincide, and d13 = 1. Increasing
d13 to 2 will not change the diversity value, thus proving that monotonicity does not hold. Consider a collection of three
coinciding objects. Replacing one of them with any other object does not change diversity value, thus proving that uniqueness
does not hold. Continuity is trivial, as is the O(n2) complexity.

SumBottleneck Consider a collection of four objects, where x1, x2 coincide, x3, x4 coincide, and d13 = 1. Increasing
d13 = d23 = d14 = d24 from 1 to 2 (while keeping d12 = d34 = 0) will not change diversity value, thus proving that
monotonicity does not hold. Consider a collection of four objects, where x1, x2, x3 coincide and d14 = 10. Replacing x3

with a new object that has distance 1 to x4 will decrease diversity from 10 to 2, thus proving that uniqueness does not hold.
Continuity is trivial, as is the O(n2) complexity.

#Circles(t) Consider a collection of three objects with pairwise distances 4, 3, 2. Increasing distance 3 to 4 will not change
the diversity (for any t), thus proving that monotonicity does not hold. For a given t, consider a collection of two coinciding
objects. Replacing the second of them with an object at distance t

10 from the first one does not change the diversity value,
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thus proving that uniqueness does not hold. The lack of continuity is trivial. Let us prove that the complexity of calculating
#Circles(t) is NP-hard. The problem of finding the size of the maximum complete subgraph (clique) in an unweighted
undirected graph is known to be NP-hard. Consider any unweighted undirected graph G with n nodes. Construct a collection
X with n objects corresponding to the nodes of G; the distance between two objects being t if the corresponding nodes
are connected and 0.9t otherwise. Suppose we computed #Circles(t). Then, obviously, this value is also the size of the
maximum clique in G. This proves that calculating #Circles(t) is NP-hard.

Unique Monotonicity, uniqueness, and continuity are trivial, as is the O(n2) complexity.

HamDiv Consider a collection of four objects, where d12 = d23 = d34 = d14 = 1 and d13 = d24 = 1.1. Increasing
d13 from 1.1 to 1.2 will not change the diversity value, thus proving that monotonicity does not hold. Note that non-strict
monotonicity holds; that is, if some pairwise distance is increased, the diversity value cannot decrease (although can stay the
same). Now, consider two collections of four objects each. The objects are points on the Euclidean line. The first collection
is: 0, 0, 1, 1; the second collection is: 0, 1

3 ,
2
3 , 1. The diversity value for both collections is equal to 2; thus, uniqueness does

not hold. Continuity is trivial. Complexity is known to be NP-hard.

To prove the results for Vendi Score, DPP, and RKE, we first need to formulate the axioms in terms of similarities.
Monotonicity requires that the measure monotonically increases when some of the pairwise similarities decrease. Uniqueness
is formulated in terms of objects, and two objects being duplicates means that they have the maximum similarity value.
Finally, continuity can be trivially reformulated.

Vendi Score We first elaborate on the example of a violation of monotonicity from Section 3. Consider points on a circle
with cosine similarity. Suppose the points x1, x2, x3 are arranged in this order on the circle, the circle distance from x1 to
x2 is 0.6 radians, the distance from x2 to x3 is 1.4 radians. Now we move x3 by 0.1 away from x1 and x2. Let us see what
similarity matrices we have before and after this move:

S =

 1 cos(0.6) cos(2.0)
cos(0.6) 1 cos(1.4)
cos(2.0) cos(1.4) 1

 , Ŝ =

 1 cos(0.6) cos(2.1)
cos(0.6) 1 cos(1.5)
cos(2.1) cos(1.5) 1

 . (3)

Vendi Score of S is 1.941 and Vendi Score of Ŝ is 1.916 < 1.941, which is a violation of the monotonicity property.

Now suppose the points x1, x2, x3 are arranged in this order on the circle, the circle distance from x1 to x2 is 0.2 radians,
the distance from x2 to x3 is 0.3 radians. We replace x2 by a duplicate of x1. Let us see what similarity matrices we have
before and after this replacement:

S =

 1 cos(0.2) cos(0.5)
cos(0.2) 1 cos(0.3)
cos(0.5) cos(0.3) 1

 , Ŝ =

 1 1 cos(0.5)
1 1 cos(0.5)

cos(0.5) cos(0.5) 1

 . (4)

The corresponding collections of objects differ by replacing x2 with a copy of x1; that is, S corresponds to (x1, x2, x3) and
Ŝ corresponds to (x1, x1, x3). Vendi Score of S is 1.187 and Vendi Score of Ŝ is 1.233 > 1.187, which is a violation of the
uniqueness property.

Continuity holds since exp
(
−

n∑
i=1

λi log(λi)

)
continuously depends on λ1, . . . , λn, which in turn continuously depend on

the similarity matrix. It is known that the complexity of finding the eigenvalues of a general (positive-semidefinite) matrix is
O(n3), thus the complexity of calculating Vendi Score is also O(n3).

DPP The example of a violation of monotonicity is shown in Section 3. To obtain the matrix S, we can consider three
points A, B, C on a unit 2D sphere with pairwise spherical distances between A and B equal to arccos(0.6) = 0.927,
between B and C equal to arccos(0.7) = 0.795 and between A and C equal to arccos(0.2) = 1.369. The similarity is
given by the cosine function. For the matrix Ŝ, we decrease the distance between A and C from arccos(0.2) = 1.369
to arccos(0.3) = 1.266, while keeping the distance between A and B unchanged, and the distance between B and C
unchanged.
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To prove that uniqueness is violated, consider a collection of three coinciding objects. Replacing one of them with any
other object does not change the diversity value, thus proving that uniqueness is violated. Continuity is trivial. It is known
that the complexity of finding the determinant of a general (positive-semidefinite) matrix is O(n3), thus the complexity of
calculating det(S) is also O(n3).

RKE Monotonicity, continuity, and complexity O(n2) are trivial. To prove that uniqueness is violated, we elaborate on
the example from Section 3. Consider points on a circle with cosine similarity. Suppose the points x1, x2, x3 are arranged in
this order on the circle; the distance from x1 to x2 is 1.1 radians, the distance from x2 to x3 is 0.4 radians. Now, we replace
x2 with a duplicate of x3. We get the following similarity matrices before and after the modification:

S =

 1 cos(1.1) cos(1.5)
cos(1.1) 1 cos(0.4)
cos(1.5) cos(0.4) 1

 , Ŝ =

 1 cos(1.5) cos(1.5)
cos(1.5) 1 1
cos(1.5) 1 1

 . (5)

The corresponding collections of objects differ by replacing x2 with a copy of x3; that is, S corresponds to (x1, x2, x3) and
Ŝ corresponds to (x1, x3, x3). RKE of S is 0.564 and RKE of Ŝ is 0.584 > 0.564, which is a violation of the uniqueness
property.

Species(q) Continuity and complexity O(n2) are trivial. Monotonicity is trivial for both cases 0 ≤ q < 1 and q > 1. For
violation of uniqueness, we consider the same example as for RKE. We computed Species(q) of the collection x1, x2, x3

and the collection x1, x3, x3 for all q in the range [0, 100] with step size 0.001 (excluding q = 1 when Species(q) is not
defined). For all the considered q, the first collection has a lower value of Species(q) than the second collection, which is a
violation of the uniqueness property.

C. Properties of MultiDimVolume
Let us prove that MultiDimVolume has monotonicity, uniqueness, continuity and is NP-hard to compute.

For convenience, we repeat the definition of MultiDimVolume. For a given k, 2 ≤ k ≤ n, and a given submultiset K of size
k of the multiset X = {x1, . . . , xn}, calculate the product of all pairwise distances between the elements of K. Note that
this product equals zero if at least two elements of K coincide. Then, for a given k, we take the maximum of such products

over all submultisets of size k of X and denote this maximum as mk(X). We define the diversity of X as
n∑

k=2

mk(X).

Putting the above into one formula, we get:

Diversity(X) :=

n∑
k=2

max
K⊆X
|K|=k

 ∏
xi,xj∈K

i<j

dij

 . (6)

Assume that we are given any distance matrix D (or, equivalently, a collection of objects X). Denote by k̄ the maximum k
such that mk(X) is non-zero. Note that by construction, X includes exactly k̄ pairwise non-coinciding objects and mk̄(X)
is the product of pairwise distances between these objects.

Monotonicity We want to prove that MultiDimVolume is strictly monotone in D. Suppose we increase the distance
between two objects xi and xj by ϵ > 0; that is, we replace dij by dij + ϵ. Obviously, for every k, the value of mk(X)
has not decreased. Thus, to prove monotonicity, it is sufficient to prove that at least one of mk(X) has increased. If xi

and xj did not coincide before increasing dij , then after increasing dij the term mk̄(X) has increased since dij is one of
the multipliers in mk̄(X). If xi and xj coincided before increasing dij , then after increasing dij the collection X includes
exactly k̄ + 1 non-coinciding objects, and mk̄+1(X) has increased from 0 to some positive value.

Note that for some matrices D we cannot increase only one distance. For instance, if the objects x1, x2, x3 coincide and we
increase d12 by ϵ, we also need to simultaneously increase d13 or d23, otherwise we have d13 = d23 = 0, d12 > 0, which
implies that x1 coincides with x3 and x2 coincides with x3, but x1 and x2 do not coincide. Clearly, the proof above easily
generalizes to the case when we increase several distances simultaneously.
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Uniqueness Suppose X includes at least one duplicate. We replace this duplicate with some new object that was not
present in X . Then, mk̄+1(X) has increased from 0 to some positive value. Also, for any k ≤ k̄, the values of mk(X) have
not decreased. Thus, Diversity(X) has increased.

Continuity Note that MultiDimVolume is a composition of product, maximum, and sum that are all continuous functions.
A composition of continuous functions is continuous. Thus, MultiDimVolume is continuous.

NP-hardness Let us first prove that finding mk(X) for all k is NP-hard. The problem of finding the size of the maximum
complete subgraph (clique) in an unweighted undirected graph is known to be NP-hard. Consider any unweighted undirected
graph G with n nodes. Construct a collection X with n objects corresponding to the nodes of G, the distance between two
objects being 3 if the corresponding nodes are connected and 2 otherwise. Suppose we computed mk(X) for all k. Take the
maximum k such that mk(X) = 3

k(k−1)
2 . Then k is the size of the maximum clique in G, which concludes the proof.

Although we proved that finding mk(X) for all k is NP-hard, it does not directly imply that computing MultiDimVolume is
NP-hard. Indeed, maybe we can compute MultiDimVolume without directly computing mk(X) for all k. Let us give a
sketch of how to avoid this technical obstacle.

As above, consider a graph G for which we want to find the size of the maximum clique. Construct a collection X with
n objects corresponding to the nodes of G, the distance between two objects being 2 + ϵ if the corresponding nodes are
connected and 2 otherwise, where ϵ > 0 is a small number (we will specify later how small it should be). Consider mk(X)

for some k. It is the product of pairwise distances between some k objects of X . Denote by rk, 0 ≤ rk ≤ k(k−1)
2 , the

number of their pairwise distances which are equal to 2 + ϵ (so, the remaining k(k−1)
2 − rk distances are equal to 2). This is

equivalent to saying that:

mk(X) = (2 + ϵ)rk2
k(k−1)

2 −rk = 2
k(k−1)

2 + ϵrk2
k(k−1)

2 −1 +O
(
ϵ2
)
.

Therefore,

Diversity(X) =

n∑
k=2

mk(X) =

(
n∑

k=2

2
k(k−1)

2

)
+ ϵ

n∑
k=2

rk2
k(k−1)

2 −1 +O
(
ϵ2
)
.

Note that for a given n, the value of ϵ can be chosen sufficiently small so that the last term O(ϵ2) is negligibly small
compared to the other two terms.

Now suppose we know Diversity(X). We also know the term
n∑

k=2

2
k(k−1)

2 and we know ϵ. Thus, we can compute
n∑

k=2

rk2
k(k−1)

2 −1.

We claim that knowing the value M =
n∑

k=2

rk2
k(k−1)

2 −1 we can recover r2, r3, . . . , rn. For this, we note that for any

k = 3, . . . , n:

2
k(k−1)

2 −1 >

k−1∑
i=2

i(i− 1)

2
· 2

i(i−1)
2 −1. (7)

Indeed, this holds for k = 3 and it is easy to check that the left-hand side of the inequality grows faster than the right-hand
side.

Now, consider k = n and note that the left-hand side of (7) is equal to how much the value of M changes if we change rn
by 1. In turn, the right-hand side of (7) is an upper bound on the sum of all other terms in M . Thus, knowing M , we can
find the maximum integer rn such that rn2

n(n−1)
2 −1 ≤ M . After we found rn, we get rid of the term rn2

n(n−1)
2 −1 and can

do the same reasoning to find rn−1, and continue until we find all r2, . . . , rn. After that, we take the maximum k such that
rk = k(k−1)

2 , this k is the size of the maximum clique in G, which concludes the proof.

D. Properties of IntegralMaxClique
Let us prove that IntegralMaxClique has monotonicity, uniqueness, continuity and is NP-hard to compute.
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For convenience, we repeat the definition of IntegralMaxClique. For a given threshold t ≥ 0, we construct the following
graph. The nodes are x1, . . . , xn. Two nodes xi and xj are connected by an edge iff dij ≥ t, and we assign dij as the
weight of this edge. We find a clique (complete subgraph) in this graph with the maximum number of nodes. If there are
several such cliques, we pick the one with the maximum total weight of edges. For the chosen clique, we calculate the total
weight of its edges and denote it by wt(X). Then, we define diversity as

Diversity(X) :=

∫ +∞

0

wt(X) dt. (8)

Assume that we are given any distance matrix D (or, equivalently, a collection of objects X). Denote by d̄ the smallest
non-zero pairwise distance between the objects of X . If all pairwise distances are 0, then monotonicity is trivial, so we can
assume d̄ > 0. Note that for t ≤ d̄, the value of wt(X) is the sum of pairwise distances between all pairwise non-coinciding
elements of X .

Monotonicity Assume that we increase the distance between two objects xi and xj by ϵ > 0, that is, we replace dij
by dij + ϵ. Obviously, for every t, the value of wt(X) has not decreased. If dij > 0, then for all t ≤ d̄ the term dij is a
summand in wt(X), thus for every t ≤ d̄ the value of wt(X) has increased at least by ϵ. Therefore, Diversity(X) has
increased by at least d̄ϵ. If dij = 0, then for all t ≤ ϵ, the value of wt(X) has increased by at least ϵ (since a new element is
added to the maximum clique). Thus, Diversity(X) has increased by at least ϵ2.

As with MultiDimVolume, this proof can be easily generalized to the case where several distances are increased simultane-
ously.

Uniqueness Suppose X includes at least one duplicate. We remove one duplicated element and add some new object that
was not present in X . Suppose the distance from the new object to the nearest object from X is r > 0. Then, for t ≤ r, the
value of wt(X) has increased by at least r, and for every t > r, the value of wt(X) has not decreased. Thus, Diversity(X)
has increased by at least r2. This shows that making duplicates distinct increases diversity, establishing uniqueness.

Continuity Assume that we increase the distance between two objects xi and xj by ϵ > 0, that is, we replace dij by
dij + ϵ. Let us see how much Diversity(X) could change. Obviously, for every t, the value of wt(X) has not decreased.
Let us estimate how much Diversity(X) could increase. We decompose the integral into three parts:

Diversity(X) :=

∫ +∞

0

wt(X) dt =

∫ dij

0

wt(X) dt+

∫ dij+ϵ

dij

wt(X) dt+

∫ +∞

dij+ϵ

wt(X) dt. (9)

It is easy to prove that for t ≤ dij , the value of wt(X) could increase at most by ϵ, thus the first part could increase at most

by ϵdij (since we integrate from 0 to dij). For the second term, we note that wt(X) is bounded from above by
(∑

k<l

dkl

)
+ϵ,

thus the second term is bounded by ϵ

(∑
k<l

dkl

)
+ ϵ2 and could increase by at most this value. The third term does not

change since for t > dij + ϵ the value of wt(X) does not change.

Therefore, Diversity(X) has increased by at most ϵdij + ϵ

(∑
k<l

dkl

)
+ ϵ2. So, if we increase dij by ϵ, then Diversity(X)

increases by at most ϵc, where c is some constant independent of ϵ (given that ϵ < 1, so the term ϵ2 is bounded by ϵ). From
this, the continuity follows.

NP-hardness The problem of finding the size of the maximum complete subgraph (clique) in an unweighted undirected
graph is known to be NP-hard. Consider any unweighted undirected graph G with n nodes. Construct a collection X with n
objects corresponding to the nodes of G, the distance between two objects being 3 if the corresponding nodes are connected
and 2 otherwise. Suppose we computed Diversity(X). Let us show how to find the size of the maximum clique in G. Note
that for t ≤ 2, the value of wt(X) is the sum of all pairwise distances in X , that is,

∑
k<l

dkl (which can be computed in

O(n2) time). For 2 < t ≤ 3, the value of wt(X) is 3 s(s−1)
2 , where s is the size of the maximum clique in G. For t > 3, the

value of wt(X) is 0. So, we get Diversity(X) = 2
∑
k<l

dkl + 3 s(s−1)
2 , from which we can find s in constant time. Thus,

once we know Diversity(X), we can find s in O(n2) time. This proves that calculating Diversity(X) is NP-hard.
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E. Proof of Proposition 6.1
Let us first recall the statement of the proposition. Suppose a diversity function has uniqueness and continuity. Let x1, . . . , xk

be a set of k pairwise distinct objects. Let C be a multiset of n− k objects, each of which coincides with one of x1, . . . , xk.
Then, diversity of the multiset {x1, . . . , xk} ∪ C is the same for all such C.

Consider the following lemma.

Lemma E.1. Suppose a diversity function has uniqueness and continuity. Let x1, . . . , xn−1 be any collection of n − 1
objects. We denote by A1 the collection of n objects x1, . . . , xn−1, x1 and by A2 the collection of n objects x1, . . . , xn−1, x2

(note that A1 and A2 differ only by the last object). Then, Diversity(A1) = Diversity(A2).

Informally, this lemma says that we can remove the duplicate of x1 and add the duplicate of x2 without changing the value
of the diversity function. The proposition trivially follows from this lemma, so it is sufficient to prove it.

W.l.o.g., assume that Diversity(A1)−Diversity(A2) = ϵ > 0. Denote by A′
2 the following collection: take A2 and increase

the distance from the last object to all objects by a small δ > 0 in such a way that diversity changes by less than ϵ
2 (note that

the last object is no longer a duplicate). By continuity, this is possible. Then, Diversity(A′
2) is less than Diversity(A2) +

ϵ
2 .

Thus, Diversity(A′
2) < Diversity(A1). However, by uniqueness, we have Diversity(A′

2) > Diversity(A1) since the last
object of A′

2 is not a duplicate, and the last object of A1 is a duplicate. So, we get a contradiction which concludes the proof
of the lemma.

F. Proof of Proposition 6.2
We need to prove that a diversity function satisfying all the axioms cannot be decomposed in the following form:

Diversity(X) = F (d12, d13, . . . , d1n) +G(x2, . . . , xn).

Suppose we increase d12 (and d21) by some ∆. Then, diversity will increase by the following value:

F (d12 +∆, d13, . . . , d1n) +G(x2, . . . , xn)− F (d12, d13, . . . , d1n)−G(x2, . . . , xn) =

= F (d12 +∆, d13, . . . , d1n)− F (d12, d13, . . . , d1n). (10)

Note that by permutation invariance we can decompose Diversity(X) based not on x1, but on x2:

Diversity(X) = F (d21, d23, . . . , d2n) +G(x1, x3, . . . , xn). (11)

Using this decomposition, we see that when we increase d12 (and d21) by ∆, the diversity increases by the following value:

F (d21 +∆, d23, . . . , d2n) +G(x1, x3, . . . , xn)− F (d21, d23, . . . , d2n)−G(x1, x3, . . . , xn) =

= F (d21 +∆, d23, . . . , d2n)− F (d21, d23, . . . , d2n) (12)

Combining the results of (11) and (12), we get:

F (d12 +∆, d13, . . . , d1n)− F (d12, d13, . . . , d1n) = F (d21 +∆, d23, . . . , d2n)− F (d21, d23, . . . , d2n).

Note that the left part depends on d13, . . . , d1n, while the right part does not depend on these variables. Similarly, the right
part depends on d23, . . . , d2n, while the left part does not depend on these variables. This means that both parts actually do
not depend on any of d13, . . . , d1n and d23, . . . , d2n, so they depend only on d12 (or d21, which is the same) and ∆. Thus,
we proved that if we increase d12 by ∆, the diversity changes by some value that depends only on d12 and ∆ and does not
depend on other pairwise distances. By permutation invariance, for any dij the analogous statement is true. From these
statements, it easily follows that

Diversity(X) = h(d12) + h(d13) + . . . =
∑
i<j

h(dij),

where we have the same function h applied to all distances by permutation invariance.
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Consider the following collection: the first n− 1 objects are duplicates of one element, and the last object is at distance
1 from them. So, there are n− 1 pairwise distances of 1 and (n−1)(n−2)

2 distances of 0. Thus, diversity is (n− 1)h(1) +
(n−1)(n−2)

2 h(0). Using Proposition 6.1, we can move one of the duplicates in such a way that now it duplicates the last
object, and diversity should not change. Now, there are 2(n− 2) pairwise distances of 1, and (n−2)(n−3)

2 + 1 distances of 0.

Thus, diversity is 2(n− 2)h(1) +
(

(n−2)(n−3)
2 + 1

)
h(0). So, we get

(n− 1)h(1) +
(n− 1)(n− 2)

2
h(0) = 2(n− 2)h(1) +

(
(n− 2)(n− 3)

2
+ 1

)
h(0),

from which we get (n− 3)h(1) = (n− 3)h(0), which implies h(1) = h(0) (given that n > 3). Monotonicity implies that
h is strictly monotone, which contradicts h(1) = h(0), which concludes the proof.
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