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Abstract

Randomized trials are widely considered as the gold standard for evaluating the
effects of decision policies. Trial data is, however, drawn from a population
which may differ from the intended target population and this raises a problem
of external validity (aka. generalizability). In this paper we seek to use trial data
to draw valid inferences about the outcome of a policy on the target population.
Additional covariate data from the target population is used to model the sampling
of individuals in the trial study. We develop a method that yields certifiably valid
trial-based policy evaluations under any specified range of model miscalibrations.
The method is nonparametric and the validity is assured even with finite samples.
The certified policy evaluations are illustrated using both simulated and real data.

1 Introduction

Randomized controlled trials (RCT) are often considered to be the ‘gold standard’ when evaluating the
effects of different decisions or, more generally, decision policies. RCT studies circumvent the need
to identify and model potential confounding variables that arise in observational studies. They enable
the evaluation and learning of decision policies for use in, e.g., clinical decision support, precision
medicine and recommendation systems (Qian and Murphy, 2011; Zhao et al., 2012; Kosorok and
Laber, 2019).

However, RCTs sample individuals that may differ systematically from a target population of interest.
For instance, clinical trials usually involve only individuals who do not have any relevant comorbidities
and those who volunteer for trials may very well exhibit different characteristics than the target
population. Invalid inferences about a decision policy can be potentially harmful in safety-critical
applications, where the cautionary principle of “above all, do no harm” applies (Smith, 2005). This is
especially challenging since the distributions of population characteristics are unknown. How can we
generalize results from the trial sample to the intended population?

The focus of this paper is the problem of establishing externally valid inferences about outcomes in a
target population, when using experimental results from a trial population (Campbell and Stanley,
1963; Manski, 2007; Westreich, 2019). We consider evaluating a decision policy, denoted π, that
maps covariates X of an individual onto a recommended action A. The outcome of this decision has
an associated loss L (aka. disutility or negative reward). Thus L may directly represent the outcome
of interest. We assume the availability of samples (X,A,L) from the trial population and additional
covariate data X from the target population (Lesko et al., 2016; Li et al., 2022; Colnet et al., 2024).
The covariate data is used to model the sampling of individuals in the trial study. We propose a
method for evaluating policy π that

• is nonparametric and makes no assumptions about the distributional forms of the data,
• takes into account possible covariate shifts from trial to target distribution, even when using

miscalibrated sampling models with unmeasured selection factors,
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Figure 1: Inferring the out-of-sample losses of a policy π. (a) The loss L is bounded by an upper
limit ℓα with a probability of at least 1− α. The RCT-based limit curve uses only trial data, whereas
the other limit curves also utilize a sampling model trained using additional covariate data X from
the target population. Each limit curve in blue is certified to provide valid inferences for models
miscalibrated up to a degree Γ defined in (3). (b) Gap between the actual probability of exceeding the
limit, L > ℓα, and the nominal probability of miscoverage α. A negative gap means the inference
ℓα is invalid, while a positive gap implies it is valid but conservative. Details of the experiment are
presented in Section 5.1.

• and certifies valid finite-sample inferences of the out-of-sample loss, up to any specified
degree of model miscalibration.

Many policy evaluation methods are focused on estimating the expected loss Eπ[L] of π. However,
since a substantial portion of losses L may exceed the mean, this focus can miss important tail
events (Wang et al., 2018; Huang et al., 2021). By contrast, evaluating a policy in terms of its
out-of-sample loss provides a more complete characterization of its performance and is consonant
with the cautionary principle. Figure 1 illustrates the evaluation of π using limit curves which upper
bound the out-of-sample loss L with a given probability 1 − α. A limit curve based on RCT-data
alone is only ensured to be valid for a trial population. Using additional covariate data, however,
we can certify the validity of the inferences for the target population up to any specified degree of
miscalibration of the sampling model.

The rest of the paper is outlined as follows. We first state the problem of interest in Section 2 and
relate it to the existing literature in Section 3. We then propose a policy evaluation method in Section 4
and demonstrate its properties using both synthetic and real data in Section 5. We conclude the paper
with a discussion about the properties of the method in Section 6 and its broader impact in Section 7.

2 Problem Formulation

Any policy π, whether deterministic or randomized, can be described by a distribution pπ(A|X). Each
covariate X , unmeasured selection factor U and action A has an associated loss L ∈ (−∞, Lmax).
We consider here a discrete action space, i.e. A ∈ {1 . . . ,K}. The decision process has a causal
structure that can be formalized by a directed acyclic graph, visually summarized in Figure 2 (Peters
et al., 2017). The sampling indicator S indicates whether individuals are drawn from a target
population, S = 0, or a trial population, S = 1. The causal structure allows us to decompose the two
distributions. Specifically, the target distribution factorizes as

pπ(X,U,A,L|S = 0) = p(X,U |S = 0) · pπ(A|X) · p(L|X,U,A), (1)

where only the policy pπ(A|X) is known. Similarly, the trial distribution factorizes as

p(X,U,A,L|S = 1) = p(X,U |S = 1) · p(A|X) · p(L|X,U,A), (2)

where only the randomization mechanism p(A|X) is known. In general the characteristics of target
and trial populations may differ, that is, p(X,U |S = 0) ̸= p(X,U |S = 1). The unmeasured U may
include self-selection factors that are challenging to record. Note, however, that only factors that also
affect the loss L are relevant here.
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Figure 2: Causal structure of process (a) under policy π as well as (b) the trial study. Sampling
indicator S distinguishes between the two. For the important case of RCT, assignment of A is not
influenced by any covariates so that the path X → A is eliminated.

From the trial distribution (2), we sample m individuals D =
(
(Xi, Ai, Li)

)m
i=1

independently. In
addition, we also obtain n independent samples of covariate-only data

(
X1, X2, . . . , Xn

)
from the

target population (1). Our aim is to infer the out-of-sample loss Ln+1 for individual n+ 1 under any
policy π. Specifically, we seek a loss limit ℓα as a function of 1−α, such that Ln+1 ≤ ℓα holds with
probability 1− α as illustrated by the ‘limit curves’ in Figure 1a.

The sampling pattern of individuals is described by p(S|X,U). This distribution is unknown, but
we assume that a model p̂(S|X) is available. This model was fitted using held-out data {(Xj , Sj)}
employing either the conventional logistic model or any state-of-the-art machine learning models (as
exemplified below). It can also be obtained from previous studies. There is, however, no guarantee that
p̂(S|X) is calibrated and it may indeed diverge from the unknown sampling pattern. Nevertheless, we
want inferences about the out-of-sample loss to be valid also for miscalibrated models. We therefore
express the degree of miscalibration in terms of the selection odds:

1

Γ
≤ p(S = 0|X,U)

p(S = 1|X,U)︸ ︷︷ ︸
unknown selection odds

/
p̂(S = 0|X)

p̂(S = 1|X)︸ ︷︷ ︸
nominal selection odds

≤ Γ (a.s.) (3)

That is, the nominal selection odds can diverge by a factor Γ, where Γ = 1 implies a perfectly
calibrated model. This model includes all sources of errors (selection bias, model misspecification,
estimation error).

A limit ℓΓα provides an externally valid inference of Ln+1, up to any specified degree of miscalibration
Γ, if it satisfies

Pπ

{
Ln+1 ≤ ℓΓα(D) | S = 0

}
≥ 1− α, ∀α. (4)

The problem we consider is to construct this externally valid limit ℓΓα. This limit allows us to
infer the full loss distribution of a future individual with Ln+1 under policy π, rather than merely
the expected loss Eπ[L]. Specifically, the tail losses are important in healthcare and other safety
critical applications where erroneous inferences could be harmful, and a cautious approach when
implementing new policies is needed.

The limit curve ℓΓα for policy π is valid up to any declared degree of odds miscalibration Γ, which
establishes the credibility of the policy evaluation, cf. Manski (2003). While Γ is unknowable,
especially under unmeasured U , we can use ideas from sensitivity analysis to guide its selection using
measured data (Rosenbaum and Rubin, 1983; Tan, 2006) . Following the method in Huang (2024),
we treat observed selection factors in X as unmeasured U in (3) to benchmark appropriate values for
Γ, as detailed in subsection 4.1.

By increasing the range of Γ, we certify the validity of the inference under increasingly credible
assumptions on p̂(S|X) (Manski, 2003). As the model credibility increases, however, the informa-
tiveness of the inferences decreases. Since the upper bound on the losses, Lmax, is a trivial and
uninformative limit, we may define the informativeness of ℓΓα as

Informativeness = 1− inf{α : ℓΓα(D) < Lmax}. (5)
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Figure 3: (a) Omitting measured selection factors to benchmark credible values for Γ in (3). (b)
Inferred blood mercury levels [µg/L] in a target population under ‘high’ and ‘low’ seafood consump-
tion (π1 and π0, respectively). Limit curves for degrees of odds miscalibration Γ ∈ [1, 2].

That is, the right limit of a limit curve, which decreases with the degree of miscalibration. Figure 1a
shows curves that are valid for miscalibration in the range Γ ∈ [1, 2], where the informativeness is
95% and 90%, respectively. The latter figure means that we can infer a non-trivial bound on the loss
for 90% of the target population.

Remark: This paper addresses the evaluation of a given policy, whether proposed by a clinical expert
or learned from historical data. By setting aside samples from an RCT study, a policy π can be learned,
and its out-of-sample performance evaluated using the proposed methodology.

3 Background Literature

The problem considered herein is related to the problem of causal inference when combining data
from randomized controlled trials and observational studies. Examples of the setting where only
covariate data from the observational study is available can be found in Lesko et al. (2016) and Li
et al. (2022). For additional examples, refer to the survey by Colnet et al. (2024). Within the broader
area of generalizability and transportability, the problem represents the case were the sampling
probability depends solely on the covariates X , and is independent of the action and the loss (Pearl
and Bareinboim, 2014; Lesko et al., 2017; Degtiar and Rose, 2023). The problem is also related to a
broader literature of statistical learning under covariate shifts, see for instance Shimodaira (2000);
Sugiyama et al. (2007); Quinonero-Candela et al. (2008); Reddi et al. (2015); Chen et al. (2016).

The most common object of inference in policy evaluation is the expected loss Eπ[L] and a popular
method for estimating it is inverse probability of sampling weighting (IPSW), which models covariate
shifts from trial to target populations. The estimator using RCT-data is defined as

V π
IPSW =

1

n

m∑

i=1

p̂(S = 0|Xi)

p̂(S = 1|Xi)
· pπ(Ai|Xi)

p(Ai)
· Li. (6)

This methodology has been applied in various studies, see for example Cole and Stuart (2010); Stuart
et al. (2011); Westreich et al. (2017); Buchanan et al. (2018). It is widely recognized that misspecified
logistic models can introduce bias when estimating the weights (Colnet et al., 2024) and more recent
works have suggested using flexible models, such as generalized boosted methods (Kern et al., 2016),
instead. The counterpart to IPSW, used in off-policy evaluation with observational data, is inverse
propensity weighting (IPW). The problem with misspecified logistic models also applies here when
estimating the classification probabilities, aka. propensity scores (McCaffrey et al., 2004; Lee et al.,
2010). In this case, generalized boosted methods and covariate-balancing methods have shown to be
promising alternatives (Setodji et al., 2017; Tu, 2019). The literature on IPSW and IPW is mainly
focused on average treatment effect estimation, that is Eπ1 [L]− Eπ0 [L] where π1 and π0 denote the
‘treat all’ and ‘treat none’ policies, respectively. By contrast, we want to certify the distributional
properties of Ln+1 for any π, even under miscalibration of p̂(S|X).
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Conformal prediction is a distribution-free methodology focused on creating covariate-specific
prediction regions that are valid for finite-samples (Vovk et al., 2005; Shafer and Vovk, 2008). The
methodology was extended by Tibshirani et al. (2019) to also work for known covariate shifts. Jin
et al. (2023) combined the marginal sensitivity methodology developed in Tan (2006) with the
conformal prediction for covariate shifts to perform sensitivity analysis of treatment effects in the
case of unobserved confounding. Our methodology draws upon techniques in conformal prediction,
but instead of providing covariate-specific prediction intervals under a policy π, we are concerned
with evaluating any π over a target population.

When full identification of the causal effect is not possible due to unmeasured confounders, partial
identification sensitivity analysis can be used to evaluate the robustness of the estimates. Rosenbaum
and Rubin (1983) introduced a sensitivity parameter to bound the odds ratio of the probability of
treatment. More recent work has extended this approach to account for treatment effect heterogeneity
and non-binary treatments, as seen in Tan (2006); Shen et al. (2011); Zhao et al. (2019); Dorn and Guo
(2023) among others. However, it is often challenging to interpret the absolute value of the sensitivity
parameter in practical scenarios. To address this, recent research has proposed benchmarking, or
calibrating, results by estimating the effects of unmeasured confounders, see for example Hsu and
Small (2013); Franks et al. (2019); Veitch and Zaveri (2020); De Bartolomeis et al. (2024). Note
that all these papers work with sensitivity analysis for observational studies. Huang (2024) instead
combines sensitivity analysis for generalization with benchmarking to determine reasonable values
of Γ.

A biased sample selection, similar to that described by (3), was considered in the context of average
treatment effect estimation by Nie et al. (2021). In contrast to that work, our primary focus is on
ensuring the validity of inferences regarding out-of-sample losses, even when dealing with finite
training data. We achieve this using a sample-splitting technique.

4 Method

Here we construct a limit ℓΓα(D) on the out-of-sample losses under policy π that satisfies (4) for any
given specified degree of miscalibration Γ.

4.1 Benchmarking degree of miscalibration

The limit curve ℓΓα(D) holds up to the specified degree of odds miscalibration Γ. Although Γ is
inherently unknown, sensitivity analysis and methods for assessing the calibration of models can
guide its estimation using available data.

We start with a benchmarking method that specifically accounts for the potential impact of unmea-
sured selection factors, U . Building on the approach in Huang (2024), we treat observed selection
factors in X as proxies for unmeasured U in equation (3), providing a benchmark for selecting
suitable Γ values. Specifically, let the the omitted selection factor Xk be U and X−k denotes the
remaining covariates. Then the ratio in (3) is estimated by dividing ôdds(X−k, Xk) =

p̂(S=0|X)
p̂(S=1|X) by

ôdds(X−k) =
p̂(S=0|X−k)
p̂(S=1|X−k)

. Figure 3a summarizes the distribution of ôdds(X−k, Xk)/ôdds(X−k)

using a real data set, where the omitted Xk is either age, income or education. We see that the
corresponding ratios all fall within Γ = 2. We can therefore conclude that if any unmeasured
selection factor U is weaker than the omitted factors, it is credible to set Γ in the range of 1.5 to 2.
The corresponding loss curves are shown in Figure 3b, which illustrates the blood mercury levels in a
target population under policies of ‘high’ respective ‘low’ seafood consumption that can credibly be
extrapolated from trial data. More details are available in Section 5.2. Note that this benchmarking
method serves as a guide for assessing the influence of unmeasured selection factors U (Cinelli and
Hazlett, 2019).

Without unmeasured selection factors, methods for assessing the calibration of models p̂(S|X)
discussed in, e.g., Murphy and Winkler (1977); Naeini et al. (2015); Widmann et al. (2019) can guide
the specified lower bound of the range of miscalibration. The nominal selection odds in (3), i.e.,
ôdds(X) = p̂(S=0|X)

p̂(S=1|X) , can be quantized into several bins and for each bin the unknown selection

odds, i.e., odds(X) = p(S=0|X)
p(S=1|X) , can be estimated by counting the samples from both the target and

trial distributions present. In the case of a well-calibrated model, estimated unknown odds should
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match the quantized nominal odds for each bin. To assess calibration, this process can be iterated
across multiple ranges within the dataset and visualized through a reliability diagram, as exemplified
in Figure 4. Using (3), we have that

1

Γ
· ôdds(X) ≤ odds(X) ≤ Γ · ôdds(X).

Take the expectation with respect to X , conditional on the nominal odds in a specified interval (or
bin) I , so that:
1

Γ
· E[ôdds(X) | ôdds(X) ∈ I] ≤ E[odds(X) | ôdds(X) ∈ I] ≤ Γ · E[ôdds(X) | ôdds(X) ∈ I].

The expected odds is then estimated for each bin I by counting samples from the target and trial
distributions.

4.2 Inferring out-of-sample limit

We will now construct the limit ℓΓα(D). For this we need to describe the distribution shift from trial
to target distribution for all samples, including the n+ 1 sample. We begin by considering the true
distribution shift expressed using the ratio

pπ(X,U,A,L|S = 0)

p(X,U,A,L|S = 1)
. (7)

Inserting the factorizations (1) and (2) into this ratio shows that specifying the distribution shift
requires the unknown (conditional) covariate distribution p(X,U |S). We can, however, bound (7)
using the model of the sampling pattern, p̂(S|X), as follows:

c ·WΓ ≤ pπ(X,U,A,L|S = 0)

p(X,U,A,L|S = 1)
≤ c ·WΓ

, (8)

where

WΓ =
1

Γ
· p̂(S = 0|X)

p̂(S = 1|X)
· pπ(A|X)

p(A|X)
, W

Γ
= Γ · p̂(S = 0|X)

p̂(S = 1|X)
· pπ(A|X)

p(A|X)
, (9)

and c = p(S=1)
p(S=0) is a constant. To see this, we note that the ratio in (7) can be expressed as

c · p(S = 0|X,U)

p(S = 1|X,U)
· pπ(A|X)

p(A|X)
,

using Bayes’ rule. The bound (8) follows by applying (3). We proceed to show that the factors (9)
are sufficient to construct an externally valid limit ℓΓα for odds divergences up to degree Γ, similar to
Ek et al. (2023).

To ensure finite-sample guarantees, the trial data is randomly divided into two sets, D = D′ ∪ D′′,
with respective samples sizes of m′ and m−m′. The set D′ is used to construct

wΓ
β(D′) =

{
W

Γ

[⌈(m′+1)(1−β)⌉], (m′ + 1)(1− β) ≤ m′,

∞, otherwise,
(10)

where W
Γ

[·] is the upper limit in (9) evaluated over D′ and ordered W
Γ

[1] ≤ W
Γ

[2] ≤ · · · ≤ W
Γ

[m′]. We
show that (10) upper bounds the ratio (7) for a future sample with probability 1− β for any choice
of β ∈ (0, 1). The set D′′ is used to construct a stand-in for the unknown cumulative distribution
function of the out-of-sample loss:

F̂ (ℓ;D′′, w) =

∑
i∈D′′ W

Γ
i 1(Li ≤ ℓ)

∑
i∈D′′

[
WΓ

i 1(Li ≤ ℓ) +W
Γ

i 1(Li > ℓ)
]
+ w

, (11)

where w > 0 is a free variable representing the unknown out-of-sample weight W
Γ

n+1 for a future
sample. Based on (10) and (11), define ℓΓα,β as the quantile function

ℓΓα,β = inf

{
ℓ : F̂ (ℓ;D′′, wΓ

β(D′)) ≥ 1− α

1− β

}
. (12)

This enables us to construct a valid limit on the future loss Ln+1 for any miscoverage probability
α ∈ (0, 1).
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Figure 4: Reliability diagram of the observed
odds against the average predicted nominal
odds obtained from models p̂(S|X).

Algorithm 1 A set of limit curves for policy π

input Model p̂(S|X), policy pπ(A|X), trial
policy p(A|X), a set of miscalibration de-
grees {1, . . . ,Γmax} and trial data D.

output {(Γ, α, ℓΓα)}
1: Randomly split D into D′ and D′′.
2: for Γ ∈ {1, . . . ,Γmax} do
3: for α ∈ {0, . . . , 1} do
4: for β ∈ {0, . . . , α} do
5: Compute wΓ

β as in (10).
6: Compute ℓΓα,β as in (12).
7: end for
8: Set ℓΓα to the smallest ℓΓα,β .
9: Save (Γ, α, ℓΓα).

10: end for
11: end for

Theorem 4.1. For any odds miscalibration up to degree Γ,

ℓΓα(D) = min
β:0<β<α

ℓΓα,β , (13)

is an externally valid limit on the out-of-sample loss Ln+1 of policy π. That is, (13) is certified to
satisfy (4).

The method seeks the level β for the bound (10) that yields the tightest limit. The proof is presented
in the supplementary material and builds on several techniques developed in Vovk et al. (2005);
Tibshirani et al. (2019); Jin et al. (2023); Ek et al. (2023).

Algorithm 1 summarizes the implementation of a set of limit curves given a model of the sampling
pattern p̂(S|X) and a set of miscalibration degrees [1,Γmax]. Note that (10) and (11) are step
functions in β respective ℓ. Therefore (12) and (13) can be solved by computing the functions at a
grid of points. Calculating (10) and (11) requires the sorting of weights, but the sorting operation is a
one-time requirement.

Increasing the degree of miscalibration Γ results in a decrease in WΓ and an increase in W
Γ

in (9).
As weights associated with lower and higher losses decrease and increase, respectively, in (11), the
resulting limit ℓΓα(D) becomes more conservative.

Remark 1: If the trial population is a small subgroup of the target population (for example in the case
of weak overlap), the nominal odds p̂(S=0|X)

p̂(S=1|X) will tend to be high. As this yields a significant weight
wΓ

β(D′), the informativeness (5) of ℓΓα(D) diminishes. Nevertheless, the guarantee in (4) holds.

Remark 2: The split of D can be performed in a sample-efficient manner in the case of RCT,
where actions are randomized so that p(A|X) ≡ p(A): For the ith sample, (Xi, Ai, Li), draw
Ãi ∼ pπ(A|Xi). Include sample i in D′′ if Ai = Ãi, otherwise include it in D′. This sample splitting
method ensures that inferences on the loss are based on actions that match those of the policy.

5 Numerical Experiments

We will use both synthetic and real-world data to illustrate the main concepts of policy evaluation
with limit curves (α, ℓΓα). As a performance benchmark, we estimate the quantile – which yields the
tightest limit – using the inverse probability of sampling weighting (Colnet et al., 2024)

ℓα(D) = inf
{
ℓ : F̂IPSW(ℓ;D) ≥ 1− α

}
, (14)

where

F̂IPSW(ℓ;D) =
1

m

m∑

i=1

m

n
· p̂(S=0|Xi)

p̂(S=1|Xi)
· pπ(Ai|Xi)

p(Ai)
· 1(Li ≤ ℓ).
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Table 1: Means and variances of covariate distribution p(X,U |S) in (15).

Population µ0,S µ1,S µU,S σ2
0,S σ2

1,S σ2
U,S

A (S = 0) 0.5 0.5 0.5 1.0 1.0 1.0
B (S = 0) 0.0 0.5 0.0 1.25 1.5 1.25

Trial (S = 1) 0.0 0.0 0.0 1.0 1.0 1.0
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Figure 5: Odds p(S = 0|X)/p(S = 1|X) compared with nominal odds obtained from logistic and
XGBoost models p̂(S|X). The dots are a random subsample of the trial samples.

This is similar to the approach in Huang et al. (2021) but adapted to problems involving data from
trial and observational studies.

We examine the impact of increasing the credibility of our model assumptions, i.e., by increasing the
miscalibration degree Γ, on the informativeness (5) of the limit curve. In addition, for the simulated
data, we also assess the miscoverage gap of the curves

Miscoverage gap = α− Pπ{Ln+1 > ℓα(D)|S=0},
where a negative gap indicates an invalid limit.

5.1 Illustrations using synthetic data

We consider target and trial populations of individuals with two-dimensional covariates, distributed
as follows:

X|S =

[
X0,S

X1,S

]
∼ N

([
µ0,S

µ1,S

]
,

[
σ2
0,S 0
0 σ2

1,S

])
, U |S ∼ N (µU,S , σ

2
U,S), (15)

where the parameters are given in Table 1. The distributions for populations A, B and Trial are taken
to be unknown.

The actions are binary A ∈ {0, 1} and corresponds to ‘do not treat’ versus ‘treat’. We evaluate the
‘treat all’ policy, i.e. pπ1(A = 1|X) = 1. The trial is an RCT with equal probability of assignment,
i.e., p(A) ≡ 0.5. The unknown conditional loss distribution is given by

L|(A,X,U) ∼ N (A ·X2
0 +X1 +A · U + (1−A), 1).

The sampling probability p(S|X,U) is treated as unknown. The complete set of hyperparameters
used is provided in the supplementary material.

For the observational data
(
Xi

)n
i=1

, we drew n = 2000 samples. For the trial data we drew 1000

samples: m = 500 samples and
(
(Xi, Ai, Li)

)m
i=1

was used to compute the limit curves. The
remaining 500 samples were used to train p̂(S|X).

Figure 5a compares nominal selection odds obtained from the fitted models with the unknown odds
p(S = 0|X)/p(S = 1|X) for target population A. We consider two different fitted models p̂(S|X): a
logistic model, which is conventionally used in the causal inference literature (Westreich et al., 2017),
and the more flexible tree-based ensemble model trained by XGBoost (Chen and Guestrin, 2016).
In this case, the logistic model happens to be well-specified so that the learned odds approximate
the true ones well. The more flexible XGBoost model also provide visually similar odds, albeit less
accurate. By contrast, Figure 5b repeats the same exercise for target population B. Here the logistic
model is misspecified and severely miscalibrated while the XGBoost model continues to provide
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Figure 6: Evaluating a ‘treat all’ policy π1 for target population B. (a) Benchmarking the degree
of miscalibration Γ using omitted covariates. (b) Miscoverage gaps when degree of miscalibration
Γ ∈ [1, 2].

visually similar odds. A well-performing and flexible model is required for a meaningful benchmark
of the upper value of Γ. Therefore, we will use the XGBoost model.

In Figure 4, we use the reliability diagram technique to assess the performance of the XGBoost model
ôdds(X) of the nominal odds for target population B. The model is close to the diagonal suggesting
that it is sufficiently flexible to accurately model the odds. This is in line with the result in Figure 5b.
We then use observed covariates to calibrate appropriate upper bounds for Γ. Figure 6a shows the
evaluation with respect to population B. Assuming that the unmeasured U have no greater selection
effect than X0, a degree of miscalibration Γ = 2 is a credible choice as it covers more than 95% of
the ratios. Since the data is simulated, we evaluate the miscoverage gap of the limit curves of the
‘treat all’ policy π1 in Figure 6b for the benchmark and the limit curves for the proposed method.
The gap is estimated using 1000 independent runs and for each run drawing 1000 independent new
samples (Xn+1, Un+1, An+1, Ln+1). We see that the benchmark and the limit curve for Γ = 1 yields
a negative miscoverage gap. As the degree of miscalibration Γ increases to 2, the limit curves exhibit
positive miscoverage gaps.

The evaluation of π1 with respect to population A is shown in Figure 1. Results for the logistic model,
another policy π0, and for additional populations are available in the supplementary material.

5.2 Evaluating seafood consumption policies

To illustrate the application of policy evaluation with real data, we study the impact of seafood
consumption on blood mercury levels with data from the 2013-2014 National Health and Nutrition
Examination Survey (NHANES). Following Zhao et al. (2019), each individual’s data includes eight
covariates, encompassing gender, age, income, the presence or absence of income information, race,
education, smoking history, and the number of cigarettes smoked in the last month. All covariates,
except for smoking history U , are treated as measured and denoted X . We excluded one individual
due to missing education data and seven individuals with incomplete smoking data. We impute the
median income for 175 individuals with no income information. The continuous covariates – age,
income and number of cigarettes smoked in the last month – are standardized. After the preprocessing,
our data set comprises 1107 individuals. The data is then split into observational data D0 and trial
data D1 based on the covariates gender, age, income and smoking history (more details are available
in the supplementary material) resulting in 646 samples in the observational data and 461 samples
in the trial data. The action A describes individual fish or shellfish consumption, categorizing an
individual as having either low (≤1 serving in the past month) or high (>12 servings in the past
month) consumption. The loss L represents the total concentration of blood mercury (measured in
µg/L).

To generate counterfactual actions and losses, we consider a balanced RCT so that p(A) ≡ 0.5 and
learn a model of p(L|A,X,U) from the data using gradient boosting (Freund and Schapire, 1997;
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Friedman et al., 2000). Thus during training, the trial data consists of samples (Xi, Ai, Li) whereas
the observational data only contains X .

In Figure 3a we use observed covariates to benchmark appropriate upper bounds for Γ. We exclude
each of the seven covariates one by one, highlighting the three most dominant ones in the figure. If
the unmeasured covariates have weaker influence than these, a Γ value in the range of 1.5 to 2 is
appropriate. In Figure 3b we compare the limit curve for a policy π0 corresponding to low (A ≡ 0)
seafood consumption with the limit curve for a policy π1 corresponding to high (A ≡ 1) seafood
consumption. We use an XGBoost-trained model p̂(S|X). For reference, a mercury level of 8 µg/L is
guidance limit for women of child-bearing age. We see that under a low consumption policy a lower
mercury level can be certified for miscalibrated odds Γ ∈ [1, 2]. In this case, we can infer a 90%
probability that the out-of-sample mercury level falls below the reference value of 8 µg/L.

6 Discussion

We have proposed a method for establishing externally valid policy evaluation based on experimental
results from trial studies. The method is nonparametric, making no assumptions on the distributional
forms of the data. Using additional covariate data from a target population, it takes into account pos-
sible covariate shifts between target and trial populations, and certifies valid finite-sample inferences
of the out-of-sample loss Ln+1, up to any specified degree of model miscalibration.

Conventional policy evaluation methods focus on Eπ[L] and can easily introduce a bias without
the user’s awareness, particularly when the model of the sampling pattern p̂(S|X) is misspecified.
Lacking any control for miscalibration undermines the possibility to establish external validity. In
safety-critical applications, making invalid inferences about a decision policy can be potentially
harmful. Hence, adhering to the cautionary principle of “above all, do no harm” is important. The
proposed method is designed with this principle in mind, and the limit curve represents the worst-case
scenario for the selected degree of miscalibration Γ.

We also exemplify how the reliability diagram technique and the benchmark approach of omitting
observed selection factors facilitate a more systematic guidance on the specification of the odds
miscalibration degree Γ in any given problem.

7 Broader Impact and Limitations

The method we propose is designed for safety-critical applications, such as clinical decision support,
with the cautionary principle in mind. We believe that it offers a valuable tool for policy evaluation
in such scenarios. Our approach focuses on limit curves, coupled with a statistical guarantee, for a
more detailed understanding of the out-of-sample loss. This facilitates a fairer evaluation by bringing
attention to sensitive covariates in the tails. However, it remains important to be aware of biases, and
it might be necessary to address them separately to prevent their replication. It is also important to
note that the method requires independent samples, a condition that may not be met during major
virus outbreaks or similar situations.
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Supplementary Material

In this supplementary material, we provide the proof outlined in Section A and additional details on
the numerical experiments discussed in Section B.

A Proof

In this context, P represents the probability over samples drawn from both p(X,U,A,L|S = 1) and
pπ(X,U,A,L|S = 0). The proof technique presented here builds upon several results established in
Vovk et al. (2005); Tibshirani et al. (2019); Jin et al. (2023); Ek et al. (2023), and for completeness
we present the proof in full.

Following Ek et al. (2023) we introduce β such that 0 < β < α. Use (12) to construct the limit

ℓΓα(D) = inf

{
ℓ : F̂ (ℓ;D′′, wΓ

β(D′)) ≥ 1− α

1− β

}
, (16)

where wΓ
β(D′) is defined in (10). We want to lower bound the probability of Ln+1 ≤ ℓΓα(D). Note

that

P{Ln+1 ≤ ℓΓα(D)} = P{Ln+1 ≤ ℓΓα(D) | WΓ

n+1 ≤ wΓ
β(D′)} P{WΓ

n+1 ≤ wΓ
β(D′)}

+ P{Ln+1 ≤ ℓΓα(D) | WΓ

n+1 > wΓ
β(D′)} P{ W

Γ

n+1 > wΓ
β(D′)},

from the law of total probability. The second term is a lower bounded by zero, and we have

P{Ln+1 ≤ ℓΓα(D)} ≥ P{Ln+1 ≤ ℓΓα(D) | WΓ

n+1 ≤ wΓ
β(D′)} P{WΓ

n+1 ≤ wΓ
β(D′)}. (17)

Let us focus on the second factor in (17). From the construction in (10) the probability of W
Γ

n+1 ≤
wΓ

β(D′) is lower bounded by

P{WΓ

n+1 ≤ wΓ
β(D′)} ≥ 1− β, (18)

see Vovk et al. (2005); Lei et al. (2018, thm. 2.1).

We now proceed to bound the first factor in (17), i.e., P{Ln+1 ≤ ℓΓα(D) | WΓ

n+1 ≤ wΓ
β(D′)}. Define

the following limit

ℓΓα(D′′,W
Γ

n+1) = inf

{
ℓ : F̂ (ℓ;D′′,W

Γ

n+1) ≥
1− α

1− β

}
, (19)

where W
Γ

n+1 ≥ Wn+1 is given in (8). Comparing this limit with the one defined in (16), we see that

P{Ln+1 ≤ ℓΓα(D) | WΓ

n+1 ≤ wΓ
β(D′)} ≥ P{Ln+1 ≤ ℓΓα(D′′,W

Γ

n+1) | W
Γ

n+1 ≤ wΓ
β(D′)}

= P{Ln+1 ≤ ℓΓα(D′′,W
Γ

n+1)} ,

whenever W
Γ

n+1 ≤ wΓ
β(D′). The second line results from applying sample splitting, which gurantess

that Ln+1 ≤ ℓΓα(D′′,W
Γ

n+1) and W
Γ

n+1 ≤ wΓ
β(D′) are independent.

To lower bound P{Ln+1 ≤ ℓΓα(D′′,W
Γ

n+1)}, we will make use of the following inequality,

E
[
F̂ (ℓΓα;D′′,W

Γ

n+1)
]
= E

[ ∑
i∈D′′ W

Γ
i 1(Li ≤ ℓΓα)∑

i∈D′′

[
WΓ

i 1(Li ≤ ℓΓα) +W
Γ

i 1(Li > ℓΓα)
]
+W

Γ

n+1

]
≥ 1− α

1− β
,

(20)
that holds by construction.

First, define S+ as an unordered set of the following elements
(
(Xm′+1, Um′+1, Am′+1, Lm′+1), . . . , (Xm, Um, Am, Lm), (Xn+1, Un+1, An+1, Ln+1)

)
.
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From Tibshirani et al. (2019, thm. 2) we have that the out-of-sample loss Ln+1 has the (conditional)
cdf

P{Ln+1 ≤ ℓ | S+} =
∑

i∈S+

pi1(ℓi ≤ ℓ) =

∑
i∈S+

wi1(Li ≤ ℓ)
∑

i∈S+
wi

, (21)

where wi quantifies the distribution shift for sample i using the (unobservable) ratio (7). Next, we
build on the proof method used in Jin et al. (2023, thm. 2.2). Use the limit ℓΓα(D′′,W

Γ

n+1) from (19)
in (21) and apply the law of total expectation to perform marginalization over S+

P{Ln+1 ≤ ℓΓα(D′′,W
Γ

n+1)} = E
[
P{Ln+1 ≤ ℓΓα(D′′,W

Γ

n+1) | S+}
]

= E



∑

i∈S+
Wi1(Li ≤ ℓΓα(D′′,W

Γ

n+1))∑
i∈S+

Wi


 . (22)

We can now proceed to establish a lower bound for this probability. Combining (20) and (22), we
have that

P{Ln+1 ≤ ℓΓα(D′′,W
Γ

n+1)} −
1− α

1− β

≥ E

[∑
i∈S+

Wi1(Li ≤ ℓΓα)∑
i∈S+

Wi

]
− E

[ ∑
i∈D′′ W

Γ
i 1(Li ≤ ℓΓα)∑

i∈D′′

[
WΓ

i 1(Li ≤ ℓΓα) +W
Γ

i 1(Li > ℓΓα)
]
+W

Γ

n+1

]

= E


 (∗)[∑

i∈S+
Wi

] [∑
i∈D′′

[
WΓ

i 1(Li ≤ ℓΓα) +W
Γ

i 1(Li > ℓΓα)
]
+W

Γ

n+1

]


 ,

where

(∗) =
[ ∑

i∈S+

Wi1(Li ≤ ℓΓα)

][ ∑

i∈D′′

W
Γ

i 1(Li > ℓΓα) +W
Γ

n+1

]

−
[ ∑

i∈D′′

WΓ
i 1(Li ≤ ℓΓα)

][ ∑

i∈S+

Wi1(Li > ℓΓα)

]

≥
[ ∑

i∈D′′

Wi1(Li ≤ ℓΓα)

][ ∑

i∈D′′

Wi1(Li > ℓΓα) +Wn+1

]

−
[ ∑

i∈D′′

Wi1(Li ≤ ℓΓα)

][ ∑

i∈D′′

Wi1(Li > ℓΓα) +Wn+1

]

= 0.

We use the bounds provided in (8) to derive the inequality. Hence, we arrive at a valid limit

P{Ln+1 ≤ ℓΓα(D′′,W
Γ

n+1)} ≥ 1− α

1− β
. (23)

Finally combine (18) and (23) to get

P{Ln+1 ≤ ℓΓα(D)} ≥ P{Ln+1 ≤ ℓΓα(D′′,W
Γ

n+1)} P{W
Γ

n+1 ≤ wΓ
β(D′)}

≥ 1− α

1− β
(1− β)

= 1− α.

(24)

We choose β as in (13) to get the tightest limit. As Ln+1 is drawn from pπ(X,U,A,L|S = 0), we
can express (24) as shown in (4) for the sake of notational clarity.
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Table 2: Hyperparameters used for XGBoost in Section 5.1.

Parameter Value

n_estimators 100
max_depth 2
learning_rate 0.05
objective binary:logistic
min_child_weight 1
subsample 0.6
colsample_bytree 0.8
colsample_bylevel 0.4
scale_pos_weight ns=0/ns=1

Table 3: Hyperparameters used for XGBoost in Section 5.2.

Parameter Value

n_estimators 50
max_depth 1
learning_rate 0.2
objective binary:logistic
min_child_weight 1
subsample 0.4
colsample_bytree 0.7
colsample_bylevel 0.8
scale_pos_weight ns=0/ns=1

B Numerical Experiments

Additional information of the numerical experiments outlined in Section 5 can be found in
this supplementary material and the code used for the experiments can be accessed here
https://github.com/sofiaek/policy-evaluation-rct.

All experiments were conducted using Version 1.7 of the Python implementation of XGBoost (Apache-
2.0 License). A comprehensive list of hyperparameters is available in Table 2 for the synthetic case
and Table 3 for the NHANES case. The hyperparameters were selected through a random search
involving 200 runs, employing 5-fold cross-validation with the F1 score as the optimization metric.
All experiments were performed on a laptop with the following specifications: Intel Core i7-8650
CPU @ 1.9GHz, 16 GB DDR4 RAM, and Windows 10 Pro 64-bit operating system. The experiments
utilized only the CPU. The total time required to run all the experiments was approximately half an
hour.

B.1 Synthetic data

We extend the experiments in Section 5.1 to include two extra target populations C, respective D. The
full list of parameters used in (15) are given in Table 4.

To illustrate the generality of the proposed methodology, we consider two different fitted models
p̂(S|X): a logistic model, which is conventionally used in the causal inference literature, and the
more flexible tree-based ensemble model trained by XGBoost. Figure 7 compares nominal sampling
odds obtained from the fitted models with the unknown odds, p(S = 0|X)/p(S = 1|X), for the
target populations C, respective D. This corresponds to a case without unmeasured selection factors
U . In all these cases, the logistic model is misspecified and miscalibrated while the XGBoost model
provides odds that resemble the true ones. Note that the proposed algorithm can handle any model
if (3) is satisfied. However, a well-performing model is generally required to achieve a small Γ and
for a meaningful benchmark of the upper value of Γ.
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Table 4: Means and variances of covariate distribution p(X,U |S) in (15).

Population µ0,S µ1,S µU,S σ2
0,S σ2

1,S σ2
U,S

A (S = 0) 0.5 0.5 0.5 1.0 1.0 1.0
B (S = 0) 0.0 0.5 0.0 1.25 1.5 1.25
C (S = 0) 0.0 0.0 0.0 1.5 1.5 1.5
D (S = 0) 0.25 0.25 0.25 1.0 0.25 0.5

Trial (S = 1) 0.0 0.0 0.0 1.0 1.0 1.0
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(b) Sampling odds for target population D.

Figure 7: Odds p(S = 0|X)/p(S = 1|X) compared with nominal odds obtained from logistic and
XGBoost models p̂(S|X). The dots are a random subsample of the trial samples.

In Figure 8, we use the reliability diagram technique described in subsection 4.1 to assess and compare
the performance of logistic and XGBoost models of the nominal odds, ôdds(X), for the synthetic
data. For all numerical experiments, we use 5 bins. For target population A in Figure 8a, both models
are close to the diagonal and it is reasonable to believe that they are flexible enough to model the
odds. For the other three populations, B, C and D, in Figure 8b, 8c respective 8d it is evident that the
XGBoost model shows a closer alignment with the diagonal compared to the logistic model. This is in
line with the results in Figure 5b and 7 where the XGBoost model is visually closer to the true model.

We now use the observed covariates to benchmark appropriate upper bounds for Γ for all target
populations as described in subsection 4.1. Figure 9a shows the evaluation with respect to population
A. Assuming that the unmeasured selection factors U are of similar strength as the weakest covariate,
X1, a Γ value of 2.5 could be a credible choice, as it covers 90% of the odds ratios. Figure 9b shows
the same evaluation with respect to population B. A Γ value of 1.2 could be a credible choice for the
logistic regression model and a Γ value of 2 could be appropriate for the XGBoost model. However,
from Figure 5b we know that the logistic model is misspecified in this scenario. For population C
in Figure 9c, 1 and 2.5 seem to be suitable Γ values for the logistic regression model respective the
XGBoost model. Similarly, for population D in Figure 9d, 1.5 and 2.2 could be suitable values for the
two models. The logistic model is again misspecified in populations C and D.
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(c) Reliability diagram for target population C.
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Figure 8: Reliability diagram of the observed odds against the average predicted nominal odds
obtained from logistic and XGBoost-trained models p̂(S|X).

In Figure 10, we use the limit curves for the benchmark in (14) and the proposed method to evaluate
the out-of-sample loss of the ‘treat all’ policy π1, i.e.

pπ1
(A = 0 | X) = 1.

Figure 10a shows the evaluation with respect to population A. When Γ = 1 all the limit curves
are similar. The curves for the proposed method also illustrate increasing the credibility of the
models results in less informative inferences. However, their informativeness stays above 90% for
odds miscalibration degrees Γ ∈ [1, 2]. We also evaluate the miscoverage gap of the curves and
observe that the benchmark and the limit curves for Γ = 1 have a negative miscoverage gap. As the
degree of miscalibration Γ increases to 2, the limit curves exhibit positive miscoverage gaps, where
XGBoost results in slightly less conservative inferences than the logistic model does. We continue
with population B and C in Figure 10b respective 10c. The limit curves derived for the baselines
closely align with the curves modelled using logistic regression when Γ = 1, but is consistently lower
than the curves modelled using XGBoost. For the certified curves the informativeness stays above
90% for odds miscalibration degrees Γ ∈ [1, 2]. For the miscoverage gap, the baselines and the limit
curves for Γ = 1 are invalid. As the degree of miscalibration Γ increases to 2, all limit curves indicate
positive miscoverage gaps. In Figure 10d, we evaluate the same for population D. The limit curves
modelled using the baseline and logistic regression when Γ = 1 infer consistently higher losses than
the curve modelled using XGBoost. For the curve using the logistic model the informativeness stays
above 90% for odds miscalibration degrees Γ ∈ [1, 2]. The same figure for the XGBoost model is
approximately 95%. For the miscoverage gap, the baseline and the limit curves for Γ = 1 are invalid.
Again, as the degree of miscalibration Γ increases to 2, all limit curves indicate positive miscoverage
gaps.

We now turn to comparing the ‘treat all’ policy with a ‘treat none’ policy, i.e.,

pπ0
(A = 0 | X) = 1,
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(c) Benchmarking for population C.
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Figure 9: Benchmarking the degree of miscalibration Γ using omitted covariates.

for population A. Their expected losses are estimated using (6) as V π0

IPSW = 1.64 and V π1

IPSW = 1.54,
respectively. This evaluation suggests that π1 is preferable to π0. However, the limit curves presented
in Figure 11a provide a more detailed picture in terms of out-of-sample losses: the tail losses certified
for the ‘treat none’ policy π0 are lower than those certified for π1. This illustrates the cautionary
principle built into the policy evaluations. Similar results are observed for target population D. While
for target populations B and C, both V π0

IPSW and V π1

IPSW exhibit comparable sizes, the proposed limit
curves still offer a more detailed understanding of out-of-sample losses.

For completeness, the actual degree of miscalibration for all target populations are visualized in
Figure 12 for the case without unmeasured selection factors U .

B.2 Seafood consumption policies

The National Health and Nutrition Examination Survey data (NHANES) is produced by federal
agencies and is in the public domain, allowing it to be reproduced without permission. In our
evaluation the data is split into observational data D0 and trial data D1 based on the covariates age,
income, gender and smoking history (age and income are standardized), e.g.

p(S = 1|X,U) = 0.25·[f(Xage)+f(Xincome)]+0.05·[1(Xmale = 1)+1(Xsmoking ever = 1)]+0.3,

where f(·) is the sigmoid function.
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(b) Limit curve and miscoverage gap for target population B.
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(c) Limit curve and miscoverage gap for target population C.
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(d) Limit curve and miscoverage gap for target population D.

Figure 10: Evaluating ‘treat all’ policy π1 for different target populations with degrees of miscalibra-
tion Γ ∈ [1, 2].
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Figure 11: Limit curves for π0 and π1 for different target populations certified for Γ ∈ [1, 2].
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(b) Degree of miscalibration for target population B.

−2 0 2
x0

−2

0

2

x
1

Logistic

−2 0 2
x0

−2

0

2

XGBoost

10−2

10−1

100

101

102

(c) Degree of miscalibration for target population C.
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Figure 12: The actual degree of miscalibration for different target populations. The dots are a random
subsample of the trial samples, where the green ones correspond to a degree of miscalibration within
Γ = 2 and the black ones to a degree of miscalibration not bounded by Γ = 2.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main assumptions are presented in Section 2, the method is detailed in
Section 4, and the experiments are described in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The assumptions are included in Section 2 and some limitations are raised in
Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: Main assumptions are available in Section 2, the method is described in
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiments are described in Section 5, with more details in supplementary
material B. The code is also provided in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is available in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experiments are described in Section 5, with more details in the supple-
mentay material B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The miscoverage gap is reported, validating the statistical guarantee of the
method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Included in the supplementary material B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and this research
conforms to its guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Included in Section 7.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Included in the supplementary material B.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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