

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DISCOVERING INTERPRETABLE BIOLOGICAL CONCEPTS IN SINGLE-CELL RNA-SEQ FOUNDATION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Single-cell RNA-seq foundation models achieve strong performance on downstream tasks but remain black boxes, limiting their utility for biological discovery. Recent work has shown that sparse dictionary learning can extract concepts from deep learning models, with promising applications in biomedical imaging and protein models. However, interpreting biological concepts remains challenging, as biological sequences are not inherently human-interpretable. We introduce a novel concept-based interpretability framework for single-cell RNA-seq models with a focus on concept interpretation and evaluation. We propose an attribution method with counterfactual perturbations that identifies genes that influence concept activation, moving beyond correlational approaches like differential expression analysis. We then provide two complementary interpretation approaches: an expert-driven analysis facilitated by an interactive interface and an ontology-driven method with attribution-based biological pathway enrichment. Applying our framework to two well-known single-cell RNA-seq models from the literature, we interpret concepts extracted by Top-K Sparse Auto-Encoders trained on two immune cell datasets. With a domain expert in immunology, we show that concepts improve interpretability compared to individual neurons while preserving the richness and informativeness of the latent representations. This work provides a principled framework for interpreting what biological knowledge foundation models have encoded, paving the way for their use for hypothesis generation and discovery.

1 INTRODUCTION

With the development of high-throughput genomic technologies, the availability of large-scale biological datasets has exploded (Barrett et al., 2005; Regev et al., 2017). Among the available modalities, single-cell RNA sequencing (scRNA-seq) captures information about gene expression within individual cells, providing detailed insights into underlying biological functions and improving our understanding of cells, diseases, and drug action mechanisms (Jovic et al., 2022; Wang et al., 2023).

Deep learning models trained on these large scRNA-seq datasets have demonstrated their potential in key tasks such as perturbation response prediction (Cui et al., 2024) and multi-batch integration (Lopez et al., 2018). While some models are trained with additional constraints on interpretability (Ruiz-Arenas et al., 2024; Bourgeais et al., 2022; Zhang et al., 2023), several widely used models are black-boxes (Cui et al., 2024; Lopez et al., 2018) and require post-hoc approaches to understand their predictions. Post-hoc explainability methods for scRNA-seq models are limited, which impacts the practical utility of black-box models. More tools could help uncover internal decision-making processes, allowing biological insight, discovery of knowledge, and *in silico* hypothesis testing (Conard et al., 2023).

Sparse dictionary learning has recently emerged as a promising approach for extracting interpretable concepts from the latent spaces of deep learning models. Initially introduced in the context of language models (Huben et al., 2023) and vision models (Fel et al., 2023), this technique has been rapidly extended to biological models (Adams et al., 2025; Schuster, 2024). A major challenge in

054 applying this approach to biology lies in interpreting the learned concepts. Unlike in textual or vi-
055 sual domains, where concepts often have intuitive semantic meaning, biological sequences are not
056 inherently human-interpretable. To address this, Adams et al. (2025) proposed an interface for visu-
057 alizing concepts in proteins to support interpretation. Compared to protein sequences, scRNA-seq
058 is usually treated as an unordered sequence of genes and is less convenient to visualize. Schuster
059 (2024) uses automatic pathway enrichment to map scRNA-seq concepts to known biological path-
060 ways. However, we argue that pathway enrichment restricts scRNA-seq concepts to prior structured
061 knowledge, potentially overlooking other biologically meaningful signals, such as specific cell types
062 or even novel biological insights.

063 In this work, we investigate the use of Sparse Autoencoders (SAEs) to extract interpretable concepts
064 from cell embeddings in scRNA-seq models. Using two large immune cell datasets (Cross-tissue
065 Immune Cell Atlas (Domínguez Conde et al., 2022) and Tabula Sapiens Immune (Consortium*
066 et al., 2022)) alongside two state-of-the-art models with distinct architectures (scGPT (Cui et al.,
067 2024) and scVI (Lopez et al., 2018)), we explore the **interpretability**, **stability**, and **usefulness** of
068 the extracted concepts, critical characteristics for practical utility. Interpretability refers to whether
069 the concepts capture meaningful biological patterns such as tissues (e.g., "Colon"), cell types (e.g.,
070 "Neutrophil"), biological processes (e.g., "Cytosine biosynthetic process"), or other molecular sig-
071 nals that can be interpreted by domain experts. Stability evaluates whether similar concepts are
072 consistently recovered when SAEs are trained on different datasets. Usefulness assesses whether
073 the concepts preserve biological signal compared to original neuron activations and whether they
074 support interpretable downstream analyses.

075 We introduce novel tools for interpreting concepts in scRNA-seq models, bridging the gap between
076 computational biology and explainable AI. First, we propose an **attribution-based method with**
077 **counterfactual perturbations** to identify genes that differentiate cells activating the concept from
078 similar cells that do not. Our approach goes beyond Differential Gene Expression Analysis (DGEA)
079 proposed in Schuster (2024) and helps to distinguish genes that influence concept activation from
080 spurious correlations. Building on attribution results, we propose **attribution-based Gene Set En-**
081 **richment Analysis** (GSEA), which uses the GSEA algorithm (Subramanian et al., 2005) with attri-
082 bution scores instead of traditional fold-change scores. Unlike fold-change scores, which emphasize
083 genes with large expression differences, attribution scores highlight genes that are most influential
084 from the model's perspective, enabling more meaningful pathway prioritization. To go beyond path-
085 way enrichment, we developed and deployed a **web-based visualization tool** to facilitate expert
086 interpretation and conducted an interpretation study in collaboration with an immunology expert.

087 Our findings demonstrate that concepts from SAEs are more interpretable than individual neurons
088 from the model and align well with biological signals such as cell types and biological processes.
089 In addition, we identify a set of stable concepts across datasets. Finally, we find that the resulting
090 concept space preserves predictive performance in cell type and cell cycle phases and allows for
091 more interpretable classification. Our work demonstrates that SAEs offer a promising approach
092 for uncovering biological signals encoded in scRNA-seq deep models. Their interpretable latent
093 representations may, in future work, support the generation of novel biological insights.

094 2 BACKGROUND ON CONCEPT EXTRACTION

095 Concept extraction method is illustrated in Figure 1.1. We consider a deep learning model $f : \mathbb{X} \rightarrow \mathbb{A}$, that maps inputs from \mathbb{X} to a representation space $\mathbb{A} \subseteq \mathbb{R}^d$ of dimension d . In our case,
096 the input space is the gene expression space with $G = g_1, \dots, g_m$ the gene symbols and $x \in \mathbb{R}_+^m$
097 their corresponding expression level. The representations of n samples form a matrix $A \in \mathbb{R}^{n \times d}$.
098 Concept extraction is framed as a dictionary learning problem where $A \in \mathbb{R}^{n \times d}$ is approximated
099 using a decomposition method $(U^*, D^*) = \arg \min_{U, D} \|A - UD^T\|_F^2$, with additional constraints
100 on U or D that promote interpretability. The objective is to learn a dictionary $D \in \mathbb{R}^{d \times c}$ of c
101 concepts such that the activations can be reconstructed as sparse linear combinations of concepts in
102 D , with $U \in \mathbb{R}^{n \times c}$ the corresponding coefficients.

103 Several decomposition approaches can be used, such as non-negative matrix factorization (NMF),
104 independent component analysis (ICA), and sparse auto-encoders (SAE). Following the results in
105 Fel et al. (2025b), we use SAEs, which achieve better reconstructions at a fixed sparsity level. We
106 further choose to use TopK SAE following the work of Gao et al. (2024), which simplifies tuning

Figure 1: **Illustration of the methodology to extract and interpret biological concepts from scRNA-seq models.** (1) Concepts are extracted by training Topk SAEs on two scRNA-seq datasets. (2) We introduce a set of methods to biologically interpret concepts. (A) Characteristics of the cell population that activate a concept based on available metadata per cell. (B) Attribution method based on counterfactual perturbations to score genes according to their importance for concept activation. (C) Expert interpretation of the concept based on the gene attribution results and prior knowledge. We developed and deployed a visualization tool to facilitate manual interpretation. (D) Attribution-based pathway enrichment detects pathways enriched with genes that influence concept activation.

and improves the reconstruction-sparsity frontier compared to vanilla SAE. Experiments with semi-NMF are given in Appendix B.

Sparse auto-encoders (SAEs) first map A to U with $U = \Psi(A) = \sigma(AW + b)$, where $\sigma(\cdot)$ is a non-linear function, and reconstruct A with $A' = UD^T$. Topk SAEs enforce the sparsity of U by selecting k concepts per sample with $\sigma(x) = \text{ReLU}(\text{Topk}(x))$.

3 METHODOLOGY TO INTERPRET A CONCEPT

In this section, we present our methodology for concept interpretation. We begin by characterizing concepts at the cell population level using available metadata per cell (Section 3.1, Figure 1.2.A). To identify the genes driving concept activation, we propose an attribution approach based on counterfactual perturbations (Section 3.2, Figure 1.2.B). The resulting gene set is then interpreted either by domain experts (Section 3.3, Figure 1.2.C) or algorithmically via prior biological knowledge; in this work, we propose attribution-based pathway enrichment (Section 3.4, Figure 1.2.D).

3.1 CELL-LEVEL OVERVIEW WITH METADATA

We propose a first approach to characterize a concept given the cell population that activates the concept. Some metadata are typically available at the cell level, such as the tissue and patient of origin, as well as the annotated cell type. Given the j cells that activate the concepts and their l one-hot metadata labels $M \in \{0, 1\}^{j \times l}$, we compute for each metadata the ratio of cells with a positive label $r = \frac{1}{j} \sum_{i=1}^j (M_i^T)$. High ratios highlight the concept specificity for the corresponding metadata. While metadata enrichment offers a preliminary means of rapidly analyzing cell populations, concepts are intended to convey more granular biological meaning, such as biological processes,

162 which are defined through gene-level activity. Moreover, metadata enrichment is limited to prior
163 knowledge and does not support biological discovery.
164

165 3.2 GENE-LEVEL UNDERSTANDING WITH ATTRIBUTION 166

167 To enable precise concept interpretation, we aim to identify the genes that specifically drive concept
168 activation. We propose to leverage attribution methods with counterfactual perturbations. This ap-
169 proach extends beyond Differential Gene Expression Analysis (DGEA) proposed in Schuster (2024)
170 and helps to distinguish genes that influence concept activation from spurious correlations.

171 For a concept i , a cell x^p , and a baseline cell x^c , the attribution method explains the concept activa-
172 tion score given by $(\psi \circ f)_i$ for x^p by computing one score per gene : $a((\psi \circ f)_i, x^p, x^c) \in \mathbb{R}^{|\mathbb{X}|}$.
173 The higher the score, the more important the gene.

174 As stated by Mamalakis et al. (2023), attribution methods are highly sensitive to the baseline x^c ,
175 which should be carefully chosen depending on what we aim to explain. We propose using coun-
176 terfactual baselines to detect the signal that distinguishes cells that activate a concept from similar
177 cells that do not activate the concept (*counterfactual*). We define a counterfactual of the cell x^p for
178 concept i as the closest cell that does not activate the concept (Equation 1).
179

$$180 \quad x^c = \arg \min_{x^j} \left\{ \|f(x^p) - f(x^j)\|_2 \mid (\psi \circ f)_i(x^j) = 0 \right\} \quad (1)$$

181

182 Following Occlusion method (Zeiler & Fergus, 2014), for a concept i , a prototype cell x^p , and a
183 counterfactual cell x^c , we perturb each gene one by one, replacing the expression x_l^p of gene l with
184 the expression in the counterfactual cell x_l^c and compute the variation in concept activation. The
185 equation of the attribution score for gene l is given in Equation 2.
186

$$188 \quad a_l((\psi \circ f)_i, x^p, x^c) = (\psi \circ f)_i(x^p) - (\psi \circ f)_i(\tilde{x}^p) \text{ with } \tilde{x}_j^p = x_l^c \text{ if } j = l, \text{ otherwise } x_j^p \quad (2)$$

189

190 For more robustness, instead of taking a single counterfactual per cell, we select the N_c closest cells
191 and average attribution scores. For each concept, we compute attribution scores for N_p prototype
192 cells and average, which gives C_i , the list of m genes sorted by attribution scores (Equation 3).
193

$$194 \quad C_i = \{(g_{l_1}, a_{l_1}), \dots, (g_{l_m}, a_{l_m})\} \text{ with } a_{l_1} \geq a_{l_2} \geq \dots \geq a_{l_m} \quad (3)$$

195

196 3.3 EXPERT INTERPRETATION WITH INTERACTIVE VISUALIZATIONS 197

198 We first rely on domain expertise to interpret the set of genes. Specifically, for each concept i , a
199 biologist f_E uses their own knowledge, external resources K , and results of gene attribution C_i ,
200 producing an expert label : $expert_label = f_E(K_E, C_i)$. To support this process, we developed an
201 interactive interface to visualize the most relevant genes given C_i . External knowledge K is partially
202 integrated by displaying gene description from the NCBI Gene database (Brown et al., 2015) upon
203 hovering over each gene. Additional knowledge sources will be incorporated in the future to further
204 assist experts in concept interpretation.
205

206 3.4 ATTRIBUTION-BASED PATHWAY ENRICHMENT 207

208 In addition to expert interpretation, algorithms can be used to assign labels to concepts by leveraging
209 prior knowledge in an automated way. Formally, for a given concept i , an algorithm f_A integrates
210 prior knowledge K and gene attribution results C_i to output a label: $algo_label = f_A(K, C_i)$. In
211 this work, we use a widely used algorithm in computational biology, Gene Set Enrichment Analysis
212 (GSEA, Subramanian et al. (2005)). GSEA operates on a ranked list of genes and evaluates, for each
213 biological pathway from a given ontology, whether genes associated with the pathway are clustered
214 together at the top of the list. Genes are usually ranked by the fold-change value obtained with
215 a Differential Gene Expression Analysis. Instead, we propose ranking genes by their attribution
values to prioritize pathways that include the most influential genes for the concept. We refer to this
method as attribution-based GSEA. We used the *prerank* method from the GSEAp package (Fang

et al., 2023) to implement f_A , the Biological Processes from the Gene Ontology (Ashburner et al., 2000) as prior knowledge K^1 , and attribution scores C_i as described in Section 3.2.

4 EXPERIMENTS

4.1 DATASETS AND MODELS

We studied two generative models for scRNA-seq data with different architectures. **scVI** (Lopez et al., 2018) is a variational auto-encoder; we used the checkpoint² provided by CellxGene Census Program et al. (2025), which encodes sequences of 8 000 genes. The second model, **scGPT** (Cui et al., 2024), is a Transformer-based model that encodes sequences of 1 200 genes. We used the “whole-human” checkpoint from the official repository³ and explored the last cell embedding token, corresponding to the special token “CLS”.

The study focused on immune cells, with the **Tabula Sapiens Immune** dataset (Consortium* et al., 2022) containing 592 317 cells and the **Cross-tissue Immune Cell Atlas** (Domínguez Conde et al., 2022) containing 329 762 cells. Both datasets are annotated with cell type, tissue, and patient. Additional descriptions and visualizations for both models and datasets are given in Appendix A.

4.2 TRAINING TOPK SAEs AT DIFFERENT SCALES

We explored several expansion factors with a fixed sparsity level, which we found to minimize the number of dead concepts at the end of training. The latent dimension of scGPT is $d = 512$, we trained 4 Topk SAEs with $c = 1000, 2000, 5000$ and 10000 , with $k = 16, 32, 80$ and 160 respectively. These values are in line with common practices in the literature, with expansion factors ranging approximately from 2 to 20. The latent dimension of scVI is $d = 50$, we trained 5 Topk SAEs with $c = 200, 500, 1000, 2000$ and 5000 , with $k = 3, 8, 16, 32$, and 80 respectively. SAEs are trained on each dataset separately. The results for SAEs trained on the Tabula Sapiens Immune dataset are displayed in Figure 2, hyperparameters and metrics for both models and datasets are given in Appendix B.

Figure 2: **Evaluation of Topk SAEs trained at different scales.** Results for SAEs trained with the Tabula Sapiens Immune dataset, for scGPT (top) and scVI (bottom). (A) Cell embedding reconstruction quality as measured by the R^2 score. (B) Concepts characteristics at the cell level based on metadata. (C) Gene set characteristics based on attribution results ($attribution > 0.05$). *Not enough data* means that less than 100 cells activate the concept (We do not expect a biological signal to appear in such a small portion of the dataset).

¹GO_Biological_Process_2025

²s3://cellxgene-contrib-public/models/scvi/2025-01-30/homo_sapiens/model.pt

³<https://github.com/bowang-lab/scGPT/blob/main/README.md>

270 **Reconstruction error.** We evaluated the error of cell embedding reconstruction with the R^2 score.
271 A score of 1 indicates perfect reconstruction, while a score of 0 indicates a reconstruction no better
272 than the mean cell embedding. All SAEs achieved a nearly perfect reconstruction with R^2 greater
273 than 0.95 (Figure 2.A). As expected, reconstruction quality improved with the number of concepts.
274

275 **Concepts characteristics.** As introduced in Section 3.1, we used cell metadata to characterize
276 concepts at the cell population level (Figure 2.B). For example, a concept is labeled as “tissue-
277 specific” if at least 70% of the cells activating the concept come from the same tissue. For both scVI
278 and scGPT, a large proportion of concepts are specific to a cell type, which is expected, as cell type
279 is a strong signal in gene expression. Gene-level interpretation is necessary to further characterize
280 the concepts.
281

282 **Gene set characteristics.** Following the methodology introduced in Section 3.2, we computed
283 gene attribution scores for each concept to obtain C_i (Equation 3). We averaged scores over 10
284 cells with the highest concept activation and $N_C = 3$ and filtered out genes having little impact on
285 concept activation (attribution lower than 0.05). For most concepts, the attribution method detects
286 more than 3 genes having an effect on concept activation (Figure 2.C). As a comparison point,
287 biological processes of the Gene Ontology are linked on average to 3.6 genes and 9.1 genes when
288 considering, respectively, the 1200 genes of scGPT and 8000 genes of scVI. We further compared
289 the gene sets obtained with attribution to gene sets obtained with Differential Gene Expression.
290 Deletion curves confirm that attribution more precisely identifies the genes that influence concept
291 activation, allowing us to focus on the most relevant genes (details curve in Appendix C).
292

293 This initial analysis shows that concepts are often specific to cell types, but also capture other signals
294 that require more subtle investigation. The gene sets obtained with attribution contain enough genes
295 to enable further interpretation. We observe a limitation in the expansion factor for scVI, with an
296 increase in dead concepts and fewer important genes per concept for $c = 2000$ and $c = 5000$.
297 Therefore, we used $c = 5000$ ($k = 80$) for scGPT and $c = 500$ ($k = 8$) for scVI in the rest of the
298 study, which corresponds to expansion factors of approximately 10, consistent with prior work.
299

298 4.3 CONCEPTS ARE MORE INTERPRETABLE THAN NEURONS

300 In this section, we use the methods introduced in Section 3 to evaluate the interpretability of concepts
301 from SAEs and compare them with individual neurons. We used SAEs trained on the Tabula Sapiens
302 Immune dataset, with $c = 5000$ ($k = 80$) for scGPT and $c = 500$ ($k = 8$) for scVI.
303

304 **Expert interpretation study.** We conducted a blinded user study with a domain expert in im-
305 munology to compare the interpretability of neurons from scGPT and scVI with concepts derived
306 from SAEs. For each SAE, we randomly selected 20 concepts and for each model, 20 neurons.
307 For every concept and neuron, we identified the 10 cells with the highest activation and computed
308 attribution scores using the methodology described in Section 3.2, with $N_C = 3$ counterfactual per-
309 turbations. The expert was presented with these elements via the interactive visualization interface
310 introduced in Section 3.3, and responded to a set of questions assessing interpretability. Screenshots
311 of the visualizations and evaluation form are provided in Appendix D.
312

313 Results show that concepts are more interpretable than neurons, both for scGPT and scVI (Fig-
314 ure 3.A.a). Examples of interpretable concepts are given in Figure 3.B. Several concepts correspond
315 to specific cell types, such as “Myocytes” (concept C3291 from scGPT) and “cytotoxic lymphocyte”
316 (concept C102 from scVI). Other concepts correspond to biological processes, such as “Chemotaxis.
317 Secretion of chemokines” (concept C23 from scVI).
318

319 Due to resource constraints, the user study involved only a single participant, which has certain limi-
320 tations. To assess intra-user consistency, we had the participant re-annotate a subset of concepts. We
321 observed that the “Signal but unclear” annotation is unstable, with some concepts switching between
322 “Not interpretable” and “Signal but unclear.” In fewer cases, concepts also changed from a positive
323 annotation to “Not interpretable” and vice versa. Additional annotations from other participants
324 would help strengthen these results.
325

326 **Interpretation with pathway enrichment.** We computed pathway enrichment as described in
327 Section 3.4. We selected the pathway with the highest enrichment score, and distinguished weak
328

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

Figure 3: **Concept interpretation results.** (A) Interpretability of concepts compared to neurons. (a) Interpretations of neurons and concepts by a domain expert; (b) Interpretation of neurons and concepts with attribution-based GSEA. Strong annotation corresponds to enriched pathways with p -value $\leq 5e-5$ (p -value $\leq 5e-3$ for weak annotations). (B) Examples of interpreted concepts.

annotations ($p - value < 5e - 3$) from strong annotations ($p - value < 5e - 5$) (Figure 3.A.b). Similar to the expert-based interpretation study, the results show that concepts are more aligned with pathways compared to neurons. Examples of pathway enrichment results are given in Figure 3.B.

Despite being more interpretable than neurons, nearly half of the concepts could not be interpreted by either the expert or the pathway enrichment method. Some of these concepts may remain uninterpretable due to the limitations in current biological knowledge. Additionally, the domain expert relied on external resources not yet integrated into our platform⁴. Seamless integration of this prior knowledge could facilitate the interpretation of a greater number of concepts and enable the discovery of more subtle signals.

4.4 COMPARISON BETWEEN DATASETS REVEALS STABLE CONCEPTS

Several works showed an instability issue of SAEs, where SAEs trained on different datasets or with different seeds extract different concepts (Fel et al., 2025a; Paulo & Belrose, 2025), which questions their reliability. We trained two sets of Topk SAEs, one on the Tabula Sapiens Immune dataset and the other on the Cross-Tissue Immune Cell Atlas. Since both datasets contain immune cells, we expect that the concepts identified by the first set of SAEs overlap, at least to some extent, with those extracted by the others.

SAEs generalize to unseen dataset. We first evaluated whether SAEs trained on a given dataset ("training dataset") could reconstruct cell embeddings from another dataset ("test dataset"), given the R^2 score. For all SAEs, the R^2 is slightly lower for the test dataset compared to the training dataset (Figure 4.A), suggesting that some concepts specific to the test dataset may be missing. Especially, the gap is smaller for SAEs trained on the Tabula Sapiens Immune dataset, which contains approximately twice as many cells as the Cross-tissue Immune Cell Atlas. A more pronounced drop in R^2 is observed for scGPT, which we hypothesize is due to differences in the input gene sets between the two datasets, with only 250 genes in common.

⁴The Protein Atlas (Uhlén et al., 2015) and articles from PubMed <https://pubmed.ncbi.nlm.nih.gov/>

Figure 4: Stability of SAEs trained on different datasets. (A) Reconstruction error of cell embeddings from an external dataset compared to training samples. (B) Cosine similarity of matched concept vectors from SAE trained on the Tabula Sapiens Immune and SAE trained on the Cross-tissue Immune Cell Atlas, after finding the best alignment via the Hungarian algorithm as proposed in Fel et al. (2025a). (C) Examples of matching concepts with their most important genes. For each pair, the concept on the left is from the SAE trained on Tabula Sapiens Immune, and the concept on the right is from the SAE trained on the Cross-Tissue Immune Cell Atlas.

We used the method introduced in Fel et al. (2025b) to match concept vectors from SAEs trained on the Tabula Sapiens Immune dataset and SAEs trained on the Cross-Tissue Immune Cell Atlas. It matches pairs of concepts by minimizing the cosine distance between concept vectors (D) with the Hungarian algorithm. The cosine similarity of the obtained matching indicates how well the two SAEs align. A score of 1 means that the two dictionaries are identical up to a permutation. Concepts extracted from scVI embeddings are more stable compared to scGPT, which is on par with the generalization results (Figure 4.B). We further explored pairs of concepts with a high cosine similarity. These concepts often have a few genes in common among the 10 most important genes. More interestingly, even if important genes do not perfectly intersect, the concepts share a common interpretation (Figure 4.C). In particular, one pair of concepts does not have any top-10 genes in common, but the genes in the two concepts are from the same family (Figure 4.C.d).

4.5 TOWARDS USEFUL CONCEPT REPRESENTATIONS

In this experiment, we evaluated the usefulness of concepts for interpretable downstream tasks using two classification problems: cell cycle phase (3 classes: G1, S, G2M) and cell type (7 selected classes). We trained logistic regression models on either concept activations or neuron activations and validated concepts having a high coefficient using known marker genes for the task. The experiment was conducted with scGPT and the Tabula Sapiens Immune dataset. We obtained cell cycle phase labels using Scanpy⁵ (Wolf et al., 2018). Details are provided in Appendix G.

For both tasks, models trained on concept activations achieve similar accuracy to those trained on neuron activations (respectively 0.86 and 0.87 for cell type and 0.49 and 0.48 for cell cycle phase). Concept activations, hence, preserve the signal. We further explored the coefficients of the logistic regression models for cell cycle phase classification and found that concepts with high coefficients are relevant for the task. The genes characterizing the concepts are mainly gene markers for the G2M phase (Figure 5.A.2). In comparison, neurons with high coefficients in logistic regression do not appear relevant for the task (Figure 5.B). Interestingly, concept C2022, labeled as “active mi-

⁵Scanpy tool “score_genes_cell_cycle”

432
433
434
435
436
437
438 totic program”, positively predicts G2M phase and negatively predicts S phase. The other concepts
439 display mixed signals associated with both phases, suggesting that cell cycle information may not
440 be linearly encoded in the latent space. This could explain the limited predictive performance of
441 logistic regression models on this task.
442
443
444
445
446
447
448
449

450
451
452 Figure 5: **Interpretation of cell cycle phase classification.** (A) Key concepts contributing to pre-
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

5 RELATED WORK

Explainability of scRNA-seq models Interpretability in scRNA-seq models often relies on pathway enrichment methods (Maleki et al., 2020), which interpret the model’s mechanism through the lens of existing biological knowledge encoded in curated ontologies such as Reactome and Gene Ontology (Fabregat et al., 2016; Ashburner et al., 2000). Some approaches incorporate prior biological knowledge directly into model architecture, designing models in which certain components correspond to known biological processes (Bourgeais et al., 2022; Rybakov et al., 2020; Lotfollahi et al., 2023; Gut et al., 2021; Zarlenga et al., 2024; Ruiz-Arenas et al., 2024; de la Fuente et al., 2025). Although this strategy yields models that are interpretable by design, it also constrains them to existing knowledge, thereby limiting their potential for discovery. In contrast, post-hoc explainability aims to interpret models after training. Attribution methods are frequently used to identify the genes that contribute most to specific predictions (Yap et al., 2021; Usman et al., 2025; Chereda et al., 2021). For comprehensive overview, Zhou et al. (2023) and Conard et al. (2023) review explainable and interpretable machine learning methods for biology. Our work falls within the post-hoc approaches and provides new tools to interpret any black-box neural network already trained on single-cell RNA-seq data.

Sparse dictionary learning for interpretability of deep learning models in biology Sparse dictionary learning has recently shown great potential for decomposing the latent space of deep learning models into sparse and interpretable features. Following its success in language model (Sharkey et al., 2022; Huben et al., 2023) and vision models (Fel et al., 2023), this methodology has been extended to deep learning models for biology. Sparse Auto-Encoders (SAEs) have successfully uncovered meaningful concepts encoded by protein language models, such as generic and family-specific features (Adams et al., 2025), or binding sites and structural motifs (Simon & Zou, 2024). SAEs have also been applied to histopathology models, where they discovered interpretable concepts related to cellular and tissue characteristics, and geometric structures (Le et al., 2024). Alongside our work, Schuster (2024) trained a Sparse Auto-Encoder on the cell embeddings from a scRNA-seq generative model and used pathway enrichment to map scRNA-seq concepts to known pathways. We introduce different interpretation methods that go beyond correlational approaches and conduct a user study. Additionally, we assess the stability and usefulness of the resulting concepts, which are necessary for practical utility.

486 6 CONCLUSION
487

488 This work introduces a comprehensive framework for interpreting biological concepts in scRNA-
489 seq foundation models using sparse autoencoders. We addressed key challenges in scRNA-seq
490 concept interpretation by proposing a principled approach to identify genes that influence concept
491 activation, and an interactive visualization tool that integrates prior knowledge. By collaborating
492 with a domain-expert, we were able to interpret biologically meaningful concepts and demonstrate
493 that SAEs can extract concepts that are more interpretable than individual neurons. We further
494 showed that concept activations preserve the biological signal of the original representations and
495 identified concepts that are stable across independent datasets. Several important directions emerge
496 from this work. The integration of richer biological prior knowledge, either at the extraction or
497 interpretation stage, such as biological knowledge graphs or regulatory networks, could improve
498 alignment with current biological knowledge and enable the interpretation of more subtle signals.
499 Additionally, the concept space learned by SAEs offers natural intervention points for controlling
500 model behavior through steering, possibly supporting applications such as perturbation response
501 prediction and exploration of counterfactual biological scenarios.
502

502 REPRODUCIBILITY STATEMENT
503

504 We will release our visualization platform after the review period, which will allow readers to ex-
505 plore all the computed results from this work. Section 4.1 and Appendix A describe models and
506 datasets used in this work, all of which are openly available. Section 4.2 and Appendix B describe
507 the training setup for Topk SAEs. Section 3 describes in detail the method that we used to interpret
508 concepts in Section 4.
509

510 ETHICS STATEMENT

511 In preparing this manuscript, we occasionally used suggestions from LLMs (GPT-5) to guide im-
512 provements in clarity, grammar, and overall readability. All scientific content, including experimen-
513 tal design, data analysis, results, and interpretations, is independently developed by the authors.
514

515 516 REFERENCES

517 Etowah Adams, Liam Bai, Minji Lee, Yiyang Yu, and Mohammed Alquraishi. From mechanistic
518 interpretability to mechanistic biology: Training, evaluating, and interpreting sparse autoencoders
519 on protein language models. *bioRxiv*, 2025. URL <https://api.semanticscholar.org/CorpusID:276259557>.
520

521 Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael
522 Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool
523 for the unification of biology. *Nature genetics*, 25(1):25–29, 2000.
524

525 Tanya Barrett, Tugba O Suzek, Dennis B Troup, Stephen E Wilhite, Wing-Chi Ngau, Pierre Ledoux,
526 Dmitry Rudnev, Alex E Lash, Wataru Fujibuchi, and Ron Edgar. Ncbi geo: mining millions of
527 expression profiles—database and tools. *Nucleic acids research*, 33(suppl_1):D562–D566, 2005.
528

529 Victoria Bourgeais, Farida Zehraoui, and Blaise Hanczar. Graphgonet: a self-explaining neural
530 network encapsulating the gene ontology graph for phenotype prediction on gene expression.
531 *Bioinformatics*, 38(9):2504–2511, 2022.
532

533 Garth R Brown, Vichet Hem, Kenneth S Katz, Michael Ovetsky, Craig Wallin, Olga Ermolaeva,
534 Igor Tolstoy, Tatiana Tatusova, Kim D Pruitt, Donna R Maglott, et al. Gene: a gene-centered
535 information resource at ncbi. *Nucleic acids research*, 43(D1):D36–D42, 2015.
536

537 Hryhorii Chereda, Annalen Bleckmann, Kerstin Menck, Júlia Perera-Bel, Philip Stegmaier, Florian
538 Auer, Frank Kramer, Andreas Leha, and Tim Beißbarth. Explaining decisions of graph con-
539 volutional neural networks: patient-specific molecular subnetworks responsible for metastasis
prediction in breast cancer. *Genome medicine*, 13:1–16, 2021.

540 Ashley Mae Conard, Alan DenAdel, and Lorin Crawford. A spectrum of explainable and in-
 541 terpretable machine learning approaches for genomic studies. *Wiley Interdisciplinary Reviews: Computational Statistics*, 15(5):e1617, 2023.

542

543 The Tabula Sapiens Consortium*, Robert C Jones, Jim Karkanias, Mark A Krasnow, Angela Oliveira Pisco, Stephen R Quake, Julia Salzman, Nir Yosef, Bryan Bulthaup, Phillip Brown, et al. The tabula sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. *Science*, 376(6594):eabl4896, 2022.

544

545

546

547

548 Haotian Cui, Chloe Wang, Hassaan Maan, Kuan Pang, Fengning Luo, Nan Duan, and Bo Wang. scgpt: toward building a foundation model for single-cell multi-omics using generative ai. *Nature Methods*, 21(8):1470–1480, 2024.

549

550

551

552 Jesus de la Fuente, Robert Lehmann, Carlos Ruiz-Arenas, Jan Voges, Irene Marin-Goñi, Xabier Martinez-de Morentin, David Gomez-Cabrero, Idoia Ochoa, Jesper Tegner, Vincenzo Lagani, et al. Interpretable causal representation learning for biological data in the pathway space. *arXiv preprint arXiv:2506.12439*, 2025.

553

554

555

556 C Domínguez Conde, SK Howlett, O Suchanek, K Polanski, HW King, et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. *Science*, 376(6594):eabl5197, 2022.

557

558

559 Antonio Fabregat, Konstantinos Sidiropoulos, Phani Garapati, Marc Gillespie, Kerstin Hausmann, Robin Haw, Bijay Jassal, Steven Jupe, Florian Korninger, Sheldon McKay, et al. The reactome pathway knowledgebase. *Nucleic acids research*, 44(D1):D481–D487, 2016.

560

561

562 Zhuoqing Fang, Xinyuan Liu, and Gary Peltz. Gseapy: a comprehensive package for performing gene set enrichment analysis in python. *Bioinformatics*, 39(1):btac757, 2023.

563

564

565 Thomas Fel, Agustin Picard, Louis Bethune, Thibaut Boissin, David Vigouroux, Julien Colin, Rémi Cadène, and Thomas Serre. Craft: Concept recursive activation factorization for explainability. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2711–2721, 2023.

566

567

568

569 Thomas Fel, Ekdeep Singh Lubana, Jacob S Prince, Matthew Kowal, Victor Boutin, Isabel Papadimitriou, Binxu Wang, Martin Wattenberg, Demba Ba, and Talia Konkle. Archetypal sae: Adaptive and stable dictionary learning for concept extraction in large vision models. *arXiv preprint arXiv:2502.12892*, 2025a.

570

571

572

573 Thomas Fel, Ekdeep Singh Lubana, Jacob S Prince, Matthew Kowal, Victor Boutin, Isabel Papadimitriou, Binxu Wang, Martin Wattenberg, Demba E Ba, and Talia Konkle. Archetypal sae: Adaptive and stable dictionary learning for concept extraction in large vision models. In *Forty-second International Conference on Machine Learning*, 2025b.

574

575

576

577

578 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint arXiv:2406.04093*, 2024.

579

580

581

582 Gilles Gut, Stefan G Stark, Gunnar Rätsch, and Natalie R Davidson. Pmvae: Learning interpretable single-cell representations with pathway modules. *bioRxiv*, pp. 2021–01, 2021.

583

584 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse autoencoders find highly interpretable features in language models. In *The Twelfth International Conference on Learning Representations*, 2023.

585

586

587 Dragomirka Jovic, Xue Liang, Hua Zeng, Lin Lin, Fengping Xu, and Yonglun Luo. Single-cell rna sequencing technologies and applications: A brief overview. *Clinical and translational medicine*, 12(3):e694, 2022.

588

589

590 Nhat Minh Le, Neel Patel, Ciyou Shen, Blake Martin, Alfred Eng, Chintan Shah, Sean Grullon, and Dinkar Juyal. Learning biologically relevant features in a pathology foundation model using sparse autoencoders. In *Advancements In Medical Foundation Models: Explainability, Robustness, Security, and Beyond*, 2024.

594 Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep generative
595 modeling for single-cell transcriptomics. *Nature methods*, 15(12):1053–1058, 2018.
596

597 Mohammad Lotfollahi, Sergei Rybakov, Karin Hrovatin, Soroor Hediyyeh-Zadeh, Carlos Talavera-
598 López, Alexander V Misharin, and Fabian J Theis. Biologically informed deep learning to query
599 gene programs in single-cell atlases. *Nature Cell Biology*, 25(2):337–350, 2023.

600 Farhad Maleki, Katie Ovens, Daniel J Hogan, and Anthony J Kusalik. Gene set analysis: challenges,
601 opportunities, and future research. *Frontiers in genetics*, 11:654, 2020.
602

603 Antonios Mamalakis, Elizabeth A Barnes, and Imme Ebert-Uphoff. Carefully choose the base-
604 line: Lessons learned from applying xai attribution methods for regression tasks in geoscience.
605 *Artificial Intelligence for the Earth Systems*, 2(1):e220058, 2023.

606 Gonçalo Paulo and Nora Belrose. Sparse autoencoders trained on the same data learn different
607 features. *arXiv preprint arXiv:2501.16615*, 2025.
608

609 CZI Cell Science Program, Shiblea Abdulla, Brian Aevermann, Pedro Assis, Seve Badajoz, Sidney M
610 Bell, Emanuele Bezzi, Batuhan Cakir, Jim Chaffer, Signe Chambers, et al. Cz cellxgene discover:
611 a single-cell data platform for scalable exploration, analysis and modeling of aggregated data.
612 *Nucleic acids research*, 53(D1):D886–D900, 2025.

613 Aviv Regev, Sarah A Teichmann, Eric S Lander, Ido Amit, Christophe Benoist, Ewan Birney, Bernd
614 Bodenmiller, Peter Campbell, Piero Carninci, Menna Clatworthy, et al. The human cell atlas.
615 *elife*, 6:e27041, 2017.
616

617 Carlos Ruiz-Arenas, Irene Marín-Goñi, Liewei Wang, Idoia Ochoa, Luis A Pérez-Jurado, and Mikel
618 Hernaez. Netactivity enhances transcriptional signals by combining gene expression into robust
619 gene set activity scores through interpretable autoencoders. *Nucleic acids research*, 52(9):e44–
620 e44, 2024.

621 Sergei Rybakov, Mohammad Lotfollahi, Fabian J Theis, and F Alexander Wolf. Learning inter-
622 pretable latent autoencoder representations with annotations of feature sets. *bioRxiv*, pp. 2020–12,
623 2020.

624 Viktoria Schuster. Can sparse autoencoders make sense of latent representations? *ArXiv*,
625 abs/2410.11468, 2024. URL <https://api.semanticscholar.org/CorpusID:273351260>.
626

627 Lee Sharkey, Dan Braun, and Beren Millidge. Taking features out of superposition with sparse
628 autoencoders. In *AI Alignment Forum*, volume 8, pp. 15–16, 2022.
629

630 Elana Simon and James Zou. Interplm: Discovering interpretable features in protein language mod-
631 els via sparse autoencoders. *bioRxiv*, pp. 2024–11, 2024.

632 Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert,
633 Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander, et al.
634 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expres-
635 sion profiles. *Proceedings of the National Academy of Sciences*, 102(43):15545–15550, 2005.
636

637 Mathias Uhlén, Linn Fagerberg, Björn M Hallström, Cecilia Lindskog, Per Oksvold, Adil
638 Mardinoglu, Åsa Sivertsson, Caroline Kampf, Evelina Sjöstedt, Anna Asplund, et al. Tissue-
639 based map of the human proteome. *Science*, 347(6220):1260419, 2015.

640 Mohammad Usman, Olga Varea, Petia Radeva, Josep Canals, Jordi Abante, and Daniel Ortiz. Ex-
641 plainable ai model reveals disease-related mechanisms in single-cell rna-seq data. *arXiv preprint*
642 *arXiv:2501.03923*, 2025.
643

644 Shuo Wang, Siyuan Sun, Xin-Yue Zhang, Hao-Ran Ding, Yu Yuan, Junjie He, Man-Shu Wang, Bin
645 Yang, and Yu-Bo Li. The evolution of single-cell rna sequencing technology and application:
646 Progress and perspectives. *International Journal of Molecular Sciences*, 24, 2023. URL <https://api.semanticscholar.org/CorpusID:256592682>.
647

648 F Alexander Wolf, Philipp Angerer, and Fabian J Theis. Scanpy: large-scale single-cell gene ex-
649 pression data analysis. *Genome biology*, 19(1):15, 2018.
650

651 Melvyn Yap, Rebecca L Johnston, Helena Foley, Samual MacDonald, Olga Kondrashova, Khoa A
652 Tran, Katia Nones, Lambros T Koufariotis, Cameron Bean, John V Pearson, et al. Verifying
653 explainability of a deep learning tissue classifier trained on rna-seq data. *Scientific reports*, 11(1):
654 2641, 2021.

655 Mateo Espinosa Zarlenga, Zohreh Shams, Michael Edward Nelson, Been Kim, and Mateja Jamnik.
656 Tabcbm: Concept-based interpretable neural networks for tabular data. *Transactions on Machine*
657 *Learning Research*, 2024.

658 Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
659 *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12,*
660 *2014, Proceedings, Part I* 13, pp. 818–833. Springer, 2014.

661 Jiaqi Zhang, Kristjan Greenewald, Chandler Squires, Akash Srivastava, Karthikeyan Shanmugam,
662 and Caroline Uhler. Identifiability guarantees for causal disentanglement from soft interventions.
663 *Advances in Neural Information Processing Systems*, 36:50254–50292, 2023.

664 Zhongliang Zhou, Mengxuan Hu, Mariah Salcedo, Nathan Gravel, Wayland Yeung, Aarya Venkat,
665 Dongliang Guo, Jielu Zhang, Natarajan Kannan, and Sheng Li. Xai meets biology: A comprehensive
666 review of explainable ai in bioinformatics applications. *arXiv preprint arXiv:2312.06082*,
667 2023.

668 A DATASETS AND MODELS

669 The two datasets used in this work, the Cross-tissue Immune Cell Atlas (Domínguez Conde et al.,
670 2022) and Tabula Sapiens Immune (Consortium* et al., 2022), are described in Table 1.

671 Table 1: Description of scRNA-seq datasets.

	Cross-tissue Immune Cell Atlas	Tabula Sapiens Immune
# cells	329 762	592 317
# genes	36 601	61 759
# genes after pre-processing	36 079	61 757
# patients	12	28
# tissues	17	74
# cell types	45	45

685 The two models used in this work, scVI (Lopez et al., 2018) and scGPT (Cui et al., 2024) are
686 described in Table 2. UMAP visualizations of cell embeddings from these models are displayed in
687 Figures 6 and 7.

688 Due to discrepancies between the gene names in the Cross-tissue Immune Cell Atlas and in the scVI
689 vocabulary, only 3896/8000 genes had a match for this dataset. This most certainly alters the results
690 for this combination of model and dataset.

691 Table 2: Description of scRNA-seq foundation models.

	scVI	scGPT
Model architecture	VAE	Transformer
Encoder parameters (total)	2M (8M)	50M (100M)
Genes in vocabulary	8 000	60 698
Gene expression preprocessing	sum norm + log1p	binning
Sequence length	8000 HVG	1200 HVG
Cell embedding strategy	Latent embedding	CLS token
Cell embedding size	50	512

Figure 6: UMAP of cell embeddings from the Cross-Tissue Immune Cell Atlas (Domínguez Conde et al., 2022), colored by metadata.

B TOPK SAES

Hyper-parameter tuning Hyper-parameters and metrics for the different SAEs are given in Table 3. Learning rate seems to play an important role in the number of dead concepts at the end of training. We mainly tuned this parameter. Batch size is fixed to 1024 and aux_k to 512.

Comparison with semi-NMF Other decomposition methods can be used for concept extraction, such as Non-Negative Matrix Factorization (NMF). Previous works have shown that Sparse Auto-Encoders scale better to large datasets and have better sparsity-reconstruction trade-off (Fel et al., 2025b). We conducted experiments on single-cell RNA-seq data and found similar results. We compared TopK SAEs to semi-NMF⁶, a relaxed version of NMF suited to activations that are not non-negative, in both undercomplete ($c < d$) and overcomplete ($c > d$) settings. Results are given in Table 4 for scGPT and Table 5 for scVI. For the same number of concepts c and comparable sparsity levels, the decomposition approach has weaker reconstruction performance: R^2 of 0.980 (TopK SAE) vs. 0.849 (semi-NMF) for scVI, and 0.995 (topK SAE) vs. 0.933 (semi-NMF) for scGPT. We also evaluated the preservation of biological signal, using the cell cycle phase and cell type classification tasks described in Section 4.5 and Appendix G. While TopK SAE concepts closely match the performance of neurons, the accuracy decreases with semi-NMF concepts: for cell type

⁶Using the code from the Overcomplete library : <https://github.com/KempnerInstitute/overcomplete>

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
Figure 7: UMAP of cell embeddings from Tabula Sapiens Immune (Consortium* et al., 2022),
colored by metadata.

Table 3: Training hyper-parameters and metrics for Topk SAEs.

788 Dataset	789 Model	790 <i>c</i>	791 <i>k</i>	792 lr	793 Epochs	794 R2	795 Active concepts
Cross-tissue Immune Cell Atlas	scGPT	1000	16	1e-4	1000	0.985	811
Cross-tissue Immune Cell Atlas	scGPT	2000	32	5e-5	2500	0.990	1761
Cross-tissue Immune Cell Atlas	scGPT	5000	80	5e-5	2500	0.996	3728
Cross-tissue Immune Cell Atlas	scGPT	10000	160	5e-5	1850	0.998	6923
Cross-tissue Immune Cell Atlas	scVI	200	3	1e-4	2000	0.946	198
Cross-tissue Immune Cell Atlas	scVI	500	8	1e-4	2000	0.982	487
Cross-tissue Immune Cell Atlas	scVI	1000	16	1e-4	2000	0.992	974
Cross-tissue Immune Cell Atlas	scVI	2000	32	5e-4	2000	0.997	1607
Cross-tissue Immune Cell Atlas	scVI	5000	80	5e-4	4000	0.999	3399
Cross-tissue Immune Cell Atlas	scVI	10000	160	5e-4	3000	0.998	8803
Tabula Sapiens Immune	scGPT	1000	16	1e-4	600	0.981	964
Tabula Sapiens Immune	scGPT	2000	32	7e-5	1200	0.988	1887
Tabula Sapiens Immune	scGPT	5000	80	5e-5	1500	0.995	4381
Tabula Sapiens Immune	scGPT	10000	160	5e-5	1092	0.996	8799
Tabula Sapiens Immune	scVI	200	3	1e-4	1000	0.936	199
Tabula Sapiens Immune	scVI	500	8	1e-4	1500	0.988	489
Tabula Sapiens Immune	scVI	1000	16	1e-4	1000	0.991	972
Tabula Sapiens Immune	scVI	2000	32	5e-4	2000	0.997	1634
Tabula Sapiens Immune	scVI	5000	80	5e-4	3000	0.998	4108
Tabula Sapiens Immune	scVI	10000	160	5e-4	1300	0.999	8790

801
802
803
804
805
806
807
808
809
classification, accuracy of 0.85 (topK SAE) vs. 0.79 (semi-NMF) for scVI, and 0.86 (topK SAE) vs.
0.73 (semi-NMF) for scGPT, indicating a loss of biological signal. We also evaluated the low-rank

810 setting with $c < d$ and found a marked decrease in reconstruction performance and downstream
 811 tasks accuracy.

	Neurons	TopK SAE	Semi-NMF ($c > d$)	Semi-NMF ($c < d$)
Number of concepts c	512	5000	5000	200
Active concepts	—	4381	5000	196
Sparsity	—	0.984 (0.0)	0.971 (0.011)	0.979 (0.009)
Reconstruction (R2)	—	0.995 (0.003)	0.933 (0.032)	0.858 (0.062)
Cell cycle (accuracy)	0.482	0.487	0.477	0.436
Cell type (accuracy)	0.869	0.860	0.734	0.300

820 Table 4: Comparison of concept extraction methods for scGPT ($d = 512$), results on the Tabula
 821 Sapiens Immune dataset. Cell cycle and cell type tasks correspond to the tasks introduced in Sec-
 822 tion 4.5. Semi-NMF with $c = 5000$ was fitted on 50% of the training set instead of 90% for the
 823 other methods, due to memory issues.

	Neurons	TopK SAE	Semi-NMF ($c > d$)	Semi-NMF ($c < d$)
Number of concepts c	50	500	500	20
Active concepts	—	489	496	20
Sparsity	—	0.984 (0.0)	0.989 (0.003)	0.830 (0.057)
Reconstruction (R2)	—	0.980 (0.014)	0.849 (0.110)	0.713 (0.171)
Cell cycle (accuracy)	0.493	0.485	0.468	0.462
Cell type (accuracy)	0.853	0.853	0.779	0.692

833 Table 5: Comparison of concept extraction methods for scVI ($d = 50$), results on the Tabula Sapiens
 834 Immune dataset. Cell cycle and cell type tasks correspond to the tasks introduced in Section 4.5.

837 C DIFFERENTIAL GENE EXPRESSION ANALYSIS (DGEA)

839 **DGEA-based gene set** We compare genes identified with the attribution method that we propose
 840 to genes identified with Differential Gene Expression Analysis as proposed by Schuster (2024).
 841 Differential gene expression analysis is performed between cells that maximally activate the concept
 842 (with a maximum of 1000 cells) and counterfactual cells (with a maximum of 1000 cells).

844 **Deletion curve** We computed deletion curves to compare the impact on concept activation of the
 845 two sets of genes (Figure 8). Genes are sorted by attribution value for the attribution-based deletion,
 846 and sorted by absolute FoldChange for DGEA-based deletion (only for genes with $p - value \leq$
 847 $5e - 3$). We then perturb cells with counterfactual perturbations, from the most important to the
 848 least important, and compute the perturbed concept activation. Attribution-based deletion curve is
 849 below DGEA-based deletion curve, which demonstrates that genes obtained via attribution have a
 850 bigger impact on concept activation. We note that gene perturbations have a greater impact on the
 851 embeddings of scGPT cells compared to scVI. We will investigate this behavior in future work.

863 Figure 8: Deletion curve for all concepts (mean and std at each gene deletion step)

864 **Comparison of attribution-based GSEA and DGEA-based GSEA** We computed DGEA-based
 865 GSEA and attribution-based GSEA of the first 100 concepts of the TopK SAEs used in Section 4.3.
 866 For a given concept, we obtain two sets of biological processes : $P_{att} = \{T_1^{att}, \dots, T_{k_{att}}^{att}\}$ the
 867 biological processes from attribution-based GSEA and $P_{dgea} = \{T_1^{dgea}, \dots, T_{k_{dgea}}^{dgea}\}$ the biological
 868 processes from DGEA-based GSEA. Each biological process T is defined as a set of genes $T =$
 869 $\{(g_1, FC_1, att_1), \dots, (g_m, fc_m, att_m)\}$ with g the gene name, fc the log2 fold change from DGEA
 870 and att the attribution score. We compared the results only if there is at least one biological process
 871 in both P_{att} and P_{dgea} . The metrics are :

872

- 873 • The maximal absolute log2 fold change value of the genes in the biological processes:
 874 $\max_{T \in P_{att}} \max_{(g, fc, att) \in T} |fc|$
- 875 • The maximal attribution score of the genes in the biological processes:
 876 $\max_{T \in P_{att}} \max_{(g, fc, att) \in T} att$
- 877 • The intersection of biological processes : $\frac{|P_{att} \cap P_{dgea}|}{|P_{att} \cup P_{dgea}|}$
- 878 • The intersection of genes in the biological processes: $\frac{|G_{att} \cap G_{dgea}|}{|G_{att} \cup G_{dgea}|}$ with $G_{\star} = \bigcup_{T \in P_{\star}} \{g \mid$
 879 $(g, fc, att) \in T\}$

882 The results are given in Table C. First, we observe minimal overlap between the biological processes
 883 detected by two methods (mean IoU of 0.068 for scGPT and 0.025 for scVI) and between the genes
 884 within these processes (mean IoU of 0.055 for scGPT, 0.027 for scVI), demonstrating the need to
 885 choose one of the methods. As expected, biological processes identified through classic DGEA-
 886 based GSEA contain genes with higher absolute log2 fold change (mean 4.0 vs. 2.6 for scGPT,
 887 4.7 vs. 2.4 for scVI), whereas the biological processes identified with the attribution-based method
 888 contain genes with higher attribution scores (mean 0.32 vs. 0.17 for scGPT, 0.21 vs. 0.14 for
 889 scVI). Deletion curves (Figure 8) further indicate that genes identified via attribution exert a greater
 890 impact on concept activation than those identified via DGEA. Together, these results justify the use
 891 of attribution-based GSEA for concept interpretation, as the resulting biological processes more
 892 accurately reflect the signal associated with the concept.

	scVI		scGPT	
	attribution-based	DGEA-based	attribution-based	DGEA-based
Max absolute log2 fold change	0.211 (0.215)	4.688 (2.211)	0.323 (0.405)	4.040 (1.837)
Max attribution	2.362 (1.812)	0.135 (0.169)	2.570 (2.261)	0.172 (0.407)
Number of concepts enriched	72	89	32	62
IoU genes	0.027 (0.043)		0.055 (0.099)	
IoU biological processes	0.025 (0.060)		0.068 (0.138)	

900 Table 6: Comparison of DGEA-based GSEA and attribution-based GSEA for 100 concepts per
 901 model. We only consider enriched biological processes with p-value ≤ 0.005 .

903 D INTERFACE FOR THE EXPERT INTERPRETATION STUDY

906 Screenshots of the interface that we developed and deployed for the expert interpretation study are
 907 provided in Figure 9.

909 E LIMITS OF PATHWAY ENRICHMENT

911 There are several limitations to GSEA interpretation based on the biological processes of the Gene
 912 Ontology. First, many genes seem to play a role in the activation of concepts but are not mapped
 913 to any biological process yet (270/1200 genes for scGPT and 5113/8000 genes for scVI). The tree
 914 structure of the ontology can also generate confusion because sister terms (GO terms from the same
 915 parents) can be either close or very dissimilar in their semantic meaning, and this caveat is of partic-
 916 ular importance when neglecting the graph structure of the Gene Ontology and ignoring the type of
 917 edges linking biological processes. The inherent incompleteness of gene annotation and the ontol-
 918 ogy itself leads to the so-called "streetlight effect" skewing the interpretation towards what is known

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Interactive visualization of a concept

Form with questions

Concept 1 of 80

Concept Annotation

Already annotated on 2025-09-12T11:33:58.806042

Based on the gene attributions below, please evaluate:

Cell Type Specificity

Do these genes suggest a specific cell type?

No Yes

Which cell type?

MHC class II is restricted to antigen-presenting cells (macrophages, DCs, B cells)

Tissue Specificity

Do these genes suggest a specific tissue?

No Yes

Which tissue?

e.g., liver, brain, immune system...

Biological Process Specificity

Do these genes suggest a specific biological process?

No Signal but unclear Yes

Please explain the biological process or signal:

The combined average shows a clear signal of exogenous peptides presentation through MHC class II pathway. The individual samples are somewhat noisier, although some genes reinforce the signal (eg TAP2).

Save Annotation

Figure 9: Screenshots of the interface for the expert interpretation study. (Left) Interactive visualization of a concept. (Right) Form with questions asked to the expert.

rather than where truth really is. This leads to a heterogeneous ontology, with an uneven depth of annotation, which can bias enrichment assays.

F INTERPRETED CONCEPTS

We provide complete information for a few concepts interpreted in Section 4 in Table 7. In particular, we provide an additional description of the concepts.

G DOWNSTREAM TASKS

Cell cycles We labeled the Tabula Sapiens Dataset with cell cycle phase using the Scanpy tool “score_genes_cell_cycle” (Wolf et al., 2018). We then built a balanced dataset with the three classes: “G2M”, “S”, and “G1”. The training dataset comprises 10000 samples per class, and the test dataset comprises 1000 samples per class. We used the logistic regression from sklearn with default parameters. Accuracy is similar for classification from concept activations and neuron activations (Figure 10.B). Concepts and neurons with the highest coefficient are given in Figure 5. Markers genes are the one provided with the Scanpy code ⁷. Note that only 8 out of 97 of these genes are in the input of the model.

Cell types We selected 7 classes with enough samples to balance the dataset : “B cell”, “CD8-positive, alpha-beta T cell”, “CD4-positive, alpha-beta T cell”, “natural killer cell”, “neutrophil”, “classical monocyte”, “monocyte”. The training dataset comprises 6000 samples per class, the test dataset comprises 2000 samples per class. We use the logistic regression from sklearn with default parameters and *max_iter* = 50. Accuracy is similar for classification from concept activations and neuron activations (Figure 10.A).

⁷https://github.com/scverse/scanpy_usage/blob/master/180209_cell_cycle/data/regev_lab_cell_cycle_genes.txt

972
973
Table 7: Interpretable concepts.
974
975
976
977
978
979
980
981
982
983
984
985

Concept ID	Expert label	Expert description	Pathway enrichment label	Top-10 important genes
scGPT/C28	Terminal differentiation of keratinized squamous epithelia	Genes with the highest attribution values are either key contributors to the structural formation of the cornified layers in tissues such as the outer part of the skin, and/or part of the epidermal differentiation complex, a group of genes central to terminal differentiation of the skin epithelial cells	Keratinocyte differentiation (GO:0030216)	SPRR2A, SPRR1A, SPRR1B, S100A7, SPRR3, HSP90AA1, KRT13, SBSN, KRT16, MKLN1
scGPT/C31	Presentation of exogenous peptides by myeloid antigen-presenting cells	The gene set contains several genes linked to the presentation of exogenous molecules at the surface of our cells. A set of genes is evocative of macrophages, which are professional antigen-presenting cells, while CTSD relates to their capacity to digest exogenous molecules before presenting them	Antigen processing and presentation of exogenous peptide antigen (GO:0002478)	MPP1, CTSD, HLA-DPA1, PRKAB1, HSP90AA1, PPP1CC, HLA-DRA, SERPINA1, DCTN2, ZNF585A
scVI/C9	Activated antigen-presenting cells	Although it relates to the concept presented above, they are not identical. While the core machinery of exogenous antigen presentation is also present, a set of genes suggests a focus on activated antigen-presenting cells rather than the presentation process itself	Positive regulation of canonical NF-KappaB signal transduction (GO:43123)	CD74, NAMPT, CCR7, HBA2, RRM2, ALB, TNF, BIRC3, HLA-DPB1, CD86
scVI/C13	Plasmacytoid dendritic cells	The antigen-presentation machinery is again included here, together with specific transcription factors and effector molecules. While some genes are discordant with this interpretation, the concept likely relates to plasmacytoid dendritic cells	Positive regulation of immune response (GO:0050778)	GZMB, FGFBP2, CD74, CDK6, ENSG00000288891, HLA-DRA, HSPH1, KCNQ5, MTCO1P12, AURKB

1014
1015
1016

H ATTRIBUTION

1017
1018 Cumulative distribution of attribution scores are given in Figure 11.
1019
1020
1021
1022
1023
1024
1025

Figure 10: Confusion matrix of predictions on test sets for the two tasks. (A) Cell type classification. The test set contains 2000 samples per class, the accuracy of predictions from concept activations is 0.86 and 0.87 from neuron activations. (B) Cell cycle classification. The test set contains 1000 samples per class, the accuracy of predictions from concept activations is 0.49 and 0.48 from neuron activations.

Figure 11: Cumulative distribution of attribution scores.