
CODEPROMPTZIP: Compressing Code Prompt for Retrieval-Augmented
Generation in Coding Tasks with LMs

Anonymous ACL submission

Abstract

Retrieval-Augmented Generation (RAG) en-001
hances coding tasks by incorporating retrieved002
code examples into prompts. However, lengthy003
prompts—often exceeding tens of thousands004
of tokens—introduce challenges related to005
limited context windows of language models006
(LMs) and high computational costs. Exist-007
ing prompt compression techniques focus on008
natural language, lacking tailored solutions for009
code. To address the gap, we propose CODE-010
PROMPTZIP, a framework that compresses011
code examples before integrating into RAG012
workflows. Our framework employs a type-013
aware, priority-driven strategy to construct014
training samples for training code compression015
model. By using program analysis, we identify016
token types (e.g., Identifier) and perform ab-017
lation analysis to rank their removal priorities018
based on their impact on task performance. We019
then train a small LM as the compressor on020
these samples, enabling flexible compression021
conditioned on specified ratios while minimiz-022
ing performance degradation. Specially, the023
compressor’s architecture is augmented with024
a copy mechanism, allowing tokens to be di-025
rectly copied from the original code snippets.026
Evaluation results show that CODEPROMPTZIP027
surpasses SOTA entropy-based and distillation-028
based baselines, improving by 23.4%, 28.7%,029
and 8.7% over the best baseline for Assertion030
Generation, Bugs2Fix, and Code Suggestion,031
respectively.032

1 Introduction033

Retrieval-Augmented Generation (RAG) for lan-034

guage models (Lewis et al., 2020; Izacard et al.,035

2023; Xu et al., 2024) has shown remarkable perfor-036

mance on knowledge-intensive tasks, particularly037

in coding domains (Nashid et al., 2023; Chen et al.,038

2024; He et al., 2024), by incorporating retrieved039

code examples into input prompts. However, such040

prompts often span tens of thousands of tokens,041

which creates challenges due to the limited context042

window of LMs and the high cost of processing 043

long prompts with proprietary services like GPT-4 044

($2.50 per million tokens). 045

Prompt compression offers a promising solu- 046

tion for efficient LM utilization by retaining es- 047

sential information while reducing prompt length 048

(Chang et al., 2024). Although existing studies 049

have achieved promising results for natural lan- 050

guage (NL) tasks, including language modeling 051

(Xu et al., 2024; Chevalier et al., 2023; Mu et al., 052

2023), question-answering (Jung and Kim, 2024), 053

and summarization (Jiang et al., 2023a; Li, 2023), 054

there is no compressor specifically for coding 055

tasks. To address this gap, we introduce CODE- 056

PROMPTZIP, a framework to train a code-specific 057

compressor to compress code examples for RAG- 058

based coding tasks. 059

We propose using a small LM (i.e., CodeT5 060

(Wang et al., 2021), 775M) as the compressor to 061

compress code examples. The LM-based compres- 062

sor captures the probabilistic relationships between 063

code tokens without being constrained by strict syn- 064

tax, making our framework applicable to incom- 065

plete code. The generated compressed examples 066

aim to be lightweight yet effective, ensuring min- 067

imal impact on the base LM’s ability to produce 068

high-quality outputs. To provide flexibility, the 069

compressor accepts original code examples and de- 070

sired compression ratios as input, generating exam- 071

ples that align with specified constraints. However, 072

training the compressor introduces two key chal- 073

lenges: 1 Constructing suitable datasets tailored 074

for code compression. 2 Designing a compressor 075

architecture that effectively supports code compres- 076

sion while allowing compression ratio control. 077

To address 1 , we propose a type-aware, priority- 078

driven method to construct code compression 079

datasets. This approach leverages the observation 080

that different token types (e.g., Identifier) in code 081

examples have varying impacts on generation qual- 082

ity. Using program analysis tools (Zhang et al., 083

1

2024), tokens are first categorized by their type.084

Next, we perform an ablation analysis to measure085

the impact of each type of tokens and establish a086

hierarchy of removal priorities based on their im-087

pact on performance degradation. Finally, a greedy088

strategy is employed to iteratively remove higher089

priority tokens and generate compressed code snip-090

pets with varying compression ratios.091

To address 2 , we enhance the base CodeT5 ar-092

chitecture with a copy mechanism (See et al., 2017;093

Zhang et al., 2021), which enables the model to094

directly copy tokens from the source. Since the095

compressed code is fully derived from the original,096

this mechanism introduces a copy distribution over097

source tokens to guide the token generation from098

the source sequence during decoding. Additionally,099

we extend the vocabulary by incorporating special100

tokens (e.g., <Ratio>), allowing the model to condi-101

tion on specified compression ratios and adaptively102

learn compression at varying levels during training.103

We evaluated CODEPROMPTZIP by compress-104

ing code examples in three RAG-based coding105

tasks, i.e., Assertion Generation (Nashid et al.,106

2023), Bugs2Fix (Lu et al., 2021), and Code Sug-107

gestion (Chen et al., 2024). CODEPROMPTZIP108

effectively maintains performance while reducing109

prompt lengths. CODEPROMPTZIP demonstrates110

improvements over both SOTA entropy-based (e.g.,111

LLMLingua (Jiang et al., 2023a)) and distillation-112

based baselines (e.g., RECOMP (Xu et al., 2024)).113

CODEPROMPTZIP achieves an improvement of114

23.4%, 28.7%, and 8.7% over the best baseline for115

three coding tasks Assertion Generation, Bugs2Fix,116

and Code Suggestion, respectively.117

We make the following contributions.118
• We first observe that different types of tokens119

have varying impacts on final generation qual-120

ity. Based on this, we propose a novel prompt121

compression framework designed for com-122

pressing code examples.123
• We developed a copy-enhanced LM as the124

compressor to compress code examples effec-125

tively and allow compression ratio control.126
• Our approach achieves significant perfor-127

mance improvements over SOTA baselines128

and demonstrates generalization across differ-129

ent language models and tasks.130

2 Related Work and Background131

2.1 Related work132

Prompt compression methods can be broadly clas-133

sified into two types: soft prompts and discrete134

prompt compression (Chang et al., 2024). Soft 135

prompts learn embeddings that encode either task 136

instructions (Mu et al., 2023) or example doc- 137

uments (Chevalier et al., 2023). For example, 138

Mu et al. (2023) condense prompt instructions 139

into reusable “gist” vectors, while Chevalier et al. 140

(2023) compress long documents into learnable 141

context vectors. However, soft prompts face lim- 142

itations in cross-model compatibility and require 143

gradient access to base LMs, making them imprac- 144

tical for API-based proprietary LM services. 145

Recent research has focused on discrete prompt 146

compression, which retains key tokens from the 147

original prompt while eliminating less informa- 148

tive content. This approach enhances compatibil- 149

ity with black-box or proprietary LMs. Notable 150

techniques include entropy-based and knowledge 151

distillation methods. Entropy-based methods, 152

such as LLMlingua and LongLLMlingua (Jiang 153

et al., 2023a,b), use small LMs to estimate the in- 154

formation entropy of tokens, filtering out low-value 155

content. However, they rely on heuristic metrics 156

that may not align well with compression objec- 157

tives. Knowledge distillation leverages large LMs 158

like GPT-4 (Achiam et al., 2023) to generate com- 159

pressed summaries, which are then used to fine- 160

tune smaller LMs as compressors. For instance, 161

Xu et al. (2024) trained a T5 model on GPT-3.5- 162

turbo summaries, while Pan et al. (2024) employed 163

a transformer encoder to classify tokens for ex- 164

traction. Despite their effectiveness, distillation 165

methods struggle with maintaining strict compres- 166

sion ratios and entail high costs due to reliance on 167

proprietary LMs. 168

Although code is a subset of natural language, it 169

exhibits unique features, such as type information 170

(Zhang et al., 2024). Different token types encap- 171

sulate distinct symbolic and syntactic information. 172

For example, Identifier tokens reflect developers’ 173

intent, while Symbol tokens define delimiters and 174

operations. A recent work (Yang et al., 2024a) 175

primarily targets the natural language parts (i.e., 176

docstrings) in coding task prompts rather than ad- 177

dressing the compression of code itself. To the 178

best of our knowledge, we are the first to focus on 179

compressing the code. 180

2.2 Problem Formulation 181

Referring to Jiang et al., 2023a, we modify and 182

reformulate prompt compression. For a coding 183

task T , given an original prompt, denoted as x = 184

(xcode1 , ..., xcodeN , xques), where xcodei represents ith 185

2

code example 1, N represents number of shots, and186

xques represents the question. We aim to compress187

the code examples to reduce token count while188

retaining critical information for the question. For-189

mally, the compression is performed by a compres-190

sor LMC , acting as a function:191

x̃codei = LMC(xcodei , τcode, T) (1)192

193

where τcode = 1 − |x̃codei |/|xcodei | is the compres-194

sion ratio for a code snippet. With compressed195

code examples, the overall prompt is shortened as:196

x̃ = CODEPROMPTZIP(x) (2)197

= ({LMC(xcodei , τcode)}Ni=1, xques)198

where the overall ratio is given by τ = 1−x̃/x. The199

generation of the base language model BLM with200

the compressed prompt x̃ is expected to closely ap-201

proximate the generation with the original prompt202

x. This can be formulated as:203

min
x̃,τ

KL (P (BLM(x̃) | x̃) , P (BLM(x) | x))

(3)

204

3 Type-aware Priority Ranking205

Before introducing our framework, we outline its206

motivation. Different tokens in a prompt contribute207

unevenly to the final output, with less impactful208

tokens prioritized for removal (Yang et al., 2024b;209

Li, 2023; Jiang et al., 2023a,b; Xu et al., 2024). In210

coding tasks, prompts often include code snippets211

as RAG demonstrations. A key question arises: Do212

different types of tokens in code contribute differ-213

ently to the final results? If so, this insight can214

guide code prompt compression. To explore this,215

we use program analysis (PA) tools to categorize216

tokens by type and conduct ablation analysis to217

identify those with minimal impact, guiding effi-218

cient prompt compression.219

3.1 Type Ablation Analysis220

We categorize tokens into five types, based on the221

taxonomy proposed by Wang et al., 2024: Symbol,222

Signature, Invocation, Identifier, and Structure223

(see Appendix B for detailed descriptions).224

We constructed Abstract Syntax Trees (ASTs)225

using JavaParser (Anonymous, 2019) to identify226

1As improving the retriever is not the focus of this work,
we retrieve examples using the SOTA BM25 (He et al., 2024).

token types. Tokens of specific types were removed 227

from the retrieved code examples, followed by per- 228

forming RAG with the type-ablated examples to 229

measure their impact on BLMs performance in 230

downstream tasks. The removal priority of a token 231

type T is defined as follows: 232

Priority(T) =
τcode/T

dT
(4) 233

where τcode/T (%) represents the code compression 234

ratio achieved by discarding tokens of type T , dT 235

(%) denotes the percentage of performance degra- 236

dation in the evaluation metric caused by the re- 237

moval of tokens of type T . 238

Token types that yield a higher ratio of τcode/t 239

and result in minimal degradation dt are assigned 240

higher priority for removal. This approach ensures 241

the compression process effectively reduces token 242

length while preserving the generation quality. 243

3.2 Setup of Downstream Coding Tasks with 244

RAG 245

To comprehensively assess the impact of different 246

types of tokens, we evaluated them across three 247

datasets and two frozen-parameter BLMs. 248

Dataset and metric: (i) Assertion Generation: 249

The input is a focal method (the method under test) 250

and its partial unit test, while the outputs are as- 251

sertion statements verifying its correctness. The 252

evaluation metric is the Exact Match Rate, follow- 253

ing prior work (Nashid et al., 2023). (ii) Bugs2Fix: 254

The input is a buggy method, and the output is a 255

refined version of the method with the bugs fixed. 256

This task is evaluated using CodeBleu (Ren et al., 257

2020), consistent with the CodexGLUE benchmark 258

(Lu et al., 2021). (iii) Code Suggestion: The input 259

consists of a method header (a summary of a func- 260

tion), and the output is a suggested code snippet 261

for the developer based on the header. The task is 262

also evaluated using CodeBleu defined in the origi- 263

nal paper (Chen et al., 2024). Table 1 presents the 264

statistics of datasets. 265

Task Knowledge Base (Parsable) Test Val
Assertion Generation 144,112 (70,433) 18,027 18,816
Bugs2Fix 52,364 (48,903) 6,545 6,546
Code Suggestion 128,724 (89,014) 10,727 5,149

Table 1: Dataset statistics of different coding tasks.

In all tasks, we utilize the code RAG prompt 266

template (Chen et al., 2024; He et al., 2024; Nashid 267

et al., 2023) (see Figure A), and craft task-specific 268

instructions in a one-shot setting. As listed in Table 269

3

Invocation Symbol Identifier Structure Signature

6

8
A

ss
er

tio
n

G
en

er
at

io
n:

Pr
io

rit
y

GPT-3.5-turbo Gemini-1.0-pro

Identifier Invocation Structure Symbol Signature
5

10

B
ug

s2
Fi

x:
Pr

io
rit

y

Signature Symbol Identifier Invocation Structure

4

6

C
od

e
Su

gg
es

tio
n:

Pr
io

rit
y

Figure 1: Removal priority of code token types: e.g.,
Invocation > Symbol in Assertion Generation, and vice
versa in Code Suggestion. Priorities are task-specific
yet model-agnostic, applicable to both LMs.

1, we follow the original split of the dataset into270

Train, Validation, and Test partitions. The training271

partition functions as our knowledge base for ex-272

ample retrieval. Note that some code examples that273

yield parsing errors in JavaParser due to code in-274

completeness are classified as Unparsable. Due to275

computational resource constraints, we randomly276

sample 2,000 instances from both the validation277

and test sets for our experiments. The sampled278

validation set is used to study example removal pri-279

ority, while the sampled test set serves to evaluate280

performance.281

.282

Base LMs: The in-context learning capabilities283

of large language models enable them to utilize284

query-related documents to produce outputs that285

better align with the instructions. To investigate286

whether the impact of different token types is con-287

sistent across models, we tested the constructed288

prompts on two large-scale BLMs: GPT-3.5-turbo289

and Gemini-1.0-Pro. We set temperature to 0 to290

ensure enhanced stability across experiments.291

3.3 Observation292

Figure 1 presents ablation analysis results using a293

log y-axis to normalize priority scores. The plots294

reveal type hierarchies of tokens in removal priority,295

arranged in descending order. This visualization296

highlights that higher-priority token types should297

be preferentially removed, providing an intuitive298

representation of the token-type removal strategy.299

In addition, the hierarchies are consistent across 300

BLMs but exhibit in-task variations, suggesting 301

the cross-model adaptability of priority-driven code 302

compression. 303

4 Methodology 304

As illustrated in Figure 2, CODEPROMPTZIP oper- 305

ates in two phases. In the training phase, we first 306

derive a type-aware priority ranking for a specific 307

task T (Sec. 3). Using this ranking, we implement 308

a priority-driven strategy (Algorithm 1): tokens in 309

higher-priority types are discarded before those 310

in lower-priority types. This process transforms 311

(xicode, τcode, T) into x̃codei . We then train LMC 312

on the constructed dataset to learn the sequence-to- 313

sequence compression task. 314

The design of the learning-based LMC enhances 315

applicability. While Algorithm 1 can directly out- 316

put compressed code examples, its implementation 317

relies on JavaParser for token labeling and removal, 318

restricting its use to unparsable code. However, as 319

shown in Table 1, unparsable code examples are 320

common in coding tasks. 321

The LMC processes code sequences as proba- 322

bilistic relations (Xu et al., 2024; Pan et al., 2024) 323

rather than relying strictly on exact syntax, enables 324

our framework to handle both parsable and un- 325

parsable code examples while tolerating compile 326

and parse errors (Yadavally et al., 2024). 327

In the inference phase, given a query, the LMC 328

accepts a specified τcode and the original retrieved 329

code example to generate compressed code that 330

retains the most critical tokens. These compressed 331

examples are then aggregated into a prompt and 332

passed to the BLM to generate the final output. 333

4.1 Code Compression Dataset Construction 334

The workflow of Algorithm 1 is as follows. Line 335

1 initializes a priority queue to store tokens along- 336

side their priorities. Lines 2–5 assign priorities to 337

tokens based on their type, with tokens in the same 338

type ranked by Term Frequency (TF) within the ex- 339

ample. Frequently occurring tokens are prioritized 340

for removal, as they are more likely to be redundant. 341

Tokens belonging to multiple types are assigned 342

to the category with the lowest removal priority, 343

while out-of-type tokens are removed last, preserv- 344

ing potentially critical tokens. Line 6 initializes 345

an empty set, removedTokens, to track removed 346

tokens. Line 7 calculates the number of tokens to 347

remove as a fraction of the total, determined by the 348

4

Input (100 tokens)

Compressor LM

Query

w/o Retreval (100 tokens)

w/o Compressing (400 tokens)

w/ Compressing (220 tokens)

Priority-driven

Compression

Base LM

Type-aware Pruning (e.g., Signature)

Type-Ablated

Code Examples

Type-Ablated

Code Examples

Compressed Code

Examples (120 tokens)

Compressed Code

Examples (120 tokens)

Performance

Decline
Base LM

P
ri

o
ri

ty

Token TypeToken Type

Compressing

Fine-tuning

Setting Ratio: 0.6

Target Ratio: 0.6

Knowledge

Base

Test Set

Dataset

Training Phase

Inference Phase

 Code Examples (300 tokens)

Parsable Code

Examples

Figure 2: Framework of CODEPROMPTZIP.

Algorithm 1: Priority-driven Greedy Algorithm

for Dataset Construction
Input: xcode

i = {xj}Lj=1, τcode, type priorities of T .
Output: x̃code

i .
1: Initialize a priority queue pq.
2: for each token xj ∈ xcode

i do
3: Assign priority to xj (Prioritize the drop of

high-frequency tokens in prioritized type).
4: Insert xj into pq.
5: end for
6: removedTokens← ∅.
7: Lrm ← ⌊τcode · L⌋.
8: L̃rm ← 0.
9: while L̃rm < Lrm do

10: xj ← pq.pop().
11: removedTokens← removedTokens ∪ {xj}.
12: L̃rm ← L̃rm + 1.
13: end while
14: x̃code

i ← xcode
i \ removedTokens.

15: return x̃code
i .

specified τcode. Lines 9–13 iteratively remove the349

highest-priority tokens from the queue until the re-350

quired number is removed. Line 14 constructs the351

modified training sample by excluding tokens in352

removedTokens from the original sequence. This353

iterative, priority-driven approach ensures the com-354

pressed code retains essential tokens while meeting355

the specified compression ratio.356

Using Algorithm 1, we constructed a code com-357

pression dataset for training compressors (see358

dataset statistics in Appendix C).359

4.2 Compressor Architecture360

With the code compression dataset, we fine-tune an361

encoder-decoder model, LMC , to effectively com-362

press code examples. We adopt CodeT5 (Wang363

et al., 2021) as our base model and introduce two364

key modifications to its architecture. First, we ex-365

tend the input vocabulary with task-indicative to- 366

kens such as <ASSERTION>, <BUGS2FIX>, and 367

<SUGGESTION>, which are added at the begin- 368

ning of the input sequence to explicitly indicate the 369

task context. This design allows our model to be 370

extended to more coding tasks. Additionally, to 371

enable LMC to condition on flexible τcode settings, 372

we introduce special tokens <Ratio>, </Ratio>, 373

<Compress>, and </Compress>. These tokens sig- 374

nal the model to generate compressed code snippets 375

tailored to the specified τcode and task. Moreover, 376

we incorporate a copy mechanism (See et al., 2017; 377

Zhang et al., 2021) into the architecture, allowing 378

the model to directly copy tokens from the input 379

sequence. This modification aligns with the extrac- 380

tive nature of the code compression task, where the 381

outputs are derived entirely from the inputs. 382

The detailed architecture is shown in Figure 383

3. This mechanism is implemented using a copy 384

module that computes the probability of copy- 385

ing each generated token directly from the in- 386

put, rather than generating it from entire vocab- 387

ulary. At first, the tokens of the original code 388

sequence xcodei = {xj}
|xcodei |
j=1 are fed into the en- 389

coder, producing a sequence of encoder hidden 390

states h = {hj}. In the decoder, the last cross- 391

attention matrix A ∈ Rltgt×lsrc represents the atten- 392

tion distribution over the source sequence during 393

decoding. Each row at ∈ Rlsrc corresponds to the 394

attention weights assigned to the source sequence 395

at decoding step t. Here, lsrc and ltgt denote the 396

maximum input and output lengths, respectively. 397

The attention distribution not only guides the de- 398

coder’s focus for each source token, but also allows 399

tokens to be copied from the source sequence by 400

sampling from the attention distribution. Next, the 401

5

Vocabulary distributionCopy distribution

Final distribution

T5 Encoder
T5 Decoder

Cross-attention

pgen

 1 - pgen pgen

Copy ModuleContext Vector

Code

<Ratio>

<Compressed>

</Ratio>

</Compressed>

0.2 Compressed Code<Compressed>

</Compressed>

<Assertion>

Figure 3: Illustration of copy mechanism on CodeT5.

attention distribution generates a weighted sum of402

the encoder hidden states, known as context vectors403

h∗:404

h∗
t =

∑
i

atihi, (5)405

The context vector h∗
t represents a fixed size406

summary of what has been read from the source.407

Then the context vector is concatenated with the408

decoder state st, and passed through a copy module409

to calculate the generation likelihood pgen ∈ [0, 1]410

at this step:411

pgen = σ(Wgen · [h∗
t , st] + bgen) (6)412

where Wgen and bgen are learnable parameters of413

the linear copy module. Here, pgen corresponds414

to the probability of generating tokens from the415

vocabulary, while (1−pgen) denotes the probability416

of copying tokens from the input.417

Next, we calculate the copy distribution by sum-418

ming the attention weights ati for all positions i419

where the input token xi match the target token y:420

Pcopy(y) =
∑

i:xi=x

ati (7)421

The generation probability is computed through422

the language model head connected to the de-423

coder’s output, defined as:424

Pvocab(y) = Softmax(Whead · st + bhead) (8)425

where Whead and bhead denote the weight matrix426

and bias vector of the head network, respectively.427

Finally, the output distribution is computed by in-428

terpolating between generation distribution Pvocab429

and copy distribution Pcopy:430

P (y) = pgenPvocab(y) + (1− pgen)Pcopy(y)
(9)

431

During training, we use the Cross-Entropy Loss 432

to maximize the likelihood of the target sequence. 433

The loss function is defined as: 434

L = −
T∑
t=1

yt log(ŷt) (10) 435

where yt is the ground-truth token at step t, and ŷt 436

is the predicted probability of that token. 437

We train the model by using the AdamW opti- 438

mizer with a batch size of 16, a learning rate of 439

5e-5, and 1,000 warmup steps for 10 epochs. 440

5 Experimental Setting 441

5.1 Research Questions 442

• RQ1: How effective is CODEPROMPTZIP 443

compared to NL-specific prompt compression 444

methods on coding tasks? 445

• RQ2: What is the trade-off between com- 446

pression ratio and number of shots in CODE- 447

PROMPTZIP’s performance? 448

• RQ3: How effective is CODEPROMPTZIP in 449

controlling compression ratios? 450

• RQ4: How does CODEPROMPTZIP perform 451

across different BLMs? 452

• RQ5: How does CODEPROMPTZIP perform 453

on unparsable code snippets? 454

In RQ1, we compare generation quality by 455

the BLM using compressed prompts from ex- 456

isting approaches. RQ2 examines the impact of 457

two key hyper-parameters, τcode and number of 458

shots, analyzing the trade-off between using highly 459

compressed examples versus fewer complete ones 460

within a fixed budget. RQ3 examines the ability 461

of CODEPROMPTZIP on controlling compression 462

ratios. RQ4 evaluates CODEPROMPTZIP’s perfor- 463

mance across different BLM to test its generaliza- 464

tion. RQ5 explores scenarios with unparsable code, 465

demonstrating the robustness of CODEPROMPTZIP 466

as a learning-based framework. 467

5.2 Baselines and Oracle 468

We compare our approach against four state-of- 469

the-art prompt compression baselines: LLMLingua 470

(Jiang et al., 2023a), LongLLMLingua (Jiang et al., 471

2023b), LLMLingua-2 (Pan et al., 2024), and RE- 472

COMP (Xu et al., 2024), with detailed descriptions 473

provided in Sec. 2.1. For reference, we also evalu- 474

ate prompts without retrieval or compression. Ad- 475

ditionally, we include Oracle, where we iteratively 476

remove tokens directly based on their type-aware 477

priority ranking, without using compressor model 478

6

(as the approach used to construct training dataset479

in Section 4.1), as a program analysis-based base-480

line for code examples.481

5.3 Datasets and Metrics482

We evaluated the performance of CODE-483

PROMPTZIP on the same three coding tasks,484

using the same prompt template and metrics, as485

presented in Sec. 3.2.486

5.4 Base LMs487

Concrete compression offers the advantage of trans-488

ferability across various BLMs (Xu et al., 2024;489

Jung and Kim, 2024). For RQ1, RQ2, RQ3, and490

RQ5, we conducted experiments on GPT-3.5-turbo.491

In RQ4, to evaluate the generalization of CODE-492

PROMPTZIP, we conducted experiments on two493

additional BLMs: the open-source CodeLlama-494

13B (Roziere et al., 2023) and the proprietary LM495

service Gemini-1.0-pro (Team et al., 2023).496

6 Results497

6.1 RQ1: Comparisons with Baselines498

Table 2 summarizes the results of different ap-499

proaches for compressing retrieval-augmented500

prompts across three coding tasks, evaluating met-501

rics such as token count, τ (overall compression502

ratio), and task performance, with the best re-503

sults reported. The baseline approach without re-504

trieved code examples (w/o retrieval) performs sig-505

nificantly worse than approaches with retrieval,506

highlighting the importance of RAG in enhanc-507

ing BLM performance on coding tasks. CODE-508

PROMPTZIP demonstrates improvements over both509

entropy-based and distillation-based baselines, im-510

proving by 23.4%, 28.7%, and 8.7% over the best511

baseline for Assertion Generation, Bugs2Fix, and512

Code Suggestion, respectively.513

Comparison with Oracle highlights the learn-514

ing outcomes derived from the code compression515

dataset. CODEPROMPTZIP closely approaches516

Oracle-level performance without requiring Java-517

Parser tools or parsable code snippets, falling only518

4.1% short in Exact Match for Assertion Genera-519

tion and 4.9% in CodeBleu for Bugs2Fix, while520

achieving nearly identical performance in Code521

Suggestion.522

The ablation study shows the consistent contri-523

butions of the copy mechanism to the enhancement524

of CodeT5, with a 1.2% Exact Match increase for525

Assertion Generation, CodeBleu improvements of526

500 1000 1500
of Tokens

0.40

0.45

0.50

0.55

Ex
ac

t M
at

ch

Assertion Generation

500 1000
of Tokens

0.65

0.70

C
od

eB
le

u

Bugs2Fix

250 500
of Tokens

0.22

0.24

0.26

C
od

eB
le

u

Code Suggestion

Shot: 1, code: 0.7
Shot: 1, code: 0.5
Shot: 1, code: 0.3
Shot: 1, code: 0.1

Shot: 3, code: 0.7
Shot: 3, code: 0.5
Shot: 3, code: 0.3
Shot: 3, code: 0.1

Shot: 5, code: 0.7
Shot: 5, code: 0.5
Shot: 5, code: 0.3
Shot: 5, code: 0.1

Figure 4: Trade-off between keeping more tokens in a
single example or including more examples.

5.2% for Bugs2Fix, and 3.2% for Code Suggestion. 527

While uncompressed prompts achieve the highest 528

quality metrics, they incur a significant token cost. 529

6.2 RQ2: Trade-off between τcode and Shots 530

The objective of prompt compression is to mini- 531

mize the number of tokens fed to the BLM, while 532

preserving acceptable generation quality. Given 533

a fixed token budget, a trade-off arises between 534

including fewer, less-compressed examples and 535

more highly-compressed ones. Figure 4 illustrates 536

this balance. In general, appending fewer exam- 537

ples, with each example allocated more tokens, 538

achieves better performance than increasing the 539

number of shots while allocating fewer tokens 540

per shot. For instance, in Assertion Generation, 541

with a token budget of 500, a single example com- 542

pressed at τcode = 0.1 outperforms three exam- 543

ples compressed at τcode = 0.7. Additionally, to 544

achieve a fixed performance level, choosing fewer 545

shots with a lower τcode is more cost-effective, bal- 546

ancing token efficiency and performance. 547

6.3 RQ3: Compression Ratio Control 548

Our LM-based compressors utilize an extended vo- 549

cabulary and accept τcode as input, enabling adap- 550

tive compression of code examples to meet the de- 551

sired ratio. Figure 3 illustrates the relation between 552

the specified τcode and the actual achieved values. 553

The dotted line (Oracle) represents the standard out- 554

come, and CODEPROMPTZIP closely aligns with 555

this benchmark. In contrast, compressors based 556

on the original CodeT5 architecture (w/o the copy) 557

struggle to produce outputs that match the desired 558

ratio. Table 6 also provides specific results under 559

varying τcode configurations, further demonstrat- 560

ing the effectiveness of CODEPROMPTZIP and the 561

critical role of the copy mechanism in achieving 562

accurate compression ratio control. 563

7

Table 2: Results on three coding tasks using GPT-3.5-turbo as the BLM. To ensure fair comparison with baselines
that lack a specified compression rate, we set CODEPROMPTZIP’s compression rate to 0.3, keeping it similar to or
higher than the baselines. Note that higher metric values indicate better performance, while a higher τ (%) reflects a
greater proportion of tokens removed from the prompt.

Assertion Generation Bugs2Fix Code Suggestion
Approach # tokens τ(%) Exact Match(%) # tokens τ(%) CodeBleu(%) # tokens τ(%) CodeBleu(%)
w/o retrieval 334 46.6 23.9 122 66.3 41.7 29 82.6 14.2
Entropy-based
LLMLingua 482 22.9 33.8 286 20.9 41.9 125 25.1 21.8
LongLLMLingua 474 24.2 34.1 287 20.6 42.1 126 24.1 21.2
Knowledge Distillation
LLMLingua-2 469 25.1 21.2 282 21.9 48.1 134 19.3 21.7
RECOMP 465 25.6 23.4 268 25.9 45.3 132 20.9 21.0
Ours, Setting τcode-0.3, 1-shot
CODEPROMPTZIP w/o Copy 447 28.5 40.9 267 26.2 56.7 131 21.7 20.5
CODEPROMPTZIP 440 29.7 42.1 262 27.4 61.9 121 27.5 23.7
Oracle 454 27.4 46.2 276 23.5 66.8 120 28.1 23.8
w/o Compression 626 0.0 50.5 362 0.0 81.4 167 0.0 24.7

0.1 0.3 0.5 0.7
Setting code

0.1

0.3

0.5

0.7

A
ct

ua
l

co
de

0.1 0.3 0.5 0.7
Setting code

0.1

0.3

0.5

0.7

0.1 0.3 0.5 0.7
Setting code

0.1

0.3

0.5

0.7
Oracle w/o copy w/ copy

(a) Assertion Generation (b) Bugs2Fix (c) Code Suggestion
Figure 5: Compression ratio control.

0.0

0.2

0.4

Ex
ac

t M
at

ch

(a) : CodeLlama-13B

0.0

0.2

0.4

C
od

eB
le

u

(b) : CodeLlama-13B

0.00

0.25

0.50

C
od

eB
le

u

(c) : CodeLlama-13B

0.00

0.25

0.50

Ex
ac

t M
at

ch

(a) : Gemini-1.0-pro

0.0

0.2

0.4

C
od

eB
le

u

(b) : Gemini-1.0-pro

0.0

0.1

0.2

C
od

eB
le

u

(c) : Gemini-1.0-pro

LLMLingua
LongLLMLingua

LLMLingua-2
RECOMP

CodePromptZip

(a) Assertion Generation (b) Bugs2Fix (c) Code Suggestion

Figure 6: Performance of the proposed CODE-
PROMPTZIP across different BLMs.

6.4 RQ4: Transferability with Different564

BLM565

CODEPROMPTZIP consistently outperforms566

baselines across studied base LMs CodeLlama-567

13B and Gemini-1.0. Figure 6 compares the per-568

formance among the studied prompt compression569

techniques across two additional base LMs and570

all three tasks. In comparison, baseline methods571

exhibit varying effectiveness, occasionally suffer-572

ing significant performance drops (e.g., RECOMP573

on CodeLlama for Bug2fix). The consistent su-574

periority underscores CODEPROMPTZIP ’s robust-575

ness and effectiveness as a transferable, generalized576

compression method for code-related tasks.577

Table 3: Results on unparsable code examples.

Assertion Generation Bugs2Fix Code Suggestion
Approach τ(%) Exact Match(%) τ(%) CodeBleu(%) τ(%) CodeBleu(%)

Omit 1% at end, 1-shot Setting code-0.1
CODEPROMPTZIP w/o Copy 29.1 39.7 26.4 55.4 21.9 19.4
CODEPROMPTZIP 30.1 42.0 27.6 61.9 28.2 23.9
Oracle N/A N/A N/A N/A N/A N/A
Omit 3% at end, 1-shot Setting code-0.3
CODEPROMPTZIP w/o Copy 29.5 38.4 26.5 50.8 22.0 18.7
CODEPROMPTZIP 31.2 0.417 28.0 61.0 29.1 22.6
Oracle N/A N/A N/A N/A N/A N/A

6.5 RQ5: Applicability on Unparsable Code 578

Table 3 presents the results of our experiments. 579

Drawing inspiration from Yadavally et al., 2024, 580

we removed a specified percentage of tokens from 581

the end of code examples to render them unparsable 582

and evaluated the effectiveness of our framework. 583

For this experiment, we remove 1% and 3% of 584

tokens from the end. When setting τcode = 0.3, 585

the exact match rate showed only a slight decrease, 586

from 42.1% (as shown in Table 2) for parsable code 587

to 42.0% and from 42.1% to 41.7% when remov- 588

ing 1% and 3% of tokens, respectively. In contrast, 589

the Oracle method, which depends on complete 590

code and ASTs, is not applicable (N/A). The re- 591

sults demonstrate the capability of our compressor 592

for real-world scenarios where code completeness 593

cannot always be ensured. 594

7 Conclusion 595

This paper presents CODEPROMPTZIP, a frame- 596

work designed to compress retrieved code exam- 597

ples before incorporating them into prompts. The 598

proposed compressor leverage copy-enhanced LMs 599

and are trained on dedicated datasets. Experi- 600

mental results demonstrate that CODEPROMPTZIP 601

significantly improves the efficiency of retrieval- 602

augmented LMs while maintaining minimal perfor- 603

mance degradation. Note that our framework is not 604

limited to RAG, it could be applied to any prompt 605

that contains code examples. 606

8

8 Limitations607

Need for Extra Training for New Coding Tasks:608

This study focuses on learning code compression609

for three method-level coding tasks. Similar to610

other task-aware compressors (e.g., Jiang et al.,611

2023b), the removal priorities in our approach de-612

pend on the downstream coding task. If CODE-613

PROMPTZIP is to be applied to other coding tasks,614

such as repository-level tasks (Ding et al., 2024),615

where token priorities differ significantly, addi-616

tional training of the compressor is required. How-617

ever, as shown in Figure 1, while priority rank-618

ings are task-specific, certain patterns emerge con-619

sistently. For example, Identifier tokens exhibit620

a higher removal priority than Structure tokens621

across all tasks. We show the out-of-domain capa-622

bility of our compressor by cross-task experiment623

in Appendix D.624

Generalizability of Our Findings: This study625

focuses exclusively on Java and method-level tasks.626

Since programming languages like Python also627

have program analysis tools, CODEPROMPTZIP628

is applicable to them as well. Future research629

could extend this work to other tasks and languages.630

Our experiments utilized GPT-3.5, Gemini, and631

CodeLlama-13b. We encourage further studies to632

explore additional base LMs and a broader range633

of programming languages and coding tasks.634

9 Ethical Considerations635

The implementation of this work is conducted with636

transparency, providing full disclosure of all tech-637

nical details, limitations, and potential issues to the638

relevant stakeholders. The work avoids any false or639

misleading claims and ensures no data is fabricated640

or falsified.641

In the interest of public benefit, the authors sup-642

port reasonable and ethical uses of their intellectual643

contributions. Both the source code and data are644

released as free and open-source software and are645

made available in the public domain.646

References 647

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 648
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 649
Diogo Almeida, Janko Altenschmidt, Sam Altman, 650
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 651
arXiv preprint arXiv:2303.08774. 652

Anonymous. 2019. Javaparser. https://github.com/ 653
javaparser/javaparser. 654

anonymous. 2025. Codepromptzip. 655
https://anonymous.4open.science/r/ 656
CodePromptZip-6B2B. 657

Kaiyan Chang, Songcheng Xu, Chenglong Wang, 658
Yingfeng Luo, Tong Xiao, and Jingbo Zhu. 2024. 659
Efficient prompting methods for large language mod- 660
els: A survey. arXiv preprint arXiv:2404.01077. 661

Junkai Chen, Xing Hu, Zhenhao Li, Cuiyun Gao, Xin 662
Xia, and David Lo. 2024. Code search is all you 663
need? improving code suggestions with code search. 664
In Proceedings of the IEEE/ACM 46th International 665
Conference on Software Engineering, pages 1–13. 666

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and 667
Danqi Chen. 2023. Adapting language models to 668
compress contexts. Preprint, arXiv:2305.14788. 669

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian 670
Ding, Ming Tan, Nihal Jain, Murali Krishna Ra- 671
manathan, Ramesh Nallapati, Parminder Bhatia, Dan 672
Roth, et al. 2024. Crosscodeeval: A diverse and 673
multilingual benchmark for cross-file code comple- 674
tion. Advances in Neural Information Processing 675
Systems, 36. 676

Pengfei He, Shaowei Wang, Shaiful Chowdhury, and 677
Tse-Hsun Chen. 2024. Exploring demonstration 678
retrievers in rag for coding tasks: Yeas and nays! 679
Preprint, arXiv:2410.09662. 680

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas 681
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi- 682
Yu, Armand Joulin, Sebastian Riedel, and Edouard 683
Grave. 2023. Atlas: Few-shot learning with retrieval 684
augmented language models. Journal of Machine 685
Learning Research, 24(251):1–43. 686

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing 687
Yang, and Lili Qiu. 2023a. LLMLingua: Com- 688
pressing prompts for accelerated inference of 689
large language models. In Proceedings of the 690
2023 Conference on Empirical Methods in Natural 691
Language Processing, pages 13358–13376, Singa- 692
pore. Association for Computational Linguistics. 693

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng 694
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023b. 695
Longllmlingua: Accelerating and enhancing llms 696
in long context scenarios via prompt compression. 697
arXiv preprint arXiv:2310.06839. 698

Hoyoun Jung and Kyung-Joong Kim. 2024. Discrete 699
prompt compression with reinforcement learning. 700
IEEE Access, 12:72578–72587. 701

9

https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser
https://anonymous.4open.science/r/CodePromptZip-6B2B
https://anonymous.4open.science/r/CodePromptZip-6B2B
https://anonymous.4open.science/r/CodePromptZip-6B2B
https://arxiv.org/abs/2305.14788
https://arxiv.org/abs/2305.14788
https://arxiv.org/abs/2305.14788
https://arxiv.org/abs/2410.09662
https://arxiv.org/abs/2410.09662
https://arxiv.org/abs/2410.09662
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.1109/ACCESS.2024.3403426
https://doi.org/10.1109/ACCESS.2024.3403426
https://doi.org/10.1109/ACCESS.2024.3403426

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio702
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-703
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-704
täschel, et al. 2020. Retrieval-augmented genera-705
tion for knowledge-intensive nlp tasks. Advances706
in Neural Information Processing Systems, 33:9459–707
9474.708

Yucheng Li. 2023. Unlocking context constraints of709
llms: Enhancing context efficiency of llms with self-710
information-based content filtering. arXiv preprint711
arXiv:2304.12102.712

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey713
Svyatkovskiy, Ambrosio Blanco, Colin Clement,714
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.715
Codexglue: A machine learning benchmark dataset716
for code understanding and generation. arXiv717
preprint arXiv:2102.04664.718

Jesse Mu, Xiang Li, and Noah Goodman. 2023.719
Learning to compress prompts with gist tokens.720
In Advances in Neural Information Processing721
Systems, volume 36, pages 19327–19352. Curran722
Associates, Inc.723

Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023.724
Retrieval-based prompt selection for code-related725
few-shot learning. In 2023 IEEE/ACM 45th726
International Conference on Software Engineering727
(ICSE), pages 2450–2462. IEEE.728

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia,729
Xufang Luo, Jue Zhang, Qingwei Lin, Victor Rühle,730
Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu,731
and Dongmei Zhang. 2024. LLMLingua-2: Data732
distillation for efficient and faithful task-agnostic733
prompt compression. In Findings of the Association734
for Computational Linguistics ACL 2024, pages 963–735
981, Bangkok, Thailand and virtual meeting. Associ-736
ation for Computational Linguistics.737

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,738
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio739
Blanco, and Shuai Ma. 2020. Codebleu: a method740
for automatic evaluation of code synthesis. arXiv741
preprint arXiv:2009.10297.742

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten743
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,744
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.745
Code llama: Open foundation models for code. arXiv746
preprint arXiv:2308.12950.747

Abigail See, Peter J Liu, and Christopher D Man-748
ning. 2017. Get to the point: Summarization749
with pointer-generator networks. In Proceedings750
of the 55th Annual Meeting of the Association for751
Computational Linguistics (Volume 1: Long Papers).752
Association for Computational Linguistics.753

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-754
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan755
Schalkwyk, Andrew M Dai, Anja Hauth, Katie756
Millican, et al. 2023. Gemini: a family of757
highly capable multimodal models. arXiv preprint758
arXiv:2312.11805.759

Yan Wang, Xiaoning Li, Tien N Nguyen, Shaohua 760
Wang, Chao Ni, and Ling Ding. 2024. Natural is 761
the best: Model-agnostic code simplification for pre- 762
trained large language models. Proceedings of the 763
ACM on Software Engineering, 1(FSE):586–608. 764

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH 765
Hoi. 2021. Codet5: Identifier-aware unified pre- 766
trained encoder-decoder models for code under- 767
standing and generation. In Proceedings of the 768
2021 Conference on Empirical Methods in Natural 769
Language Processing, pages 8696–8708. 770

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2024. RE- 771
COMP: Improving retrieval-augmented LMs with 772
context compression and selective augmentation. In 773
The Twelfth International Conference on Learning 774
Representations. 775

Aashish Yadavally, Yi Li, Shaohua Wang, and Tien N. 776
Nguyen. 2024. A learning-based approach to 777
static program slicing. Proc. ACM Program. Lang., 778
8(OOPSLA1). 779

Guang Yang, Yu Zhou, Wei Cheng, Xiangyu Zhang, Xi- 780
ang Chen, Terry Zhuo, Ke Liu, Xin Zhou, David Lo, 781
and Taolue Chen. 2024a. Less is more: Docstring 782
compression in code generation. arXiv preprint 783
arXiv:2410.22793. 784

Guang Yang, Yu Zhou, Wei Cheng, Xiangyu Zhang, 785
Xiang Chen, Terry Yue Zhuo, Ke Liu, Xin Zhou, 786
David Lo, and Taolue Chen. 2024b. Less is more: 787
Docstring compression in code generation. Preprint, 788
arXiv:2410.22793. 789

Tong Zhang, Long Zhang, Wei Ye, Bo Li, Jinan 790
Sun, Xiaoyu Zhu, Wen Zhao, and Shikun Zhang. 791
2021. Point, disambiguate and copy: Incorporat- 792
ing bilingual dictionaries for neural machine transla- 793
tion. In Proceedings of the 59th Annual Meeting of 794
the Association for Computational Linguistics and 795
the 11th International Joint Conference on Natural 796
Language Processing (Volume 1: Long Papers), 797
pages 3970–3979. 798

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, 799
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2024. 800
Unifying the perspectives of nlp and software en- 801
gineering: A survey on language models for code. 802
Preprint, arXiv:2311.07989. 803

10

https://proceedings.neurips.cc/paper_files/paper/2023/file/3d77c6dcc7f143aa2154e7f4d5e22d68-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://doi.org/10.1145/3649814
https://doi.org/10.1145/3649814
https://doi.org/10.1145/3649814
https://arxiv.org/abs/2410.22793
https://arxiv.org/abs/2410.22793
https://arxiv.org/abs/2410.22793
https://arxiv.org/abs/2311.07989
https://arxiv.org/abs/2311.07989
https://arxiv.org/abs/2311.07989

Demonstrations:

[START]

METHOD_HEADER:

{header}

WHOLE_METHOD:

{body}

…
[END]

Query
[START]

METHOD_HEADER:

{header}

WHOLE_METHOD:

Demonstrations:
[START]

FOCAL_METHOD:

{method under test}

UNIT_TEST :

{test method}

Assertion :

{assertion statement}

…
[END]

Query
[START]

FOCAL_MATHOD :

{tested method}

UNIT_TEST :

{test method}

Assertion :

Demonstrations:

[START]

BUGGY_CODE:

{buggy method}

FIXED_CODE:

{repaired method}

…
[END]

Query
[START]

BUGGY_CODE:

{buggy method}

FIXED_CODE :

(a) Assertion Generation (b) Bugs2Fix (c) Code Suggestion

Figure 7: The illustration of different RAG coding tasks
alongside their respective prompt templates.

A Data Availability804

We have made our replication package available,805

which contains all the code and datasets available806

here (anonymous, 2025).807

B Token Taxonomy of Code808

(i) Symbol: Tokens representing operators, delim-809

iters, and other symbolic elements that define the810

structure of the code (e.g., =, {, ;,).811

(ii) Signature: Tokens defining the declaration and812

parameters of methods, critical for understanding813

the interface and functionality of code components814

(e.g., calculate(int x)).815

(iii) Invocation: Tokens related to function or816

method calls, capturing interactions and dependen-817

cies within the code.818

(iv) Identifier: Tokens that serve as variable names,819

class names, or other user-defined labels, are essen-820

tial for understanding program semantics.821

(v) Structure: Tokens associated to loops, condi-822

tional, and other flow-control statements, which823

dictate the logical behavior of the program (e.g.,824

if, for, class).825

C Statistics of the Code Compression826

Dataset for Compressor Training827

The constructed dataset includes original code ex-828

amples paired with compressed code examples,829

with τcode ranging from 0.1 to 0.9. As shown in Ta-830

ble 4, the total number of training samples is nine831

times the number of parsable code examples in the832

knowledge base, reflecting the nine distinct τcode833

values. The dataset is split into training, validation,834

and test sets in an 8:1:1 ratio.835

Table 4: Statistics of the Code Compression Dataset for
Compressor Training.

Task Total Samples Split(Training/Test/Validation)
Assertion 70433*9 80%/10%/10%
Bugs2Fix 48903*9 80%/10%/10%

Suggestion 89014*9 80%/10%/10%

D More Results of the Out-of-Domain 836

Capabilities of CODEPROMPTZIP 837

To evaluate the out-of-domain effectiveness of 838

our compressors, we performed cross-task exper- 839

iments using LMC trained on individual down- 840

stream tasks and tested on the other two out-of- 841

domain tasks. Notably, task-specific special tokens 842

(e.g., <ASSERTION>) were not used in these ex- 843

periments. Table 5 summarizes the results of these 844

cross-task evaluations. 845

For example, in the first row, compressors 846

trained on the Assertion Generation task are ap- 847

plied to compress code examples from Bugs2Fix 848

and Code Suggestion. The Assertion Generation 849

in-task compressor achieves a CodeBleu score of 850

50.3% with a τcode of 33.2% on Bugs2Fix, com- 851

pared to its in-task performance of 61.9% Code- 852

Bleu and a τcode of 30.0% . While the compressor 853

demonstrates slightly less precision in achieving 854

the desired compression ratio and exhibits degrada- 855

tion in performance, it remains competitive against 856

other baselines, such as the best-performing LLM- 857

lingua2 with a CodeBleu score of 48.1%. 858

E More Results of Impact of the τcode on 859

the Effectiveness of CODEPROMPTZIP 860

In Table 6, we present results with varying τcode 861

settings. For compression ratio control, our frame- 862

work enables the configuration of τcode as an in- 863

put to LMC , allowing it to adaptively compress 864

code examples to match the specified ratio and 865

thereby control the overall τ of the prompt. How- 866

ever, when using the same configuration and setup 867

with the original CodeT5 structure (w/o copy), the 868

framework struggles to effectively learn the token 869

removal priority. Consequently, the output occa- 870

sionally deviates from the specified ratio settings, 871

as observed in the Bugs2Fix 1-shot experiment 872

with τcode = 0.1. This underscores the critical role 873

of the copy mechanism in ensuring compliance 874

with ratio settings. 875

Regarding the quality of generation in the end 876

tasks, the performance varies with different τcode 877

when a single retrieved example is included. A 878

11

Table 5: Cross-task Results: Bold font indicates the in-task scenario.

Compressor (a): Assertion Generation (b): Bugs2Fix (c): Code Suggestion
(a) (b) (c) τcode(%) Exact Match(%) τcode(%) CodeBleu(%) τcode(%) CodeBleu(%)
! 31.5 42.1 33.2 50.3 19.8 13.4

! 28.4 41.9 30.0 61.9 25.1 15.9
! 34.2 34.1 39.9 43.6 32.2 23.7

Table 6: Results with varying numbers of code snippets and τcode settings of the compressor on the studied tasks.
The overall compression ratio τ is achieved by compressing code snippets with τcode.

Assertion Generation Bugs2Fix Code Suggestion
Approach τcode(%) τ(%) Exact Match(%) τcode(%) τ(%) CodeBleu(%) τcode(%) τ(%) CodeBleu(%)

1-shot, Setting τcode-0.1
CODEPROMPTZIP w/o Copy 14.2 6.2 48.3 29.5 25.9 59.0 8.1 5.2 23.4
CODEPROMPTZIP 13.3 7.2 50.1 11.5 9.1 68.4 9.9 8.9 24.4
Oracle 10.0 8.8 49.8 10.0 8.1 78.5 10.0 8.4 24.5
1-shot, Setting τcode-0.3
CODEPROMPTZIP w/o Copy 33.4 28.5 40.9 28.3 26.2 56.7 24.7 21.7 20.5
CODEPROMPTZIP 31.5 29.7 42.1 30.0 27.4 61.9 32.2 27.5 23.7
Oracle 30.0 27.4 46.2 30.0 20.2 66.8 30.0 26.1 23.8
1-shot, Setting τcode-0.5
CODEPROMPTZIP w/o Copy 44.1 38.3 40.3 31.0 21.1 56.5 42.9 34.4 23.5
CODEPROMPTZIP 49.4 44.9 45.1 47.8 41.4 68.7 57.5 42.9 22.1
Oracle 50.0 45.2 42.1 50.0 43.9 67.1 50.0 41.9 23.1
1-shot
w/o compression 0.0 0.0 50.5 0.0 0.0 81.4 0.0 0.0 24.7
3-shot, Setting τcode-0.5
CODEPROMPTZIP w/o Copy 44.2 39.4 47.2 33.2 24.5 67.2 41.2 39.1 23.5
CODEPROMPTZIP 49.3 43.8 48.9 50.9 42.3 68.0 57.3 42.3 24.4
Oracle 50.0 41.1 52.6 50.0 41.9 68.9 50.0 42.5 24.6
3-shot
w/o compression 0.0 0.0 55.6 0.0 0.0 85.2 0.0 0.0 24.9
5-shot, Setting τcode-0.5
CODEPROMPTZIP w/o Copy 42.9 41.3 39.8 30.9 28.5 62.4 38.5 49.9 24.1
CODEPROMPTZIP 48.7 45.2 49.9 52.1 45.1 70.9 49.9 41.3 25.1
Oracle 50.0 43.9 55.2 50.0 42.2 74.4 50.0 41.6 25.3
5-shot
w/o compression 0.0 0.0 57.8 0.0 0.0 86.4 0.0 0.0 25.6

lower τcode of 0.1 achieves the highest quality, ap-879

proximating complete examples. However, lower880

τcode values do not always yield better results. For881

example, in the 1-shot setting on Assertion Gen-882

eration, τcode = 0.3 achieves an exact match rate883

of 42.1%, which is lower than the 45.1% obtained884

with τcode = 0.5 on the same task.885

F More Results of Impact of the Number886

of Shots on the Effectiveness of887

CODEPROMPTZIP888

We also present results under varying shot settings.889

The findings indicate that increasing the number890

of compressed examples improves performance,891

consistent with prior observations for complete ex-892

amples (He et al., 2024). Notably, this improve-893

ment extends to compressed examples. For in-894

stance, in Code Suggestion, increasing the number895

of τcode = 0.5 compressed examples from 1 to 5896

raises the CodeBleu score from 22.1 to 25.1, high-897

lighting the advantage of incorporating multiple898

compressed examples into the prompt.899

G Case Study 900

We present cases across multiple coding datasets, 901

comparing compressed and original code examples. 902

For instance, as demonstrated in Figures 8, 9, and 903

10, CODEPROMPTZIP prioritizes discarding Invo- 904

cation tokens first, followed by Symbol tokens. 905

FOCAL_METHOD
getProduction(java.lang.String) {
return productionsByName.get(name); }
UNIT_TEST
testJustifications() {
runTest("testJustifications", 2);

org.jsoar.kernel.Production j =
agent.getProductions()
.getProduction("justification-1");
"<AssertPlaceHolder>";

}

Figure 8: Original Code Examples of Assertion Genera-
tion (63 tokens)

906

12

FOCAL_METHOD
getProduction(java.lang.String) {
return productionsByName; }
UNIT_TEST
testJustifications() {
;
org.jsoar.kernel.Production j =

agent.getProductions()
.getProduction("justification-1");
"<AssertPlaceHolder>";

}

Figure 9: Compressed Code Examples of Assertion
Generation (55 tokens, τcode: 0.1)

FOCAL_METHOD
getProduction(java.lang.String)
return productionsByName;
UNIT_TEST
testJustifications()
;
org.jsoar.kernel.Production j = agent;
"<AssertPlaceHolder>";

Figure 10: Compressed Code Examples of Assertion
Generation (39 tokens, τcode: 0.4)

BUGGY_CODE
public static TYPE_1

init(java.lang.String name,
java.util.Date date) {

TYPE_1 VAR_1 = new TYPE_1();
VAR_1.METHOD_1(name);
java.util.Calendar VAR_2 =

java.util.Calendar.getInstance();
VAR_2.METHOD_2(date);
VAR_1.METHOD_3(VAR_2);
return VAR_1;

}
FIXED_CODE
public static TYPE_1

init(java.lang.String name,
java.util.Date date) {

TYPE_1 VAR_1 = new TYPE_1();
VAR_1.METHOD_1(name);
java.util.Calendar VAR_2 = null;
if (date != null) {

VAR_2 =
java.util.Calendar.getInstance();

VAR_2.METHOD_2(date);
}
VAR_1.METHOD_3(VAR_2);
return VAR_1;

}

Figure 11: Original Code Examples of Bugs2Fix (195
tokens)

BUGGY_CODE
public static TYPE_1

init(java.lang.String name,
java.util.Date date) {
= new TYPE_1();
;
java.util.Calendar =

java.util.Calendar;
.METHOD_2(date);
.METHOD_3(VAR_2);
return ;

}
FIXED_CODE
public static TYPE_1

init(java.lang.String name,
java.util.Date date) {
= new TYPE_1();
;
java.util.Calendar = null;
if (date != null) {

= java.util.Calendar;
.METHOD_2(date);

}
.METHOD_3(VAR_2);
return ;

}

Figure 12: Compressed Code Examples of Bugs2Fix
(136 tokens, τcode: 0.3)

13

METHOD_HEADER
protected final void fastPathEmit (U

value , boolean delayError ,
Disposable dispose)

WHOLE_METHOD
protected final void fastPathEmit(U

value, boolean delayError,
Disposable dispose) {

final Observer<? super V> s = actual;
final SimplePlainQueue<U> q = queue;
if (wip.get() == 0 &&

wip.compareAndSet(0, 1)) {
accept(s, value);
if (leave(-1) == 0) {

return;
}

} else {
q.offer(value);
if (!enter()) {

return;
}

}
QueueDrainHelper.drainLoop(q, s,

delayError, dispose, this);
}

Figure 13: Original Code Examples of Code Suggestion
(157 tokens, τcode: 0.3)

Original Code Examples (121 tokens, τcode:
0.3)

METHOD_HEADER
protected final void fastPathEmit (U

value , boolean delayError ,
Disposable dispose)

WHOLE_METHOD
final Observer<? super V> =
final SimplePlainQueue<U> =
if (wip.get() == 0 &&

wip.compareAndSet(0, 1))
;
if (leave(-1) == 0)

return;
else

.offer(value);
if (!enter())

return;
.drainLoop(q, s, delayError, dispose,

this);

Figure 14: Compressed Code Examples of Code Sug-
gestion (121 tokens, τcode: 0.3)

14

	Introduction
	Related Work and Background
	Related work
	Problem Formulation

	Type-aware Priority Ranking
	Type Ablation Analysis
	Setup of Downstream Coding Tasks with RAG
	Observation

	Methodology
	Code Compression Dataset Construction
	Compressor Architecture

	Experimental Setting
	Research Questions
	Baselines and Oracle
	Datasets and Metrics
	Base LMs

	Results
	RQ1: Comparisons with Baselines
	RQ2: Trade-off between code and Shots
	RQ3: Compression Ratio Control
	RQ4: Transferability with Different BLM
	RQ5: Applicability on Unparsable Code

	Conclusion
	Limitations
	Ethical Considerations
	Data Availability
	Token Taxonomy of Code
	Statistics of the Code Compression Dataset for Compressor Training
	More Results of the Out-of-Domain Capabilities of CodePromptZip
	More Results of Impact of the code on the Effectiveness of CodePromptZip
	More Results of Impact of the Number of Shots on the Effectiveness of CodePromptZip
	Case Study

