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RainyScape: Unsupervised Rainy Scene Reconstruction using
Decoupled Neural Rendering

Paper ID: 3249

ABSTRACT
We propose RainyScape, an unsupervised framework for recon-
structing clean scenes from a collection of multi-view rainy im-
ages. RainyScape consists of two main modules: a neural rendering
module and a rain-prediction module that incorporates a predic-
tor network and a learnable latent embedding that captures the
rain characteristics of the scene. Specifically, based on the spec-
tral bias property of neural networks, we first optimize the neural
rendering pipeline to obtain a low-frequency scene representation.
Subsequently, we jointly optimize the two modules, driven by the
proposed adaptive direction-sensitive gradient-based reconstruc-
tion loss, which encourages the network to distinguish between
scene details and rain streaks, facilitating the propagation of gradi-
ents to the relevant components. Extensive experiments on both the
classic neural radiance field and the recently proposed 3D Gaussian
splatting demonstrate the superiority of our method in effectively
eliminating rain streaks and rendering clean images, achieving
state-of-the-art performance. The constructed high-quality dataset
and source code will be publicly available.

CCS CONCEPTS
• Computing methodologies→ Reconstruction; 3D imaging;
Computational photography.

KEYWORDS
Rainy scene reconstruction, Neural rendering, Unsupervised loss

1 INTRODUCTION
Neural Radiance Field (NeRF) [29] has emerged as a groundbreaking
technique for novel view synthesis by learning a continuous, volu-
metric representation of the scene through differentiable volume
rendering. NeRF’s ability to create highly realistic and consistent
novel views with fine details has led to its widespread adoption
in various applications, such as 3D reconstruction [40], surface
reconstruction [3], 3D object editing [36], and large-scale scene
reconstruction [53].

However, when the input images are degraded by various factors
such as blur, noise, or rain, the rendering results inevitably exhibit
obvious artifacts. To address this issue, recent works have pro-
posed a range of task-specific solutions. For instance, Ma et al. [27]
achieved clear scene reconstruction from images affected by camera

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

motion blur or defocus blur by learning ray fusion within the blur
kernel. Huang et al. [16] tackled the problem of input images with
different dynamic ranges by adjusting the ray intensity using a cam-
era response function and obtaining the final color with a learnable
tone mapper. Chen et al. [6] extended the atmospheric scattering
model into the volume rendering process to fit hazy images us-
ing two neural rendering processes. In contrast to these methods,
our approach specifically targets the rainy scene reconstruction
task, which can be seamlessly integrated with our observation of
the neural rendering prior, as illustrated in Fig. 2. Moreover, the
sparse and intermittent nature of rain precipitation in 3D space
makes it challenging to represent through an additional neural ren-
dering field. Furthermore, our proposed framework can be readily
adapted to work with various rendering techniques, demonstrating
its versatility and flexibility.

In this paper, we propose RainyScape, a decoupled neural render-
ing framework that is capable of reconstructing a rain-free scene
from rainy images in an unsupervised fashion. First, we obtain
a low-frequency representation of the scene through a selected
radiance field rendering process (e.g., NeRF [29] or 3D Gaussian
Splatting [19]), where the remaining high-frequency scene details
and rain information are coupled together. We then characterize
the rain in the scene using learnable rain embeddings composed
of rainy scene state vectors, viewpoint state vectors, and camera
parameters, and predict rain maps through a multilayer perceptron
(MLP) and a CNN predictor. To decouple the high-frequency scene
details from the rain streak, we propose an adaptive angle estimate
strategy that significantly improves the distinguishability of rain
by considering the directions along and perpendicular to the rain
streak. We use the obtained angle information to design a gradient
rotation loss. Combining our proposed network framework and
unsupervised loss, we employ an alternating optimization strategy
to update network parameters and rain embeddings. Additionally,
to address the lack of multi-view rainy scene datasets, we render
10 sets of scenes using Maya [1], resulting in more consistent and
realistic rain trails compared to data simulated by simple methods.

In summary, the main contributions of this paper lie in:

• we explore priors in neural rendering processes and propose
a general rainy scene reconstruction framework;

• we represent the rain in the scene using rain embeddings
and use a predictor to predict rain streaks;

• we introduce an adaptive scene rain streak angle estimate
strategy and a corresponding gradient rotation loss for de-
coupling scene high-frequency details and rain streaks; and

• we construct a multi-view rainy scene dataset for more real-
istic and consistent rain streaks.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Overview of the proposed RainyScape framework, which can reconstruct a rain-free scene from a set of multi-view
rainy images in an unsupervised fashion. Based on the NeRF architecture, the rendering module takes ray positions and view
directions as input to estimate color and density values. Rain characteristics are modeled using scene state vectors s, viewpoint
state vectors 𝑣𝑖 , and camera parameters 𝑝𝑖 . The combined rain embedding is processed through an MLP to obtain latent space
representations, which are then fed into a CNN predictor to produce a rain map. The framework is trained using unsupervised
losses that facilitate the decoupling of high-frequency scene details and rain streaks, yielding a rain-free neural radiance field.

2 RELATEDWORK
2.1 Neural Rendering
NeRF [29] revolutionized viewpoint generation by introducing dif-
ferentiable volume rendering and learnable radiance fields, enabling
joint optimization of geometry and appearance for static 3D scenes
from posed RGB images. Subsequent works explore various designs
to improveNeRF’s training or inference speed, such asMLP capacity
[34], space discretization [10]. Recently, Kerbl et al. [19] extended
the NeRF to explicit GPU-friendly 3D Gaussians Splatting (3DGS)
and replaced the neural rendering, achieving real-time rendering of
radiance fields. Other works focus on enhancing rendering quality
and addressing challenging input scenarios. For instance, PixelNeRF
[48] enables few-shot reconstruction, Mip-NeRF [2] improves ren-
dering under multi-scale inputs, Deblur-NeRF [27] handles blurry
images using canonical kernels, and NaN [31] leverages inter-view
and spatial information to deal with noisy data. HDR-NeRF and
RawNeRF [16, 28] utilize camera response functions and raw im-
ages to process low dynamic range inputs. In contrast, our work
tackles the novel task of rainy scene reconstruction using decou-
pled neural rendering. We discover that the neural rendering prior
is well-suited for rainy scene reconstruction and propose a general
framework based on this insight, setting our approach apart from
existing NeRF-based methods.

2.2 Image/Video Deraining
Single-image rain removal is an ill-posed problem that aims to de-
compose a rainy image into a clean background and a rain streak
layer. Traditional methods rely on prior characteristics of rain, such
as photometric properties [13], morphological component analy-
sis [18], non-local means filtering [20], and layer priors [24] to
tackle this challenge. Other approaches employ optimization tech-
niques, including sparse coding [26], Gaussian mixture models [46],
and low-rank models [8], to separate rain streaks from the back-
ground.With the advent of deep learning, numerous learning-based
methods [5, 7, 11, 15, 23, 30, 32, 38, 39, 41, 49, 51] have emerged,

significantly advancing the state-of-the-art in single image rain
removal performance.

Video provides additional temporal information that can be ex-
ploited for rain removal. Garg et al. [12] pioneered the task using
photometric properties. Chen et al. [4] employed superpixel seg-
mentation and a robust deep CNN for restoration. Li et al. [22]
proposed a multi-scale convolutional sparse coding model to cap-
ture repetitive local patterns and rain streaks of different scales.
Yang et al. introduced a two-stage recurrent framework [44] and
extended it to a self-learned approach [45] leveraging temporal cor-
relation and consistency. Yue et al [50] proposed a semi-supervised
framework with a dynamical rain generator. Yan et al. developed
SLDNet+ [43], an augmented self-learned deraining network uti-
lizing temporal information and rain-related priors, and combined
single-image and multi-frame modules for raindrop removal. Zhang
et al. [52] proposed ESTINet, an efficient end-to-end framework
based on deep residual networks and convolutional LSTMs, to cap-
ture spatial features and temporal correlations among successive
frames. Xiao et al. [25] introduced a teacher-student framework for
adaptive nighttime video deraining.

In addition to video-based methods, some works tackle struc-
tured multi-view image rain removal. Ding et al. [9] proposed a
GAN-based architecture utilizing depth information to remove rain
streaks from 3D EPIs of rainy light field images (LFIs). Yan et al.
[42] employed 4D convolutions and multi-scale Gaussian processes
for LFI rain removal.

2.3 Preliminary
In this work, we employ the classic Neural Radiance Fields (NeRF)
[29] as the neural rendering method to describe our work more
concisely and elegantly. NeRF is a novel view synthesis method that
learns a continuous, volumetric representation of a scene through
differentiable volume rendering. NeRF employs a multilayer per-
ceptron (MLP) network 𝐹Θ to parameterize a 5D input (3D position
x = (𝑥,𝑦, 𝑧) and 2D viewing direction d = (𝜃, 𝜙)) into a density 𝜎
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Figure 2: Illustration of neural rendering prior: From low-frequency scene representation to high-frequency detail restoration
and rain preservation. The numbers represent the training epoch, the PSNR (dB) of the rendered image compared with rain-free
ground truth images, and the PSNR (dB) of the rendered image compared with the rainy image.

and color c = (𝑟, 𝑔, 𝑏):
𝐹Θ : (x, d) → (𝜎, c) (1)

To render a novel view, NeRF casts a ray r(𝑡) = o + 𝑡d for
each pixel, where o is the camera origin and d is the ray direction.
The expected color 𝐶 (r) of the ray is computed by integrating the
radiance along the ray:

𝐶 (r) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎 (r(𝑡))c(r(𝑡), d)𝑑𝑡, (2)

where 𝑇 (𝑡) = exp(−
∫ 𝑡
𝑡𝑛
𝜎 (r(𝑠))𝑑𝑠) is the accumulated transmit-

tance along the ray, and [𝑡𝑛, 𝑡𝑓 ] is the near and far bounds of the
ray. In practice, the continuous integral is approximated using nu-
merical quadrature:

𝐶 (r) =
𝑁∑︁
𝑖=1

𝑇𝑖 (1 − exp(−𝜎𝑖𝛿𝑖 ))c𝑖 , (3)

where𝑇𝑖 = exp(−∑𝑖−1
𝑗=1 𝜎 𝑗𝛿 𝑗 ), 𝛿𝑖 = 𝑡𝑖+1 − 𝑡𝑖 is the distance between

adjacent samples, and 𝑁 is the number of samples along the ray.

3 PROPOSED METHOD
As aforementioned, given a set of multi-view rainy images, we
aim to reconstruct a rain-free scene in an unsupervised manner.
As shown in Fig. 1, the proposed framework, named RainyScape,
consists of a neural rendering module based on the NeRF architec-
ture and a rain prediction module built upon MLP and CNN layers.
To be specific, the neural rendering module takes ray positions
and view directions as input to estimate color and density values.
The rain prediction module explicitly models the rain character-
istics, which consumes a learnable rain embedding composed of
scene state vectors and viewpoint state vectors, as well as provided
camera parameters, to predict a rain map. During training, we alter-
nately optimize the entire framework and use unsupervised losses
to encourage the decoupling of high-frequency scene details and
rain streaks. This enables the reconstruction of a rain-free radiance
field, which can be directly rendered during inference to obtain
sharp, rain-free views. Moreover, our framework can be adapted to
other rendering pipelines, such as the recent 3D Gaussian Splatting
(3DGS), as experimentally demonstrated in Section 5.

Remark. Our RainyScape differs from existing image/video-
based derainingmethods in several key aspects. First, thosemethods
rely on image space operations and do not fully exploit the scene’s
3D geometry. Second, most of them require ground-truth rain-
free data as supervision. Third, those methods often struggle to

handle multi-view inputs with large baselines. Furthermore, by
reconstructing a rain-free radiance field, our RainyScape enables
the rendering of novel views, which is not applicable to existing
ones.

3.1 Neural Rendering Prior for Deraining
The task of deraining aims to decompose a rainy image I ∈ Rℎ×𝑤×3

into a rain-free background scene B ∈ Rℎ×𝑤×3 and a rain layer
R ∈ Rℎ×𝑤×3 [35, 37], which can be formulated as

I = B + R. (4)

Initially, we leverage the neural rendering prior, which is fun-
damentally introduced by the spectral bias property of neural net-
works [33], to obtain a low-frequency scene representation B𝑙 ≈ B
during the warm-up stage, as illustrated in Fig. 2. Specifically, at this
stage, the rainy image I can be decomposed into the low-frequency
scene content B𝑙 and the high-frequency information Iℎ , as shown
in the residual map in Fig. 3, which includes both rain streaks and
useful scene details:

I = B𝑙 + Iℎ . (5)

To obtain a more detailed background B from the initial low-
frequency representation B𝑙 , we need to further decouple the high-
frequency information Iℎ into rain streaks and detailed scene com-
ponents. To achieve this goal, we next introduce a rain prediction
module that receives and reflects the rain characteristics from the
rainy scene.

3.2 Rain Prediction Module
To effectively model the rain characteristics and decouple the high-
frequency information Iℎ into rain streaks R and detailed scene
components Bℎ , we introduce a rain prediction module 𝐸Φ. This
module consists of a three-layer MLP to extract a latent space
representation of the rain characteristics and a six-layer CNN to
process and upsample feature maps to obtain a rain map. It takes
learnable rain embeddings as input and predicts a rain map R𝑒 ∈
Rℎ×𝑤×3.

The rain embeddings comprise three parts: learnable scene state
vectors s ∈ R128, learnable viewpoint state vectors v ∈ R64×𝑛 , and
fixed camera parameters p ∈ R16×𝑛 , where 𝑛 is the number of
input views. For a specific view 𝑖 , the predicted rain streaks can be
expressed as

R𝑖𝑒 = 𝐸Φ (s, v𝑖 , p𝑖 ) . (6)
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(a) Directional sensitivity of gradient magnitude differences of rainy and rain-free images.

(b) Distribution of gradient orientation in the residual map.

Figure 3: Leveraging directional sensitivity and gradient ori-
entation for unsupervised rainy scene reconstruction. (a)
Directional sensitivity of gradient magnitude differences be-
tween rainy and rain-free images. Gradients perpendicular to
the rain direction exhibit higher discriminative power com-
pared to those along the rain direction. (b) Distribution of
gradient orientation in the residual map I − B𝑙 . The residual
map contains gradients in all directions (green dashed lines),
with a dominant orientation perpendicular to the rain direc-
tion (red dashed lines) due to the presence of rain streaks.

These parameters are designed to capture and represent essential
information about the rain in the scene that influences the appear-
ance of rain streaks. The rainy scene state vectors s represent global
rainy characteristics, such as the scale and direction of the rain. The
viewpoint state vectors v record view-specific characteristics, allow-
ing for subtle changes in the state of rain between viewpoints. The
camera parameters p represent the viewing direction and position,
affecting the rain streaks’ orientation and perspective.

3.3 Unsupervised Loss Function
In addition to the proposed rain prediction model, we propose a
novel unsupervised loss function to help the network effectively
decouple high-frequency details and rain streaks. A key component
of our loss function is the adaptive gradient rotation loss, which
plays a crucial role in distinguishing rain streaks from background
textures.

Adaptive Gradient Rotation Loss. As illustrated in Fig. 3 (a),
angle information can be used to differentiate rain streaks from
background images. Unlike existing works, such as [17] that shifts
the image through several preset angles and [49] that requires pre-
training an angle estimation network, we propose an adaptive rain
streak angle estimation strategy based on several experimental
observations:

• The residual map I −B𝑙 contains high-frequency details and
rain, with the angles of high-frequency details in the scene
being relatively evenly distributed.

• The gradient direction of the rain is dominant after suppress-
ing the minimum gradient.

• For local image patches, there is a high probability of rain
occurring in only one direction.

Based on these observations, we calculate the orientation of the
residual image gradients and construct a histogram to identify the
dominant rain streak directions. Considering that the discrimina-
tion does not change significantly within a small angle range, we
discretize the orientation range into 60 bins, each spanning an angle
of 3 degrees for robustness. Additionally, for the special case of rain
with multiple angles, we can obtain multiple angles by adjusting
the number of top angles considered.

After adaptively obtaining the rain angle, for each dominant
direction 𝜃 , the adaptive gradient rotation loss is given by

L𝑎𝑔𝑟 =
1
𝐾

𝐾∑︁
𝑗=1

( |∇𝜃𝑘+𝜋/2R| − |∇𝜃𝑘R| + |∇𝜃𝑘B| + |∇𝜃𝑘 (I−R) |), (7)

where 𝐾 is the number of dominant directions, typically set to 1,
and ∇𝜃 denotes the gradient operator along the direction 𝜃 .

Likelihood Loss. The likelihood loss measures the discrepancy
between the reconstructed image B + R and the input rainy image,
promoting stable network performance:

L𝑙𝑙 =
1

(𝜎2 + 𝜖)
· |I − B − R|22, (8)

where 𝜎 is the standard deviation of the residual, and 𝜖 is a small
constant to prevent division by zero.

Reconstruction Loss. The reconstruction loss further empha-
sizes the consistency between the reconstructed image and the
input rainy image:

L𝑟𝑒𝑐 = |I − B − R|22 . (9)

Total Variation Loss. The total variation loss encourages the
rendered background image to be smooth, reducing artifacts and
noise:

L𝑡𝑣 = |∇𝑥B|1 + |∇𝑦B|1, (10)
where ∇𝑥 and ∇𝑦 denote the horizontal and vertical gradient oper-
ators, respectively.

The overall loss function is written as

L = 𝜆1L𝑙𝑙 + 𝜆2L𝑟𝑒𝑐 + 𝜆3L𝑡𝑣 + 𝜆4L𝑎𝑔𝑟 , (11)

where 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are the weight coefficients for the corre-
sponding loss terms.

3.4 Optimization Process
Wepropose an alternating optimization approach to train our frame-
work effectively, as outlined in Algorithm 1. The optimization pro-
cess consists of twomain stages: network update and latent variable
update. During the network update stage, we predict rain maps
using the predictor 𝐸Φ, render background rays using the NeRF net-
work 𝐹Θ, and update the network parameters Θ and Φ based on the
defined loss functions Eq. (11) . In the latent variable update stage,
we freeze the networks and update the latent variables s and v using
Langevin Monte Carlo [14], which introduces random perturba-
tions to explore the latent space and discover better representations
for fitting the input rainy image I. The optimization process iter-
ates until convergence, alternating between the two stages, with
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Table 1: Performance comparison of different methods on various data. The best performance is shown in bold, and the
second-best performance is underlined. The Supervised indicates whether utilizes additional supervision information.

Method Supervised Crossroad Square Sailboat Yard Average

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS PSNR ↑ SSIM ↑ LPIPS ↓
DRSF [7]+NeRF ✓ 29.76 0.823 0.272 27.43 0.789 0.266 26.82 0.767 0.281 29.63 0.805 0.222 28.41 0.796 0.260
EIST [52]+NeRF ✓ 29.54 0.819 0.256 27.35 0.789 0.269 26.42 0.753 0.307 29.37 0.796 0.231 28.17 0.789 0.266

NeRF ✗ 27.54 0.836 0.146 26.44 0.824 0.136 26.34 0.822 0.067 27.39 0.796 0.099 26.93 0.820 0.112
Ours ✗ 31.08 0.876 0.148 29.58 0.870 0.135 29.59 0.890 0.069 29.96 0.861 0.104 30.05 0.874 0.114

Algorithm 1 Alternating Optimization for RainyScape
1: Input: rainy image I, camera poses p.
2: Output: optimized NeRF network 𝐹Θ, predictor 𝐸Φ, and latent

variables s and v.
3: Initialize Θ, Φ, s, and v.
4: while not converged do
5: if 𝑒𝑝𝑜𝑐ℎ < 50% total epoch then
6: Warm-up NeRF network 𝐹Θ.
7: else
8: Network Update: Predict rain maps using 𝐸Φ, Render

background rays using 𝐹Θ, and Update network parameter
Θ and Φ via Eq. 11.

9: Latent Variable Update: Freeze 𝐹Θ and 𝐸Φ. Update s,
and v using Langevin Monte Carlo to fit I via Eq. 11.

10: end if
11: end while

Crossroad Ruins Square Sidewalk Factory

Sailboat Bridge Corner Alley Yard

Figure 4: Scenes and names of the proposed dataset.

a warm-up stage to initialize the NeRF network before introduc-
ing the rain prediction module. By leveraging this approach, our
framework learns to separately represent the background scene and
the rain layer, progressively refining the deraining results without
relying on ground-truth supervision.

4 EXPERIMENTS
4.1 Proposed Dataset
We construct a comprehensive and diverse multi-view rainy image
dataset using Maya [1]. As illustrated in Fig. 4, our dataset consists
of 10 scenes, each captured from 50 viewpoints with 1024×1024 res-
olution. To ensure the view consistency of raindrops, we construct
3D models of raindrops, distribute them randomly within the scene,
and render them together with the scene objects. This approach
enables the generation of interaction effects between raindrops
and light rays, generating more realistic rainy scenes compared to

simulation methods that directly add rain streaks to 2D images. The
dataset encompasses a wide range of rain densities, directions, and
streak orientations to accurately represent real-world variations.
The scenes are composed of outdoor objects such as cars, bridges,
roads, buildings, and boats to facilitate generalization to unseen
rainy environments. The 50 viewpoints are strategically distributed
on a spherical surface to maximize the overlap rate of scene content
captured by different cameras, providing diverse information for
rendering. The dataset includes rainy and ground truth images,
depth maps, and camera parameters, making it suitable for a wide
range of viewpoint synthesis tasks.Wewill make the dataset publicly
available.

4.2 Implementation Details
Our rain prediction module consists of a 3-layer MLP with a feature
dimension of 128 channels, which generates a 1024-dimensional
latent space representation. This representation is then reshaped
into an image and processed using a 6-layer convolutional network,
followed by super-resolution to obtain the required 64× 64 random
patches. For the neural rendering component, we utilize the Py-
Torch re-implementation NeRF [47] with a batch size of 4096 rays,
each ray undergoing 64 coarse samplings and 64 fine samplings.
To further validate our approach, we also conduct experiments
using the official implementation of 3D Gaussian Splatting (3DGS)
[19] with its default configuration. During model optimization, we
employ the Adam optimizer [21] with its default settings. For NeRF,
we use the default learning rate update strategy, with an initial
learning rate of 5 × 10−4. After the warm-up period, the learning
rate is set to 1 × 10−6. The learning rates for the MLP and CNN
part in the rain prediction module are set to 1 × 10−3 and 1 × 10−4,
respectively. For latent variable updates, we perform 5 updates per
epoch, with the first two updates using Langevin Monte Carlo to
introduce random perturbations. The loss coefficients 𝜆1, 𝜆2, 𝜆3,
and 𝜆4 are set to 0.1, 500, 0.5, and 1, respectively. We optimize a
single model for 18K iterations on a single NVIDIA A6000 GPU.

4.3 Results
We set up two comparison baselines that leverage supervised infor-
mation for rain removal. First, we fine-tune two state-of-the-art rain
removal methods, namely the single-image rain removal method
DRSformer [7] and the video-based rain removal method ESTINet
[52], using six randomly selected scenes (Ruins, Sidewalk, Factory,
Bridge, Corner, and Alley). These fine-tuned models are then em-
ployed as pre-processing steps for the input images. Subsequently,
we train NeRF on the pre-processed images and refer to these two
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Figure 5: Visual comparison of different methods on rainy scenes. Each scene shows rainy images, ground truth, rendered
results from baseline methods and our approach, error maps, and rain streak images predicted by our method.

approaches as DRSf+NeRF and ESTI+NeRF, respectively. Addition-
ally, we include a baseline that directly applies the original NeRF
[29] to the rainy data without any pre-processing or modifications.

We employ widely-used metrics to quantitatively evaluate the
performance of our method and the baselines. Peak Signal-to-Noise
Ratio (PSNR) measures the image quality and rainy scene recon-
struction performance, with higher values indicating better results.
Structural Similarity Index Measure (SSIM) assesses quality via
structural information, luminance, and contrast, with higher values
indicating better results. Perceptual similarity (LPIPS) measures
the similarity in feature space, with lower values indicating better
results.

Quantitative results. Table 1 showcases the performance com-
parison of our proposedmethod against three baselines (DRSF+NeRF,
EIST+NeRF, and NeRF) on four scenes (Crossroad, Square, Sailboat,
and Yard). The "Supervised" column in the table indicates whether
the method utilizes supervision information. Our method achieves
the best performance on the majority of the scenes and metrics
(highlighted in bold), outperforming the baselines in most cases.
On average, our approach obtains a PSNR of 29.88 dB, surpassing
the second-best method, DRSF+NeRF, by 1.47 dB and the original

NeRF by 2.95 dB. We also achieve the highest average SSIM and
second-best average LPIPS scores, indicating superior structural
preservation and perceptual quality. It is worth noting that our
method achieves state-of-the-art performance without relying on
any supervision information. These quantitative results validate the
effectiveness of our novel contributions and highlight its potential
to render high-quality clear images across diverse rainy scenes.

Qualitative results. Fig. 5 presents a visual comparison of the
rendering results obtained by our method and the baseline ap-
proaches. Our approach effectively renders rain-free images while
accurately capturing and separating the rain streaks from the scene
content. The error maps demonstrate our method’s superiority in re-
covering high-frequency details and preserving textures and edges
compared to the baselines. By explicitly modeling and decoupling
the rain streaks from the high-frequency content, our framework
can effectively transfer useful scene details to the radiance field,
resulting in improved restoration quality. In contrast, the baseline
methods often struggle to recover fine details, introducing artifacts
or losing important texture information. Since the rain streaks are
relatively small compared to the scene, please zoom in for better
observation of the details in all figures.
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Figure 6: Average performance of different methods over training epochs on four scenes. Left: PSNR, Middle: SSIM, Right:
LPIPS. Our post-processing step consistently improves the deraining quality compared to our base output.
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Figure 7: Evolution of predicted rain streaks during training
and comparison with ground truth (GT) rain.

Post-processing with predicted rain. The accuracy of the
predicted rain streak images, as demonstrated in Fig. 5 and Fig. 7,
enables further enhancement of the deraining performance through
post-processing. When the rainy image is provided, we can apply a
simple thresholding method to convert the rain streak image into
a binary mask, which allows us to identify and selectively fuse
regions unaffected by rain with our rendered image. This selective
fusion approach leads to an improvement in the overall deraining
performance. Fig. 6 illustrates the performance progression of dif-
ferent methods, including our post-processing step, during training.
By combining the information from the rain-free regions with our
RainyScape rendering results, we achieve a further performance
improvement of approximately 1 dB.

4.4 Ablation Study
Rain Prediction. To demonstrate the effectiveness of our rain
prediction module, we first visualize the evolution of the predicted
rain streaks during training in Fig. 7. As the training progresses,
the predicted rain streaks gradually resemble the real rain streaks
more closely, indicating that our model effectively learns to capture
the characteristics of scene rain.

Furthermore, we investigate the impact of the rain embedding
on the predicted rain streaks. In Fig. 8, we present the results of

Figure 8: Impact of rain embedding changes (Δs, Δv and Δp)
on predicted rain streaks, with 100 × 100 patch size.

adding random Gaussian noise with a variance of 0.5 to the scene
state vector s and viewpoint state vector v, denoted as Δ𝑠 and Δ𝑣 ,
respectively. The results demonstrate that the added noise influ-
ences the intensity and density distribution of the predicted rain
streaks, suggesting that the rain embedding plays a crucial role in
controlling the appearance of the predicted rain. In addition, we
show the effect of changing the camera parameters, denoted as Δ𝑝 .
The predicted rain adapts to the changes in camera parameters,
demonstrating the ability to predict rain streaks that are consistent
with the scene information and camera setup.

Loss configuration. To investigate the contribution of each
term in our loss function (Eq. (11)), we conduct an ablation study
by removing the reconstruction loss L𝑟𝑒𝑐 , total variation loss L𝑡𝑣 ,
and adaptive gradient rotation loss L𝑎𝑑𝑔 terms individually. The
likelihood loss L𝑙𝑙 is kept in all configurations to ensure stable
training. Additionally, we explore the impact of varying the number
of bins used in the adaptive gradient rotation loss, considering 30, 60
(default), and 90 bins. All the results are shown in Table 2. Notably,
when the Ladg is not used, the network fails to predict visually
realistic rain streaks, emphasizing its critical role in capturing the
directional characteristics of rain.

Framework Effectiveness.We compare our framework with
two alternative approaches to demonstrate its effectiveness. The
first approach, Two-NeRF, uses separate neural rendering fields
for rain and background, similar to Dehaze-NeRF [6]. However,
as shown in Fig. 10, Two-NeRF fails to effectively decouple rain
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Table 2: Ablation study of loss configuration on the Yard data.

Method PSNR ↑ SSIM ↑ LPIPS ↓
w/o L𝑟𝑒𝑐 12.52 0.428 0.467
w/o L𝑡𝑣 29.51 0.850 0.108
w/o L𝑎𝑔𝑟 29.28 0.856 0.105
30 bins 29.63 0.859 0.106
90 bins 29.60 0.858 0.106
Ours 29.96 0.861 0.104

GTOurs clean

Deblur-Nerf

Ours rain

Two-NeRF clean Two-NeRF rain

Figure 10: Limitations of alternative approaches. Two-NeRF
fails to decouple rain and background. Deblur-NeRF damages
scene structure (red box).

from the background, while our method accurately distinguishes
between the two components. We also evaluate Deblur-NeRF [27],
which adjusts and fuses rays to handle motion blur. As highlighted
in Fig. 10, Deblur-NeRF severely damages the scene structure, erro-
neously removing objects like utility poles.

5 EXTENSION TO 3D GAUSSIAN SPLATTING
3D Gaussian splatting (3DGS) [19] has emerged as a promising
technique in the field of radiance field rendering, offering high

Table 3: Average performances of 3DGS extension.

Method PSNR ↑ SSIM ↑ LPIPS ↓
3DGS 32.41 0.907 0.219

RainyScape-3DGS 35.66 0.947 0.067
RainyScape-3DGS (Post-Process) 36.48 0.952 0.056

efficiency and impressive visual quality. In this section, we explore
the extension of our RainyScape framework to incorporate 3DGS as
the rendering module. By leveraging the capabilities of 3DGS, we
aim to enhance the deraining performance while maintaining the
computational efficiency and visual fidelity of the rendered results.

To extend our framework to 3DGS, we replace the NeRF render-
ing component in the pipeline with the 3DGS architecture, getting
RainyScape-3DGS, while the rain prediction modules remain un-
changed. To ensure optimal performance, the warm-up stage is set
to 4K iterations. Subsequently, joint training of the entire framework
is performed using the default configurations and loss functions.
We evaluate the effectiveness of RainyScape-3DGS using the same
datasets. Table 3 presents the quantitative results, proving that our
RainyScape framework can significantly improve the performance
of 3DGS in rainy scenes. Fig. 9 provides visual comparisons, show-
casing the ability of our framework to suppress the rendered rain
in 3DGS and more visually appealing rain-free images.

6 CONCLUSION
In this paper, we introduced RainyScape, a novel unsupervised
framework for reconstructing scenes from multi-view rainy im-
ages using decoupled neural rendering. Our approach tackles the
challenges of rain streak removal in the rendering process by in-
tegrating a low-frequency scene representation, a rain prediction
module with a learnable rain embedding, and an unsupervised rainy
scene reconstruction loss that incorporates an adaptive gradient
rotation loss. Extensive experiments on both classic NeRF and state-
of-the-art 3DGS demonstrate the effectiveness and versatility of
RainyScape in generating clean, visually appealing images with
sharp details and accurate scene geometry.
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