
Under review as a conference paper at ICLR 2023

SIMST: A GNN-FREE SPATIO-TEMPORAL LEARNING
FRAMEWORK FOR TRAFFIC FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Traffic forecasting is a crucial and challenging problem in smart city efforts.
Spatio-Temporal Graph Neural Networks (STGNNs) have demonstrated great
promise and become the de facto solution in this field. While successful, they
require the message passing scheme of GNNs to construct spatial dependencies
between nodes, and thus inevitably inherit the notorious inefficiency of GNNs.
Given these facts, in this paper, we propose a simple yet effective GNN-free
spatio-temporal learning framework, entitled SimST. Specifically, our framework
replaces GNNs with two feasible and efficient spatial context injectors, which
provide proximity and position information, respectively. SimST is also compat-
ible with various temporal encoding backbones and involves a tailored training
strategy. We conduct extensive experiments on five popular traffic benchmarks
to assess the capability of SimST in terms of effectiveness and efficiency. Ex-
perimental results show that such a simple baseline performs surprisingly well.
Using much fewer parameters, SimST not only achieves comparable or better
performance than more sophisticated state-of-the-art STGNNs, but also obtains
substantial throughput improvements.

1 INTRODUCTION

Urban traffic forecasting has emerged as one of the most important components of Intelligent Trans-
portation Systems (ITS). Given the historical traffic data collected from sensors over road networks,
the task is to predict future traffic conditions (e.g., traffic speed, flow), which provides insights for
improving urban planning and traffic management (Zheng et al., 2014). Spatio-Temporal Graph
Neural Networks (STGNNs) have become the de facto most popular tool for traffic forecasting, in
which sequential models such as Temporal Convolution Networks (TCN) or Recurrent Neural Net-
works (RNN) are applied for modeling temporal dependencies (Yu et al., 2018; Li et al., 2018; Pan
et al., 2019; Wu et al., 2020), and Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Def-
ferrard et al., 2016) are utilized to capture spatial correlations among different locations, by first
aggregating features from sensors’ (nodes) neighbors, and then transforming the aggregated repre-
sentations via a feed-forward network.

A fundamental problem for using GNNs in traffic modeling is how to establish a graph structure.
After revisiting the STGNNs proposed in recent years, we find that the mainstream approach to
build such structures is using either a predefined and sparse adjacency matrix constructed from the
distances of the road network between sensors (Yu et al., 2018; Li et al., 2018; Song et al., 2020), or
an adaptive adjacency matrix that is typically built by matrix multiplication of two node embedding
tables, producing a fully-connected graph (Wu et al., 2019; Bai et al., 2020; Han et al., 2021). Due
to the capacity of modeling latent spatial relations, adaptive matrix usually produces superior per-
formance than the predefined one (Wu et al., 2019). Recently, more sophisticated enhancements to
spatial learning modules have been proposed to improve predictive performance. For example, Fang
et al. (2021); Choi et al. (2022) coupled GNNs with neural ordinary differential equations to produce
continuous layers for modeling long-range spatio-temporal dependencies. However, standard GNNs
are applied as the basic unit in their methods and they still fall into the above two categories: Fang
et al. (2021) use a predefined matrix and Choi et al. (2022) apply an adaptive matrix.

While these approaches can successfully improve forecasting performance, they rely heavily on
GNNs for performing the expensive message passing step and thus inevitably inherit or even ex-
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Figure 1: Comparisons between top-performing STGNNs and SimST variants, i.e., SimST-WaveNet
(WN), SimST-GRU, and SimST-Causal Transformer (CT) on the popular PeMSD4/D8 datasets.
Throughput means the number of samples the network can process in a second during inference.

acerbate GNNs’ notorious inefficiencies (Chen et al., 2021a; Zhang et al., 2022). Specifically, the
predefined matrix inherits the inefficiency of GNNs and has the complexity of O(E), where E is
the number of edges. The adaptive adjacency matrix that has preferable capability aggravates the
issue, i.e., it uses a fully-connected graph structure to perform message passing, leading to O(N2)
computational complexity during feature aggregation, where N denotes the number of sensors. Con-
sequently, the bottleneck from GNNs may hinder the applications of STGNNs in large-scale sensor
networks, such as metropolitan cities where traffic forecasting systems are urgently needed.

Although there are plenty of efforts in the graph domain to improve the efficiency of GNNs, such
as via graph simplification approaches (Hamilton et al., 2017; Zeng et al., 2020), the related studies
in STGNNs are still scarce to the best of our knowledge, as such simplification usually leads to
information loss and performance degradation (Wu et al., 2020). In this study, we aim to investigate
a more challenging problem – how to alleviate the inefficiency of STGNNs while preserving or
even improving the learning capacity. Considering the information loss in graph simplification, we
approach the problem from a complementary perspective, i.e., a model view to tackle this problem.
In other words, we aim to change the mindset that we must use GNNs for spatial modeling, and
deliver a solution that trims the explosive complexity but remains competitive in accuracy.

Present work The key challenge after removing GNNs is how to enable nodes to interact with each
other to establish relationships between them, since now all nodes are processed individually by the
model. In this paper, we propose SimST, a simple yet effective spatio-temporal learning framework
for traffic forecasting. Specifically, we propose two feasible and efficient ways to inject spatial
context into the model: (1) Spatial position injector. To allow the model to distinguish between
different nodes, we replace GNNs by injecting the model with unique representations of nodes,
which are obtained by a non-linear transformation of low-dimensional node embeddings. During
end-to-end training, these node-specific embeddings implicitly capture latent spatial correlations in
a data-driven manner and can be viewed as personalized features of each node. (2) Spatial proximity
injector. Considering that spatial correlations are localized in traffic and closer neighbors usually
have greater impact on the anchor node (Li et al., 2018), we incorporate neighbor information by
explicitly concatenating the historical observations of each node’s neighbors in the model input.

Moreover, SimST makes no assumption about the temporal encoding backbones and can be easily
adapted to models such as GRU (Chung et al., 2014), WaveNet (Oord et al., 2016), and Transformer
(Vaswani et al., 2017). We also devise a tailored training strategy for SimST to further improve
performance. This strategy provides greater flexibility in choosing batch size and increases sample
diversity during batch formation. In summary, our contributions lie in three aspects.

• We present SimST, a conceptually simple yet effective framework. It replaces GNNs with the
proposed spatial injectors that have linear complexity w.r.t N during training and inference. It is
also compatible with various temporal encoders and applies a customized training strategy.

• Extensive experiments demonstrate that SimST performs surprisingly well on traffic forecasting
benchmarks, which is a baseline result absent in the literature. The results also show that message
passing is not necessary for effective spatial modelling in traffic forecasting, which calls into
question the prevailing practice in this field and opens up new research possibilities.
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• As shown in Figure 1, SimST achieves strong empirical results in terms of both accuracy and
throughput, while using much fewer parameters. For example, SimST-WN obtains comparable
results to STGNCDE, but is 36× and 34× faster than it on PeMSD4 and PeMSD8, respectively.

2 PRELIMINARIES

We define a sensor network as a graph G = (V, E ,A), where V is a set of nodes and |V| = N ,
E is a set of edges and |E| = E, and A ∈ RN×N is a weighted adjacency matrix. Following Li
et al. (2018), the entries wij in A represent the proximity between nodes and are calculated using a
thresholded Gaussian kernel (Shuman et al., 2013):

wij =

{
exp(−dist(vi,vj)

2

σ2 ), if dist(vi, vj) ⩽ r

0, otherwise
(1)

where dist(vi, vj) denotes the road network distance between sensors, σ is the standard deviation of
distances, and r is a threshold.

The graph G has a unique feature matrix Xt ∈ RN×F at each time step t, where F is the feature di-
mensionality. The features consist of a target attribute (e.g., traffic speed or flow) and other auxiliary
information, such as time of day (Wu et al., 2019). In traffic forecasting, we aim to learn a function
f to predict the target attribute of the future Tf steps based on Th historical frames:

G : [X(t−Th):t;G]
f−→ Yt:(t+Tf ) (2)

where X(t−Th):t ∈ RTh×N×F indicates the observations from the time step t − Th to t (excluding
the right endpoint), and Yt:(t+Tf ) ∈ RTf×N×1 denotes the Tf -step ahead predictions.

3 METHODOLOGY

As a typical spatio-temporal data mining task, traffic forecasting requires modelling both the spatial
and temporal aspects. Figure 2 depicts the overall architecture of the proposed SimST framework,
which consists of three major components. We commence by introducing three commonly used
temporal encoders to establish the temporal correlations in Section 3.1. We then describe how spatial
dependencies are captured by the two proposed spatial context injectors instead of using GNNs in
Section 3.2. Finally, we illustrate a tailored training strategy for SimST in Section 3.3.

3.1 TEMPORAL ENCODING BACKBONES

There are several viable options for building the temporal dependencies of a node’s history. We take
three basic and popular backbones in this study. They are GRU (Chung et al., 2014) (RNN-based),
WaveNet (Oord et al., 2016) (TCN-based), and Causal Transformer (Transformer-based).

We first apply an input MLP to map X ∈ RTh×N×F to the input representation Hin ∈ RTh×N×Dm ,
where Dm is the model’s hidden dimension size. Then, this representation is fed into the temporal
encoder. For GRU and WaveNet, they compress the temporal dimension to 1, generating the output
representations HT ∈ RN×Dm , which can be seen as a temporal summary of each node.

In contrast, for Causal Transformers, the output representations HT ∈ RTh×N×Dm still have the
same shape as Hin. Here, we take the representation of the last time step as the temporal summary.
Moreover, since the standard Transformer is aware of all input time steps during self-attention op-
erations and the traffic status at the current step is in fact not conditioned on its future, we follow
WaveNet to introduce causality into the attention mechanism. This ensures that the model cannot vi-
olate the temporal order of inputs; such causality can be easily implemented by masking the specific
entries in the attention map.

3.2 SPATIAL CONTEXT INJECTORS

The inefficiency of GNNs has been extensively discussed within the graph domain (Chiang et al.,
2019; Chen et al., 2021a; Zhang et al., 2022). Utilizing GNNs to explicitly set up spatial correlations
via message passing, STGNNs also suffer from flagrant inefficiencies. In this work, we propose two
simple alternatives to allow each node to exploit spatial information without message passing.
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Figure 2: The framework of SimST from the perspective of a node vi with Th-step history. This
differs from existing STGNNs that require the entire graph as input. The MLPs before and after
the temporal encoder are the input MLP for embedding the input data, and the output MLP for
producing predictions.

Spatial Position Injector Inspired by positional embeddings in Transformers, we randomly ini-
tialize a low-dimensional node embedding table E ∈ RN×Dn , where Dn is the node embedding
size. This can be seen as the personalized features possessed by each node. Apart from this, all
other trainable parameters in SimST are shared across nodes. We then apply a non-linear transfor-
mation to map E to high-dimensional representations HS ∈ RN×Dm and concatenate HS with HT

to form the final spatio-temporal representations HST ∈ RN×2Dm , which will be fed into the output
MLP to produce the forecasting results. Formally, we have:

HS = ReLU(EW + b), HST = CONCAT(HS ,HT ) (3)
During end-to-end training, the embedding table learns the latent spatial relationships between nodes
in a data-driven manner. For example, two distant nodes may be inherently correlated because they
are both located around residential areas. Then, they may share similar traffic patterns and similar
inputs. Such long-range dependencies can be implicitly learned by the model and reflected in their
node embeddings’ similarity. A further study of the learned embeddings is shown in Section 4.5.

Spatial Proximity Injector According to Tobler’s First Law of Geography, near things are more
related than distant things. We note that the spatial position injector does not consider the informa-
tion from the physical neighbors of each node. To complement this, in this component we inject
neighbor information by concatenating the histories of each node’s neighbors in the model input.

Specifically, we utilize the predefined adjacency matrix A to obtain the neighbor information. We
also consider the neighbors in the reversed direction, i.e., the entries in AT, so that the model can
perceive the impact from the upstream and downstream traffic directions. Since closer neighbors
usually have greater correlation with the anchor node (Li et al., 2018), for each node vi, we con-
catenate the historical observations from its top-k nearest neighbors with the original observations
to highlight their influence. In addition, we also combine the average of the histories of all vi’s
hop-one neighbors, allowing the anchor node to learn about its local context. We simplify the time
period notation from (t− Th) : t to Tp here. Formally,

XTp
vi = CONCAT(XTp

vi ,X
Tp
vu1

, ...,XTp
vuk

,XTp
vu′

1

, ...,XTp
vu′

k

,XTp
avg,X

Tp

avg′) (4)

where vu1
, ..., vuk

and avg denote vi’s top-k neighbors and average of hop-one neighbors in A. The
prime in the notation (e.g., vu′

1
) indicates neighbors from AT. Note that this injector operates in the

data preprocessing stage, so it has no influence on model training and inference.

Complexity Comparison We provide a complexity comparison between the spatial learning mod-
ules here. As GCN (Kipf & Welling, 2017) is the widely adopted form of GNNs in spatio-
temporal models, we take it as a baseline. Suppose a L-layer GCN with fixed hidden features
Dm are applied. For STGNNs applying the predefined adjacency matrix, the time complexity is
O(LEDm + LND2

m). When applying the adaptive adjacency matrix that can boost performance,
the complexity becomes O(LN2Dm + LND2

m). In SimST, the complexity of position injector is
O(NDnDm), and the complexity of proximity injector is O(NR), where R is the average degree of
nodes. It is obvious that SimST has lower complexity and is capable of supporting traffic forecasting
applications on large-scale sensor networks.
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3.3 TRAINING STRATEGY FOR SIMST

When training an STGNN, the input data are usually a four-dimensional tensor X(t−Th):t ∈
RB×Th×N×F , where B denotes the set batch size. That said, the entire graph is required to be incor-
porated into a batch, so that the nodes can interact with each other via message passing. However,
we identify two main issues with this strategy. First, since SimST processes each node individually,
the actual batch size B∗ is equal to B×N . For example, there are 307 nodes in the PeMSD4 dataset
(Song et al., 2020), and usually B is set to 64, then B∗ = 19648. Such a large number makes the
gradient too exact and affects the effectiveness of stochastic gradient decent. Also, when N is large,
it can easily lead to out-of-memory problems. Second, we argue that the sample diversity when
forming mini-batches is not enough: for example, the traffic flow of all nodes from 8 a.m. to 9 a.m.
on Sept. 28 will always appear in the same batch.

To alleviate the above issues, we simply combine the batch and node dimensions to form a large
pool, and then sample batches in this pool during training. Thus, the input data to SimST are
X(t−Th):t ∈ RB∗×Th×F and B∗ ≪ B ×N . The benefits are two-fold. First, our solution provides
flexibility to choose the actual batch size, which can be disproportionate to N , thus allowing for
smaller values like 256. This property allows SimST to have low GPU memory costs and to easily
scale to large graphs. Second, we provide more sample diversity and randomness when creating the
batches.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on commonly used traffic benchmarks. The details are pre-
sented in Table 1. All traffic readings are aggregated into 5-minute windows, resulting in 288 data
points per day. Note that the values in traffic flow datasets are generally much larger than those in
speed-related datasets. Following Li et al. (2018); Song et al. (2020); Choi et al. (2022), we use
the 12-step historical data to predict the next 12 steps. The datasets are divided into three parts
for training, validation, and test with a ratio of 6:2:2 on PeMSD4, PeMSD7, PeMSD8, and 7:1:2
on LA and BAY. Z-score normalization is applied to the input data for fast training. We build the
predefined adjacency matrix of each dataset by using road network distances with the thresholded
Gaussian kernel method (Shuman et al., 2013). The threshold r is set to 0 for PeMSD4, PeMSD7,
PeMSD8, and 0.1 for LA and BAY. More information are provided in Appendix A.1

Table 1: Dataset statistics.
Dataset #Node #Edge #Instance Attribute
PeMSD4 (Song et al., 2020) 307 338 16,992 Flow
PeMSD7 (Song et al., 2020) 883 865 28,224 Flow
PeMSD8 (Song et al., 2020) 170 276 17,856 Flow
LA (Li et al., 2018) 207 1,515 34,272 Speed
BAY (Li et al., 2018) 325 2,369 52,116 Speed

Baselines We compare SimST with the following baselines. Historical Average (HA) (Pan et al.,
2012) and Vector Autoregression (VAR) (Toda, 1991) are traditional methods. DCRNN (Li et al.,
2018), STGCN (Yu et al., 2018) , ASTGCN (Guo et al., 2019), GWNET (Wu et al., 2019), STSGCN
(Song et al., 2020), and AGCRN (Bai et al., 2020) are well-known STGNNs. We also incorporate
methods that are published recently, namely, STGODE (Fang et al., 2021), STGNCDE (Choi et al.,
2022), and GMSDR (Liu et al., 2022).

Implementation Details SimST is implemented with PyTorch 1.12. There are three variants of
SimST based on the applied temporal encoders. We describe the specific configurations for different
variants in Appendix A.2. The following settings are the same for all variants. We train our method
via the Adam optimizer with an initial learning rate of 0.001 and a weight decay of 0.0001. We
set the maximum epochs to 150 and use an early stop strategy with the patience of 20. The batch
size is 1,024. The node dimension Dn is 20. The top-k nearest neighbors is set to 3 for LA and
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BAY, and 0 for PeMSD4, PeMSD7, and PeMSD8 (due to limited available edges). More details
of k are provided in Appendix A.4. For baselines, we run their codes based on the recommended
configurations if their accuracy is not known for a dataset. If known, we use their officially reported
accuracy. Experiments are repeated five times with different seeds on an NVIDIA RTX A6000 GPU.

Evaluation Metrics We adopt three common metrics in forecasting tasks to evaluate the model
performance, including mean absolute error (MAE), root mean squared error (RMSE), and mean
absolute percentage error (MAPE). For efficiency measurement, the commonly used floating points
of operations (FLOPs) cannot reflect the “real” running speed of methods because it ignores the
effects of parallelization. Hence, we use a more reasonable metric, throughput per second (TPS), to
measure the efficiency in this study. In particular, TPS indicates the average number of samples the
network can process in one second during inference.

Table 2: Test MAE, RMSE, and MAPE results averaged over all predicted time steps on PeMSD4,
PeMSD7, and PeMSD8. We bold the best results and underline the second best results. ∗ denotes
the improvement of SimST over the best baseline is statistically significant at level 0.05.

Method PeMSD4 PeMSD7 PeMSD8
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA (Pan et al., 2012) 38.03 59.24 27.88% 45.12 65.64 24.51% 34.86 59.24 27.88%
VAR (Toda, 1991) 24.54 38.61 17.24% 50.22 75.63 32.22% 19.19 29.81 13.10%
DCRNN (Li et al., 2018) 22.39 34.93 15.19% 23.41 36.66 9.98% 16.62 25.95 10.60%
STGCN (Yu et al., 2018) 21.59 33.83 15.49% 26.12 41.43 11.92% 17.41 26.72 11.78%
ASTGCN (Guo et al., 2019) 21.58 33.76 14.71% 25.77 39.41 11.67% 17.91 27.34 11.36%
GWNET (Wu et al., 2019) 19.33 30.73 13.18% 20.65 33.47 8.84% 14.99 23.75 9.75%
STSGCN (Song et al., 2020) 21.19 33.65 13.90% 24.26 39.03 10.21% 17.13 26.80 10.96%
AGCRN (Bai et al., 2020) 19.83 32.26 12.97% 20.69 34.19 8.86% 15.95 25.22 10.09%
STGODE (Fang et al., 2021) 20.84 32.82 13.77% 22.99 37.54 10.14% 16.81 25.97 10.62%
STGNCDE (Choi et al., 2022) 19.21 31.09 12.76% 20.53 33.84 8.80% 15.45 24.81 9.92%
GMSDR (Liu et al., 2022) 20.49 32.13 14.15% 22.27 34.94 9.86% 16.36 25.58 10.28%
SimST-WN 19.04 30.74 12.93% 19.88 32.94 8.39% 15.11 24.28 9.96%
SimST-GRU 18.70 30.33 12.52%∗ 19.42∗ 32.61∗ 8.09%∗ 14.71 23.96 9.69%
SimST-CT 18.68∗ 30.30∗ 12.72% 19.70 32.73 8.25% 14.64∗ 23.70 9.55%∗

Table 3: Test MAE, RMSE, and MAPE results averaged over all predicted time steps on LA, BAY.

Method LA BAY
MAE RMSE MAPE MAE RMSE MAPE

HA (Pan et al., 2012) 4.16 7.80 13.00% 2.88 5.59 6.80%
VAR (Toda, 1991) 5.28 9.06 12.50% 2.24 3.96 4.83%
DCRNN (Li et al., 2018) 3.14 6.28 8.65% 1.63 3.65 3.70%
STGCN (Yu et al., 2018) 3.39 6.79 9.34% 1.88 4.30 4.28%
ASTGCN (Guo et al., 2019) 3.57 7.19 10.32% 1.86 4.07 4.27%
GWNET (Wu et al., 2019) 3.06 6.10 8.38% 1.58 3.54 3.59%
STSGCN (Song et al., 2020) 3.32 6.66 9.06% 1.79 3.91 4.06%
AGCRN (Bai et al., 2020) 3.19 6.41 8.84% 1.62 3.61 3.66%
STGODE (Fang et al., 2021) 4.73 7.60 11.71% 1.77 3.33 4.02%
STGNCDE (Choi et al., 2022) 3.58 6.84 9.91% 1.68 3.66 3.80%
GMSDR (Liu et al., 2022) 3.21 6.41 8.76% 1.69 3.80 3.74%
SimST-WN 3.10 6.21 8.88% 1.57 3.47 3.58%
SimST-GRU 3.08 6.16 8.84% 1.55∗ 3.40 3.50%∗

SimST-CT 3.04 6.08∗ 8.69% 1.56 3.45 3.56%

4.2 PERFORMANCE COMPARISONS

In this subsection, we conduct model comparisons between SimST variants and state-of-the-art
STGNNs on five real-world traffic benchmarks. The three variants of SimST are SimST-WaveNet
(WN), SimST-GRU, and SimST-Causal Transformer (CT). As shown in Table 2 and 3, all variants
of SimST achieve comparable or better performance than all competing baselines on the three eval-
uation metrics. This is a surprising discovery, since using GNNs to model spatial dependencies is
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a common practice in traffic forecasting. The results also demonstrate that: (1) SimST is temporal-
model-agnostic, and (2) it is viable and sufficient to use the proposed spatial context injectors to
establish spatial correlations between nodes. We next compare only among SimST variants: note
that for fairness we ensure that the variants have a similar number of parameters (around 150k).
From the table, we observe that SimST-CT performs better than the other two variants in 3 of the 5
datasets, which can be attributed to Transformers’ strong learning capability. At the same time, it
is also surprising that integrating SimST with a simple GRU can achieve competitive performance,
particularly on PeMSD7 and BAY. Additionally, we observe that: (1) STGNNs approaches surpass
HA and VAR by a large margin due to their greater learning capacity. (2) The capability of methods
that apply the adaptive matrix, such as GWNET and AGCRN, have been overlooked. They have
achieved similar performance to the recently proposed approaches.

Table 4: Efficiency comparisons between five best-performing baselines and SimST variants. Param
denotes the number of learnable parameters and TPS means throughput per second on the validation
set. The magnitude of Param is Kilo (103). We bold the highest TPS values.

Method PeMSD4 PeMSD7 PeMSD8 LA BAY
Param TPS Param TPS Param TPS Param TPS Param TPS

GWNET 303 1,876 314 522 300 3,258 301 2,825 303 1,738
AGCRN 749 1,559 755 445 747 1,733 748 1,604 749 1,466
STGODE 715 552 733 226 710 721 709 682 713 532
STGNCDE 377 217 388 76 374 362 375 251 377 204
GMSDR 880 267 2253 119 423 465 641 300 923 238
SimST-WN 167 7,780 179 2,948 164 12,232 165 9,335 168 6,113
SimST-GRU 130 6,167 142 2,268 127 10,494 129 7,766 131 5,440
SimST-CT 147 4,597 159 1,656 144 7,887 146 5,969 148 4,041

4.3 EFFICIENCY COMPARISONS

In this part, we select the top-performing approaches and compare their efficiency with SimST
variants. It can be seen from Table 4 that all SimST variants are significantly more efficient than
baselines, thanks to their simple model architecture and linear time complexity w.r.t N . Specifi-
cally, comparing between TCN-based models, SimST-WN has around 45% fewer parameters than
GWNET, but achieves 3.3× - 5.6× higher TPS. For RNN-based methods, SimST-GRU is 3.7× -
6.1× and 19× - 26× faster than AGCRN and GMSDR, respectively. STGODE and STGNCDE are
the recently published methods, which are based on neural ordinary differential equations. Though
achieving competitive performance, they suffer from non-ignorable inefficiency problem. SimST-
WN has comparable performance to them, but is 11× - 17× and 30× - 39× faster. Among the
variants, SimST-WN achieves the highest TPS due to WaveNet’s superior parallelism capability.
SimST-GRU also achieves good TPS results, which we attribute to an optimized implementation in
the PyTorch library. See Appendix A.3 for more results on efficiency comparisons.

4.4 ABLATION STUDIES

We have verified the superiority of SimST against STGNNs baselines. Next, we select SimST-CT
and SimST-GRU as the representatives due to their preferable performance and conduct a series of
ablation studies on one flow-based dataset PeMSD4 and one speed-related dataset LA.

Effects of spatial injectors. To study the effects of two spatial injectors, we consider the following
three variants for comparisons: (1) w/o Position: we turn off the injection of spatial position repre-
sentations. (2) w/o Proximity: for each node, we only input the histories of itself. (3) CT/GRU: we
do not inject any spatial information. The results are shown in Figure 3. First, we find that removing
position injector leads to a significant degradation on MAE for both SimST-CT and SimST-GRU on
both datasets, revealing the great importance of distinguishing different nodes in the models. Sec-
ond, the benefit of proximity injector is marginal on the PeMSD4 dataset. The reason is that the
average degree of nodes in PeMSD4 is 1.1 and thus the available neighbor information is very lim-
ited. In contrast, the average degree of nodes in the LA dataset is 7.3, where the proximity injector
can have a larger impact on performance. The results on the PeMSD4 dataset also suggest that on
some real-world datasets, even without knowing the neighbor information, the model can achieve
very competitive result by only perceiving the latent relationships provided by the position injector.
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Figure 3: Effects of two spatial context injectors.

Effects of training strategy. We examine the influence of the batch size number in Figure 4 (a)
and (b). Generally, both SimST-CT and SimST-GRU reach their best performance when setting B∗

to 1,024 on the two datasets, revealing the necessity of applying small B∗. The influence of using
a large batch size such as 19,648, is more significant on the PeMSD4 dataset. Besides, we notice
that SimST-CT only occupies around 2GB of memory on GPU across all datasets. In contrast, the
memory cost of STGNNs usually grows as N increases. For example, on the dataset with the highest
N , PeMSD7 (883 nodes), and the lowest N , PeMSD8 (170 nodes), GWNET requires around 11GB
and 3GB of memory, respectively. Furthermore, we investigate the effects of different batch forming
methods in Table 5, where a SimST-CT model is trained by the strategies applied in STGNNs and
SimST, respectively. It can be seen that under a similar actual batch size B∗, the strategy of SimST
surpasses the counterpart on both datasets. This result verifies our speculation in Section 3.3 that
offering more sample diversity during batch establishment can improve performance.
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Figure 4: Effects of the actual batch size B∗ and the node embedding dimension. In (a) and (b), the
largest values in the x-axis are computed by N × 64 (the common batch size used in STGNNs (Wu
et al., 2019; Bai et al., 2020; Choi et al., 2022)).

Table 5: Comparison of training the SimST-CT model by using the training strategies applied in
STGNNs and SimST. B∗ is calculated by B ×N . Dim: dimension.

Strategy Input Dim PeMSD4 (N=307) LA (N=207)
B B∗ MAE B B∗ MAE

STGNNs 4 4 1,228 18.95 4 828 3.07
SimST 3 1,024 1,024 18.68 1,024 1,024 3.04

Effects of node dimension size. We assess the effects of the node dimension size in Figure 4 (c)
and (d). We observe that both SimST-CT and SimST-GRU are not sensitive to the changes of the
dimension size on both datasets. The results also suggest that a small dimension such as 16, is
sufficient to record the latent correlations between nodes.

4.5 CASE STUDY

We further conduct a case study to investigate the effectiveness of the learned node embeddings.
Figure 5 (a) shows the embedding visualization by t-SNE (Van der Maaten & Hinton, 2008). Due
to page limits, we randomly select a region where node 43, 82, and 130 are located in. We also plot
the nodes’ raw traffic data in sub-figure (b) and (c). It can be seen that the three nodes are not only
similar in the embedding space, but also share similar input traffic patterns. Moreover, by examining
the adjacency matrix, we know that node 43’s neighbors include node 81, 82, and 158. However
in (a), two neighbors 81 and 158 are far from node 43. Also, we can see from (b) and (c) that
the patterns of 81 and 158 have significant discrepancy to node 43. These results indicate that the
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learned node embeddings can reflect the similarity in the input space. Moreover, given the fact that
our node embeddings are not generated from input features, we conclude that the node embeddings
have learned the inherent relations between nodes and SimST does work in a data-driven manner,
i.e., nodes with similar patterns are likely to have similar node embeddings.
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Figure 5: A case study on the test set of the LA dataset by using SimST-CT.

5 MORE RELATED WORK

Traffic forecasting is a crucial application in smart city efforts. In recent years, Spatial-Temporal
Graph Neural Networks (STGNNs) have become the most widely used tools for predicting traffic
(Cao et al., 2020; Li & Zhu, 2021; Chen et al., 2021b; 2022). Generally, they integrate GNNs
with either RNNs or TCNs to capture the spatial and temporal dependencies in traffic data. For
example, DCRNN (Li et al., 2018) considered traffic flow as a diffusion process and combined a
novel diffusion convolution with GRU. The following efforts (Pan et al., 2019; Bai et al., 2020;
Fang et al., 2021; Liu et al., 2022) were also based on RNNs. To improve training speed and enjoy
parallel computation, plenty of works (Wu et al., 2019; 2020; Li & Zhu, 2021; Han et al., 2021)
replaced RNNs with dilated causal convolution operations.

A prerequisite for using GNNs effectively, however, is to have a high-quality adjacency matrix.
In traffic forecasting, there are mainly two approaches, namely predefined adjacency matrix and
adaptive adjacency matrix. Specifically, the former is usually a sparse matrix constructed from road
network distances, and the latter is a dense matrix that records the pairwise relationships of nodes.
For a comparison between the two matrices, researchers have pointed out that the predefined matrix
is heuristic and cannot reflect the genuine dependencies between nodes, which negatively affects
model performance (Wu et al., 2019; Bai et al., 2020). Indeed, we notice that the models applying
the adaptive matrix achieve superior performance (Wu et al., 2019; Bai et al., 2020; Choi et al.,
2022). Though successful, the adaptive matrix discards the sparsity of the graph and incurs quadratic
computational cost, making it difficult for models using it to scale to large-scale traffic applications.
In addtion, we note that there are also methods that use attention mechanism for spatial learning
(Zheng et al., 2020). But they also suffer from quadratic time complexity. In this study, we propose
SimST to alleviate this inefficiency issue, which removes the inefficient GNNs component and thus
has linear time complexity.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose SimST, a simple, effective, and efficient spatio-temporal learning frame-
work for traffic forecasting. It replaces GNNs with two proposed spatial injectors, involves a tailored
training strategy, and is temporal-model-agnostic. Our study suggests that message passing is not
the only effective way of modelling spatial relations in traffic forecasting; hence, we hope to spur the
development of new model designs with both high efficiency and effectiveness in the community.

We also would like to point out several potential future directions. First, the node-specific represen-
tations in SimST are not varying over time. Thus, a possible direction for improving performance
is to make it change dynamically with time. Second, though SimST can generalize to newly added
sensors easily, it still needs to be fine-tuned over the new nodes and is not in a fully inductive man-
ner. A future study may focus on developing a completely inductive spatio-temporal model. Third,
our finding and analysis in this work are limited to traffic forecasting currently, a potential future
work would be to expand SimST to other spatio-temporal applications such as air quality prediction.
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A APPENDIX

A.1 DATASETS

We conduct experiments on the traffic datasets of PeMSD41, PeMSD71, PeMSD81, LA2 and BAY2.

• PEMS-04 (Song et al., 2020): The dataset refers to the traffic flow data in San Francisco Bay Area.
There are 307 sensors and the period of data ranges from Jan. 1 - Feb. 28, 2018.

• PEMS-07 (Song et al., 2020): This dataset involves traffic flow readings collected from 883 sen-
sors, and the time range is from May 1 - Aug. 6, 2017.

• PEMS-08 (Song et al., 2020): The dataset contains traffic flow information collected from 170
sensors in the San Bernardino area from Jul. 1 - Aug. 31, 2016.

• LA (Li et al., 2018): The dataset records the traffic speed information collected from 207 loop
detectors in the highway of Los Angeles County, ranging from Mar. 1 - Jun. 27, 2012.

• BAY (Li et al., 2018): This dataset contains traffic speed information from 325 sensors in the Bay
Area. It has 6 months of data ranging from Jan. 1 - Jun. 30, 2017.

We use one-hour (12-step) historical data to predict the future one-hour (12-step) values. The
datasets are split into three parts for training, validation, and testing with a ratio of 6:2:2 on PeMSD4,
PeMSD7, and PeMSD8, and 7:1:2 on LA and BAY. The statistics of data partitions is in Table 6.

Table 6: Details of data partition.
Dataset #Training #Validation #Testing
PeMSD4 10,172 3,375 3,376
PeMSD7 16,911 5,622 5,622
PeMSD8 10,690 3,548 3,549
LA 23,974 3,425 6,850
BAY 36,465 5,209 10,419

A.2 CONFIGURATIONS OF SIMST VARIANTS

Table 7: Detailed configurations of different variants of SimST. Dim: dimension.
Setting SimST-WN SimST-GRU SimST-CT
Input MLP Dim 64 64 64
Temporal Encoder Hidden Dim 64 64 64
Kernel Size in WN 3 - -
Skip Connection Dim in WN 64 - -
Head Number in CT - - 2
Feed-Forward Network Dim in CT - - 128
Output MLP Dim 512 512 512
Layer Number 3 2 2
Dropout Ratio 0.1 0.1 0.1
Clip Norm 5 5 5

A.3 TRAINING AND INFERENCE TIME COMPARISONS

In Table 8, we provide the training and inference time per epoch of SimST and baselines, to enable
straightforward efficiency comparisons. It can be seen that SimST variants have significantly shorter
inference time. For the training efficiency, GWNET and AGCRN generally have shorter training
time than SimST. The reason is that SimST applies a small actual batch size B∗ = 1, 024.

1https://github.com/Davidham3/STSGCN
2https://github.com/liyaguang/DCRNN
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Table 8: Efficiency comparisons between five best-performing baselines and SimST variants. Train:
training time (s) per epoch. Infer: inference time (s) per epoch.

Method PeMSD4 PeMSD7 PeMSD8 LA BAY
Train Infer Train Infer Train Infer Train Infer Train Infer

GWNET 19.45 1.81 101.32 10.79 11.46 1.10 30.63 1.22 72.11 3.02
AGCRN 22.46 2.18 98.59 12.66 16.19 2.07 40.18 2.15 68.42 3.58
STGODE 69.46 6.11 272.90 24.88 67.56 4.92 151.20 4.99 264.27 9.75
STGNCDE 148.54 15.55 716.63 73.97 94.22 9.80 337.84 13.65 571.39 25.53
GMSDR 80.63 12.70 311.61 47.32 50.96 7.71 170.74 11.52 328.18 22.05
SimST-WN 42.90 0.43 205.25 1.91 24.47 0.29 72.12 0.37 177.49 0.85
SimST-GRU 23.76 0.55 112.39 2.48 13.64 0.34 39.75 0.45 94.08 0.96
SimST-CT 39.82 0.74 184.74 3.40 22.32 0.45 62.95 0.58 152.57 1.30

A.4 IMPACT OF TOP-K NEIGHBORS

In Figure 6, we show the effects of k on the LA dataset within the range of {0, 1, 2, 3, 4}. For the
PeMSD4 dataset, it is not necessary to do so because the average degree of nodes is only 1.1.

0 1 2 3 4
Top-k Neighbors

3.03

3.05

3.07

3.09

3.11

Te
st

 M
AE

SimST-CT
SimST-GRU

Figure 6: Effects of the top-k neighbors on the LA dataset.

A.5 LEARNING CURVE COMPARISONS

In Figure 7, we compare the learning curves between some baselines and the variants of SimST. It
can be seen that all SimST variants exhibit very fast convergence rates, dropping to a small valida-
tion MAE within a few epochs. In addition, we also observe that the standard deviation of SimST
is generally smaller than those in baselines, indicating the additional stability provided by our ap-
proach.
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Figure 7: Learning curves of baselines and SimST variants on the validation set of PeMSD4/D8.

A.6 VISUALIZATION

To have a better sense of the capacity of our method, in this part, we randomly select two nodes and
visualize the forecasting results of the SimST-CT model and the corresponding ground truths.
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Figure 8: Visualization on the test set of PeMSD4.
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Figure 9: Visualization on the test set of PeMSD7.

2016-08-21
16:00

2016-08-22
04:00

2016-08-22
16:00

2016-08-23
04:00

2016-08-23
16:00

Time

100

200

300

Fl
ow

(a) Visualization on node 66

Ground Truth
SimST-CT

2016-08-21
16:00

2016-08-22
04:00

2016-08-22
16:00

2016-08-23
04:00

2016-08-23
16:00

Time

100

200

300

400

(b) Visualization on node 168

Ground Truth
SimST-CT

Figure 10: Visualization on the test set of PeMSD8.
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