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ABSTRACT

In this paper, we propose MoDGS, a new pipeline to render novel views of dy-
namic scenes from a casually captured monocular video. Previous monocular
dynamic NeRF or Gaussian Splatting methods strongly rely on the rapid move-
ment of input cameras to construct multiview consistency but struggle to recon-
struct dynamic scenes on casually captured input videos whose cameras are either
static or move slowly. To address this challenging task, MoDGS adopts recent
single-view depth estimation methods to guide the learning of the dynamic scene.
Then, a novel 3D-aware initialization method is proposed to learn a reasonable
deformation field and a new robust depth loss is proposed to guide the learning of
dynamic scene geometry. Comprehensive experiments demonstrate that MoDGS
is able to render high-quality novel view images of dynamic scenes from just a
casually captured monocular video, which outperforms state-of-the-art methods
by a significant margin. The code will be publicly available.

1 INTRODUCTION

Novel view synthesis (NVS) is an important task in computer graphics and computer vision, which
greatly facilitates downstream applications such as augmented or virtual reality. In recent years, the
novel-view-synthesis quality on static scenes has witnessed great improvements thanks to the recent
development of techniques such as NeRF (Mildenhall et al., 2020), Instant-NGP (Müller et al.,
2022), and Gaussian Splatting (Kerbl et al., 2023), especially when there are sufficient input images.
However, novel view synthesis in a dynamic scene with only one monocular video still remains a
challenging task.

Dynamic View Synthesis (DVS) has achieved impressive improvements along with the emerging
neural representations (Mildenhall et al., 2020) and Gaussian splatting (Kerbl et al., 2023) tech-
niques. Most of the existing DVS methods (Cao & Johnson, 2023; Yang et al., 2023b) require mul-
tiview videos captured by dense synchronized cameras to achieve good rendering quality. Though
some works can process a monocular video for DVS, as pointed out by DyCheck (Gao et al., 2022),
these methods require the camera of the monocular video to have extremely large movements, which
is called “Teleporting Camera Motion” on different viewpoints, so these methods can utilize the mul-
tiview consistency provided by this pseudo multiview video to reconstruct the 3D geometry of the
dynamic scene. However, such large camera movements are rarely seen in casually captured videos
because casual videos are usually produced by smoothly moving or even static cameras. When the
camera moves slowly or is static, the multiview consistency constraint will be much weaker and all
these existing DVS methods fail to produce high-quality novel-view images, as shown in Fig. 1.

In this paper, we present Monocular Dynamic Gaussian Splatting (MoDGS) to render novel-view
images from casually captured monocular videos in a dynamic scene. MoDGS addresses the weak
multiview constraint problem by adopting a monocular depth estimation method (Fu et al., 2024),
which provides prior depth information on the input video to help the 3D reconstruction. However,
we find that simply applying a single-view depth estimator in DVS to supervise rendered depth
maps is not enough for high-quality novel view synthesis. First, the depth supervision only provides
information for each frame but does not help to associate 3D points between two frames in time.
Thus, we still have difficulty in learning an accurate time-dependent deformation field. Second, the
estimated depth values are not consistent among different frames.

To learn a robust deformation field from a monocular video, we propose a 3D-aware initialization
scheme for the deformation field. Existing methods (Katsumata et al., 2023) solely rely on super-
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Figure 1: Given a casually captured monocular video of a dynamic scene, MoDGS is able to synthe-
size high-quality novel-view images in this scene. In the middle column, the baseline method (Yang
et al., 2023b) fails to correctly reconstruct the 3D dynamic scenes on this static monocular video.
The white regions in cyan bounding boxes are not visible in the input video (red bounding boxes)
so there are some artifacts for these invisible regions. In the rightmost column, the input estimated
monocular depth is inconsistent (red bounding boxes); however, our proposed ordinal depth loss
effectively ensures more consistent depth outputs. This loss enhances the accuracy and reliability of
learning underlying geometry.

vision from 2D flow estimation, which produces deteriorated results without sufficient multiview
consistency. We find that directly initializing the deformation field in the 3D space greatly helps the
subsequent learning of the 4D representations and improves the rendering quality as shown in Fig. 1.

To better utilize the estimated depth maps for supervision, we propose a novel depth loss to address
the scale inconsistency of estimated depth values across different frames. Previous methods (Li
et al., 2023b; Liu et al., 2023a) supervise the rendered depth maps using a scale-invariant depth
loss by minimizing the L2 distance of normalized rendered depth and depth priors, and the most
recent method (Zhu et al., 2023c) proposed to supervise the rendered depth maps using a Pearson
correlation loss to mitigate the scale ambiguity between the reconstructed scene and the estimated
depth maps. However, the estimated depth maps of different frames are not even consistent after
normalizing to the same scale. To address these challenges, we observe that despite the inconsistency
in values, the orders of depth values of different pixels in different frames are stable, which motivates
us to propose an ordinal depth loss. This novel ordinal depth loss enables us to fully utilize the
estimated depth maps for high-quality novel view synthesis.

To demonstrate the effectiveness of MoDGS, we conduct experiments on three widely used datasets,
the Nvdia (Yoon et al., 2020) dataset, the DyNeRF (Li et al., 2022) dataset, and the Davis (Pont-
Tuset et al., 2017) dataset. We also present results on a self-collected dataset containing monocular
in-the-wild videos from the Internet. We adopt an exact monocular DVS evaluation setting that only
uses the video of one camera as input while evaluating the video of another camera. Results show
that our method outperforms previous DVS methods by a large margin and achieves high-quality
NVS on casually captured monocular videos.

2 RELATED WORK

In recent years, numerous works have focused on the task of novel view synthesis in both static and
dynamic scenes. The main representatives are Neural Radiance Field (Mildenhall et al., 2020) and
Gaussian Splatting (Kerbl et al., 2023), along with their variants. In this paper, we primarily focus
on view synthesis in dynamic scenes.

Dynamic NeRF. Recent dynamic NeRF methods can be roughly categorized into two groups. 1)
Representing by time-varying neural radiance fields conditioned on time (Gao et al., 2021; Li et al.,
2022; Park et al., 2023). For example, Park et al. (2023) proposes a simple spatiotemporal radi-
ance field by interpolating the feature vectors indexed by time. 2) Representing by a canonical
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Figure 2: Overview. Given a casually captured monocular video of a dynamic scene, MoDGS
represents the dynamic scene with a set of Gaussians in a canonical space and a deformation field
represented by an MLP T . To render an image at a specific timestamp t, we deform all the Gaussians
by Tt and then use the splatting technique to render images and depth maps. While in training
MoDGS, we use a single-view depth estimator GeoWizard (Fu et al., 2024) to estimate depth maps
and compute the rendering loss and an ordinal depth loss for training.

space NeRF and deformation field (Guo et al., 2023; Li et al., 2021; Park et al., 2021a;b; Pumarola
et al., 2021; Tretschk et al., 2021; Xian et al., 2021). For example, NSFF (Li et al., 2021) models
the dynamic components using forward and backward flow represented as 3D dense vector fields;
Nerfies (Park et al., 2021a) and HyperNeRF (Park et al., 2021b) model the scene dynamics as a de-
formation field mapping to a canonical space. Recent advances in grid-based NeRFs (Müller et al.,
2022; Sara Fridovich-Keil and Alex Yu et al., 2022; Chen et al., 2022) demonstrate that the training
of static NeRFs can be significantly accelerated. Consequently, some dynamic NeRF works utilize
these grid-based or hybrid representations for fast optimization (Guo et al., 2023; Cao & Johnson,
2023; Fang et al., 2022; Fridovich-Keil et al., 2023; Shao et al., 2023; Wang et al., 2023a;b; Song
et al., 2023; You & Hou, 2023).

Dynamic Gaussian Splatting. The recent emergence of 3D Gaussian Splatting (3DGS) demon-
strates its efficacy for super-fast real-time rendering attributed to its explicit point cloud represen-
tation. Recent follow-ups extend 3DGS to model dynamic 3D scenes. Luiten et al. (2023) track
dynamic 3D Gaussians by frame-by-frame training from synchronized multi-view videos. Yang
et al. (2023b) propose a deformable version of 3DGS by introducing a deformation MLP network
to model the 3D flows. Wu et al. (2023) and Duisterhof et al. (2023) also introduce a deforma-
tion field but using a more efficient Hexplane representation (Cao & Johnson, 2023). Yang et al.
(2023a) proposes a dynamic representation with a collection of 4D Gaussian primitives, where the
time evolution can be encoded by 4D spherical harmonics. Bae et al. (2024) encodes motions with a
per-Gaussian feature vector. Some other works (Li et al., 2023a; Lin et al., 2023; Liang et al., 2023)
also study how to effectively encode the motions for Gaussians with different bases. To effectively
learn the motions of Gaussians, some works (Feng et al., 2023; Yu et al., 2023; Huang et al., 2024)
resort to clustering the motions together for a compact representation.

DVS from Casual Monocular Videos. As shown in DyCheck (Gao et al., 2022), many existing
monocular dynamic view synthesis datasets used for benchmarking, like D-NeRF (Pumarola et al.,
2021), HyperNeRF (Park et al., 2021b), and Nerfies (Park et al., 2021a), typically involve signifi-
cant camera movements between frames but with small object dynamic motions. While this capture
style helps with multi-view constraints and dynamic 3D modeling, it is not representative of casual
everyday video captures. When using casual videos, the reconstruction results from these methods
suffer from quality degradation. Some works address dynamic 3D scene modeling using monocu-
lar casual videos. DynIBaR (Li et al., 2023b) allows for long-sequence image-based rendering of
dynamic scenes by aggregating features from nearby views, but its training cost is high for long
per-scene optimization. Lee et al. (2023) proposes a hybrid representation that combines static and
dynamic elements, allowing for faster training and rendering, though it requires additional per-frame
masks for dynamic components. RoDynRF (Liu et al., 2023a) focuses on robust dynamic NeRF
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Figure 3: (a) Initialization of the deformation field. We first lift the depth maps and a 2D flow
to a 3D flow and train the deformation field for initialization. (b) Initialization of Gaussians in
the canonical space. We use the initialized deformation field to deform all the depth points to the
canonical space and downsample these depth points to initialize Gaussians.

reconstruction by estimating NeRF and camera parameters together. DpDy (Wang et al., 2024a)
enhances quality by fine-tuning a diffusion model with SDS loss supervision (Poole et al., 2022),
but it demands significant computational resources. Concurrent works like DG-Marbles (Stearns
et al., 2024) use Gaussian marbles and a hierarchical learning strategy to optimize representations.
Shape-of-Motion (Wang et al., 2024b) and Mosca (Lei et al., 2024) rely on explicit motion represen-
tation and initialize scene deformation with depth estimation and video tracking priors. However,
our MoDGS method effectively uses only noisy inter-frame flow maps from RAFT (Teed & Deng,
2020) as input, performing well without the need for strong long-range pixel correspondence.

Ordinal Relation in Depth Maps. The ordinal relation between pixels has been investigated in
recent years, especially in the field of monocular depth estimation. Zoran et al. (2015) proposed to
use a three-category classification network to predict the order relation of given pixel pairs. Then the
depth can be extracted by optimizing a constrained quadratic optimization problem. Similarly, Fu
et al. (2018) treats the depth prediction problem as a multi-class classification problem. Chen et al.
(2016) further proposes a ranking loss to learn metric depth, which encourages a small difference
between depths if the ground-truth relation is equal; otherwise it encourages a large difference.
Then, Pavlakos et al. (2018) extends this differentiable ranking loss to the human pose estimation
task. However, these works only utilize limited numbers of depth orders for training (one pair in
Chen et al. (2016) and 17 pairs in Pavlakos et al. (2018)), resulting in coarse supervision for depth
maps. The direct application of their ranking loss as depth supervision has yet to be explored.
Moreover, our ordinal depth takes the rendered metric depth maps as input, which are dense grids
of float numbers. Our task is different from previous depth estimation and pose estimation tasks and
we present a comparison between our ordinal depth loss and depth ranking loss in Appendix A.10.

3 PROPOSED METHOD

Given a casually captured monocular video, we aim to synthesize novel view images from this video.
We propose MoDGS, which achieves this by learning a set of Gaussians {Gi|i = 1, · · · , N} in
a canonical space and a deformation field Tt : R3 → R3 to deform these Gaussians to a specific
timestamp t. Then, for a timestamp t and a camera pose, we use splatting to render an image.

Overview. As shown in Fig. 2, to train MoDGS, we split the monocular video into a sequence of
images {It|t = 1, ..., T} with known camera poses. We denote our deformation field as a function
xt = Tt(x), which maps a 3D location x ∈ R3 in the canonical 3D space to a location xt ∈ R3

in the 3D space on time t. For every image It, we utilize a single-view depth estimator (Fu et al.,
2024) to estimate a depth map Dt for every image and utilize a flow estimation method RAFT (Teed
& Deng, 2020) to estimate a 2D optical flow Fti→tj between Iti and Itj where ti and tj are two
arbitrary timestamps. Then, we initialize our deformation field by a 3D-aware initialization scheme
as introduced in Sec. 3.2. After initialization, we train our Gaussians and deformation field with a
rendering loss and a new depth loss introduced in Sec. 3.3. In the following, we first begin with the
definition of the Gaussians and the rendering process in MoDGS.
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3.1 GAUSSIANS AND DEFORMATION FIELDS

Gaussians in the canonical space. We define a set of Gaussians in the canonical space, we follow
the original 3D GS (Kerbl et al., 2023) to define a 3D location, a scale vector, a rotation, and a color
with spherical harmonics. Note this canonical space does not explictly correspond to any timestamp
but is just a virtual space that contains the canonical locations of all Gaussians.

Deformation fields. The deformation field Tt used in MoDGS follows the design of Omnimo-
tion (Wang et al., 2023c) and CaDeX (Lei & Daniilidis, 2022) which is an invertible MLP net-
work (Dinh et al., 2016). This is an invertible MLP means that both Tt and T −1

t can be directly
computed from the MLP network. All Tt at different timestamps t share the same MLP network and
the time t is normalized to [0, 1] as input to the MLP network.

Render with MoDGS. After training both the Gaussians in canonical space and the deformation
field, we will use the deformation field to deform the Gaussians in the canonical space to a specific
time step t. Then, we follow exactly the splatting techniques in 3D GS (Kerbl et al., 2023) to render
images from arbitrary viewpoints.

3.2 3D-AWARE INITIALIZATION

Original 3D Gaussian splatting (Kerbl et al., 2023) relies on the sparse points from Structure-from-
Motion (SfM) to initialize all the locations of Gaussians. When we only have a casually captured
monocular video, it is difficult to get an initial set of sparse points for initialization from SfM.
Though it is possible to initialize all the Gaussians from the points of the estimated single-view
depth of the first frame, we show that this leads to suboptimal results. At the same time, we need
to initialize not only the Gaussians but also the deformation field. Thus, we propose a 3D-aware
initialization scheme for MoDGS.

Initialization of depth scales. Since the estimated depth maps on different timestamps would
have different scales, we first estimate a coarse scale for every frame to unify the scales. We achieve
this by first segmenting out the static regions on the video and then computing the scale with a least
square fitting (Chung et al., 2023b). The static regions can be determined by either thresholding
on the 2D flow (Teed & Deng, 2020) or segmenting with a segmentation method like SAM2 (Ravi
et al., 2024). Then, on these static regions, we reproject the depth values at a specific timestamp to
the first frame and minimize the difference between the projected depth and the depth of the first
frame, which enables us to solve for a scale for every frame. We rectify all depth maps with the
computed scales. In the following, we reuse Dt to denote the rectified depth maps by default.

Initialization of the deformation field. As shown in Fig. 3 (left), given two depth maps Dti and
Dtj along with the 2D flow Fti→tj , we lift them to a 3D flow F 3D

ti→tj . This is achieved by first
converting the depth maps into 3D points in the 3D space. Then, the estimated 2D flow Fti→tj

actually associate two sets of 3D points, which results in a 3D flow F 3D
ti→tj . After getting this 3D

flow, we then train our deformation field T with this 3D flow. Specifically, for a pixel in Iti whose
corresponding 3D point is xti , we query F 3D

ti→tj to find its target point xtj in the tj timestamp. Then,
we minimize the difference by

ℓinit =
∑

∥Ttj ◦ T −1
ti (xti)− xtj∥2. (1)

We train the MLP in T for a fixed number of steps to initialize the deformation field.

Initialization of Gaussians. After getting the initialized deformation field, we will initialize a set
of 3D Gaussians in the canonical space as shown in Fig. 3 (right). We achieve this by first converting
all the depth maps to get 3D points. Then, these 3D points are deformed backward to the canonical
3D space. This means that we transform all the depth points of all timestamps to the canonical space,
which results in a large amount of points. We then evenly downsample these points with a predefined
voxel size to reduce the point number and we initialize all our Gaussians with the locations of these
downsampled 3D points in the canonical space.

3.3 ORDINAL DEPTH LOSS

Pearson correlation loss. Existing dynamic Gaussian Splatting or NeRF methods also adopt a
depth loss to supervise the learning of their 3D representations. One possible solution (Zhu et al.,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2023c; Li et al., 2021; Liu et al., 2023a) is to maximize a Pearson correlation between the rendered
depth and the estimated single-view depth

Corr
(
D̂t, Dt

)
=

Cov(D̂t,Dt)√
Var(D̂t)Var(Dt)

,

where Cov (·, ·) and Var (·, ·) means the covariance and variance respectively, Dt and D̂t are the
estimated depth and the rendered depth respectively. Since the estimated single-view depth has
ambiguity in scale, the Pearson correlation loss avoids the negative effects of the scale ambiguity.
Note that in Li et al. (2021) and Liu et al. (2023a), the loss is called normalized depth loss, which
is equivalent to Pearson correlation here as shown in the supplementary material.

𝐷𝑡𝑖 𝑢𝐵 −𝐷𝑡𝑖 𝑢𝑐

𝐷𝑡𝑖 𝑢𝐴 −𝐷𝑡𝑖 𝑢𝐵
≠

𝐷𝑡𝑗 𝑢𝐵 −𝐷𝑡𝑗 𝑢𝑐

𝐷𝑡𝑗 𝑢𝐴 −𝐷𝑡𝑗 𝑢𝐵

𝐷𝑡𝑖 𝑢𝐵 > 𝐷𝑡𝑖 𝑢𝑐 > 𝐷𝑡𝑖 𝑢𝐴
𝐷𝑡𝑗 𝑢𝐵 >𝐷𝑡𝑗 𝑢𝑐 > 𝐷𝑡𝑗 𝑢𝐴

Depth map 𝐷𝑡𝑖 Depth map 𝐷𝑡𝑗

𝐷𝑡𝑖 𝑢𝐴

𝐷𝑡𝑗 𝑢𝐴

𝐷𝑡𝑖 𝑢𝐵

𝐷𝑡𝑗 𝑢𝐵 𝐷𝑡𝑖 𝑢𝐶
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No linear consistent
Order is consistent

Figure 4: We show the estimated single-view depth maps at
two different timestamps Dti and Dtj after normalization to the
same scale. Since the single-view depth estimator is not accurate
enough, the depth maps are not linear related so the scale nor-
malization does not perfectly align them. However, the order of
depth values on three corresponding pixels is stable for these two
depth maps, which motivates us to propose an ordinal depth loss
for supervision.

Limitations of Pearson corre-
lation loss. However, we find
that this Pearson correlation
depth loss is still suboptimal.
As shown in Fig. 4, the esti-
mated depth maps at two differ-
ent timestamps are still not con-
sistent with each other after nor-
malization. Making two depth
maps consistent after normal-
ization actually requires these
two depth maps to be related
by a linear transformation, i.e.
Dt+1 = aDt + b with a
and b two constants. How-
ever, the single-view depth es-
timation method is not accu-
rate enough to guarantee the lin-
ear relationship between two es-
timated depth maps at differ-
ent timestamps. In this case,
the Pearson correlation loss still
brings inconsistent supervision.

Ordinal depth loss. To ad-
dress this problem, our obser-
vation is that though we cannot
guarantee depth consistency af-
ter normalization, as shown in
Fig. 4, the order of depth value is consistent among two different frames. Thus, this motivates
us to ensure the order of depth is correct by a new ordinal depth loss. We first define an order
indicator function

R(Dt(u1), Dt(u2)) =

{
+1, Dt(u1) > Dt(u2)

−1, Dt(u1) < Dt(u2)
, (2)

where R is the order indicator function on depth map Dt which indicates the order between the
depth values of pixels u1 ∈ R2 and u2 ∈ R2, and Dt(u) means the depth value on the pixel u.
Then, we define our ordinal depth loss based on the depth order by

ℓordinal = ∥tanh
(
α(D̂t(u1)− D̂t(u2))

)
−R (Dt(u1), Dt(u2)) ∥, (3)

where tanh(x) = ex−e−x

ex+e−x , D̂t means the rendered depth map at timestamp t, D̂t(u) is the depth value
of this rendered depth map on the pixel u, α is a predefined constant. Eq. 3 means we transform the
depth difference between D̂t(u1) and D̂t(u2) to 1 or -1 by tanh function. Then, we force the depth
order of the rendered depth map D̂t to be consistent with the order in the predicted depth map Dt.
In the implementation, we randomly sample 100k pairs (u1, u2) to compute the ordinal depth loss.

3.4 TRAINING OF MODGS
After initializing the Gaussians and the deformation fields, we use MoDGS to render at a specific
timestamp and compute the rendering loss ℓrender and the ordinal depth loss ℓordinal. So the total

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

SC-GS Deformable-GSGT-Image HexPlane Ours

Balloon2-2

Skatting2-2

Sear-Steak

Cutbeef

Coffee-

martini

Made for ICLR：2024年9月19日15:24:06

00
08
？

00
08
？

Input View

Figure 5: Qualitative comparison on the novel-view renderings of the DyNeRF (Li et al., 2022)
and Nvidia (Yoon et al., 2020) datasets. We compare MoDGS with SC-GS (Huang et al., 2024),
Deformable-GS (Yang et al., 2023b), and HexPlane (Cao & Johnson, 2023).
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Figure 6: Qualitative comparison of DVS quality on the MCV dataset. We compare MoDGS with
SC-GS (Huang et al., 2024), Deformable-GS (Yang et al., 2023b), HexPlane (Cao & Johnson, 2023),
and RoDynRF (Liu et al., 2023a).

training loss for MoDGS is
ℓ = λordinalℓordinal + λrenderℓrender. (4)

4 EXPERIMENTS

4.1 EVALUATION PROTOCOLS

Datasets. We conducted experiments on four datasets to demonstrate the effectiveness of our
method. The first dataset is the DyNeRF (Li et al., 2022) dataset which consists of 6 scenes. On each
scene, we have 18-20 synchronized cameras capturing 10-30 second videos. In these videos, there is
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Table 1: Quantitative results on the DyNeRF (Li et al., 2022) and Nvidia (Yoon et al., 2020) datasets.
We compare our method with SC-GS (Huang et al., 2024), Deformable GS (Yang et al., 2023b)
(D-GS) and HexPlane (Cao & Johnson, 2023) in PSNR↑, SSIM↑, and LPIPS↓. For a per-scene
breakdown of the metrics, please refer to Table 6 and Table 7 in A.9.

DyNeRF Nvidia
Methods PSNR↑ SSIM↓ LPIPS↓ PSNR↑ SSIM↓ LPIPS↓
HexPlane 15.33 0.5593 0.4514 17.17 0.3675 0.4756
SC-GS 18.77 0.7359 0.2310 17.59 0.4679 0.3348
D-GS 19.55 0.7446 0.2171 18.07 0.4650 0.3422
Ours 22.64 0.8042 0.1545 19.27 0.5235 0.2581

mainly a man working on a desktop, like cutting beef or dumping water. We use camera0 for train-
ing and evaluate the results on camera5 and camera6. The second dataset is the Nvidia (Yoon et al.,
2020) dataset which contains more diverse dynamic subjects like jumping, playing with balloons,
and opening an umbrella. The Nvidia dataset contains 8 scenes, which also has 12 synchronized
cameras. We train all methods on camera4 and evaluate with camera3 and camera5. Besides, we
also collect 6 online videos to construct an in-the-wild dataset, called the Monocular Casual Video
(MCV) Dataset, to demonstrate our method can generalize to in-the-wild casual videos. The MCV
dataset contains diverse subjects like skating, a dog eating food, YOGA, etc. The MCV dataset only
contains a single video for each scene, so we cannot evaluate the quantitative results but only report
the qualitative results on this dataset. We also present results of the Davis dataset (Pont-Tuset et al.,
2017) in Sec. A.6 of the appendix.

Evaluation setting. Previous DVS methods (Cao & Johnson, 2023; Yang et al., 2023b; Gao et al.,
2021) all use different cameras to train the dynamic NeRF or Gaussian Splatting. Even though they
only use one camera at a specific timestamp, they use different cameras at different timestamps so
that a pseudo multiview video can be constructed to learn the 3D structures of the scene. Since our
target is to conduct novel-view synthesis on the casually captured images, we do not adopt such
”teleporting camera motions” to construct training videos but just adopt one static camera to record
training videos. Then, we render the images from the viewpoints of another camera for evaluation.

Metrics. To evaluate the rendering quality, we have to render images from a new viewpoint and
compare them with the ground-truth images. However, if the input video is almost static, the input
video will contain insufficient 3D information and there would exist an ambiguity in scale. Thus,
different DVS methods would choose different scales in reconstructing dynamic scenes so that the
rendered images on the novel viewpoints are not aligned with the given ground-truth images. To
address this problem, we manually label correspondences between the training images and ground-
truth novel-view images. Then, we render a depth map on the training image using the reconstructed
dynamic scene and optimize for a scale factor to scale the depth value to satisfy these labeled corre-
spondences. After aligning the scale factors of different methods with the ground-truth images, we
compute the SSIM, LPIPS, and PSNR between the rendered images and the ground-truth images.

Baseline methods. We compare MoDGS with 4 baseline methods to demonstrate the superior
ability of MoDGS to synthesize novel-view images with casually captured monocular videos. These
methods can be categorized into two classes. The first is the NeRF-based methods including Hex-
Plane (Cao & Johnson, 2023) and RoDynRF (Liu et al., 2023a). HexPlane represents the scene with
six feature planes in both 3D space and time-space. We find that HexPlane does not produce rea-
sonable results if only a monocular video from a single camera is given as input. Thus, other than
the input monocular video, we use another video from a different viewpoint to train HexPlane for
the DVS task. RoDynRF is a SoTA NeRF-based DVS method that also adopts single-view depth
estimation as supervision for the 3D dynamic representations. We train it with the same single-view
depth estimator GeoWizard (Fu et al., 2024) as ours. The second class is the Gaussian Splatting-
based DVS methods including Deformable-GS (Yang et al., 2023b) and SC-GS (Huang et al., 2024).
Deformable-GS also associates a deformation field with a set of canonical Gaussians for DVS. SC-
GS learns a set of keypoints and uses the deformation of these keypoints to blend the deformation
of arbitrary 3D points.
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4.2 COMPARISON WITH BASELINES

The qualitative results on the DyNeRF and Nvidia datasets are shown in Fig. 5. Other qualitative
results on our MCV dataset are shown in Fig. 6. The quantitative results on the Nvidia and DyNeRF
datasets are shown in Table 1. Supplementary videos contain more comparison results.

Synthesizing novel views from a casually captured monocular video is a challenging task. As shown
in Fig. 5, though baseline methods achieve impressive results on these benchmarks with “teleporting
camera motions”, these methods fail to correctly reconstruct the 3D geometry of the dynamic scenes
and produce obvious artifacts on both dynamic foreground and static background. The main reason
is that the monocular camera is almost static and does not provide enough multiview consistency
to reconstruct high-quality 3D geometry for novel view synthesis. In the third row of Fig. 5, SC-
GS (Huang et al., 2024) fails to reconstruct the dynamic foreground subject because SC-GS has an
initialization process that treats the whole scene as a static scene and trains on the scene for a number
of steps. When the foreground subject is moving with a large motion (like skating from left to right),
it would be ignored by the static scene initialization and then we fail to reconstruct in the subsequent
steps.

In comparison, our method relies on a 3D-aware initialization which provides a strong basis for the
subsequent optimization. Meanwhile, our ordinal depth loss enables the 3D prior from the single-
view depth estimator for an accurate reconstruction of the dynamic scenes. The quantitative results
in Table 1 also show that our method achieves the best performances in all metrics on both datasets.
Note that there are still some artifacts on occlusion boundaries because the input monocular camera
is almost static and these regions are not visible in our input videos.

4.3 ABLATION STUDIES

We conduct ablation studies with our initialization and depth loss on the DyNeRF (Li et al., 2022)
dataset to demonstrate their effectiveness. The qualitative results are shown in Fig. 7 and Fig. 8
while the quantitative results are shown in Table 2. In the appendix, we also provide a comparison
with depth warping, robustness to depth noises, a discussion on video depth, a comparison with
other depth ranking losses, and a discussion about alpha values.

4.3.1 3D-AWARE INITIALIZATION
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Ablation study deformation init 

ICLR 25 submission

Figure 7: Visualization of rendering results using and without using
our 3D-aware initialization.

To show the effectiveness
of our 3D-aware initial-
ization, we adopt a ran-
dom initialization for the
deformation field. Based
on the random initializa-
tion, we still deform all
the depth points backward
to the canonical space and
downsample these points
to initialize the Gaussians.
Then, we follow the exact
same training procedure to
train the randomly initial-
ized baseline method. The
final results of this random
initialization are shown in Fig. 7. In comparison with our 3D-aware initialization, this random ini-
tialization produces more artifacts on the dynamic foreground human, which demonstrates that our
3D-aware initialization provides a good initial point for subsequent 3D dynamic scene reconstruc-
tion.

4.3.2 ORDINAL DEPTH LOSS

To demonstrate the effectiveness of our proposed ordinal depth, we experiment with two baseline
settings, removing the depth loss and utilizing the Pearson correlation as the depth loss. As shown in
Fig. 8, when there is no depth loss, the reconstructed 3D geometry contains much noise and obvious
artifacts exist in the scene. Since we perform the 3D-aware initialization on this experiment to
ensure a fair comparison, the results without depth loss still show reasonable rendered depth maps.
Adopting the Pearson depth loss improves the quality by linear correlating the rendered depth maps
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and input depth maps but still produces noisy depth inside a region. In comparison, our ordinal
depth loss enables a smooth reconstruction of the depth map in the interior while maintaining sharp
edges at boundaries. Thus, the proposed ordinal depth loss enables a more robust reconstruction of
the dynamic scene.

Input Truth Pearson Correlation Loss Ordinal Depth LossNo Depth Loss

Ablation study Depth order loss

Ablation study Depth order loss 2024年9月
19日14:21:00

Figure 8: Visualization of the rendered depth and RGB images using our ordinal depth loss and the
Pearson correlation loss.

4.4 LIMITATIONS
Table 2: Ablation studies with the 3D-aware initialization
(“3D-aware Init”) and Depth Loss on the DyNeRF (Li et al.,
2022) dataset. “Ordinal” means the ordinal depth loss while
“Pearson” means the Pearson correlation loss.

3D-aware Init Loss PSNR↑ SSIM↑ LPIPS↓
× Ordinal 21.27 0.7655 0.1984
✓ Pearson 21.77 0.7938 0.1680
✓ Ordinal 22.96 0.8103 0.1518

Though our method can conduct dy-
namic view synthesis from casually
captured monocular videos, the task
is still extremely challenging. One
limitation is that our method can
only reconstruct the visible 3D parts
but cannot imagine the unseen parts,
which leads to artifacts when render-
ing novel view videos on these un-
seen parts. Incorporating recent 3D-related diffusion generative models (Chung et al., 2023a; Liu
et al., 2023b; Long et al., 2023) could be a promising direction to solve this problem, which we
leave for future works. Another limitation is that the current training time is comparable with exist-
ing DVS methods, which could take several hours for a single scene. How to efficiently reconstruct
the dynamic field would be an interesting and promising future research topic. Meanwhile, when
the camera is completely static, our method strongly relies on the single-view depth estimator to
estimate the 3D depth maps. Though existing single-view depth estimators (Fu et al., 2024; Ke
et al., 2023; Yang et al., 2024b; Bhat et al., 2023) are trained on large-scale datasets and predict
reasonable depth maps for most cases, these depth estimators may fail to capture some details which
degenerate the quality. Another limitation is that we assume consistent depth order, though this as-
sumption is satisfied by most methods (Yang et al., 2024c; Bochkovskii et al., 2024; Ke et al., 2023;
Fu et al., 2024). Additionally, a challenge arises in rapidly moving scenes. Such rapid motions may
result in inaccurate camera pose estimation, which is still challenging for MoDGS and all existing
dynamic Gaussian reconstruction methods. Meanwhile, scenes featuring heavy specular reflections
and low-light conditions cannot be well handled., which is also an extremely challenging problem
in the monocular setting, which we leave for future works.

5 CONCLUSION

In this paper, we have presented a novel dynamic view synthesis paradigm called MoDGS. In com-
parison with existing DVS methods which requires “teleporting camera motions”, MoDGS is de-
signed to render novel view images from a casually captured monocular video. MoDGS introduces
two new designs to finish this challenging task. First, a new 3D-aware initialization scheme is
proposed, which directly initializes the deformation field to provide a reasonable starting point for
subsequent optimization. We further analyze the problem of depth loss and propose a new ordinal
depth loss to supervise the learning of the scene geometry. Extensive experiments on three datasets
demonstrate superior performances of our method on in-the-wild monocualr videos over baseline
methods.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We implement our MoDGS with PyTorch. To initialize the deformation field, we train it with 20k
steps as stated in Sec. 3.2. Subsequently, we jointly train the 3D Gaussians and the deformation
field with the rendering loss and the ordinal depth loss for another 20k steps. In Sec. 3.2, the flow
is computed in evenly sampled key frames(1/5). And the downsampling voxel size for Gaussian
initialization is 0.0043 (scenes are normalized to [−1, 1]3 ). For the outer optimization loop and
rendering loss, we exactly follow the original 3DGS. And we use Gaussian centers to render depth
(Yang et al., 2023b). We adopt an Adam optimizer for optimization. The learning rate for 3D Gaus-
sians exactly follows the official implementation of 3D GS (Kerbl et al., 2023), while the learning
rate of the deformation network undergoes exponential decay from 1e-3 to 1e-4 in initialization and
from 1e-4 to 1e-6 in the subsequent optimization. We set α = 100 for ℓordinal. The weight of our
depth order loss is 0.1. When computing depth ordinal loss, we first normalize the depth range to
[0,1] and we only consider the depth pair with a difference larger than 0.02 for loss computation.
The whole training takes around 3.5 hours to converge (2 hours for the initialization and 1.5 hours
for the subsequent optimization) on an NVIDIA RTX A6000 GPU, which uses about 14G memory.
The rendering speed of MoDGS is about 75 FPS.

A.2 REAL DEPTH RECOVERY

The depth prediction of GeoWizard (Fu et al., 2024) is normalized depth values in [0,1] and we
have to transform them into real depth values. We follow their official implementation to estimate a
scaling factor and an offset value on the normalized normal maps by minimizing the normal maps
estimated from the transformed real depth values and the estimated normal maps from GeoWizard.
The optimization process takes just several seconds. Note that even after this normalization, the
depth maps of different timestamps still differ from each other in scale.

Shared Parameter:

Scale 𝑆
Rotation 𝑅
Coefficients 𝑆𝐻
Opacity α

̂

𝒯𝑖
−1

ො𝑥𝑗

Gaussians center

𝑥𝑗

Figure 9: We provide a pair of images on the iPhone (Gao et al., 2022) dataset. We draw two
correspondences in the same color and their corresponding epipolar lines that are computed from the
provided camera poses. The epipolar lines deviate far from the correspondences, which demonstrate
that the camera poses are not accurate enough.

A.3 POSE ERRORS IN THE IPHONE DATASET

DyCheck (Gao et al., 2022) adopts the iPhone dataset as the evaluation dataset for the DVS on
casually captured videos. We do not adopt this dataset because we find that the poses on this dataset
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Depth Warping Ours

Figure 10: Comparison of our renderings and depth warping. Our method accumulates information
among different timestamps and thus is able to render more completed images.

are not very accurate. An example is shown in Fig. 9, where we draw two correspondences and
their corresponding epipolar line in the same color. The epipolar line is computed from the provided
camera poses. As we can see, the epipolar line does not pass through the correspondence, which
means that the provided poses are not accurate enough. We have tried to rerun COLMAP on the
iPhone dataset but cannot get reasonable results.

A.4 DIFFERENCE FROM DEPTH MAP WARPING

MoDGS learns a set of 3D Gaussians in a canonical space and a deformation field to transform
it to an arbitrary timestamp. This means that MoDGS is able to accumulate information among
different timestamps to reconstruct a more completed scene than just using a single-view depth
estimation. We show the difference between our renderings and just warping the training view using
the estimated single-view depth map in Fig. 10. As we can see, MoDGS produces more completed
reconstruction on contents that are not visible on this timestamp. Meanwhile, MoDGS rectifies the
single-view depth maps to be more accurate so the rendering quality is much better.

A.5 PEARSON DEPTH LOSS AND SCALE-SHIFT INVARIANT DEPTH LOSS

In this section, we will prove that the Pearson Depth loss is equivalent to Scale-Shift Invariant
loss. Previous works (Li et al., 2021; Liu et al., 2023a) use scale and shift invariant depth loss by
minimizing the L2 distance of normalized ground truth depth map Norm(Dt) and the normalized
rendered depth map Norm(D̂t)

ℓdepth = ∥Norm(Dt)− Norm(D̂t)∥ (5)
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where Norm(Dt) denotes
Dt − uDt

σDt

.(
Dt − uDt

σDt

−
Dt − uD̂t

σD̂t

)2

= −
2(Dt − uDt

)(Dt − uD̂t
)

σDt
σD̂t

+

(
Dt − uDt

σDt

)2

+

(
D̂t − uD̂t

σD̂t

)2

.

(6)

where Dt is the predicted depth prior, σDt
and uDt

denotes the standard deviation and means re-
spectively. Since it is based on the input, The second term is a constant. For the third term, we

substitute the σD̂t
using its definition: σD̂t

=

√∑N
i=1

(
D̂i

t−uD̂t

)2

N . The sum of the third term over

all pixels in a depth map is: ΣN
i (

(
D̂i

t − uD̂t

σD̂t

)2

) = N , Where N is the total number of pixels.

We can see that both the second term and third term are constant. The first term is a simple trans-
formation of the Pearson correlation coefficient. Thus, minimizing the L2 distance is equivalent to
maximizing the coefficient.

A.6 RESULTS ON THE DAVIS DATASET

A.6.1 PREPROCESSING PROCEDURE

On the Davis dataset, we adopt the preprocessing procedure outlined in the concurrent method,
Shape-of-Motion (Wang et al., 2024b), to obtain these camera poses. Specifically, we first run
UniDepth (Piccinelli et al., 2024) to acquire camera intrinsics and depth maps. Then, we utilize a
SLAM method, Driod-SLAM (Teed & Deng, 2021), with the depth maps from UniDepth as input
to solve for the camera poses.

A.6.2 COMPARISON WITH SHAPE-OF-MOTION

We provide an experiment to compare Shape-of-Motion with our method. In our experiments, we
train shape-of-motion on the Davis dataset following their default training setting and use the same
preprocessing strategy like depth estimation to train MoDGS. The visual comparison is shown in
Fig. 11, which demonstrates that our method shows comparable results as Shape-of-Motion but
renders more details in some cases. We also present the quantitative comparison results on the
Nvidia dataset (Yoon et al., 2020) in Table 3.

Table 3: Comparison with Shape-of-Motion(SoM) on Nvidia dataset
Balloon2-2 Jumping Truck-2 Skatting2

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
SoM 19.52 0.5096 0.2790 20.32 0.6771 0.2560 22.53 0.7414 0.1853 23.51 0.7861 0.1658
Ours 20.47 0.5275 0.2408 22.18 0.7075 0.2125 23.69 0.7455 0.1551 25.64 0.7996 0.1518

A.7 DISCUSSION ABOUT ALPHA VALUE IN ORDINAL DEPTH LOSS

After roughly aligning the depth maps, we normalize the scene to [−1, 1]3 and empirically set alpha
to 100. We present further ablations in Table 4, where decreasing alpha leads to worse results while
increasing alpha yields comparable results. The reason is that large alpha values compel the loss to
mainly concentrate on the ordinality rather than the differences in depth values.

A.8 DISCUSSION ABOUT THE ROBUSTNESS TO THE DEPTH NOISES

To show the robustness of our ordinal depth loss to depth noise, we manually add Gaussian noises
to depth maps and use the noisy depth maps as supervision signals. The metric results of them are
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Figure 11: We show a visual comparison of rendered novel view images and depth maps between
Shape-of-Motion(Wang et al., 2024b) and MoDGS. The rendering quality is comparable but our
method shows more details in some cases.

Table 4: Quantitative results for different alpha values.
Setting PSNR SSIM LPIPS
alpha=10 21.05 0.7575 0.2370
alpha=40 21.39 0.7813 0.1916
alpha=100(Ours) 23.23 0.8083 0.1592
alpha=1000 23.16 0.8058 0.1715

shown in Table 5 (on the “flame steak” scene), which shows our method is robust to small depth
noises.

Table 5: Quantitative results with different levels of added Gaussian noise Norm(µ, σ)

Setting PSNR SSIM LPIPS
Norm(0, 0.20) 23.18 0.8090 0.1667
Norm(0, 0.05) 23.35 0.8100 0.1633
Ours 23.23 0.8083 0.1592

A.9 PER-SCENE BREAKDOWN RESULTS ON THE DYNERF (LI ET AL., 2022) DATASET AND
THE NVIDIA (YOON ET AL., 2020) DATASET

In Tables 6 and Table 7, we provide a breakdown of the metrics for different scenes in the DyNeRF
and Nvidia datasets, respectively.
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Table 6: Per-scene results on the DyNeRF dataset.
Method cut roasted beef sear steak coffee martini

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
HexPlane 16.76 0.5382 0.5054 16.89 0.5897 0.5049 13.26 0.4049 0.5835
SC-GS 20.69 0.7414 0.2625 21.23 0.7870 0.2188 19.02 0.7124 0.2151
D-GS 22.20 0.7808 0.1931 23.56 0.8101 0.1773 19.23 0.7013 0.2270
Ours 23.98 0.8221 0.1438 23.53 0.8126 0.1642 21.37 0.7962 0.1473

Method cook spinach flame steak flame salmon 1
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

HexPlane 16.95 0.7286 0.2223 16.97 0.7528 0.2543 11.16 0.3417 0.6382
SC-GS 16.70 0.7377 0.2117 17.31 0.7532 0.2527 17.65 0.6834 0.2253
D-GS 17.20 0.7195 0.2329 16.62 0.7523 0.2559 18.48 0.7038 0.2166
Ours 22.40 0.7823 0.1728 23.23 0.8083 0.1592 21.33 0.8038 0.1399

Table 7: Per-scene results on the Nvidia dataset.
Method Playground DynamicFace-2 Balloon1-2 Umbrella

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
HexPlane 13.30 0.1641 0.5240 9.92 0.1873 0.6091 15.48 0.2793 0.5342 18.70 0.2238 0.4427
SC-GS 12.60 0.2059 0.5063 9.75 0.3312 0.4307 16.63 0.4412 0.3656 18.71 0.3501 0.3663
D-GS 12.62 0.2009 0.5116 10.36 0.3277 0.4563 10.36 0.3277 0.4563 19.16 0.3381 0.3300
Ours 13.38 0.2343 0.4542 12.40 0.4118 0.2442 16.93 0.4371 0.3059 19.47 0.3246 0.3004

Method Balloon2-2 Skatting2 Truck Jumping
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

HexPlane 18.42 0.3159 0.4881 21.39 0.6403 0.3983 20.85 0.5687 0.3653 19.28 0.5605 0.4431
SC-GS 18.28 0.3893 0.3671 23.07 0.7186 0.2002 21.48 0.6374 0.2078 20.17 0.6698 0.2343
D-GS 18.57 0.3941 0.3768 24.47 0.7582 0.2073 21.38 0.6321 0.2142 21.27 0.6604 0.2700
Ours 20.47 0.5275 0.2408 25.64 0.7996 0.1518 23.69 0.7455 0.1551 22.18 0.7075 0.2125

A.10 COMPARISON WITH DEPTH RANKING LOSS

We provide a quantitative comparison between our ordinal depth loss and other depth ranking
losses (Chen et al., 2016; Pavlakos et al., 2018) in Table 8. In this experiment, we replace our ordi-
nal depth loss with their depth ranking loss while keeping all other configurations fixed. The results
demonstrate that our ordinal depth loss significantly outperforms their approach across all scenes.
This highlights the effectiveness of our method in capturing depth information more accurately than
the existing depth ranking losses.

In Fig. 12, we present a visual comparison of rendered depth maps using depth ranking loss and or-
dinal depth loss. Our depth values are more smooth and well-distributed while depth values learned
from rank depth loss show high contrast and more noise. The reason is that depth ranking loss en-
courages large contrast to satisfy the given depth order and is not robust to the noises in the input
depth.

Table 8: Comparison with depth ranking loss (Chen et al., 2016; Pavlakos et al., 2018),denoted as
DRL for simplification.

sear steak cut beef coffee martini

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DRL 18.22 0.7390 0.2228 17.07 0.7162 0.2283 14.09 0.7465 0.1902
Ours 23.53 0.8126 0.1642 23.98 0.8221 0.1438 21.37 0.7962 0.1473
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Figure 12: A visual comparison of rendered depth maps between using depth ranking loss (Wang
et al., 2024b) and our ordinal depth loss.

A.11 ABLATION USING DEPTH FROM VIDEO-DEPTH ESTIMATION METHODS

To show that our method is also compatible with recent video depth methods, we conduct an ablation
experiment using the depth maps predicted by the video depth estimator (Shao et al., 2024) and
different types of depth loss as supervision. As shown in Table 9, the video depth estimator improves
the results, and our ordinal depth loss still consistently improves the results.

Table 9: Video depth ablation. V D + P refers to supervised using video depth maps with pearson
depth loss, V D +O refers to supervised using video depth maps with ordinal depth loss.

sear steak cut beef coffee martini
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

V D + P 23.43 0.7983 0.1732 23.19 0.8134 0.1472 20.01 0.7664 0.1647
V D +O 23.48 0.8091 0.1711 23.61 0.8103 0.1532 21.55 0.8001 0.1488

A.12 RESULTS OF NERF-BASED METHODS USING DEPTH SUPERVISION

We present the results of HexPlane (Cao & Johnson, 2023) when supervised with depth loss in
Table 10. Using depth maps for supervision only leads to a slight improvement for HexPlane and
MoDGS still outperforms HexPlane by a large margin.

Table 10: Metric results when HexPlane (Cao & Johnson, 2023) is incorporated with depth super-
vision, denoted as “HexPlane+D”.

flame steak cut beef coffee martini

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
HexPlane 16.97 0.7528 0.2543 16.76 0.5382 0.5054 13.26 0.4049 0.5835
HexPlane+D 17.21 0.6156 0.4646 18.82 0.6344 0.414 15.78 0.4708 0.5106
Ours 23.23 0.8083 0.1592 23.98 0.8221 0.1438 21.37 0.7962 0.1473
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A.13 DIFFERENT RANDOM INITIALIZATION METHODS

In the ablation study of our paper, we use the Kaiming initialization as the random initialization. We
additionally provide ablations using zero deformation initialization of the deformation field in Ta-
ble 11(flame steak scene of DyNeRF). In this experiment, we still initialize the canonical Gaussian
spaces but adopt a different initialization strategy for the deformation field MLP.

Table 11: Quantitative comparison results for different initialization methods
Method PSNR SSIM Lpips

ZeroDeformationInit 22.34 0.7906 0.2151
KaimingInit 22.24 0.7744 0.2036
3D-AwareInit (Ours) 23.23 0.8083 0.1592

A.14 LENGTH OF VIDEOS THAT MODGS CAN HANDLE

Currently, we can handle videos up to 10 seconds. Scaling to longer videos(∼30 seconds) is possible
if we use a larger deformation MLP network and train for more iterations.

A.15 DISCUSSION ABOUT DEPTH CONSISTENCY METHODS

From the knowledge distillation perspective, our method can be regarded as a distillation frame-
work to get consistent video depth. In our framework, we adopt the 3D Gaussian field as the 3D
representation and the ordinal depth loss as the supervision to distill the monocular depth estima-
tion. Meanwhile, we adopt the rendering loss to further regularize the 3D representation, which
enables us to distill temporally consistent monocular video depth from the inconsistent estimated
depth maps. The inconsistent input depth and the distilled consistent video depth can be visualized
in the supplementary video. This depth distillation mechanism is also adopted by self-supervised
video depth estimation methods (Wang et al., 2023d; 2024c; Xu et al., 2024; Luo et al., 2020).

Although our method primarily targets novel-view synthesis of dynamic scenes, we also conducted
an experiment to compare the depth map quality of MoDGS with a rencent video depth stabilization
method (Wang et al., 2023d). In Fig. 16, it can be observed that the depth maps from MoDGS
contain more details and are more temporally stable. We sincerely recommend you to watch our
supplementary videos.

A.16 COMPARISON WITH PERCEPTUAL DEPTH LOSS

In this experiment, we substitute our ordinal depth loss with a perceptual depth loss, specifically the
learned perceptual image patch similarity loss (LPIPS) (Zhang et al., 2018) while maintaining all
other experimental conditions unchanged. For the LPIPS loss, we utilize the AlexNet (Krizhevsky
et al., 2012) in computing the LPIPS loss. We present a quantitative comparison of our ordinal
depth loss against perceptual depth losses in Table 12. The results indicate that our ordinal depth
loss outperforms the alternative LPIPS depth loss. Furthermore, we provide a visual comparison of
the rendered depth maps using perceptual losses in Fig. 13. Compared to the maps produced with
the LPIPS loss, our depth maps are smoother and contain less noise.

Table 12: Comparison between perceptual depth loss (“LPIPS”) and our original depth loss (“Ordi-
nal”).

sear steak cut beef coffee martini

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

LPIPS 22.43 0.8049 0.1782 23.36 0.8102 0.1591 20.97 0.7820 0.1575
Ordinal 23.53 0.8126 0.1642 23.98 0.8221 0.1438 21.37 0.7962 0.1473
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Figure 13: A visual comparison of rendered depth maps using the perceptual depth loss and our
ordinal depth loss.

A.17 RESULTS ON SCENES WITH HIGHLY COMPLEX MOTIONS

Reconstructing 4D dynamic fields in complex scenes using casually captured monocular videos
remains a challenging task. In playground and balloon2−2 scenes, which both contain two moving
objects (the human and balloon) and complex motion, MoDGS handles the situation relatively well
and generates reasonable results. We present visual results in Fig. 15. As shown in the figure, the
appearances of both objects can be well reconstructed. For more complex motions, MoDGS may
fail due to the difficulty in predicting robust depth maps, which we leave for future works.

A.18 RESULTS ON SCENES WITH RAPID MOTION

Rapidly moving scenes pose significant challenges for dynamic Gaussian field reconstruction.
Such rapid motions can lead to inaccurate camera pose estimations, which remain problematic for
MoDGS and all existing dynamic Gaussian reconstruction methods. We conducted an experiment
on a high-speed motion scene(rollerblade from the Davis dataset) containing motion blur (in the
regions of hands, feet, and hair) to evaluate our MoDGS performance under challenging conditions.
As shown in Fig. 15, MoDGS produces reasonable results in the severely blurred regions. The
results demonstrate that our approach maintains robust functionality even in rapidly changing envi-
ronments. To better address this issue, we may combine deblur methods (Zhu et al., 2023b;a; Pan
et al., 2020) with motion priors in future works.

A.19 DISCUSSION ON HOW TO HANDLE SCENARIOS WITH HEAVY OCCLUSIONS OR
SPECULAR.

How to handle scenarios with heavy occlusions. If the occluded regions are observed at some
timestamps, MoDGS is able to accumulate information among different timestamps to complete
these occluded regions on some timesteps as shown in Appendix A.4. However, MoDGS cannot
generate new contents for the occluded regions, which indeed degenerate the rendering quality on
occluded regions. Incorporating some generative priors such as diffusion models could alleviate this
problem.
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Possible solutions dealing with specular scenarios. MoDGS can reconstruct some specular ob-
jects but show some artifacts because MoDGS does not involve any special design for specular
objects. As shown by a recent work (Fan et al., 2024), a potential solution for this is to introduce
inverse rendering in dynamic scenes, which enables accurate modeling of specular surfaces in dy-
namic scenes.

A.20 DISCUSSION ABOUT THE ROBUSTNESS TO DIFFERENT DEPTH ESTIMATORS

To further demonstrate the robustness of our ordinal depth loss across different depth estimation
methods, we compare the performance of MoDGS using various depth estimators (Yang et al.,
2024a; Ke et al., 2023; Shao et al., 2024) while keeping all other configurations unchanged. The
quantitative results obtained using these methods are presented in Table 13. When different depth
maps are utilized, the performance of our method exhibits minor variation, which demonstrates that
our method is robust to various depth estimation approaches and does not rely on a specific depth
prior distribution, such as Geowizard (Fu et al., 2024).

In Fig. 17, We also provide a visual comparison of depth maps generated by these methods and ren-
dered using our MoDGS. Although some flickering and inconsistencies can be observed in the input
depth maps, MoDGS still produces stable and consistent depth renderings. We sincerely recommend
you to watch our supplementary videos.

Table 13: Quantitative results with different depth estimation methods, such as Marigold (Ke et al.,
2023), ChronoDepth (Shao et al., 2024), DepthAnything (Yang et al., 2024a) and GeoWizard (Fu
et al., 2024).

Depth estimator PSNR SSIM LPIPS
Marigold (Ke et al., 2023) 23.12 0.8057 0.1712
ChronoDepth (Shao et al., 2024) 23.44 0.8105 0.1687
DepthAnything (Yang et al., 2024a) 23.35 0.8097 0.1621
GeoWizard (Fu et al., 2024) 23.23 0.8083 0.1592
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Figure 14: Input views and novel view synthesis results from MoDGS for two scenes with complex
motions in the NVIDIA dataset.
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Figure 15: Input views and novel view synthesis results produced by MoDGS on the rollerblade
scene from the Davis dataset, which features rapid motions and motion blur.
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Figure 16: A visual comparison of depth maps estimated by NVDS (Wang et al., 2023d) and
rendered by our MoDGS on Camel and Bear scene from the Davis dataset.
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Figure 17: A visual comparison of rendered depth maps from our MoDGS and input depth maps
estimated by different depth estimation methods, such as Marigold (Ke et al., 2023), ChronoDepth
(Shao et al., 2024), DepthAnything (Yang et al., 2024a) and GeoWizard (Fu et al., 2024).

28


	Introduction
	Related Work
	Proposed Method
	Gaussians and Deformation Fields
	3D-aware Initialization
	Ordinal Depth Loss
	Training of MoDGS

	Experiments
	Evaluation Protocols
	Comparison with Baselines
	Ablation studies
	3D-aware initialization
	Ordinal depth loss

	Limitations

	Conclusion
	Appendix
	Implementation Details
	Real Depth Recovery
	Pose Errors in the iPhone dataset
	Difference from Depth Map Warping
	Pearson Depth Loss and Scale-shift Invariant Depth Loss
	Results on the Davis dataset
	Preprocessing Procedure 
	Comparison with Shape-of-Motion

	Discussion about alpha value in ordinal depth loss
	Discussion about the Robustness to the Depth noises 
	Per-Scene breakdown results on the DyNeRF  li2022neural dataset and the Nvidia yoon2020novel dataset 
	Comparison with depth ranking Loss
	ablation using depth from Video-depth estimation methods
	Results of NeRF-based methods using depth supervision
	Different random initialization methods
	Length of videos that MoDGS can handle
	Discussion about depth consistency methods
	Comparison with Perceptual Depth loss
	Results on scenes with highly complex motions
	Results on scenes with rapid motion
	Discussion on how to handle scenarios with heavy occlusions or specular. 
	Discussion about the robustness to different depth estimators


