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ABSTRACT

Merging Large Language Models (LLMs) aims to amalgamate multiple homol-
ogous LLMs into one with all the capabilities. Ideally, any LLMs sharing the
same backbone should be mergeable, irrespective of whether they are Fine-Tuned
(FT) with minor parameter changes or Pre-Trained (PT) with substantial param-
eter shifts. However, existing methods often manually assign the model impor-
tance, rendering them feasible only for LLMs with similar parameter alterations,
such as multiple FT LLMs. The diverse parameter changed ranges between FT
and PT LLMs pose challenges for current solutions in empirically determining the
optimal combination. In this paper, we make a pioneering effort to broaden the
applicability of merging techniques from FT to PT LLMs. We initially examine
the efficacy of current methods in merging FT and PT LLMs, discovering that they
struggle to deal with PT LLMs. Subsequently, we introduce an approach based
on WeIght DisENtanglement (WIDEN) to effectively extend the merging scope,
which first disentangles model weights into magnitude and direction components,
and then performs adaptive fusion by considering their respective contributions. In
the experiments, we merge Qwen1.5-Chat (an FT LLM with instruction-following
skills) with Sailor (a PT LLM with multilingual abilities) across 1.8B, 4B, 7B,
and 14B model sizes. Results reveal that: (1) existing solutions usually fail when
merging Sailor, either losing both abilities or only retaining instruction-following
skills; (2) WIDEN successfully injects the multilingual abilities of Sailor into
Qwen1.5-Chat and make it proficient in Southeast Asian languages, achieving
enhancements in the fundamental capabilities. In light of previous research, we
also merge multiple 13B FT LLMs and observe that WIDEN achieves a balance
of instruction following, mathematical reasoning, and code generation skills.

1 INTRODUCTION

In recent years, model merging has sparked significant interest as a prominent topic, which intends to
integrate multiple homologous models (sharing the same backbone) into a singular one that encap-
sulates all the abilities (Wortsman et al., 2022; Matena & Raffel, 2022; Ilharco et al., 2023; Jin et al.,
2023; Jang et al., 2024; Yadav et al., 2023; Davari & Belilovsky, 2023; Yu et al., 2024). Distinct
from other approaches that can also amalgamate various skills (e.g., ensemble learning (Mohammed
& Kora, 2023), multi-task learning (Crawshaw, 2020; Zhang & Yang, 2022)), model merging is
lauded for its computational frugality, especially when applied to Large Language Models (LLMs).
Notably, it achieves integration without using additional training data or even GPUs, establishing a
new paradigm for efficiently combining LLMs’ capabilities (Yu et al., 2024).

Technically, there are predominantly two strategies to equip LLMs with desired capabilities (Zhao
et al., 2023): fine-tuning to elicit existing skills (Wang et al., 2023; Zhang et al., 2023a) and pre-
training to inject new abilities (Wu et al., 2024). Existing merging methods mainly focus on inte-
grating the skills of Fine-Tuned (FT) LLMs with minor parameter changes relative to the backbone,
typically within 0.002 (Yu et al., 2024). However, it is crucial to acknowledge that pre-training is
the cornerstone for fundamentally enhancing the capabilities of LLMs. The practicality of merging
techniques in scenarios where Pre-Trained (PT) LLMs undergo substantial parameter shifts remains
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unexplored, as depicted in Figure 1. Consequently, if the application of merging is restricted to FT
LLMs, its potential for broader improvement would be significantly constrained.

Figure 1: Issues of existing merging techniques.

Table 1: Average results of merging
Qwen1.5-14B-Chat and Sailor-14B. Met-
rics of the best methods in Arithmetic, Geo-
metric, and Pruning categories are reported.

Instruction
Following Multilingual

Qwen1.5-14B-Chat 68.08 53.74
Sailor-14B 64.02 59.90

Arithmetic-based 66.30 (-1.78) 40.72 (-19.18)
Geometric-based 67.59 (-0.49) 49.52 (-10.38)

Pruning-based 51.72 (-16.36) 28.69 (-31.21)
WIDEN 66.75 (-1.33) 59.67 (-0.23)

To fill in the aforementioned blank, this work makes two key technical contributions.

We examine the feasibility of existing approaches in absorbing the abilities from PT LLMs. We
investigate the performance of widely used arithmetic-based (Wortsman et al., 2022; Ilharco et al.,
2023), geometric-based (Shoemake, 1985; Jang et al., 2024), and pruning-based (Yadav et al., 2023;
Davari & Belilovsky, 2023; Yu et al., 2024) methods when merging FT and PT LLMs. As illustrated
in Table 1, we find current methods either lose efficacy in retaining the abilities of PT LLMs (lead-
ing to a decrease of approximately 10 to 20 points on average) or fail to preserve both capabilities
(resulting in an average degradation of about 15 and 30 points, respectively). One possible reason is
that existing methods depend on manually assigned scaling terms to gauge the model contribution,
which is only applicable when multiple LLMs depict comparable parameter alterations. Nonethe-
less, when confronted with diverse parameter changed ranges between FT and PT LLMs, deriving
the optimal scaling factors according to human expertise becomes exceedingly arduous.

We propose a new solution grounded in WeIght DisENtanglement (WIDEN) to expand the
scope of merging techniques from FT to PT LLMs. WIDEN tackles the drawbacks of existing
works by automatically computing the model importance in the merging process without requiring
manual specification, mitigating the influence induced by diverse parameter changed ranges between
FT and PT LLMs. To be specific, WIDEN first disentangles each weight of a given LLM into two
components: magnitude and direction. Then, the divergence of each component relative to the
backbone is quantified to provide a numerical measure of how much each LLM has been altered.
Next, WIDEN employs a ranking mechanism within each LLM to obtain the weight importance,
tackling the diversity in parameter changed ranges between FT and PT LLMs. Finally, WIDEN
performs adaptive merging on multiple LLMs by Softmax with the score calibration design.

We experiment with Qwen1.5-Chat (Bai et al., 2023) (an FT LLM with instruction-following skills)
and Sailor (Dou et al., 2024) (a PT LLM with multilingual abilities for South-East Asia) across
1.8B, 4B, 7B, and 14B model scales to verify the effectiveness of WIDEN for model merging1.
Experimental results indicate that WIDEN outperforms existing methods by not only absorbing the
multilingual abilities of Sailor but also preserving the instruction-following skills of Qwen1.5-Chat.
For example, in Table 1, WIDEN slightly causes an average reduction of 0.23 and 1.33 points
for Sailor-14B and Qwen1.5-14B-Chat, respectively. These observations demonstrate that WIDEN
effectively extends the applicability of merging techniques from FT to PT LLMs. Considering
previous works, we further merge three FT LLMs including WizardLM-13B (Xu et al., 2024) for
instruction following, WizardMath-13B (Luo et al., 2023) for mathematical reasoning, and llama-2-
13b-code-alpaca (Chaudhary, 2023) for code generation. Results show that WIDEN is also feasible
under the conventional setting and can strike a favorable balance among these capabilities.

Resources are available at https://anonymous.4open.science/r/MergeLLM-5E0D.

1To the best of our knowledge, Sailor is one of the few publicly accessible PT LLM that has undergone
sufficient continued pre-training upon the open-source Qwen1.5 model (see Section A.6 and Section A.7 for
more details), ideally suitable to our experimental scenarios. Therefore, Sailor and its homologous counterpart,
Qwen1.5-Chat, are selected for our study.

2
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2 RELATED WORK

Fine-Tuning and Pre-Training of LLMs. Generally, LLMs can be adapted to various tasks via
two strategies: fine-tuning and pre-training (Zhao et al., 2023). Fine-tuning is designed to elicit
backbones with specific skills by optimizing them on a limited set of task-specific data, obtaining
FT LLMs with skills such as instruction following (Rafailov et al., 2023; Song et al., 2024) and
mathematical reasoning (Yuan et al., 2023; Luo et al., 2023). The fine-tuning process typically
brings minor modifications to the model parameters (Yu et al., 2024), holding true for both full
fine-tuning approaches (Radford et al., 2018; Devlin et al., 2019) and parameter-efficient fine-tuning
techniques (Houlsby et al., 2019; Li & Liang, 2021; Lester et al., 2021; Hu et al., 2022). In contrast
to fine-tuning, pre-training trains LLMs on large-scale raw corpora to enhance models with domain
knowledge (Ke et al., 2022; 2023; Cheng et al., 2024), deriving PT LLMs with fundamental abilities
like finance analysis (Xie et al., 2023) and law assistance (Colombo et al., 2024b). Pre-training often
leads to more obvious parameter shifts than fine-tuning due to extensive data used during the phase.
Different from current merging methods that are only applicable to FT LLMs, this paper proposes a
new solution to innovatively harness the capabilities of PT LLMs.

Merging of LLMs. Model merging aims to amalgamate multiple homologous models (derived
from the same backbone) into a single one that possesses all the abilities (Wortsman et al., 2022;
Matena & Raffel, 2022; Ilharco et al., 2023; Jin et al., 2023; Jang et al., 2024; Yadav et al., 2023;
Davari & Belilovsky, 2023; Yu et al., 2024). The allure of the model merging technique stems from
its minimal computational expense, particularly favorable for LLMs, which can be realized with-
out retraining or GPUs (Yu et al., 2024). Existing merging techniques that are feasible for LLMs
can be broadly categorized into three groups, which are based on arithmetic, geometric, and prun-
ing. Average Merging (Wortsman et al., 2022) and Task Arithmetic (Ilharco et al., 2023) belong to
arithmetic-based approaches. The former utilizes averaged parameters to create the merged model,
whereas the latter introduces the concept of task vector (i.e., parameter difference between an FT
model and its backbone) and uses a scaling term to regulate the importance of various models. As
geometric-based methods, both SLERP (Shoemake, 1985) and Model Stock (Jang et al., 2024) con-
sider the geometric properties in weight space. In particular, SLERP is specifically designed for
the integration of two models, which performs spherical interpolation of model weights. Model
Stock approximates a center-close weight based on several FT models, utilizing their backbone as
an anchor point. TIES-Merging (Yadav et al., 2023), Breadcrumbs (Davari & Belilovsky, 2023),
and DARE (Yu et al., 2024) are methods based on pruning. TIES-Merging eliminates parameter
interference among multiple models by first removing delta parameters with low magnitudes and
then merging parameters with consistent signs after resolving disagreements. Breadcrumbs masks
out the extreme tails (also known as outliners) of the absolute magnitude distribution of task vectors
to obtain the final model. DARE is a versatile plug-in for existing merging approaches, which first
randomly drops delta parameters and then rescales the remaining ones to maintain model perfor-
mance. However, most of the current methods manually determine the importance of each model,
suitable only for LLMs with similar parameter changes. When the parameter changed ranges are
diverse between FT and PT LLMs, determining the optimal combination becomes overwhelmingly
challenging. This paper initially verifies the limitations of existing methods in combining the abil-
ities of PT LLMs. Subsequently, an approach based on weight disentanglement is introduced to
effectively expand the scope of merging techniques from FT to PT LLMs.

3 METHODOLOGY

3.1 PRELIMINARIES

Merging Beyond FT LLMs. Given a collection of N homologous LLMs characterized by pa-
rameters

{
Θ1,Θ2, · · · ,ΘN

}
, all of which share the same backbone with parameters ΘPRE, model

merging aims to amalgamate the parameters of N LLMs into a singular model with all the capabili-
ties, denoted as ΘM. Previous studies only focus on combining the skills of FT LLMs parameterized
by

{
Θ1

FT,Θ
2
FT, · · · ,ΘN

FT

}
, where each model exhibits slight parameter changes, usually within 0.002

(Yu et al., 2024). In this paper, we extend the scope of merging techniques from FT to PT LLMs, in-
tending to absorb the abilities of PT LLMs. Therefore, the parameters targeted for merging become{
Θ1

TYPE1
,Θ2

TYPE2
, · · · ,ΘN

TYPEN

}
, where TYPEn (1 ≤ n ≤ N ) can be either FT or PT.

3
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Weight Disentanglement. As outlined in Salimans & Kingma (2016); Liu et al. (2024), a weight
W ∈ Rd×k can be disentangled into two components: a row vector m ∈ R1×k that captures the
magnitudes and a matrix D ∈ Rd×k that stores the direction vectors. Here, d and k represent the
output and input dimensions. Mathematically, the disentanglement of weight W is achieved by

W = mD = ∥W ∥c
W

∥W ∥c
∈ Rd×k, (1)

where ∥ · ∥c denotes the vector-wise lc-norm of a matrix across each column. Such a decoupling op-
eration guarantees that each column D:,j (1 ≤ j ≤ k) is a unit vector, and scalar mj ∈ m signifies
the magnitude of direction vector D:,j . Since the primary challenge of extending merging scope to
PT LLMs lies in the manual assignment of model importance, we employ weight disentanglement
to initially decouple weights into magnitudes and directions, and then automatically compute the
weight importance without human expertise based on these two components.

3.2 EXPLORING EFFICACY OF CURRENT METHODS WHEN MERGING PT LLMS

We investigate the efficacy of seven commonly used merging techniques when integrating the abil-
ities of PT LLMs. To be specific, Average Merging (Wortsman et al., 2022) and Task Arithmetic
(Ilharco et al., 2023) are arithmetic-based methods. SLERP (Shoemake, 1985) and Model Stock
(Jang et al., 2024) belong to geometric-based approaches. TIES-Merging (Yadav et al., 2023),
Breadcrumbs (Davari & Belilovsky, 2023) and DARE (Yu et al., 2024) are pruning-based solutions.
Please see Section A.4 for detailed descriptions of these methods. To evaluate the performance, we
attempt to combine the instruction-following skills of an FT LLM, Qwen1.5-Chat (Bai et al., 2023),
and the multilingual abilities of a PT LLM, Sailor (Dou et al., 2024). Experimental setup, results,
and analysis can be found in Section 4.

Since this part mainly concentrates on the feasibility of merging techniques when applied to PT
LLMs, we highlight the key conclusion pertinent to PT LLMs: existing merging approaches face
difficulties in preserving the abilities of PT LLMs. As evidenced in Table 2, the performance of
all merging methods on the multilingual abilities significantly declines. This phenomenon is largely
attributed to the reliance of most methods on manually assigned scaling factors to determine the con-
tribution of each model at various levels throughout the merging process, encompassing model level
(Ilharco et al., 2023; Yadav et al., 2023; Davari & Belilovsky, 2023), layer/module level (Goddard
et al., 2024), and parameter level (Shoemake, 1985). The diverse parameter changed ranges between
FT and PT LLMs complicate the manual assignment of model importance, making it intractable to
define optimal scaling factors case by case.

3.3 EXTENDING MERGING SCOPE TO PT LLMS VIA WEIGHT DISENTANGLEMENT

We present a new approach based on WeIght DisENtanglement (WIDEN) to innovatively broaden
the applicability of model merging techniques from FT to PT LLMs, whose key concept is to adap-
tively assess the importance of weights during the merging process for neutralizing the effects of
diverse parameter changed ranges between FT and PT LLMs. As shown in Figure 4 in Section A.1,
WIDEN mainly comprises four steps. Given the weights of LLMs (including the backbone as well
as models to be merged), WIDEN 1) disentangles each weight into a row vector of magnitudes and
a matrix of direction vectors; 2) estimates weight divergence relative to the backbone founded on
absolute values of magnitude alterations and cosine similarities between direction vectors; 3) ranks
the weights inside each LLM grounded in their divergence to derive the weight importance, thereby
mitigating the impact of diverse parameter changed ranges; 4) merges multiple LLMs into a single
one according to the obtained weight importance via Softmax with score calibration.

Disentangling Weights of LLMs. Given multiple homologous LLMs (each LLM can be obtained
by either FT or PT) with parameters

{
Θ1,Θ2, · · · ,ΘN

}
as well as the backbone with parameters

ΘPRE, we first perform weight disentanglement for the parameters. Take W n ∈ Θn with shape
Rd×k as an example2. W n can be decoupled into mn = ∥W n∥c ∈ R1×k and Dn = Wn

∥Wn∥c
∈

Rd×k. After applying this disentanglement across all the LLMs, we can obtain the sets of row
vectors of magnitudes {mn}Nn=1 ∪ {mPRE} and matrices of direction vectors {Dn}Nn=1 ∪ {DPRE}.

2Note that Θn represents the collection of parameters of the n-th LLM, consisting of a multitude of weights.
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Estimating Weight Divergence Relative to Backbone. We estimate the weight divergence of each
LLM relative to the backbone from the perspective of magnitudes and directions with two measure-
ments. To be specific, we compute the absolute values of magnitude alterations and determine the
changes between direction vectors based on cosine similarities as follows,

∆mn = |mn −mPRE| ∈ R1×k, for 1 ≤ n ≤ N,

∆Dn
j = 1−CosineSimilarity(Dn

:,j ,DPRE:,j) ∈ R, for 1 ≤ j ≤ k, 1 ≤ n ≤ N,
(2)

where CosineSimilarity(x,y) = x·y
∥x∥2·∥y∥2

. Thus, we obtain the divergences of the LLMs relative
to the backbone in both magnitudes {∆mn ∈ R1×k}Nn=1 and directions {∆Dn ∈ R1×k}Nn=1.

Ranking Weights Inside Each LLM. We design a ranking mechanism to alleviate the potential
impact of diverse parameter changed ranges among various LLMs, which assigns importance to the
weights within each LLM according to their divergence relative to the backbone (greater divergence
indicates higher essentiality). The ranking mechanism is applied to both the magnitudes and the
directions of weights. To illustrate, consider the magnitudes as an instance. Given ∆mn ∈ R1×k of
the n-th LLM, we initially sort ∆mn in ascending order, yielding an index row vector mn

IND ∈ R1×k

that contains values ranging from 1 to k. Subsequently, we derive a row vector m̃n ∈ R1×k that
encapsulates normalized ranking scores based on mn

IND, which is computed by

m̃n
mn

INDj
= j/k, for 1 ≤ j ≤ k. (3)

m̃n ∈ R1×k represents the normalized importance of each position within the range [1, · · · , k]
for the n-th LLM. Following the same procedure, the directions of weights can also be assigned
with normalized importance, which can be denoted by D̃n ∈ R1×k. Such a ranking mechanism
ensures that, within each LLM, the importance of magnitudes and directions is uniformly distributed
between 0 and 1, thereby eliminating the potential influences arising from diverse parameter changed
ranges between FT and PT LLMs. After applying the ranking operation for all the LLMs, we can
ultimately obtain {m̃n ∈ R1×k}Nn=1 and {D̃n ∈ R1×k}Nn=1.

Merging LLMs via Softmax with Score Calibration. We employ an adaptive merging strategy
for multiple LLMs through a Softmax function, complemented by score calibration. Initially, we
calculate the importance scores for magnitudes and directions by applying the Softmax function to
{m̃n ∈ R1×k}Nn=1 and {D̃n ∈ R1×k}Nn=1, yielding M̃, D̃ ∈ RN×k by

M̃n,j =
exp (m̃n

j )∑N
n′=1 exp (m̃

n′
j )

∈ R, D̃n,j =
exp (D̃n

j )∑N
n′=1 exp (D̃

n′
j )

∈ R, for 1 ≤ j ≤ k, 1 ≤ n ≤ N,

(4)

However, Softmax restricts the sum of parameter importance across multiple LLMs to 1, potentially
diminishing the significance of crucial parameters in certain cases. Thus, we incorporate a score
calibration operation to relax the constraint of Softmax for essential parameters. We identify crucial
parameters as those whose importance exceeds the average level by a factor of t as follows,

Pn
m = {j|m̃n

j >
t

k
·
∑k

j′=1
m̃n

j′}, Pn
D = {j|D̃n

j >
t

k
·
∑k

j′=1
D̃n

j′}. (5)

Subsequently, we calibrate the scores using Pn
m and Pn

D by

Mn,j =

{
s, if j ∈ Pn

m

M̃n,j , if j /∈ Pn
m

, Dn,j =

{
s, if j ∈ Pn

D

D̃n,j , if j /∈ Pn
D

, (6)

where s regulates the numerical value of score calibration. Finally, we integrate the weights of mul-
tiple LLMs into WM by considering the adjusted contributions of both magnitudes and directions,

WM = WPRE +

N∑
n=1

Mn,: +Dn,:

2
⊙ (W n −WPRE) ∈ Rd×k. (7)

Note that t and s are designed to control the merging importance of parameters after applying the
Softmax function. If more parameters are desired to be assigned with higher importance, t should
be reduced and s should be increased. Conversely, t should be increased and s should be reduced.

5
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Remark 1. The aforementioned procedure is designed to deal with two-dimensional weights within
LLMs, accounting for both magnitudes and directions. For one-dimensional parameters, such as
weights in normalization layers and biases in linear transformations, we handle them as vectors of
magnitudes and estimate their changes relative to the backbone by absolute values of the differences.

Remark 2. Existing arithmetic-based merging methods including Average Merging (Wortsman et al.,
2022) and Task Arithmetic (Ilharco et al., 2023), can be viewed as special instances of the proposed
WIDEN. Specifically, the computation procedure of Average Merging (Wortsman et al., 2022) for
N LLMs is denoted by

WM =
1

N

N∑
n=1

W n = WPRE +
1

N

N∑
n=1

(W n −WPRE) ∈ Rd×k. (8)

Task Arithmetic (Ilharco et al., 2023) is implemented as follows,

WM = WPRE + λ

N∑
n=1

(W n −WPRE) ∈ Rd×k, (9)

where λ denotes the scaling term. It is straightforward that in Equation (5), if t is set to be minus,
all the parameters can be considered crucial, with their importance scores calibrated to s. Thus,
Equation (7) can be rewritten as

WM = WPRE +

N∑
n=1

s+ s

2
(W n −WPRE) = WPRE + s

N∑
n=1

(W n −WPRE) ∈ Rd×k. (10)

To this end, when t < 0.0 and s = 1/N , WIDEN transforms into Average Merging; when t < 0.0
and s = λ, WIDEN represents Task Arithmetic.

4 EXPERIMENTS

We conduct experiments on model merging in two scenarios: 1) integrating both FT and PT LLMs,
a new setting not explored before; 2) combining FT LLMs as in previous research.

4.1 EXPERIMENTAL SETUP

Merging FT and PT LLMs. We choose Qwen1.5-Chat (Bai et al., 2023) with instruction-following
skills as the FT LLM and select Sailor (Dou et al., 2024) with multilingual abilities for South-East
Asia as the PT LLM. Both models adopt Qwen1.5 (Bai et al., 2023) as the backbone. Open LLM
Leaderboard (Beeching et al., 2023) and benchmark for South-East Asian languages (Dou et al.,
2024) are used for evaluating the performance of models across 1.8B, 4B, 7B, and 14B sizes.

Merging FT LLMs. In accordance with Yu et al. (2024), we merge three FT LLMs that are based
on Llama-2-13b (Touvron et al., 2023): WizardLM-13B (Xu et al., 2024) for instruction follow-
ing, WizardMath-13B (Luo et al., 2023) for mathematical reasoning, and llama-2-13b-code-alpaca
(Chaudhary, 2023) for code generation. AlpacaEval 2.0 (Dubois et al., 2024), GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021b), HumanEval (Chen et al., 2021), and MBPP (Austin et al.,
2021) are utilized for evaluation.

Please see Section A.3 for the overview and evaluation metrics of the benchmarks. Also, refer to
Table 7 in Section A.2 for the details of FT and PT LLMs. We compare WIDEN with seven popular
baselines for model merging, including Average Merging (Wortsman et al., 2022), Task Arithmetic
(Ilharco et al., 2023), SLERP (Shoemake, 1985), Model Stock (Jang et al., 2024), TIES-Merging
(Yadav et al., 2023), Breadcrumbs (Davari & Belilovsky, 2023), and DARE (Yu et al., 2024). See
Section 3.2 and Section A.4 for more descriptions.

Configurations of Merging Methods. We apply grid search to identify the optimal settings for
various merging techniques. The proposed WIDEN utilizes l2 normalization and involves two hy-
perparameters: s and t. For ease of implementation, the score calibration factor s is consistently
fixed to 1.0 across all the cases. The factor t is determined by grid search. Please refer to Table 8 in
Section A.5 for detailed information about the searched ranges.

6
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Hardware Requirements. The process of merging LLMs requires only CPU resources. To evaluate
the merged LLMs, we employ A100 GPUs equipped with 80 GB of memory. Notably, all the
experiments can be successfully reproduced using a single A100 GPU.

4.2 PERFORMANCE OF MERGING FT AND PT LLMS

Table 2 and Table 11 show the results of merging Qwen1.5-Chat and Sailor on South-East Asian
language benchmark. Since Average Merging is a special case of Task Arithmetic when the scaling
term is 0.5, we thereby only report the results of Task Arithmetic, which inherently include the
performance of Average Merging. Note that th, id, vi, and jv are abbreviations of Thai, Indonesian,
Vietnamese, and Javanese. The best and second-best results are marked in bold and underlined
fonts. From Table 2, two conclusions can be summarized.

Table 2: Results of merging Qwen1.5-Chat and Sailor on South-East Asian language benchmark.

Size Models Merging
Methods

XQuAD TydiQA XQuAD XCOPA Belebele M3Exam Average Average
Rankth id vi th id vi th id vi jv

7B

Qwen1.5 / 53.79/69.30 57.17/77.28 56.63/76.99 54.20 62.20 66.20 38.33 42.00 42.89 26.15 55.63 /
Qwen1.5-Chat / 24.28/46.77 42.30/67.57 45.51/69.91 56.20 66.80 70.40 38.67 43.11 47.11 28.30 49.76 /

Sailor / 57.88/71.06 60.53/75.42 53.81/74.62 59.00 72.20 72.20 41.56 44.33 45.33 32.88 58.52 /

Qwen1.5-Chat
& Sailor

Task Arithmetic 28.20/49.62 45.84/65.78 37.38/61.53 63.20 77.60 73.40 38.89 46.89 45.11 30.46 51.07 2.15
SLERP 16.62/43.62 20.53/54.02 33.70/61.49 55.80 73.40 73.00 38.44 47.89 47.56 28.30 45.72 3.23

Model Stock 26.72/52.69 24.78/58.88 43.80/69.50 54.60 66.00 69.40 37.33 42.78 43.67 27.76 47.53 3.31
TIES-Merging 0.61/8.84 5.66/17.23 7.70/20.78 50.20 62.20 59.80 30.22 35.33 35.11 25.07 27.60 5.54
Breadcrumbs 6.79/11.38 7.61/15.23 12.32/27.90 51.40 66.40 57.20 31.33 34.00 32.56 24.53 29.13 5.23

WIDEN 42.65/64.21 45.84/73.37 48.42/73.17 60.20 77.40 73.60 40.11 51.11 48.56 32.88 56.27 1.15

14B

Qwen1.5 / 55.53/74.39 60.35/81.07 57.66/77.62 58.40 70.40 72.60 41.22 48.67 44.44 26.15 59.12 /
Qwen1.5-Chat / 33.59/59.98 37.17/65.46 44.14/71.91 61.80 75.20 71.80 44.00 51.00 52.67 29.92 53.74 /

Sailor / 49.43/70.01 58.94/77.85 57.74/77.34 62.60 77.60 78.60 40.89 47.67 47.11 32.88 59.90 /

Qwen1.5-Chat
& Sailor

Task Arithmetic 8.53/24.39 13.45/33.54 13.52/25.75 59.80 82.40 78.20 46.00 56.33 53.78 33.69 40.72 2.54
SLERP 14.53/44.70 22.48/61.67 42.69/69.48 61.80 75.60 74.60 43.22 52.56 50.56 29.92 49.52 2.46

Model Stock 25.59/53.10 14.87/51.19 44.74/70.20 58.60 70.40 71.80 42.67 49.89 45.11 27.22 48.11 3.08
TIES-Merging 0.44/8.78 1.42/12.87 0.00/6.95 55.20 69.20 67.20 32.78 39.00 37.11 27.22 27.55 5.46
Breadcrumbs 1.22/6.48 2.30/20.88 3.17/14.46 52.20 64.60 63.40 34.78 42.11 40.67 26.68 28.69 5.23

WIDEN 49.61/73.16 50.62/75.09 54.75/78.23 60.80 77.40 74.60 42.22 56.22 50.44 32.61 59.67 1.77

Firstly, existing model merging approaches encounter significant challenges when incorporating
the multilingual abilities of Sailor, leading to a marked decline in performance. The downturn is
probably attributed to the difficulty in determining the optimal combination due to diverse param-
eter changed ranges between Qwen1.5-Chat and Sailor. We also notice that the reduction is par-
ticularly pronounced in pruning-based methods, prompting us to conduct additional verifications.
As demonstrated in Table 3, we find that the feasibility of pruning strategies such as DARE and
Magnitude-based Pruning (MP) in TIES-Merging and Breadcrumbs is severely compromised with
minor parameter drop rates on Sailor-7B, far below the levels reported results in the original studies
(i.e., 0.9 in DARE, 0.8 in TIES-Merging, and 0.85 in Breadcrumbs), diminishing the effectiveness
of pruning in alleviating parameter interference. As a result, DARE fails to serve as a plug-in for
existing merging techniques when considering PT LLMs, and its inferior results are excluded.

Table 3: Performance of pruning strategies on Sailor-7B for Vietnamese-related tasks.

Drop Rate XQuAD XCOPA Belebele
Sailor-7B / 53.81/74.62 72.20 45.33

DARE 0.1 47.56/66.95 64.20 41.00
0.3 5.90/16.05 55.60 30.56

MP

0.1 54.23/75.16 72.80 45.44
0.3 52.44/73.53 72.20 44.78
0.5 49.19/70.11 70.00 43.67
0.8 13.77/30.13 59.00 34.56

Secondly, WIDEN effectively assimilates the multilingual capabilities of Sailor, emerging as the top
performer among all the merging techniques. The key advantage of WIDEN lies in the adaptive
computation of weight importance by considering both magnitudes and directions during the merg-
ing process, mitigating the effects of diverse parameter changed ranges between FT and PT LLMs.

Table 4 and Table 12 depict the merging performance on Open LLM Leaderboard. We find that
geometric-based approaches (SLERP and Model Stock) excel in retraining the instruction-following
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Table 4: Performance of merging Qwen1.5-Chat and Sailor on Open LLM Leaderboard.

Size Models Merging
Methods ARC Hella-

Swag MMLU Truthful-
QA

Wino-
grande GSM8K Average Average

Rank

7B

Qwen1.5 / 54.86 78.45 60.60 51.09 71.03 56.79 62.14 /
Qwen1.5-Chat / 56.14 78.71 60.18 53.61 67.48 54.21 61.72 /

Sailor / 49.57 76.13 52.91 40.07 71.35 34.65 54.11 /

Qwen1.5-Chat
& Sailor

Task Arithmetic 52.05 75.15 59.38 50.84 69.77 25.55 55.46 3.50
SLERP 54.78 76.20 60.76 50.78 71.51 55.50 61.59 2.33

Model Stock 55.12 76.29 61.18 49.33 71.43 55.80 61.53 2.00
TIES-Merging 43.86 56.88 52.39 46.59 67.56 0.00 44.55 5.67
Breadcrumbs 47.18 49.99 52.66 52.05 64.88 0.45 44.53 4.67

WIDEN 53.84 76.25 57.65 49.34 71.90 44.81 58.97 2.83

14B

Qwen1.5 / 56.40 81.22 67.79 52.04 74.43 68.01 66.65 /
Qwen1.5-Chat / 57.25 82.56 67.48 60.42 72.69 68.08 68.08 /

Sailor / 55.46 80.31 62.95 46.64 76.80 61.94 64.02 /

Qwen1.5-Chat
& Sailor

Task Arithmetic 56.57 81.59 67.52 62.93 75.22 53.98 66.30 2.50
SLERP 55.72 79.94 67.94 57.51 75.14 69.29 67.59 3.00

Model Stock 57.00 80.50 68.44 51.98 76.01 66.72 66.77 2.33
TIES-Merging 49.74 67.23 60.54 47.43 72.14 0.30 49.56 5.67
Breadcrumbs 51.88 62.22 63.47 57.90 70.32 4.55 51.72 4.83

WIDEN 57.17 80.05 66.00 54.85 76.09 66.34 66.75 2.67

skills of Qwen1.5-Chat, indicating that parameters of FT LLMs may potentially exhibit more ev-
ident properties in the geometric space. WIDEN shows competitive results alongside SLERP and
Model Stock, underscoring its applicability in merging FT LLMs. Moreover, WIDEN outperforms
arithmetic-based methods since it is a generalized format of these methods and offers greater flexi-
bility through the adaptive computation of weight importance. The performance of WIDEN consis-
tently improves with increasing model sizes, indicating its potential scalability. Although WIDEN
achieves competitive but not state-of-the-art performance on the Open LLM Leaderboard, it con-
sistently delivers satisfactory results across both benchmarks, while most baselines fail to do so,
demonstrating the robustness and generalizability of WIDEN.

4.3 PERFORMANCE OF MERGING FT LLMS

Under the setting of merging multiple FT LLMs, we strictly follow the identical protocol in Yu et al.
(2024) and report the official results in Table 5 for fair comparisons. One exception is that we use
AlpacaEval 2.0 instead of AlpacaEval in Yu et al. (2024) for evaluation, aiming to provide more
convincing and reliable verifications. Since SLERP is only applicable for dealing with two models,
its results for merging three LLMs are unavailable.

From Table 5, we observe that the efficacy of certain baselines drastically fluctuates when integrating
FT LLMs. For example, Model Stock appears to lose potency, whereas pruning-based methods
including TIES-Merging and Breadcrumbs show competitive performance. WIDEN consistently
depicts results that are on par with established merging techniques in most situations, affirming its
suitability in the standard setting of merging multiple FT LLMs. It is worth noting that WIDEN
performs competitively but less prominently than baselines when merging multiple FT models. This
is because WIDEN excels at merging LLMs with obvious differences in parameter changed ranges
by disentangling parameters into magnitudes and directions. In the case of FT models with minor
and similar parameter changes, treating weights holistically or disentangling them leads to minimal
disparity, which makes the disentanglement operation less pronounced.

4.4 INVESTIGATIONS OF DESIGNS IN WIDEN

The foundational designs in WIDEN consist of three components: weight disentanglement, ranking
weights inside each model, and score calibration for Softmax. To assess the contribution of each
module, we respectively remove the above components and measure the performance of the remain-
ing parts. Specifically, we eliminate the disentanglement of weights by calculating the discrepancy
between the weights of LLM and the corresponding backbone using cosine similarities, denoted as
WIDEN w/o WD. We substitute the ranking mechanism with min-max normalization within each
model, represented by WIDEN w/o RANK. We discard the score calibration and directly employ
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Table 5: Performance of merging WizardLM-13B, WizardMath-13B, and llama-2-13b-code-alpaca.

Models Merging Methods
Instruction-
following

Mathematical
Reasoning Code Generation

AlpacaEval 2.0 GSM8K MATH HumanEval MBPP
WizardLM-13B / 12.73 2.20 0.04 36.59 34.00

WizardMath-13B / / 64.22 14.02 / /
llama-2-13b-code-alpaca / / / / 23.78 27.60

WizardLM-13B
& WizardMath-13B

Task Arithmetic 11.85 66.34 13.40 28.66 30.60
SLERP 7.90 66.19 13.44 28.05 30.80

Model Stock 0.25 0.00 0.00 3.05 25.80
TIES-Merging 10.07 15.77 2.04 37.80 35.60
Breadcrumbs 9.85 64.75 11.80 26.22 33.20

WIDEN 9.45 66.34 13.58 28.66 30.40

WizardLM-13B
& llama-2-13b-code-alpaca

Task Arithmetic 10.09 / / 31.70 32.40
SLERP 6.04 / / 32.32 35.80

Model Stock 0.25 / / 3.66 24.80
TIES-Merging 7.27 / / 0.00 0.00
Breadcrumbs 7.23 / / 33.54 32.00

WIDEN 6.53 / / 31.70 35.60

WizardMath-13B
& llama-2-13b-code-alpaca

Task Arithmetic / 64.67 13.98 8.54 8.60
SLERP / 61.41 12.50 9.15 22.40

Model Stock / 0.00 0.00 4.27 25.60
TIES-Merging / 63.23 13.56 9.76 22.40
Breadcrumbs / 62.55 12.48 9.15 16.20

WIDEN / 64.22 13.58 9.76 9.80

WizardLM-13B
& WizardMath-13B

& llama-2-13b-code-alpaca

Task Arithmetic 11.51 58.45 9.88 18.29 29.80
Model Stock 0.12 0.00 0.00 5.49 23.40

TIES-Merging 9.22 62.55 9.54 21.95 30.40
Breadcrumbs 10.89 62.55 10.58 23.78 29.60

WIDEN 8.71 57.16 9.60 22.56 30.80

Softmax to compute importance scores, identified as WIDEN w/o SC. Figure 2 shows the impact
of these three modifications, where OLL and SEA are the abbreviations for Open LLM Leader-
board and South-East Asian language benchmark, respectively. Note that the reported results are the
average of metrics across all the datasets within each benchmark.

Figure 2: Effects of various designs in WIDEN.

From Figure 2, we find that each design in
WIDEN contributes to enhancing the merging
performance, particularly in absorbing the mul-
tilingual abilities on the South-East Asian lan-
guage benchmark. Precisely, the weight disen-
tanglement refines the estimation of weight im-
portance at a granular level, considering both
magnitude and direction. The ranking mecha-
nism offers a smoother distribution of weight
importance based on continuous indices, effec-
tively mitigating the influence of diverse pa-
rameter changed ranges. The calibration of
scores computed by Softmax reallocates im-
portance to critical parameters, which main-
tains the characteristics of essential parameters
across multiple models. In summary, the components of WIDEN are indispensable and improve
performance with varied benefits; the removal of any module leads to diminished outcomes.

4.5 ANALYSIS OF COMPUTED WEIGHT IMPORTANCE

We further delve into the properties of weight importance calculated by WIDEN from both quali-
tative and quantitative perspectives. Since Figure 2 demonstrates that the improvements in weight
disentanglement and score calibration are notably more pronounced, we qualitatively depict the dis-
tribution of weight importance computed by WIDEN, WIDEN w/o WD, and WIDEN w/o SC on
7B model size in Figure 3. Our observations reveal that: 1) WIDEN exhibits a more balanced and
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reasonable weight importance distribution than WIDEN w/o WD, attributed to the disentanglement
of weights. The distribution of WIDEN ranges approximately from 0.3 to 0.8 and 0.9 to 1.0, versus
0.3 to 0.6 and 0.9 to 1.0 for WIDEN w/o WD. WIDEN considers the collective contributions of
magnitude and direction, rather than the individual impacts of weights, leading to a more holistic
assessment of weight importance with increased numbers of weights falling within the importance
range from 0.6 to 0.8. As a result, compared with WIDEN w/o WD, WIDEN achieves 4.98% and
20.08% improvements on average on the Open LLM Leaderboard and the South-East Asian lan-
guage benchmark, respectively; 2) In contrast to WIDEN w/o SC, WIDEN distinguishes essential
weights and assigns high importance within the range of 0.6 to 0.8 as well as 0.9 to 1.0 for certain
weights, thanks to the design of score calibration. Therefore, WIDEN ensures the retention of es-
sential weights in both Qwen1.5-7B-Chat and Sailor-7B, resulting in 12.25% and 72.87% average
enhancements on the two benchmarks.

Figure 3: Distribution of weight importance computed by WIDEN and its variations.

Furthermore, we categorize weight importance into three levels: Low (L), Medium (M), and High
(H). The Low tier comprises the first third of weights when sorted by ascending importance, indi-
cating those with the least significance. The Medium tier includes weights from the 1/3 mark to the
2/3 mark, and the High tier contains weights from the 2/3 mark to the end. Table 6 quantitatively
illustrates the adjustments of weight importance made by WIDEN when compared to WIDEN w/o
WD and WIDEN w/o SC across three levels. We find that WIDEN effectively reallocates the weight
importance via three aspects: 1) elevating weights of lower importance from Low to Medium; 2) ei-
ther demoting or promoting weights of medium importance from Medium to Low or from Medium
to High, respectively; 3) decreasing weights of high importance from High to Medium. These ad-
justments in weight importance explain how WIDEN brings improvements through the designs of
weight disentanglement and score calibration.

Table 6: Adjustments of weight importance made by WIDEN.

Adjustments Models L→L L→M L→H M→L M→M M→H H→L H→M H→H
WIDEN w/o WD

to WIDEN
Qwen1.5-7B-Chat 18.82% 11.09% 3.42% 13.97% 10.18% 9.18% 0.54% 12.06% 20.75%

Sailor-7B 15.34% 10.50% 7.48% 17.80% 7.72% 7.80% 0.18% 15.10% 18.07%
WIDEN w/o SC

to WIDEN
Qwen1.5-7B-Chat 24.78% 7.69% 0.85% 7.93% 17.51% 7.88% 0.62% 8.12% 24.61%

Sailor-7B 22.01% 9.52% 1.80% 9.63% 15.14% 8.56% 1.69% 8.67% 22.99%

5 CONCLUSION

In this study, we paved the way for extending the merging scope from FT to PT LLMs. Specifically,
we first observed that existing methods struggled to integrate the abilities of PT LLMs and then
introduced WIDEN, an innovative approach based on weight disentanglement, to effectively deploy
merging strategies to PT LLMs. Experimental findings demonstrated that WIDEN not only exhibited
an advantage in absorbing the abilities of PT LLMs but also preserved the skills of FT LLMs.
Additionally, WIDEN achieved competitive performance with established merging methods in the
conventional setting of merging FT LLMs. We further offered a detailed analysis of the designs
underlying WIDEN. This work made the first attempt to broaden the sources of combinable abilities,
fostering the broader application of model merging techniques.
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F. T. Martins, Fabrizio Esposito, Vera Lúcia Raposo, Sofia Morgado, and Michael Desa. Saullm-
7b: A pioneering large language model for law. CoRR, abs/2403.03883, 2024a.

11

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pierre Colombo, Telmo Pessoa Pires, Malik Boudiaf, Dominic Culver, Rui Melo, Caio Corro,
Andre FT Martins, Fabrizio Esposito, Vera Lúcia Raposo, Sofia Morgado, and Michael Desa.
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A APPENDIX

A.1 COMPUTATION PROCESS OF WIDEN

Figure 4 illustrates the framework of WIDEN.

Figure 4: Framework of the proposed WIDEN.

A.2 DETAILS OF FT AND PT LLMS

Table 7 depicts the versions and correspondences with backbones of FT and PT LLMs.

Table 7: Versions and correspondences with backbones of FT and PT LLMs.

Types Models Backbones
FT LLM Qwen1.5-1.8B-Chat3 Qwen1.5-1.8B4

PT LLM Sailor-1.8B5 Qwen1.5-1.8B4

FT LLM Qwen1.5-4B-Chat6 Qwen1.5-4B7

PT LLM Sailor-4B8 Qwen1.5-4B7

FT LLM Qwen1.5-7B-Chat9 Qwen1.5-7B10

PT LLM Sailor-7B11 Qwen1.5-7B10

FT LLM Qwen1.5-14B-Chat12 Qwen1.5-14B13

PT LLM Sailor-14B14 Qwen1.5-14B13

FT LLM
WizardLM-13B15 Llama-2-13b16

WizardMath-13B17 Llama-2-13b16

llama-2-13b-code-alpaca18 Llama-2-13b16

3https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat
4https://huggingface.co/Qwen/Qwen1.5-1.8B
5https://huggingface.co/sail/Sailor-1.8B
6https://huggingface.co/Qwen/Qwen1.5-4B-Chat
7https://huggingface.co/Qwen/Qwen1.5-4B
8https://huggingface.co/sail/Sailor-4B
9https://huggingface.co/Qwen/Qwen1.5-7B-Chat

10https://huggingface.co/Qwen/Qwen1.5-7B
11https://huggingface.co/sail/Sailor-7B
12https://huggingface.co/Qwen/Qwen1.5-14B-Chat
13https://huggingface.co/Qwen/Qwen1.5-14B
14https://huggingface.co/sail/Sailor-14B
15https://huggingface.co/WizardLM/WizardLM-13B-V1.2
16https://huggingface.co/meta-llama/Llama-2-13b-hf
17https://huggingface.co/WizardLM/WizardMath-13B-V1.0
18https://huggingface.co/layoric/llama-2-13b-code-alpaca
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A.3 OVERVIEW AND EVALUATION METRICS OF BENCHMARKS

The Open LLM Leaderboard is established to assess open-source LLMs using the Eleuther AI Lan-
guage Model Evaluation Harness (Gao et al., 2023), which encompasses six datasets: AI2 Reasoning
Challenge (ARC) (Clark et al., 2018), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al.,
2021a), TruthfulQA (Lin et al., 2022), Winogrande (Sakaguchi et al., 2020), and GSM8K (Cobbe
et al., 2021). These datasets adopt accuracy as the evaluation metric under various shot settings (25-,
10-, 0-, 5-, 5-, and 5-shot, respectively). The leaderboard ranks models based on the average scores
across these six datasets.

The benchmark for South-East Asian languages is designed with four tasks: XQuAD (Artetxe et al.,
2020) (Thai, Vietnamese) and TydiQA (Clark et al., 2020) (Indonesian) for question answering;
XCOPA (Ponti et al., 2020) (Indonesian, Thai, Vietnamese) for commonsense reasoning; BELE-
BELE (Bandarkar et al., 2023) (Indonesian, Thai, and Vietnamese) for reading comprehension; and
M3Exam (Zhang et al., 2023b) (Javanese) for examination. All the datasets utilize 3-shot Exact
Match (EM) and F1 as evaluation metrics. It is worth noticing that the official code19 of Sailor
computes multiple metrics for M3Exam on Thai and Vietnamese, which are inconsistent with the
originally reported results. Thus, we only present the results of M3Exam (Javanese) in this work.

AlpacaEval 2.0 employs the win rate for assessment, calculated as the proportion of cases where a
powerful LLM (GPT-4 Turbo is used in this work) prefers the outputs from the target model over
those from GPT-4 Turbo. GSM8K and MATH are evaluated by zero-shot accuracy in addressing
mathematical problems. HumanEval and MBPP adopt pass@1 as the evaluation metric, representing
the fraction of individually generated code samples that successfully pass the unit tests.

A.4 DESCRIPTIONS OF MODEL MERGING BASELINES

We compare with seven commonly-used model merging methods in the experiments:

• Average Merging simply averages the parameters of multiple models for building the
merged model (Wortsman et al., 2022).

• Task Arithmetic employs a scaling term to modulate the importance of the backbone and
various models to be merged (Ilharco et al., 2023).

• SLERP is tailored for the combination of two models, utilizing spherical interpolation to
merge the model weights (Shoemake, 1985).

• Model Stock seeks to approximate a center-close weight by considering several FT models,
where the backbone is leveraged as an anchor point (Jang et al., 2024).

• TIES-Merging aims to mitigate task conflicts in model merging by initially pruning delta
parameters with lower magnitudes and subsequently fusing parameters that exhibit consis-
tent signs (Yadav et al., 2023).

• Breadcrumbs refines model parameters by filtering out the extreme tails (i.e., outliers) in
the absolute magnitude distribution of task vectors to derive the final merged model (Davari
& Belilovsky, 2023).

• DARE serves as a versatile module for current merging techniques, which first randomly
discards delta parameters and then rescales the remaining parameters to preserve the model
performance (Yu et al., 2024).

A.5 DETAILS OF GRID SEARCH ON HYPERPARAMETERS OF MERGING METHODS

Table 8 presents the searched ranges of hyperparameters of model merging approaches. We sample
10% of the data from each dataset in the benchmarks as the validation set for grid search. The
settings that yield the best average performance on the validation set are selected for evaluation. This
process is uniformly applied to all baseline methods as well as WIDEN to ensure a fair comparison.

For baselines like Task Arithmetic that rely on scaling terms, we select the optimal setting at the
dataset level within the range [0.5, 1.0], rather than using an identical setting at the model level. We

19https://github.com/sail-sg/sailor-llm
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find that on the Open LLM Leaderboard, Task Arithmetic performs better with a scaling term of 0.5
on some datasets and 1.0 on others. On the South-East Asian language benchmark, a scaling term
of 1.0 consistently outperforms 0.5. For WIDEN, we aim to compute the importance of weights
through weight disentanglement, eliminating the need for manual specification. Even for hyperpa-
rameters t and s, we used a unified setting across all benchmarks. Such an implementation may
reduce the advantage of WIDEN on the Open LLM Leaderboard to some extent but demonstrates
its robustness and generalizability.

Table 8: Hyperparameter searched ranges of model merging approaches.

Model Merging Methods Search Ranges of Hyperparameters
Task Arithmetic scaling term to merge parameters: [0.5, 1.0]

SLERP spherical interpolation factor: [0.3, 0.5, 0.7]
Model Stock /

TIES-Merging scaling term to merge parameters: [0.5, 1.0],
ratio to retain parameters with largest-magnitude values: [0.5, 0.7, 0.9]

Breadcrumbs
scaling term to merge parameters: [0.5, 1.0],

ratio to mask parameters with largest-magnitude values: [0.01, 0.05],
ratio to retain parameters [0.9]

WIDEN factor to indicate the multiple above the average: [1.0, 2.0],
factor to calibrate scores: [1.0]

A.6 ISSUES OF SEVERAL EXISTING PT LLMS

We present the statistics of some existing PT LLMs, including Sailor, finance-chat (Cheng et al.,
2024), medicine-chat (Cheng et al., 2024), law-chat (Cheng et al., 2024), BioMistral-7B (Labrak
et al., 2024), and Saul-7B-Base (Colombo et al., 2024a). Table 9 shows the information on domains
and the number of training tokens of these PT LLMs.

Table 9: Domains and training tokens of some existing PT LLMs.

Models Backbones Domains Training Tokens
Sailor-1.8B5 Qwen1.5-1.8B4 Multilingual 200B
Sailor-4B8 Qwen1.5-4B7 Multilingual 200B
Sailor-7B11 Qwen1.5-7B10 Multilingual 200B
Sailor-14B14 Qwen1.5-14B13 Multilingual 200B

finance-chat20 Llama-2-7b-chat21 Finance Analysis 1.2B
medicine-chat22 Llama-2-7b-chat21 Medical Analysis 5.4B

law-chat23 Llama-2-7b-chat21 Law Assistance 16.7B
BioMistral-7B24 Mistral-7B-Instruct-v0.125 Medical Analysis 3B
Saul-7B-Base26 Mistral-7B-v0.127 Law Assistance 30B

It could be concluded that most current PT LLMs (except for Sailor) are pre-trained on fewer than
30B tokens, resulting in relatively small parameter changed ranges (see Table 10). This makes them
less suitable for our experimental setup, as substantial parameter changes among the models to be
merged are desired.

20https://huggingface.co/AdaptLLM/finance-chat
21https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
22https://huggingface.co/AdaptLLM/medicine-chat
23https://huggingface.co/AdaptLLM/law-chat
24https://huggingface.co/BioMistral/BioMistral-7B
25https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
26https://huggingface.co/Equall/Saul-7B-Base
27https://huggingface.co/mistralai/Mistral-7B-v0.1
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A.7 PARAMETER CHANGED RANGES OF FT AND PT LLMS

We depict the statistics about the deciles of parameter changed ranges of both FT and PT LLMs in
Table 10, which are derived by first sorting the entire ranges and then indexing at positions corre-
sponding to 0%, 10%, 20%, ..., 100%.

Table 10: Statistics about the deciles of parameter changed ranges of FT and PT LLMs.

Models 0% (min) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% (max)
Qwen1.5-1.8B-Chat
vs. Qwen1.5-1.8B -0.10 -0.29e-02 -0.19e-02 -0.11e-02 -0.05e-02 0.00 0.05e-02 0.11e-02 0.19e-02 0.29e-02 0.14

Sailor-1.8B
vs. Qwen1.5-1.8B -6.25e-02 -1.00e-02 -0.51e-02 -0.23e-02 -0.06e-02 0.00 0.06e-02 0.23e-02 0.51e-02 1.00e-02 6.25e-02

Qwen1.5-4B-Chat
vs. Qwen1.5-4B -2.34e-02 -4.88e-04 -2.75e-04 -1.83e-04 -7.63e-05 0.00 7.63e-05 1.83e-04 2.75e-04 4.88e-04 1.90e-02

Sailor-4B
vs. Qwen1.5-4B -0.63 -0.96e-02 -0.62e-02 -0.38e-02 -0.18e-02 0.00 0.18e-02 0.38e-02 0.62e-02 0.96e-02 0.63

Qwen1.5-7B-Chat
vs. Qwen1.5-7B -2.43e-02 -4.27e-04 -2.44e-04 -1.22e-04 -3.05e-05 0.00 3.05e-05 1.22e-04 2.44e-04 4.27e-04 2.29e-02

Sailor-7B
vs. Qwen1.5-7B -0.27 -0.57e-02 -0.37e-02 -0.23e-02 -0.11e-02 0.00 0.11e-02 0.23e-02 0.37e-02 0.57e-02 0.25

Qwen1.5-14B-Chat
vs. Qwen1.5-14B -2.34e-02 -4.27e-04 -2.44e-04 -1.22e-04 -3.05e-05 0.00 3.05e-05 1.22e-04 2.44e-04 4.27e-04 2.06e-02

Sailor-14B
vs. Qwen1.5-14B -0.36 -0.78e-02 -0.51e-02 -0.31e-02 -0.15e-02 0.00 0.15e-02 0.31e-02 0.51e-02 0.78e-02 0.42

WizardLM-13B
vs. Llama-2-13b -3.93e-02 -0.16e-02 -0.10e-02 -0.06e-02 -0.03e-02 0.00 0.03e-02 0.06e-02 0.10e-02 0.16e-02 4.81e-02

WizardMath-13B
vs. Llama-2-13b -0.69e-02 -0.06e-02 -0.04e-02 -0.02e-02 -0.01e-02 0.00 0.01e-02 0.02e-02 0.04e-02 0.06e-02 0.74e-02

llama-2-13b-code-alpaca
vs. Llama-2-13b -8.42e-02 -3.05e-05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.05e-05 7.98e-02

finance-chat
vs. Llama-2-7b-chat -3.78e-02 -3.66e-04 -3.05e-05 0.00 0.00 0.00 0.00 0.00 3.05e-05 3.66e-04 5.07e-02

medicine-chat
vs. Llama-2-7b-chat -3.79e-02 -0.03e-02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03e-02 5.03e-02

law-chat
vs. Llama-2-7b-chat -3.61e-02 -0.03e-02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03e-02 4.77e-02

BioMistral-7B
vs. Mistral-7B-Instruct-v0.1 -6.25e-02 -0.11e-02 -0.07e-02 -0.04e-02 -0.02e-02 0.00 0.02e-02 0.04e-02 0.07e-02 0.11e-02 1.86e-02

Saul-7B-Base
vs. Mistral-7B-v0.1 -4.40e-03 -1.22e-04 -7.63e-05 -4.58e-05 -2.48e-05 0.00 2.48e-05 4.58e-05 7.63e-05 1.22e-04 4.15e-03

A.8 ADDITIONAL RESULTS OF MERGING QWEN1.5-CHAT AND SAILOR ACROSS 1.8B AND
4B MODEL SIZES

Table 11 and Table 12 show the performance of merging Qwen1.5-Chat and Sailor on South-East
Asian language benchmark and Open LLM Leaderboard across 1.8B and 4B model sizes.

Table 11: Performance of merging Qwen1.5-Chat and Sailor on South-East Asian language bench-
mark across 1.8B and 4B model sizes.

Size Models Merging
Methods

XQuAD TydiQA XQuAD XCOPA Belebele M3Exam Average Average
Rankth id vi th id vi th id vi jv

1.8B

Qwen1.5 / 27.24/43.56 29.73/53.76 29.17/48.15 52.60 51.60 53.40 30.11 32.00 31.33 24.26 38.99 /
Qwen1.5-Chat / 18.10/31.43 24.42/49.10 24.64/43.13 53.00 53.20 54.40 29.89 32.00 34.00 26.15 36.42 /

Sailor / 32.72/48.66 40.88/65.37 34.22/53.35 53.80 64.20 63.20 34.22 34.89 35.33 28.30 45.32 /

Qwen1.5-Chat
& Sailor

Task Arithmetic 36.81/51.43 33.81/62.82 32.68/52.62 55.00 65.40 59.80 34.33 36.22 36.11 28.30 45.03 1.85
SLERP 28.37/44.64 21.77/53.76 29.26/51.39 54.40 54.40 57.40 32.22 34.33 35.44 27.22 40.35 4.15

Model Stock 28.63/44.35 30.97/56.50 31.65/51.14 52.80 51.60 54.80 30.89 33.00 31.44 23.99 40.14 4.85
Breadcrumbs 22.45/31.95 20.18/43.83 25.49/42.11 53.40 57.40 59.80 31.56 34.67 34.89 27.22 37.30 4.92

TIES-Merging 26.02/41.09 36.81/61.68 31.99/52.40 52.00 62.60 60.40 33.78 36.89 35.89 25.61 42.86 3.15
WIDEN 38.21/53.50 43.36/68.55 37.55/56.05 55.20 61.80 60.20 34.22 35.33 36.00 27.49 46.73 1.62

4B

Qwen1.5 / 34.03/53.40 48.32/72.68 43.71/63.86 53.40 55.00 57.80 32.78 36.22 35.22 24.26 46.98 /
Qwen1.5-Chat / 27.76/41.84 44.96/66.09 39.95/59.46 51.20 52.80 53.60 34.11 39.33 37.44 24.80 44.10 /

Sailor / 46.82/63.34 53.98/73.48 47.65/67.09 53.40 69.20 68.20 36.11 41.33 38.89 31.27 53.14 /

Qwen1.5-Chat
& Sailor

Task Arithmetic 28.98/45.21 16.28/28.27 19.76/36.27 53.80 60.40 58.40 34.11 39.11 36.89 23.99 37.04 2.85
SLERP 11.92/28.09 19.47/42.16 31.74/52.56 51.40 57.00 56.60 33.33 39.44 38.22 25.88 37.52 2.54

Model Stock 10.27/26.73 16.64/47.73 30.37/52.69 51.00 53.00 58.00 31.89 38.56 37.11 27.22 37.02 3.08
Breadcrumbs 0.70/1.80 5.49/9.14 1.54/1.67 48.80 56.20 55.80 28.33 29.11 30.56 24.80 22.61 4.92

TIES-Merging 0.00/0.50 0.18/2.86 0.43/1.13 52.00 53.00 52.80 26.44 29.56 29.11 24.53 20.96 5.46
WIDEN 25.67/45.08 20.00/48.80 25.49/42.17 54.00 63.40 58.80 35.89 42.00 33.22 24.53 39.93 1.92
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Table 12: Performance of merging Qwen1.5-Chat and Sailor on Open LLM Leaderboard across
1.8B and 4B model sizes.

Size Models Merging
Methods ARC Hella-

Swag MMLU Truthful-
QA

Wino-
grande GSM8K Average Average

Rank

1.8B

Qwen1.5 / 37.80 61.67 45.71 39.33 61.64 34.04 46.70 /
Qwen1.5-Chat / 39.68 60.36 44.53 40.57 59.83 31.39 46.06 /

Sailor / 32.59 57.48 29.60 37.77 59.98 2.65 36.68 /

Qwen1.5-Chat
& Sailor

Task Arithmetic 37.20 60.43 41.45 38.95 61.96 12.74 42.12 4.83
SLERP 39.51 61.17 43.96 40.95 60.85 25.40 45.31 2.17

Model Stock 37.97 61.82 46.23 39.84 61.96 34.50 47.05 1.67
Breadcrumbs 37.80 60.56 41.44 38.36 62.04 17.36 42.93 3.50

TIES-Merging 37.54 60.56 41.13 39.39 61.72 14.25 42.41 4.50
WIDEN 37.71 60.47 41.61 40.54 61.64 13.04 42.50 3.67

4B

Qwen1.5 / 48.04 71.43 55.01 47.22 68.43 52.31 57.07 /
Qwen1.5-Chat / 43.26 69.67 54.07 44.74 66.61 5.84 47.37 /

Sailor / 44.45 69.38 36.80 37.03 65.35 11.75 44.13 /

Qwen1.5-Chat
& Sailor

Task Arithmetic 46.50 64.01 38.25 43.73 65.19 8.49 44.36 4.00
SLERP 45.56 68.25 50.01 43.88 66.38 41.70 52.63 2.83

Model Stock 47.01 69.31 55.41 46.55 67.32 47.08 55.45 1.33
Breadcrumbs 39.16 43.15 43.84 48.55 61.80 0.00 39.42 4.33

TIES-Merging 35.15 41.04 30.15 49.47 59.19 0.00 35.83 5.00
WIDEN 45.90 66.05 48.66 43.34 66.69 13.95 47.43 3.33

A.9 ETHICS STATEMENT

This work investigates the merging task of LLMs, no matter they are fine-tuned or pre-trained mod-
els. Even though this work has no direct ethical problems, LLMs may still potentially generate
harmful information including gender bias, fake news, and private messages when equipped with
our approach. It is necessary and promising to design specialized mechanisms to carefully regulate
these underlying issues.

A.10 REPRODUCIBILITY STATEMENT

We ensure the reproducibility of this work by presenting the experimental details in Section 4.1
and Appendix. Additionally, implementation of the proposed algorithm is available at https:
//anonymous.4open.science/r/MergeLLM-5E0D.

20

https://anonymous.4open.science/r/MergeLLM-5E0D
https://anonymous.4open.science/r/MergeLLM-5E0D

	Introduction
	Related Work
	Methodology
	Preliminaries
	Exploring Efficacy of Current Methods When Merging PT LLMs
	Extending Merging Scope to PT LLMs via Weight Disentanglement

	Experiments
	Experimental Setup
	Performance of Merging FT and PT LLMs
	Performance of Merging FT LLMs
	Investigations of Designs in WIDEN
	Analysis of Computed Weight Importance

	Conclusion
	Appendix
	blueComputation Process of WIDEN
	Details of FT and PT LLMs
	Overview and Evaluation Metrics of Benchmarks
	Descriptions of Model Merging Baselines
	Details of Grid Search on Hyperparameters of Merging Methods
	blueIssues of Several Existing PT LLMs
	Parameter Changed Ranges of FT and PT LLMs
	blueAdditional Results of Merging Qwen1.5-Chat and Sailor across 1.8B and 4B Model Sizes
	Ethics Statement
	Reproducibility Statement


