NeurInt-Learning Interpolation by Neural ODEs

Avinandan Bose* ' Aniket Das*
Indian Institute of Technology Kanpur Indian Institute of Technology Kanpur
avibose@iitk.ac.in aniketd@iitk.ac.in
Yatin Dandi Piyush Rai
Indian Institute of Technology Kanpur Indian Institute of Technology Kanpur
yatind@iitk.ac.in piyush@cse.iitk.ac.in
Abstract

A range of applications require learning image generation models whose latent
space effectively captures the high-level factors of variation in the data distribu-
tion, which can be judged by its ability to interpolate between images smoothly.
However, most generative models mapping a fixed prior to the generated images
lead to interpolation trajectories lacking smoothness and images of reduced quality.
We propose a novel generative model that learns a flexible non-parametric prior
over interpolation trajectories, conditioned on a pair of source and target images.
Instead of relying on deterministic interpolation methods like linear or spherical
interpolation in latent space, we devise a framework that learns a distribution of
trajectories between two given images using Latent Second-Order Neural Ordi-
nary Differential Equations. Through a hybrid combination of reconstruction and
adversarial losses, the generator is trained to map the sampled points from these
trajectories to sequences of realistic images of improved quality that smoothly
transition from the source to the target image.

1 Introduction

In the past few years, deep generative models’ incredible success has demonstrated their ability
to represent the underlying factors of variations in high dimensional data, such as images via low
dimensional latent variables. These factors of variation are commonly visualized by interpolating
between images by traversing particular paths in the latent space. Given any two images, it is often
desirable to obtain a distribution over various possible trajectories of smooth and realistic image space
interpolations. Learning such distribution would allow a more extensive analysis of the factors of
variation in data. In this work, we propose an approach that jointly trains an encoder and a generator
to successively transform latent vectors on a trajectory to interpolations from a given source to a
target image. To flexibly model distributions over trajectories of latent vectors, we parameterize
their dynamics in continuous-time using Neural Ordinary Differential Equations [5]]. We refer to our
approach as Neural Interpolation (NeurlInt) (Figure [I)).

Ideally, we wish every point in the latent space to map to a unique, real image. However, it is
unrealistic to expect a model to learn the entire data distribution over infinitely many real images
given only a finite dataset [2]. Thus, given any image, we can only expect the model to learn to
transform it to neighboring realistic images through suitable incremental changes. In view of this,
instead of generating an image from random noise, our approach encourages the model to traverse
through realistic images while maintaining smoothness and a net movement towards the target image.
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Algorithm 1: NeurInt: Training

Input: Dataset Py, (x), Hyperparameter A and Integration time T

1 Sample x5 and x7 from the dataset Py, (x)
Set initial latent zq of trajectory
zo = E(xg)
Sample Initial Velocity :
e ~N(0,I)
Vo = (20, E(xX1)) + € © 0y (20, E(X7))
Solve ODE System for for z; : [0,T] — X
d?z . .
W; = f(ZmZt) Zp = Vo
Compute Reconstruction Loss
Lag = x5 = G(z0) |15 + |Ixr — Glar)|;
Sample 1, ..., £y from Uniform (0, T") without replacement
Sample x1, ..., xy from dataset
Loan = XN log(D(x,)) + log(1 — D(G(z,)))
Optimize the minimax game with (Stochastic) Gradient Descent Ascent

min max Lgan + ACAE
G, w00, f D

By learning to interpolate instead of using a deterministic interpolation technique, we allow the
model to generate different categories of interpolations for different source and target images. This
is achieved by learning a distribution over trajectories conditioned on the source and target images,
parameterized by second-order Neural ODEs. Leveraging a data-dependent latent space distribution,
parameterized through Neural ODEs, lends our approach the following major advantages: 1. Direct
utilization of real images while sampling latent vectors allows our approach to incorporate the benefits
of non-parametric approaches like the ability to incorporate additional data into the generative model
without retraining the parameters. 2. Flexibility to learn different latent space distributions depending
on the training data’s complexity and size. 3. The second-order formulation allows our model to
map randomly sampled initial velocities from a simple Gaussian prior to a highly expressive class
of smooth trajectories corresponding to different vector fields on the data distribution manifold. 4.
Continuous nature of the ODE allows us to sample an arbitrary number of points in each trajectory
to obtain the desired level of smoothness in the interpolation trajectories where the smoothness
is naturally enforced by the ODE formulation. 5. Jointly enforcing smoothness and realism of
interpolated images prevents the model from simply memorizing training data. 6. Since our model’s
latent space distribution directly depends on the encoder, we do not require explicit matching of prior
and posterior distributions, unlike other encoder-generator based approaches such as VAE [21]] and
ALI [10] 7. The computational cost of sampling trajectories can be varied during training and test
times by using different discretization schemes depending on the available computational resources.

2 Neural Interpolation (NeurlInt)

Our approach, NeurInt, models a distribution over smooth continuous-time interpolation curves
%4 1 [0,T] — X (where T € RT and X represents the image manifold) which start from a given
source image Xg and end at a target image x7. Similar to other latent variable-based generative
models, we define the generated data distribution p(x) as the distribution obtained by transforming a
latent space distribution p(z) through a generator G. However, unlike generative models with fixed
parametric priors, the latent space distribution p(z) in our model is defined through a distribution

over latent trajectories z; : [0, 7] — Z conditioned over source and target images. Time evolution
2

d°z
of these trajectories is governed by a Second-Order Neural ODE of the form W; = f(z¢,2¢). In

order to ensure that all image interpolation curves that are conditioned on xg and x begin at the
source, a Position Encoder F is used to project xg to Z, and the initial position z, of the trajectory is
set to E(xg). The distribution over latent trajectories is defined by placing a data dependent prior on
the initial velocity v or zg. For our modeling purposes, we choose the prior p(vg|xs, X7) to be a
Diagonal Gaussian whose parameters are given by the Velocity Encoder V = (i, 05,).



Algorithm 2: NeurInt: Generation

Input: Source Image xg, Target Image x7 and Integration time 7'
Output: Continuous-time Interpolation Curve X; : [0,7] — X

1 Set initial latent zg of latent space trajectory
zo = E(xg)
2 Sample Initial Velocity :
e ~N(0,T)
Vo = 1y (20, E(x1)) + € © 0, (20, B(x7))
3 Solve ODE System for for z, : [0,T] — X"
d*z . .
a2 = f(Z¢,2¢) %o = Vo
4 Generate Interpolation Curve X, : [0,7] — X
it = G(Zt)

Position Encoder E

Velocity Encoder V = (1, 0,)

I Generator G // Z //

d*z
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Figure 1: Generative Model of NeurInt. The deterministic position encoder E projects the source
image xg to the latent space, the stochastic velocity encoder V inputs the source xs and target X,
and outputs the parameters of a Diagonal Gaussian distribution over the initial velocity inducing a
distribution over continuous-time latent interpolation trajectories z; whose time evolution is governed
by the Second-Order Neural ODE. The continuous-time interpolation curve X; is generated by
mapping z; to the image manifold using the Generator G

Sampling a latent trajectory z; hence consists of evaluating zy and sampling an initial velocity vg
from the data dependent prior. This fixes the Initial Value Problem (IVP) for the trajectory, which
can now be obtained by (numerical) integration of the ODE system. The true image space curve Iy
is then obtained by transforming z; using the generator, and can be sampled at arbitrarily chosen
time-points in the range [0, T'] to produce image samples.

The learning objective of the model ensures that a given image space curve X; which is conditioned
on a source target pair (xg,xr) begins at the source and ends at the target. This is ensured by a
pixel-MSE based reconstruction objective Lag that matches X to xg and X7 to xp. The realism
and diversity of interpolation curves is ensured via Adversarial Learning. We use the Generative
Adversarial Network to jointly train a critic D : X — [0, 1] which discriminates real samples drawn
from the data distribution against evaluations of the interpolation trajectory at randomly sampled
time-points . Learning is then formulated as a minimax game where the critic D plays against the
encoders F and V), generator GG and the Neural ODE f. The value function of the game is taken to be
a weighted combination of the reconstruction and adversarial objectives. The entire training process
is described in Algorithm [I]



Xg Continuous Interpolation Curves

Figure 2: Example Interpolatlons on CelebA for Top : PGAN Middle : ALI Bottom :
first and last columns contain the source and target images respectively

3 Experiments

We benchmark NeurInt, which leverages learnable interpolation trajectories, against the interpolations
generated by the Spherical (SLERP) and Linear Interpolations (LERP) on two base generative
models, Progressive GAN (PGAN) and Adversarially Learned Autoencoder (ALI) , on the
Street View House Numbers (SVHN) [28]] and CelebA [24]] datasets. To maintain uniformity, the
architecture of the Generator and Discriminator for all three models, and that of the Encoder for
ALI and NeurlInt resemble a standard Progressive GAN. The Neural ODE component of NeurInt
uses a Runge Kutta (RK4) integrator with 32 integration timesteps and a total integration time of 1
second (1" = 1). Further details regarding our architectural choices and hyperparameter selection
are described in the Appendix. To evaluate our approach’s interpolation capabilities compared to the
baselines, we project the source and target images in the latent space of the respective models, and
compare the continuous-time learned interpolations of NeurInt against the interpolations generated
by SLERP and LERP for each of the baseline generative models. For NeurInt and ALI, projecting
the image to an encoding space is trivial since both the models jointly learn an encoder from the
image space to the latent space. However, since PGAN lacks any such means of projection, we
train an encoder Ep that learns to project images onto the trained Progressive GAN latent space.
The architecture of Ep is the same as that of the encoder £ used by Neurlnt and it is trained by
minimising a pixel-wise MSE loss and the encoder is progressively grown to maintain consistency.

Sample Quality, Diversity & Incorporating Unseen Data We quantitatively assess the generation
and interpolation quality for NeurInt and our baselines using Frechet Inception Distance (FID) [13], a
standard evaluation metric for GANs, and present the results in Table[5] We randomly select 5000
pairs of source-target images from a support distribution. For NeurInt we generate interpolation
trajectories for each pair and randomly sample two intermediate interpolants from each trajectory.
For the PGAN and ALI baselines, we project each source-target pair into the latent space, and then
generate trajectories using Spherical and Linear Interpolation. The FIDs so obtained are listed under
LERP and SLERP in Table[5] To decouple the evaluation of interpolation quality from that of sample
generation, we also evaluate the FID of the baselines using samples drawn from their true generative
model (listed as PGAN-PRIOR and ALI-PRIOR in Table3)), by sampling a latent code from their
respective priors.

Adapting to Unseen Supports Since our approach models distribution over trajectories conditioned
on source and target images, the generated data distribution can be flexibly varied by modifying the
distribution of source and target images. This allows the trained model to improve the generated
data’s diversity without retraining the parameters by incorporating additional data into the set of
source and target images. This is unlike the models based on fixed parametric priors, which require
retraining on new data to modify the generated data distribution. We repeat the evaluation by varying
the support across 3 different distributions, namely the Train Set, the Test Set, as well as the Train
and Test set combined. As demonstrated through the results in Table[I] utilizing additional data from
the test set leads to improvement in FID scores. Our model’s ability to interpolate on test data also
demonstrates its ability to model the entire image data manifold rather than overfitting on training
images.

Varying ODE Solver Configuration The Second-Order Neural ODE formulation of NeurInt allows
it to interpolate in continuous time. This imparts our approach the flexibility of varying the the level
of discretization (number of time-steps) as well as the ODE solver at test time. We validate this by
generating trajectories while reducing the number of integrator steps from 32 to 20 in steps of 4 for
both RK4 and Euler algorithms. For a fair comparison, we correspondingly vary the time-resolution
of the LERP and SLERP interpolators of our baselines and benchmark the models using the FID
metric. The results are presented in Table[3] We observe that even at very low integration time-steps,



Table 1: FID scores ({) across various supports & sampling methods.

SUPPORT DATASET METHOD PGAN ALI NEURINT
PRIOR 17.05 46.45
SVHN LERP 25.23 36.59 6.45
TRAIN SLERP 25.43 36.52
SET PRIOR 11.57 19.24
CELEBA LERP 36.28 24.21 10.23
SLERP 36.45 24.25
PRIOR 17.05 46.45
SVHN LERP 29.53 37.61 6.82
TEST SLERP 30.06 37.17
SET PRIOR 11.57 19.24
CELEBA LERP 35.94  23.78 10.37
SLERP 36.63 23.38
PRIOR 17.05 46.45
SVHN LERP 24.74  37.57 6.24
TRAIN SLERP 2531  37.04
& TEST PRIOR 1157 19.24
SET CELEBA LERP 36.27 23.77 10.17
SLERP 36.43  23.95

Table 2: FID scores () on CelebA dataset across various models & sampling methods.

METHOD \PGAN ALI NEURINT NEURINT-PT LINT SINT FOINTI FOINTII
PRIOR 11.57 19.24
LERP 36.27 23.77 10.17 16.94 16.5 13.2 24.5 13.5
SLERP 36.43 23.95

the RK4 variant of Neurlnt consistently outperforms the baselines. The same does not hold true for
the Euler integrator for very low timesteps, which could be attributed to the inherent coarseness and
piecewise linear nature of the Euler Integrator. The discretization invariance of NeurInt has immense
practical utility, as it allows us to train the model at a very fine time resolution on a powerful hardware
configuration, while deploying it at test time on less powerful hardware by reducing the accuracy and
integrator timesteps of the solver. We also report the time taken for generating the latent interpolants
in Table[3|for NeurInt as well as LERP and SLERP in PGAN. We note that RK4, despite using four
intermediate increments per solver step, is consistently faster than SLERP.

Table 3: FID scores ({) on CelebA and time on varying the solver and timesteps.

FID Time(s) for 64000 images
Steps NeurlInt PGAN ALI NeurInt PGAN
RK4 Euler | LERP SLERP | LERP SLERP | RK4 Euler | LERP SLERP
20 10.63 1223 | 36.00 36.73 | 24.18 2426 | 41.55 1547 | 1296  60.19
24 1047 1190 | 3649  36.85 | 2424 2426 | 49.85 23.84 | 20.81 79.69
28 1043 1123 | 36.29 3725 | 24.04 2412 | 5854 3394 | 40.74 113.87
32 10.37 1094 | 3594 36.63 | 23.78 2338 | 62.23 40.75 | 54.11 11943

Ablation Study To evaluate the benefits of jointly incorporating smooth interpolation on the latent
space through the use of second-order Neural ODEs and non-parametric data-dependent prior on the
latent space obtained by conditioning the generated images on the randomly sampled source and
target images, we perform an ablation experiment ( NeurInt-PT) where we train the generative model
to map images from a fixed latent space prior using the original Generative Adversarial Networks
framework and subsequently utilize a Neural ODE network to learn realistic interpolation trajectories
on the fixed latent space. In Table 5] we report the FID of NeurlInt-PT.

Choice of using a 2" Order ODE Free initial velocity parameter in 2" Order ODE allows us to
parameterize a trajectory distribution for every source target pair. Such a parameter is absent in
fixed interpolation schemes and 1% Order ODE:s of the form % f(z¢) or % = f(zt,zc) where
zc ~ N (o (2o, BE(X7)), 04(20, E(x7))?I). Hence, using LERP, SLERP or a 1% Order ODE in
Algo[T| Step 4 would prevent us from learning a trajectory distribution for a source-target pair, since
such approaches uniquely fix a trajectory given two endpoints and we quantitatively justify our choice
by training the corresponding models called LINT, SLINT, FOINT I and FOINT II. As shown by
FID scores in Table 5] NeurlInt outperforms these models.
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A Related Work

The progress in the design of latent variable-based deep generative models such as GANs [12],
VAEs [21]], and normalizing flows [31]] in recent years has led to numerous applications. Generative
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Adversarial Networks (GANSs), in particular, have been extensively utilized for image generation
[19L14,9,|18], video generation [36, |6, 8], image translation [[17, 41]], as well as various other tasks
requiring the generation of high-dimensional data. This has also led to vast literature on improving
inference [10, (7,25, |37, [26]], and training stability [27, 1] of GANs. However, work on improving
the diversity, smoothness, and realism of interpolations has been limited. One of the major reasons
for poor interpolation quality is the mismatch between latent vectors’ distributions corresponding to
interpolations and the prior distribution used during training. Some recent works have attempted to
tackle this mismatch by modifying the prior [38| 22]] or using non-parametric priors [33]. However,
unlike our approach which ensures matching image distributions corresponding to entire trajectories
with real data distribution, these works only focus on matching the latent space distribution for
midpoints of sampled noise vectors. A recent work [5] exploited Neural Ordinary Differential
Equations’ inherently sequential nature to model continuous time dynamics of time-series data.
However, such an approach cannot be directly applied to generating interpolations in the training
data. Therefore, we leverage Neural ODEs [5] for traversing the latent space while ensuring realness
through the use of a discriminator. Our work is also related to but different from Exemplar models
[29] and Kernel Density Estimation [30]. While Exemplar based generative models directly utilize the
dataset for modeling the latent space distribution, each generated image in such models is obtained by
modifying only one randomly sampled image. Our approach instead can find points on image space
between any arbitrarily pair of images, enabling it to capture the full diversity of image data manifolds
for both generation as well as interpolation. Moreover, our GAN based formulation allows directly
matching the image distribution of trajectories of interpolants with the real data distribution. This
obviates the need of utilizing a nearest-neigbour based approximation of a closed form non-parametric
distribution in the latent space. By directly enforcing smoothness and realism of interpolated images,
our approach also prevents memorization of training data without utilizing regularization [29] or
pseudo-inputs [35]].

The set of source and target images in our model can also be interpreted as a form of external memory,
which has been shown to improve generation quality in several works [3, |14, |16} 34,20} 23].

The use of Neural ODEs in our approach is inspired by their recent application to a variety of domains.
On account of their continuous-time formalism, Neural ODEs, unlike traditional discrete-time
sequence models, are capable of handling non-uniformly sampled temporal data with no additional
overhead. As a result, they are inherently suited to applications, such as time-series forecasting [5}|32]
and deep generative models of continuous-time data [5 |39], moreover, due to their smoothness and
invertibility properties [40]], Neural ODEs also find application in density estimation and variational
inference as Continuous Normalizing Flows. [5}|13]

B Background

Since our approach is based on neural ODEs, in this section, we briefly review neural ODEs and
second-order neural ODEs, and approaches to solve these.

Neural ODEs Various deep learning architectures, such as Residual Networks, RNNs and Normaliz-
ing Flows can be be formulated as a discrete sequence of additive transformations on a state variable
Z

Zep1 = 2t + fo(2e)

where the transition function fy is modelled by a neural network. The above operation can be
identified as a unit time-step Euler discretization of a continuous-time system. Hence, taking the
continuous limit of the additive transition, we obtain a First-Order ODE system for z,

dZt

i fo(zt)
The neural network fy, which was previously the discrete-time transition function, now becomes the
vector field for the First-Order ODE governing the time evolution of the state z;. This framework is
known as Neural Ordinary Differential Equations [5]]. The value of the state z; at any given time, as a
function of the input or initial state zg, is obtained by solving the Initial Value Problem (IVP)

t
Z = Zg +/ fo(z,)dr
0



Table 4: Misclassification rate ({) on the test set of SVHN demonstrating the usefulness of learned
representations.

Model Misc rate (%)

PGAN  0.3254 £+ 0.0024
ALI 0.2848 £ 0.0840
NeurInt  0.2647 £ 0.0018

While exact solution is infeasible in most cases, the IVP can be approximately solved with high
accuracy using Numerical ODE solvers such as Runge Kutta (RK4) and Dormand Price (DOPRIS).
Gradients can either be obtained by ordinary backpropagation or by using the Adjoint State Method,
[5]] which allows gradient computation without backpropagating through ODE solver operations.

Second-Order Neural ODEs Despite the impressive continuous-time modeling capabilities of (First-
Order) Neural ODEs, there exist various classes of phenomena (e.g. Harmonic and Van der Pol
oscillators) whose latent dynamics cannot be modeled by First-Order ODE systems. This motivates
the use of Second-Order Neural ODEs [39]], a framework where the time evolution of the state
variable z; is governed by

d2Zt

W = fa(Zt,it)

Analogous to First-Order Neural ODE:s, the vector field fy(z;, z;) is modelled by a Neural Network.
However, a key difference lies in the fact that the vector field is a function of the state z; as well
as the state differential z; = %. This feature allows Second-Order Neural ODEs to model much
more complex dynamical systems that cannot be modeled by First-Order Neural ODEs. Moreover,

Second-Order Neural ODEs have much better smoothness properties as they ensure the continuity of
2

s

To facilitate numerical integration, the Second-Order Neural ODE is reduced to an equivalent Coupled

First-Order ODE system by introducing an auxiliary state variable v; (often named velocity) as

follows.

the second derivative of state

dz dv
Ttt = thftt = fo(zt, Vi)
This ODE system can be interpreted as a First-Order Neural ODE for the augmented state [z;, v;]7 .

Consequently, it can be transformed into an Initial Value Problem (IVP)

2 =To]+ [ e o

which, as described in Section 3.1, can be solved by Numerical ODE solvers. As discussed ear-
lier, gradient computation can be performed either by backpropagating through the ODE solver’s
operations or by using the Adjoint State Method [5].

C Additional Experiments

Improved Representation Learning We evaluate the representation learning capabilities of NeurInt
and our baselines by training a linear SVM model on the feature vectors obtained by concatenating
the output layer and the last hidden layer of the encoder for 60,000 class balanced labeled images
from the training set of the SVHN dataset. We hold out 10,000 labeled images from the training
set as a validation set to tune hyper-parameters of the SVM model. We report the average test
misclassification error for 10 different SVM models trained on different random 60,000 example
training sets. Our results are reported in Table [4]

Learning a Distribution of Trajectories To assess the diversity of the interpolation trajectories
resulting from the distribution modeled by NeurInt, we generate different trajectories by fixing a
source-target pair, drawing multiple samples of v conditioned on this fixed source-target pair and
generating the corresponding interpolation trajectories. As observed in Rows A; and A, of Figure[3]
the sampled trajectories show noticeable variation in the intermediate interpolants but successfully
converge to the same target, as desired. To further emphasise on this variation, we repeat the process
by using the same source as Rows A; and A, but using a different target image as shown in Rows Ag
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Figure 3: NeurlInt learning a distribution of trajectories for interpolation. The top two rows represent

samples on the trajectories A; and As, while the bottom two rows represent samples on trajectories
A3 and A4.

and A4. To visualize these variations in the encoding space, we plot the first Principal Component
of each row of Figure [3] over time. It is observed in the plot (Figure [3) that the PCA [IT]] curves
of trajectories A; and A,, starting from the same source, deviate from one another in the middle,
thereby reflecting the variety of intermediate interpolants, and towards the end, converge very close
to each other, in the neighborhood of the target. The same phenomenon is observed for Ag and
A4, whose PCA curves deviate significantly from A; and Az, on account of having a different
target. Furthermore, the PCA curves’ curvature and smoothness confirm that NeurInt truly captures a
distribution of smooth and non-linear interpolation trajectories.

D Architecture and Setup

For our baselines and the proposed model, we borrow the architecture for generator and discriminator
from PGAN [19]]. For ALI, following [[10], we use two networks Dy and Dz to extract features
from a given image X and latent vector Z respectively which are subsequently concatenated and
passed through a joint network Dy z to obtain D(X, Z). To ensure fairness, all models were
trained progressively. The encoder E’s architecture uses the same layers as the first 12 layers of the
discriminator architecture’s D x component.

For Neurlnt, the position Encoder E and velocity encoder V = (i, 0y ) are both one hidden layer
MLPs with a LeakyReLLU nonlinearity, and the the vector field f of the Second Neural ODE is a 2
layer MLP with a tanh nonlinearity. The relative weighting hyperparameter A in the loss for NeurInt
was decayed linearly from 1000 to 100 per half cycle of each progressive step and then kept stable at
100 for the next half-cycle of the step.

To maintain consistency, we also trained the encoder Fp for PGAN by growing it progressively.
We obtained an RMSE error of 0.0522 on the held-out test set upon training. Figure ] shows some
reconstructions on held-out test data which qualitatively indicate the convergence of the encoder.

We use the same optimizer for PGAN and Neurint as proposed in [[19] and for ALI as in [[10].
For all our experiments, we use 2 Nvidia GeForce GTX 1080 Ti GPUs.
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Figure 4: Sample Reconstructions of Encoder £,

Table 5: FID Score Statistics for NeurInt, PGAN and ALI on CelebA and SVHN. Lower FID is better.
For all sampling methods other than PRIOR, the training set is used as the support

DATASET | METHOD PGAN ALI NEURINT
PRIOR 17.05£0.082  46.45+0.075
SVHN LERP 25.23£0.072  36.5940.073 6.451-0.069

SLERP 25.4340.081 36.52+£0.066

PRIOR 11.574+0.088 19.2540.0.085
CELEBA LERP 36.294+0.078 24.20+0.090 10.2240.082
SLERP 36.44+0.081 24.254+0.091

E FID Statistics

Using the training set as the support, we compute the FID scores of NeurInt and our baselines (using
the same procedure as described in the main paper), over 100 randomized runs, and report the mean
and standard deviation of the FID scores obtained in Table[3l

F Additional Samples

Interpolation Samples : Figures [5] and [6] qualitatively demonstrate NeurlInt’s ability to generate
significantly more realistic and smoother interpolation trajectories over the baselines.

Uncurated Samples : Figure[7]shows uncurated samples from NeurlInt and baselines. The quality
of the generated samples of NeurInt against the baselines backs up the superior FID achieved by
NeurlInt. This demonstrates NeurInt to be not only a good interpolation methodology but also a good
generative model.

Distribution of trajectories : Figure [§] demonstrates qualitatively NeurInt’s ability to draw
interpolations from a distribution of interpolation trajectories. Particularly note the transition between
a female source and male target with different facial attributes.

Ablation Study : Figure [0 demonstrates the benefits of our joint training mechanism, with NeurInt
interpolation trajectory being of significantly better quality than NeurInt-PT.

11



Continuous Interpolation Curves

ﬁmﬂﬂ aaa Q\ &ﬁ

wnﬂlﬂﬂ&ﬂﬁmmmmmmma@

PGAN

ALI

NeurInt

PGAN

ALI

NeurInt

PGAN

ALI

NeurInt

PGAN
ALI

NeurInt

Figure 5: Comparlson of Interpolatlon quahty between PGAN ALI and NeurInt on the CelebA
dataset. xg (leftmost) and x7 (rightmost) denote the true source-target pair from the training set on
which the trajectory was conditioned. The interpolation trajectories (shown in the middle) begin at
Xg (reconstruction of xg) and end at X (reconstruction of x)
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Figure 6: Comparison of Interpolation quality between PGAN, ALI and NeurInt on the SVHN dataset.
xXg (leftmost) and x (rightmost) denote the true source-target pair from the training set on which
the trajectory was conditioned. The interpolation trajectories (shown in the middle) begin at xg
(reconstruction of xg) and end at X7 (reconstruction of x7)
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NeurInt

Figure 7: Uncurated samples from Progressive GAN (left), ALI (middle), and NeurInt (right) trained
on the CelebA dataset. Samples from Progressive GAN and ALI are drawn from their true prior
distribution, whereas samples from Neurlnt are drawn by first generating continuous-time trajectories
and then evaluating them at random intermediatelaoints
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Figure 8: Neurlnt’s samples upon choosing different random initial velocities demonstrating the
model’s ability to learn a distribution of trajectories. Each row is an interpolation between the real
images on the first and last columns.

Xg Continuous Interpolation Curves
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Figure 9: Example Interpolat1ons for PGAN ALI NeurInt and NeurInt-PT. The first and last columns
contain the source and target images respectively
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