
The Training Agents with Foundation Models Workshop at RLC 2024

Policy Learning with a Language Bottleneck

Megha Srivastava
megha@cs.stanford.edu
Stanford University

Cédric Colas
ccolas@mit.edu
MIT

Dorsa Sadigh
dorsa@cs.stanford.edu
Stanford University

Jacob Andreas
jda@mit.edu
MIT

Abstract

Modern AI systems such as self-driving cars and game-playing agents achieve su-
perhuman performance, but often lack human-like features such as generalization,
interpretability and interoperability with humans. Inspired by the rich interactions
between language and decision-making in humans, we introduce Policy Learning
with a Language Bottleneck (PLLB), a framework enabling AI agents to generate
linguistic rules that capture the strategies underlying their most rewarding behav-
iors. PLLB alternates between a rule generation step guided by language models,
and an update step where agents learn new policies guided by rules. In a two-player
communication game, a maze solving task, and two image reconstruction tasks, we
show that PLLB agents are not only able to learn more interpretable and general-
izable behaviors, but can also share the learned rules with human users, enabling
more effective human-AI coordination.

1 Introduction

As AI systems play an increasingly central role in automation, there is a growing need for them to
better model and emulate human behavior. Such systems must be interpretable, and both act and
generalize in human-predictable ways so that users can effectively interact with them. Unfortunately,
many of today’s AI systems do not meet these standards. Self-driving cars or game-playing agents
may achieve super-human performance but lack interpretability (McIlroy-Young et al., 2020) and
often act unpredictably, especially outside their training distribution (Wang et al., 2023). Mean-
while, humans acquire most of their skills and knowledge from others, often using language—via
instructions, advice, or explanations that improve their decision-making capabilities (Carruthers &
Boucher, 1998; Mesoudi & Thornton, 2018). Language acts as a communicative medium, enabling
us to teach, learn from, and coordinate with others to solve complex problems. It also supports
other cognitive functions: it allows us to represent abstract concepts (Hesse, 1988; Lakoff & John-
son, 2008), and plan (Vygotsky, 1965; Clark, 1998); it guides our attention (Waxman, 1994; Yoshida
& Smith, 2003), and prompts relational thinking (Gentner & Loewenstein, 2002).

Consider a driver learning novel social conventions (e.g., triangle-shaped stop signs). While adapting
to the environment, they might verbalize strategies to themselves (e.g., If the sign is triangular,
I should stop, a cognitive use), or transmit this convention to others (e.g., telling a friend In
Japan, stop signs are triangles, a communicative use). Representing knowledge with language helps
humans solve problems and transmit solutions by encoding abstract problem structures that facilitate
learning and generalization (Boutonnet & Lupyan, 2015; Chopra et al., 2019; Tessler et al., 2021).
Although the recent literature contains many examples of AI systems leveraging language-based
representations or feedback, these often rely on external supervision: humans in the loop or hard-
coded feedback (see related work in Luketina et al., 2019; Colas et al., 2022). This paper aims to
develop more human-like AI systems that not only use language-based supervision but also generate
their own language-based feedback to leverage the communicative and cognitive functions of language.

We introduce Policy Learning with a Language Bottleneck (PLLB), a framework providing artifi-
cial agents the ability to generate linguistic rules that capture the strategies underlying their most

The Training Agents with Foundation Models Workshop at RLC 2024

rewarding behaviors. As shown in Figure 1, PLLB alternates between a gen_rule step that ex-
plains the agent’s most rewarding behaviors by prompting a language model (LM) with contrastive
episodes, and an update step that learns a new policy conditioned on these rules. PLLB helps
agents learn more human-like policies, which we examine across four diverse tasks. They perform
better: in two image reconstruction tasks, PLLB agents generate instructions increasing the lis-
teners’ performance compared to non-linguistic baselines (Section 7). They generalize better: in
a maze task, agents uncover the abstract problem structure and generalize better to similar mazes
(Section 6). They are more interpretable: in a coordination task, agents converge on the most
human-interpretable policy when several optimal ones exist (Section 5). They are more inter-
operable: in maze and image reconstruction tasks, humans achieve achieve better rewards when
interacting with PLLB agents (Sections 6 and 7).

2 Background & Related Work

Language facilitates cooperation and coordination between humans and machines via instructions
(Hermann et al., 2017; Chevalier-Boisvert et al., 2019), advice (Watkins et al., 2021), explanations
(Zhong et al., 2020; Lampinen et al., 2022), or the formation of conventions (Hawkins et al., 2020; Hu
& Sadigh, 2023). Such communicative functions increase the fidelity and breadth of cultural trans-
mission — a process of social learning that underlies human ecological success (Mesoudi & Thornton,
2018). Language also augments a learner’s cognitive abilities, and helps RL agents represent more
abstract goals (Jiang et al., 2019), generalize better (Hill et al., 2020; Colas et al., 2020; Wong et al.,
2021), explore more efficiently (Tam et al., 2022; Klissarov et al., 2023) and decompose complex
goals into simpler ones (Chen et al., 2021; Ahn et al., 2022; Hu et al., 2022; Sharma et al., 2021;
Hu & Clune, 2023). We extend these benefits to agents that learn from self-generated linguistic
feedback.

Generating linguistic rules for oneself is a form of inner speech. Inner speech is seen as the internal-
ization of the social speech generated by caretakers to help children solve problems (Vygotsky, 1965;
Luria, 1959). As a result, it is thought to support our capacities for complex, long-term behaviors
(Vygotsky, 1965; Luria, 1959; Hermer-Vazquez et al., 2001; Spelke, 2003). Meanwhile, AI agents
endowed with forms of inner speech (explanations, descriptions or subgoals) have been found to
perform and generalize better than agents trained with purely neural representations (Wong et al.,
2021; Lampinen et al., 2022; Roy et al., 2022; Hu & Clune, 2023). Instead, PLLB generates language
in an unsupervised way.

Recent works propose guiding LMs’ reasoning by prompting them to step through“thoughts” se-
quences (Wei et al., 2023; Yao et al., 2022; Li et al., 2023b). While Shinn et al. (2024) addition-
ally leverage linguistic “self-reflections” of task feedback, they are limited to language agents that
learn without traditional policy or value-based RL. In contrast, PLLB can both increase the inter-
operability of initially uninterpretable systems (low level policies) and improves the generalization
capacities of an RL agent.

3 The Language Bottleneck

PLLB builds on the standard RL framework to train more human-like agents to solve decision-
making tasks (e.g., solving a maze), which we formalize as Markov decision processes (S, A, f, R, T)
with reward function R : S ×A→ R (e.g., speed) over states S (e.g., cell coordinates) and actions
A (e.g., directions), time horizon T , and a transition function f : S×A→ S that maps state–action
pairs (s, a) to next states s. Standard RL involves training a policy π to maximize expected reward.
This is usually done by: (1) collecting data with the current policy: D ← πi and (2) updating the
policy using the data: πi+1 ← update(πi, D), where update is an RL algorithm (Sutton & Barto,
2018). We introduce a language bottleneck between data collection and policy update. We extract
linguistic rules describing past rewarding behaviors and then use them to regularize the policy’s
behavior in the next learning iteration (e.g., I should go right in blue cells, see Figure 1). This

The Training Agents with Foundation Models Workshop at RLC 2024

Output a rule that best
summarizes the strategy

I should follow

Output a rule I should
follow when providing

descriptions

Output a rule I should
follow when providing

descriptions

Output a rule that best
summarizes the strategy

I should follow

LOW REWARD
A small bird
perched on a
tree branch.

HIGH REWARD
A white

pelican bird
is swimming
in the water.

I should select the same
action as the observation.

If I observe Blue, move
NORTH.

Avoid using vague terms
like "scattered”.

Describe the bird’s
coloration and species.

𝓛 + [observation] + I
should select

𝓛 + [observation] + I
should select

𝑄 3 =
{1: 0, 2: 0, 3: 0.8, 4: 0.1, 5:0}

Four blue
triangles at
(0.8, 0.7)…

SELECTSAY MAZE BUILDER BIRDS

LOW REWARD

HIGH REWARD

LOW REWARD
(White, South), (White,
North), (Blue, West),

REWARD: 10

HIGH REWARD
(White, East), (Blue,
North), (White, North),

REWARD: 100

LOW REWARD
OBSERVATION: 4

ACTION: 5
REWARD: 3.84

HIGH REWARD
OBSERVATION: 4

ACTION: 4
REWARD: 5.42

At least five
dots scattered
across canvas

Red dots at
(0.49, 0.24),
(0.5, 0.24)…

𝓛 + [observation] +
Provide a description

𝓛 + [observation] +
Provide a description

𝑄[(0,2)] =
{𝐍𝐨𝐫𝐭𝐡: 𝟎. 𝟖, South: 0,

East: 0, West:0.2}

A red bird,
likely a
cardinal

gen_rule
(LM)

update
(LM)

𝓛

Figure 1: Across both multi-step decision making and visual tasks, PLLB iterates between
gen_rule, which extracts a linguistic rule (L, blue) by contrasting high and low reward episodes
from experience (green/red boxes), and update, which updates an agent’s policy conditioned on L.

algorithm thus alternates between three steps: (1) data collection, Di ← πi; (2) language bottleneck
generation, Li ← gen_rule(Di) and (3) policy updating, πi+1 ← update(πi, Di,Li).

Rule Generation (gen_rule) Using all the experience Di collected by the policy πi in the current
iteration, the gen_rule step aims at inferring an abstract rule Li that best explains the agents’
successful behaviors: Li ← gen_rule(D). Inspired by Dunlap et al. (2023), we prompt an LM with
contrastive episodes from Di (top-N highest vs. top-N lowest total rewards) and ask it to provide
the rule that should be followed to obtain high rewards (see first row of Figure 1 and Appendix
Section A.6 for full prompts).

Rule-Guided Policy Update (update) Given a rule Li, update produces a new policy πi+1 ←
update(πi, Di,Li) that is better aligned with Li. There exist many methods for leveraging language
supervision, typically provided by experts, to modify agents’ policies. One approach is InstructRL
(Hu & Sadigh, 2023), which regularizes the learned policy with another policy induced by the
linguistic rule πL. In the maze example from Figure 1, if the rule is go right on every blue cell, the
induced πL should assign probability 1 to right in blue cells, but equal probabilities to all actions in
other situations. In the Q-learning algorithm, InstructRL adds a regularizing term (orange) to the
standard update rule, where λ controls regularization strength:

Qθ(st, at)← rt+1 + γQθ(st+1, at+1), where at+1 = arg max
a

[Q(st+1, a)+λ log πL(a | st)].

How do we induce πL from L? Since L is expressed in language, we prompt an LM with both the
rule and the agent’s current state st to generate the next action and obtain a probability distribution
over admissible actions. In domains where the policy can be directly implemented in text by an LM,
conditioning the policy on the rule L by adding it to the prompt πL can steer the agent’s behavior.

4 Experiment Set-Up

We run experiments on a set of four diverse tasks to showcase the capacity of PLLB to train
more human-like agents. Our domains include a simpler two-player communication game called
SelectSay (Section 5), a Maze solving task (Section 6), and two collaborative image reconstruction
tasks with either synthetic (Builder) or natural (Birds) images (Section 7). For all tasks, we
include hyperparameter details (Appendix A.2), the exact prompts used in gen_rule and update
(Appendix A.6), and examples and qualitative analysis of generated rules (Appendix A.7 and A.8).

The Training Agents with Foundation Models Workshop at RLC 2024

Bottleneck

InstructRL (Oracle)

TabularQ (Baseline)

Adversarial
Bottleneck

a. Standard (Reward) b. Standard (Interpretability) c. Fixed Speaker (Reward)

R
ew

ar
d

R
ew

ar
d

In
te

rp
re

ta
bi

lit
y

Episode Episode Episode

Figure 2: SelectSay. a) Bottleneck agents learn as fast as TabularQ and InstructRL and
faster than agents using adversarial rules Adversarial. b) Unlike TabularQ, they learn human-
interpretable policies without relying on an external instruction like InstructRL. c) When faced
with speakers enforcing a non-interpretable policy, Bottleneck converges faster than InstructRL.

5 SelectSay

As a proof-of-concept, we first consider SelectSay, a simple collaborative game introduced in Hu
& Sadigh (2023). Here, a speaker can see a hidden set of five balls including two blue ones and
must help a listener find the blue balls by communicating with them only via numbers (Appendix
Figure 7). The speaker and listener could converge on any bijective convention between messages
and balls, which we observe with RL agents (multiple optimal policies). Humans, on the other hand,
prefer the intuitive mapping 1 → 1, 2 → 2, etc. or human-interpretable policy. Hu & Sadigh (2023)
showed that regularizing the listener’s policy with the instruction “I should select the same number
as my partner”, successfully guided the two RL agents to the human-interpretable policy.

Task Overview. As in Hu & Sadigh (2023), the speaker and listener are RL agents trained
with Q-Learning that receive positive rewards when the listener collects blue balls, negative rewards
otherwise. After training both agents for 200 episodes, we prompt llama-2-70b-chat with a contrastive
set of high- and low-reward episodes to generate a rule L, e.g., I should choose action 4 whenever
the observation is 2, 3, 4, or 5. (gen_rule, see Figure 1). We generate new rules every 500 training
episodes. In between, we regularize the listener’s policy with a another policy πL induced from the
current rule L. This is done by obtaining a distribution from applying softmax on the LM’s logits
(see method in Section 3) across all possible actions. In the following experiments, we compare our
Bottleneck method, with an Adversarial version (corrupted rule), a TabularQ baseline, as well
as an InstructRL upper bound using the predefined instruction from (Hu & Sadigh, 2023).

5.1 PLLB helps learn human-interpretable policies

We first compare all methods along two dimensions: reward and their interpretability measured as
the proportional (0 to 1) similarity between the listener’s policy and the optimal human-interpretable
policy described above. All methods but Adversarial quickly solve the task (Figure 2a), showing
that corrupted rules hinder learning. Bottleneck and InstructRL both converge on the human-
interpretable policy thanks to their linguistic rules while TabularQ — deprived of such rule — does
not (Figure 2b). Interestingly, we note that Adversarial policies are more interpretable than
TabularQ, suggesting that even corrupted language may provide biases towards more human-like
behavior. We observe that generated rules converge towards describing the human-interpretable
policy (e.g., I should follow the strategy of choosing the same action as Agent 1, see A.7).

5.2 PLLB can learn counter-intuitive policies

A potential confound in the preceding experiment is whether PLLB helped converge to the human-
interpretable policy because this is the only behavior an LM is able to describe. To test this
hypothesis we fixed the speaker to use a counter-intuitive policy using a random mapping between
balls and messages (e.g., 1 → 3, 5 → 2, etc.). Here, a listener following the human-interpretable
policy would fail. In Figure 2c we observe that InstructRL and Adversarial, both regularized by
misaligned rules, converge at a slower rate than both TabularQ (no rule) and Bottleneck.

The Training Agents with Foundation Models Workshop at RLC 2024

a. Standard b. Generalization c. Adaptation

Bottleneck

LinearQ (Baseline)

TabularQ (Baseline)

Adversarial Bottleneck

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

Episode Episode Episode

Figure 3: Results in Maze. a) Bottleneck agents learn as fast as the non-linguistic Baseline
agents, but faster than Adversarial and LinearQ agents. b) When faced with a new maze with
similar structure, Bottleneck agents learn faster than TabularQ (which does not perceive color)
and LinearQ(which does, but learns slower). c) When faced with a maze of a different structure,
Bottleneck agents adapt swiftly while LinearQ cannot recover.

6 Maze

We next study the Maze task, where agents must solve a maze using four directional actions
(N/S/E/W), but can leverage generalizable environment hints (e.g color) about the optimal path.

Task Overview. We generate random 7x7 mazes with gym-maze1, where agents are penalized by
the number of steps they took to reach the goal. We add structure to all mazes by coloring cells for
which the optimal action is south (red) or north then east (blue) with 50% probability. Agents that
leverage color information better generalize to new mazes where the optimal action sequence differs.
The first iteration of PLLB correspond to training a standard RL algorithm to obtain π1, in our
case a tabular Q-learning agent (TabularQ). After the agent observes two solved mazes, we run
gen_rule by prompting a llama-2-70b-chat LM with contrastive episodes and a task description. This
gives us a linguistic rule L1 (e.g., Upon observing RED, take SOUTH) that we can use to update
the policy. We first induce the regularizing policy πL1 with rule L1 by obtaining a probability
distribution over the 4 actions from the LM, and then run the RL algorithm for 5 episodes to obtain
the new policy π2 (Section 3). We repeat these steps every 5 episodes of interactions with the
environment. Baselines include the base tabular Q-learning algorithm without language bottleneck
(TabularQ) and a variant of Bottleneck generating rules from reward-randomized episode samples
(Adversarial). We additionally evaluate LinearQ, an agent learning a linear model Q-function
with an additional feature for cell color. We train LinearQ with a batch update of size 10 and
learning rate 0.001, after performing a hyperparameter sweep, and found it took much longer to
converge than other methods.

PLLB learns more generalizable policies Figure 3a shows that learning a valid rule
(Bottleneck) does not increase learning speed over TabularQ (already quite fast), but using a
corrupted rule (Adversarial) or learning from linear features (LinearQ) slows down learning. We
next replace the maze by another 7x7 maze sharing the same underlying color semantics, but with
different optimal action sequences. For fair comparison, we start with the fully converged policy for
each method (requiring 100 episodes for LinearQ). Figure 3b shows that Bottleneck leverages the
learned rule and adapts to the new maze more effectively than both TabularQ and a fully converged
LinearQ agent. While TabularQ cannot generalize because it does not perceive colors, LinearQ
generalizes faster at first, but converges slower. Generated rules improve over time to better capture
the structure of the maze (e.g., if I observe BLUE, then take the NORTH action; see other examples
in Appendix A.7). Across all trials, 100% of the final rules mention the red → south rule and 60%
uncovered the more complex blue → north-then-east rule. Finally, we find that a policy that does
not update Q-values (i.e. purely implemented via the LM) achieves a 0% success rate within the
same time limit, even when using the final generated rules from PLLB.

PLLB learns adaptable policies In Figure 3c, we run this same experiment on a maze with a
different underlying structure (red now indicates west while blue indicates east then south). Although
the rule Bottleneck learned does not apply anymore, it can still adapt faster than the baselines.

1https://github.com/MattChanTK/gym-maze

The Training Agents with Foundation Models Workshop at RLC 2024

The language bottleneck can indeed quickly capture the new structure of the task and regularize
learning to steer adaptation. Here LinearQ seems to have overfit to the first maze and struggled to
adapt. We find that all trials end with rules capturing the new mapping (100% red→ west, 50% blue
→ east-then-south). Overall, these results show that the language bottleneck supports human-like
cognitive functions by finding a tradeoff between the efficiency of TabularQ and the generalization
capabilities LinearQ while remaining more adaptable.

PLLB is more interpretable and inter-operable Can generated rules be useful to humans
as well? We asked 50 university students to solve a 7x7 maze in as few steps possible. They could
only observe the cells or walls they had already visited or bumped into (see Figure 10 in Appendix).
We split them into three groups: a Control group receiving no assistance, and two others receiving
information about a similar but different maze sharing the same color semantics. The Visual group
is shown a visual representation of the optimal policy (arrows per cell, see Appendix Figure 9), while
the Bottleneck group is provided a random PLLB rule L, allowing us to evaluate how generalizable
the two different aids are to a new maze. Participants using PLLB rules solve the new maze with
fewer steps than others and find this aid more useful than the visual one on average (statistically
significant at level 0.05 with two-sided Mann-Whitney test after Bonferroni correction, see Figure 6).
While the visual aid contained non-transferable information (optimal actions in all non-colored cells),
PLLB rules focus on the useful and usable information learned by the previous agent.

7 Collaborative Image Reconstruction

PLLB is not restricted to the training of RL agents. This section introduces two collaborative image
reconstruction tasks inspired by the collaborative assembly task of McCarthy (2020). Builder and
Birds both consider two agents: a speaker, who can see a hidden target image, and a listener, who
must accurately reconstruct the target image based on a description from the speaker. Both agents
aim to converge to a description style leading to high reconstruction accuracy. We consider both
synthetic images built from sequences of discrete actions by the listener (Builder), and natural
images of birds that the listener reconstructs using a text-to-image generation model (Birds).

Dataset. In Builder, we construct a dataset of synthetic images with a variable number of shapes
(triangle, square, circle) in different colors (magenta, blue, red, green) and 2D-grid locations. Each
image is created by a sequence of discrete actions, representing a particular combination of shape,
color, and location (e.g., [ACT12 ACT2 ACT4]). In Birds, we construct a dataset of natural images
by selecting 5 images for each of 10 species from the CUB-200-2011 dataset (Wah et al., 2011).

Reward. In Builder, because target and reconstructed images are defined by the action se-
quences that generate them, we measure task success with the Levenshtein similarity between the
(sorted) corresponding action sequences. However, the listener in the Birds environment outputs
images using a text-to-image model that exhibit a variety of properties. We therefore introduce
reward functions corresponding to three different properties for Birds: Color, Background, and
Species. To evaluate a listener’s reconstructed image xr with respect to a particular target im-
age xt and reward function, we create a contrast set C by selecting the three images in CUB-
200-2011 dataset that have a different value for the target reward property (e.g., color), but are
most similar with respect to values for all other annotated properties. We then define reward r
as r =

∑
c∈C d(CLIP(xr), CLIP(xc))− d(CLIP(xr), CLIP(xt)), where CLIP refers to image embedding

method of Radford et al. (2021). For both tasks, reward is reported over a held-out validation set.

Models. We use the llama-2-70b-chat LM as our speaker for Builder, representing images in
raw text that list all shapes’ type, color, and exact coordinates individually in sequence. Wwe
use the open source Llava VLM as our speaker for Birds (Liu et al., 2023). We implement the
listener for Builder with BART, a neural sequence-to-sequence model pre-trained on English text
by Lewis et al. (2019), which we fine-tune at each episode on a training set of (description, action
sequence) pairs using descriptions provided by the speaker. Meanwhile, we use the Stable Diffusion

The Training Agents with Foundation Models Workshop at RLC 2024

Bottleneck
(From Scratch)

- - - - - -Bottleneck
(Continual Learning)

Adversarial Bottleneck
(From Scratch)

Adversarial Bottleneck
(Continual Learning)

Baseline

Ti
m

e
(s

)

Re
w

ar
d

* *

a. b. c.

Figure 4: In Builder, (a) performance of Bottleneck listener improves upon Baseline descriptions
over time for both From Scratch and Continual Learning, unlike an (Adversarial) listener. In a
user study (n = 20), human listeners reconstructed target images with higher accuracy (b.), and less
time (c.), when given instructions generated using Bottleneck vs. original Baseline descriptions.

text-to-image diffusion model as the listener for Birds. For both tasks, we consider two settings:
From Scratch, where the listener is initialized using the original pre-trained model weights at
every episode, and Continual Training, where the listener is continuously updated over time
using descriptions by the speaker. We therefore split our datasets into separate held-out sets for
training, early stopping, selecting samples for gen_rule, and evaluation.

Implementation. We first generate base image descriptions for both tasks by providing the
speaker a prompt containing a general task description and target image, but without any rule
L. We next evaluate the base descriptions using each task’s respective reward functions, and select
the (image, description) pairs with the 5 highest and lowest rewards. Using the prompts shown
in Section A.6, we implement gen_rule using the llama-2-70b-chat and llava models for Builder
and Birds, respectively. For Birds, we observe that output rules L are reward-specific: an exam-
ple rule we get for the Species reward is: “Identify the bird’s species if possible, and include any
distinctive characteristics that set it apart from other birds.”, while an example rule we get for the
Background reward is: “Describe background of the image, such as the presence of snow, water,
...”. We implement update for both tasks by appending the output L to the original prompt to the
speaker, as shown in Figure 1, using the speaker’s output as the new description for a given target.
We repeat this cycle of eliciting rule L , appending L to the same prompt used to generate the base
instructions in order to re-label our data with new instructions, and training and evaluating the
listener model for a total of 5 iterations for Builder and 3 iterations for Birds.

PLLB helps speakers provide more usable instructions For both tasks, PLLB
(Bottleneck) listeners outperform listeners trained from uninformed (Baseline) or misinformed
(Adversarial) speakers (Figures 4 and 5, top row). This holds true for all three different reward
functions in Birds, as well as both training settings, with Continual Learning enabling Bottle-
neck to have an even stronger improvement over Baseline image descriptions by leveraging task
experience. Continual Learning does not significantly help the Adversarial method, showing
that the linguistic rules L in Bottleneck capture successful task strategies. The success of the
From Scratch setting can be interpreted as the speaker generating abstract rules to guide its own
learning, leading to improved performance and showing evidence for a cognitive use of language.

Finally, we observe that the generated rules L encourage the speaker to reduce vague anguage, and
describe properties relevant to the corresponding underlying reward function in Birds, although this
might take several cycles to fully converge (see example rules in Appendix Section A.7). Furthermore,
rules L become more complex over time, and across different trials we observe path dependency
where different trials converge to different rules (e.g., (x, y) vs. x = 0.xx, y = 0.yy for coordinates in
Builder). Overall, these rules help guide the speaker and listener agents in both tasks to iteratively
improve image reconstruction over time, which can also be seen qualitatively in Figure 8 (Appendix).

The Training Agents with Foundation Models Workshop at RLC 2024

Color Background Species

Bottleneck
(From Scratch)

Baseline Bottleneck
(Continual Learning)

Adversarial Bottleneck
(From Scratch)

Adversarial Bottleneck
(Continual Learning)

Human
Speaker

No Human

R
ew

ar
d

R
ew

ar
d

* *

Figure 5: For Birds, rules generated after 3 iterations of PLLB help automated (top) and human
(bottom) speakers provide stronger descriptions for all three possible reward functions (columns).
Continual learning (dark teal, red) further improves reward over listener agents learning from
scratch (light teal, red), but not enough to help Adversarial outperform baseline descriptions.

PLLB can collaborate with human listeners We next conduct a human subject study for
Builder, where we replace the listener with study participants at the end of one iteration of
PLLB, and evaluate how accurately and quickly they can reconstruct images from a held-out test
set. We recruit 20 crowdworkers on Prolific to reconstruct 5 images using descriptions from a
speaker following a Bottleneck rule L, and 5 images using the original Baseline descriptions.
We provide participants an interface that includes a canvas and buttons controlling shape and
colors (Section A.4), which map to the action sequences for a target image. Participants using
Bottleneck descriptions built target images faster and more accurately than participants using
control descriptions (Bonferroni-corrected Wilcoxon signed-rank test, p < 0.05, Figure 4). 55% of
them preferred Bottleneck descriptions when asked in a post-study survey, describing them as
“more direct and less ambiguous”. 10% answered that both descriptions types were equally easy to
follow while remaining participants preferred Baseline descriptions because they they gave more
flexibility, showing a preference not captured in our reward function.

PLLB collaborates with human speakers Can humans benefit from rules generated by PLLB?
We asked 12 Prolific crowdworkers to act as speakers and provide descriptions for images in Birds.
Half of the participants were provided rules inferred for one of the three reward functions (L3)
while the other half were not. Figure 5 (bottom) shows that listeners instructed by human speakers
provided with PLLB rules outperform those instructed by uninformed human speakers (Baseline)
(Bonferroni-corrected t-tests p < 0.05 for species and colors). Participants who were not given a
rule provided less focused descriptions e.g., A barbed wire is an uncomfortable stop for a bird, while
those provided PLLB rules generated more useful descriptions: Bird on barbed wire. Bright red
chest, red at top of head, black wings and beak for the same target image (see other examples in
Appendix Tab. 4). Thus, PLLB agents transmit their experience to humans in the same task.

8 Limitations & Discussion

By inferring the rule explaining its best past behaviors, PLLB becomes more interpretable, gen-
eralizable, and inter-operable with humans, which are important properties as AI systems become
increasingly embedded in society. However, in PLLB, rule generation requires converting agent
histories into representations the LM can handle (e.g., text or images), which may prevent the use
of long-horizon sensorimotor trajectories (e.g., robotic systems). Rule generation can also fail when
the LM overfits, and is subject to well-studied issues of biases in modern LMs. An interesting
direction for future work is to apply PLLB to tasks with complex reward functions that include
hard-to-articulate human preferences. In applications like image captioning for accessibility (Nie
et al., 2020) and personalization of language models (Li et al., 2023a), linguistic rules might improve
transparency and predictability even in cases where users find it difficult to describe their own goals.

The Training Agents with Foundation Models Workshop at RLC 2024

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea

Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. 2022.

Bastien Boutonnet and Gary Lupyan. Words jump-start vision: A label advantage in object recogni-
tion. Journal of Neuroscience, 35(25):9329–9335, 2015. doi: 10.1523/JNEUROSCI.5111-14.2015.
URL https://www.jneurosci.org/content/35/25/9329.

Peter Carruthers and Jill Boucher. Language and Thought. Cambridge University Press, 1998.

Valerie Chen, Abhinav Gupta, and Kenneth Marino. Ask your human: Using human instructions
to improve generalization in reinforcement learning. Proc. of ICLR, 2021.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. Proc. of ICLR, 2019.

Sahil Chopra, Michael Henry Tessler, and Noah D Goodman. The first crank of the cultural ratchet:
Learning and transmitting concepts through language. Proc. of CogSci, 2019.

Andy Clark. Magic Words: How Language Augments Human Computation. In Peter Carruthers and
Jill Boucher (eds.), Language and Thought. Cambridge University Press, 1 edition, 1998. ISBN
978-0-521-63108-2 978-0-521-63758-9 978-0-511-59790-9.

Cédric Colas, Tristan Karch, Nicolas Lair, Jean-Michel Dussoux, Clément Moulin-Frier, Peter F.
Dominey, and Pierre-Yves Oudeyer. Language as a cognitive tool to imagine goals in curiosity
driven exploration. Proc. of NeurIPS, 2020.

Cédric Colas, Tristan Karch, Clément Moulin-Frier, and Pierre-Yves Oudeyer. Language and culture
internalization for human-like autotelic ai. Nature Machine Intelligence, 4(12):1068–1076, 2022.

Lisa Dunlap, Yuhui Zhang, Xiaohan Wang, Ruiqi Zhong, Trevor Darrell, Jacob Steinhardt, Joseph E.
Gonzalez, and Serena Yeung-Levy. Describing differences in image sets with natural language,
2023.

Dedre Gentner and Jeffrey Loewenstein. Relational Language and Relational Thought. Erlbaum,
2002.

Robert D Hawkins, Minae Kwon, Dorsa Sadigh, and Noah D Goodman. Continual adaptation for
efficient machine communication. Proc. of ACL, 2020.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David
Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, Marcus Wainwright,
Chris Apps, Demis Hassabis, and Phil Blunsom. Grounded language learning in a simulated 3d
world. 2017.

Linda Hermer-Vazquez, Anne Moffet, and Paul Munkholm. Language, space, and the development
of cognitive flexibility in humans: The case of two spatial memory tasks. Cognition, 79(3):263–299,
2001.

Mary Hesse. The Cognitive Claims of Metaphor. The Journal of Speculative Philosophy, 1988.

Felix Hill, Andrew K. Lampinen, Rosalia Schneider, Stephen Clark, Matthew Botvinick, James L.
McClelland, and Adam Santoro. Emergent systematic generalization in a situated agent. Proc. of
ICLR, 2020.

Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-AI coordi-
nation, 2023.

https://www.jneurosci.org/content/35/25/9329

The Training Agents with Foundation Models Workshop at RLC 2024

Hengyuan Hu, David J Wu, Adam Lerer, Jakob Foerster, and Noam Brown. Human-AI coordination
via human-regularized search and learning, 2022.

Shengran Hu and Jeff Clune. Thought cloning: Learning to think while acting by imitating human
thinking. Proc. of NeurIPS, 36, 2023.

Yiding Jiang, Shixiang Gu, Kevin Murphy, and Chelsea Finn. Language as an abstraction for
hierarchical deep reinforcement learning. Proc. of NeurIPS, 2019.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. 2023.

George Lakoff and Mark Johnson. Metaphors We Live By. University of Chicago press, 2008.

Andrew K. Lampinen, Nicholas A. Roy, Ishita Dasgupta, Stephanie C. Y. Chan, Allison C. Tam,
James L. McClelland, Chen Yan, Adam Santoro, Neil C. Rabinowitz, Jane X. Wang, and Felix
Hill. Tell me why! – explanations support learning of relational and causal structure. Proc. of
ICML, 2022.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension, 2019.

Belinda Z Li, Alex Tamkin, Noah Goodman, and Jacob Andreas. Eliciting human preferences with
language models. 2023a.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine,
Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented
code emulator. 2023b.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward
Grefenstette, Shimon Whiteson, and Tim Rocktäschel. A survey of reinforcement learning in-
formed by natural language. 2019.

Aleksander R Luria. The directive function of speech in development and dissolution. Word, 15(2),
1959.

William McCarthy. Emergence of compositional abstractions in human collaborative assembly. 2020.
URL https://api.semanticscholar.org/CorpusID:233179096.

Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Aligning superhuman
ai with human behavior: Chess as a model system. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery Data Mining, KDD ’20. ACM, August 2020.
doi: 10.1145/3394486.3403219. URL http://dx.doi.org/10.1145/3394486.3403219.

Alex Mesoudi and Alex Thornton. What is cumulative cultural evolution? Proceedings of the Royal
Society B, 285(1880):20180712, 2018.

Allen Nie, Reuben Cohn-Gordon, and Christopher Potts. Pragmatic issue-sensitive image captioning,
2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

https://api.semanticscholar.org/CorpusID:233179096
http://dx.doi.org/10.1145/3394486.3403219

The Training Agents with Foundation Models Workshop at RLC 2024

Nicholas A Roy, Junkyung Kim, and Neil Rabinowitz. Explainability via causal self-talk. Advances
in Neural Information Processing Systems, 35:7655–7670, 2022.

Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and planning with latent
language. Proc. of ACL, 2021.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Proc. of NeurIPS, 2024.

Elizabeth S Spelke. What makes us smart? core knowledge and natural language. Language in
mind: Advances in the study of language and thought, pp. 277–311, 2003.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Allison Tam, Neil Rabinowitz, Andrew Lampinen, Nicholas A Roy, Stephanie Chan, DJ Strouse,
Jane Wang, Andrea Banino, and Felix Hill. Semantic exploration from language abstractions and
pretrained representations. Proc. of NeurIPS, 2022.

Michael Henry Tessler, Jason Madeano, Pedro A. Tsividis, Brin Harper, Noah D. Goodman, and
Joshua B. Tenenbaum. Learning to solve complex tasks by growing knowledge culturally across
generations, 2021.

L.S Vygotsky. Thought and Language. MIT Press, 1965.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. Technical report, 2011.

Tony T. Wang, Adam Gleave, Tom Tseng, Kellin Pelrine, Nora Belrose, Joseph Miller, Michael D.
Dennis, Yawen Duan, Viktor Pogrebniak, Sergey Levine, and Stuart Russell. Adversarial policies
beat superhuman go ais, 2023.

Olivia Watkins, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Jacob Andreas. Teachable
reinforcement learning via advice distillation. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Proc. of NeurIPS, 2021.

Sandra R Waxman. The development of an appreciation of specific linkages between linguistic and
conceptual organization. Lingua, 92:229–257, 1994.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023.

Catherine Wong, Kevin Ellis, Joshua B. Tenenbaum, and Jacob Andreas. Leveraging language to
learn program abstractions and search heuristics. Proc. of ICML, 2021.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. 2022.

Hanako Yoshida and Linda B Smith. Sound symbolism and early word learning in two languages.
In Proc. of CogSci, 2003.

Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. RTFM: Generalising to new environment
dynamics via reading. In Proc. of ICLR, 2020.

The Training Agents with Foundation Models Workshop at RLC 2024

Figure 7: Overview of SelectSay game, reproduced from Hu & Sadigh (2023).

i=1 i=2 i=3

Test Target Listener Reconstructions

BIRDS

BUILDER

Figure 8: builder and birds tasks consist of speaker and listener agents. At test time, the speaker
provides a language description to the listener that helps them recreate the image accurately. For
both tasks, PLLB helps improve listener accuracy over time.

A Appendix

A.1 Additional Figures

A.2 Hyperparameters

1. SelectSay: We use the same default parameters used in InstructRL (Hu & Sadigh, 2023),
including setting the regularization strength λ = 0.25. Additionally, each time we invoke
gen_rule, we create an ensemble of 3 rules, which we aggregate over when construct the
probability distribution over actions during update.

2. Maze: We use the InstructRL objective with a tabular Q-learning agent, but introduce a
ϵLM parameter that controls whether the regularization strength λ is 0 or 1 at each time-step
in an episode. Although we did not observe a strong effect on modifying ϵLM , we did not
explore values larger than ϵLM = 0.4 as that led to increased inference cost and experiment
latency. Finally, each time we invoke gen_rule we create an ensemble of 4 rules, which we
aggregate over when construct the probability distribution over actions during update.

3. Builder: For the listener agent we finetune BART for a maximum of 100 epochs at each
iteration of PLLB, employing early stopping on a held-out validation set and using the
default arguments provided by the HuggingFace Transformers library (Lewis et al., 2019).
Each time we invoke gen_rule, we same 3 rules and select the rule with the highest aggregate
likelihood across all tokens. Likewise, for each image description (the speaker’s action), we

The Training Agents with Foundation Models Workshop at RLC 2024

sample 3 possible descriptions under the given rule and select the one with the highest
probability.

4. Birds: For the fine-tuned version of the listener agent, we finetune StableDiffusion for 1000
steps on a separate finetuning dataset. When generating images, we simply sampe one
image per description, using 10 inference steps and a guidance scale of 7.5.

A.3 Compute Resources

Control Bottleneck Visual Bottleneck Visual

of

 S
te

ps

U
se

fu
ln

es
s R

at
in

g

*

*

2

3

4

5

20

60

80

100

Figure 6: Participants provided PLLB rules
solve new mazes faster than those given ei-
ther visual or no aid, and reported linguistic
feedback as more useful than visual.

We use the Together and Replicate API services
to conduct all inference and finetuning jobs across
all experiments, except for the listener model in
Builder, which was implemented using the Hug-
gingFace Transformers library implementation of
BART (Lewis et al., 2019). All tasks were run us-
ing 1 NVIDIA A40 GPU.

A.4 Maze

See Figures 9 and 10.

Figure 9: Visual aid provided to participants in the human subject study for the Maze task.

Figure 10: Interface used in the human subject study for the Maze task. Cells not visited by the
participants are hidden in gray.

A.5 Dataset Details for Birds.

We consider images of the following bird species in
the CUB-200-2011 dataset from Wah et al. (2011)

The Training Agents with Foundation Models Workshop at RLC 2024

for the Birds task: [Indigo Bunting, Cardinal,
Yellow Breasted Chat, American Crow, Vermillion Flycatcher, California Gull, Blue
Jay, Tropical Kingbird, White Pelican, Horned Puffin].

Figure 11: Interface used in the human subject study for the Builder task.

A.6 Full Prompts

We first provide the full prompts used for gen_rule. For space constraints, we do not include
example samples, but note they follow the format shown in Figure 1.

SelectSay: You will be given a list of (OBSERVATION, ACTION, REWARD) examples collected
from two agents learning to solve a task. Possible ACTIONS an agent can take are: 1, 2, 3, 4, 5, and
quit. Each OBSERVATION describes the ordered sequence of actions that AGENT 1 picks, and each
ACTION describes the ACTION that AGENT 2 picks based on the given OBSERVATION. The ex-
amples are separated into HIGH REWARD and LOW REWARD examples.+[samples]+Output a
language rule that best summarizes the strategy AGENT 2 should follow to receive HIGH REWARD,
not LOW REWARD, based on the examples. Start the instruction with the prefix ’I should’.

Maze: You will be given a list of example (OBSERVATION, ACTION) trajectories collected from
an AGENT learning to solve a maze. Each trajectory receives a REWARD. Possibles OBSERVA-
TIONS an agent see are: WHITE, RED, BLUE Possible ACTIONS an agent can take are: NORTH,
SOUTH, EAST, WEST. The examples are separated into HIGH REWARD and LOW REWARD
examples + [samples] + Output a language rule that best summarizes the strategy the AGENT
should follow when picking a sequence of ACTIONS to solve the maze and receive HIGH REWARD,
not LOW REWARD, based on the examples. Start the instruction with the prefix ’I should’.

Builder: There are two agents. The goal of Agent 1 is to provide instructions to Agent 2 that
helps Agent 2 to successfully recreate the image. You will be given a list of (ORIGINAL, AGENT
1 INSTRUCTION, REWARD) values where ORIGINAL is the original description of an image,

The Training Agents with Foundation Models Workshop at RLC 2024

INSTRUCTION is the instruction provided by Agent 1 to Agent 2, and REWARD is the reward
Agent 2 receives when trying to re-create the image (higher is better). The examples are separated
into HIGH REWARD and LOW REWARD examples. + [samples]+

Based on the examples above, output a list of 2 RULES for Agent 1 to follow when generating
INSTRUCTION in order to receive HIGH REWARD, instead of LOW REWARD. Write the rules
after the prefix RULES:

Birds: The top row of three images have the following HIGH REWARD descriptions:+high
reward samples+The bottom row of three images have the following LOW REWARD descrip-
tions:+low reward samples+Provide a rule I should follow in order to provide image descriptions
with HIGH REWARD, not LOW REWARD. Provide the rule after the prefix RULE:"

We next provide the full prompts used in update for each task.

1. SelectSay: [L]+Agent 1 selected [observation]. So I should select

2. Maze: You are an agent solving a maze following a provided RULE. You will be given a list
of PREVIOUS ACTIONS and the CURRENT OBSERVATION. Follow the RULE to select your
NEXT ACTION (East, West, South, North):
RULE: + [L]+ PREVIOUS ACTIONS: + [τ1...t−1] + CURRENT OBSERVATION: +
[observation] +
What is the NEXT ACTION you should take? Output one of (East, West, South, North) after the
prefix NEXT ACTION:.

3. Builder: You will be given a DESCRIPTION of an image. Your goal is to use this description
to provide a short INSTRUCTION to help someone else, who cannot see the image, accurately re-
construct it. You will also be given a list of RULES you must follow when providing the instruction.
DESCRIPTION: + observation +
RULES: +L +
Please provide a short instruction following the prefix INSTRUCTION:

4. Birds: Provide a one-sentence description of this image, using the following RULES:+L

A.7 Examples of Generated Rules for All Environments

See Tables 1, 2, 3, and 4.

A.8 Analysis of Generated Rules for All Environments

In our experiments, we did not observe a significantly strong quantitative difference in performance
when gen_rule is instantiated with models of different sizes (e.g. llama-2-70b-chat vs. llama-2-13b-
chat). However, we did notice interesting qualitative differences across samples that are likely due
to the additional fine-tuning step using reinforcmenet learning from human feedback (RLHF, see
https://llama.meta.com/llama2/ for more information). We briefly describe these differences per
environment below.

1. SelectSay: Because of the simplicity of this environment, it is possible for a rule L to
summarize the full optimal human-interpretable policy as a sequence of if-statements (e.g.
“If the current state is ’1’, I should take action 1.”) - we observed that smaller language
models (e.g. llama-2-7b-chat and llama-2-13b-chat) always did this, while larger models
(e.g. llama-2-70b-chat and mistral-8x-7b-instruct) were better able to generalize and use
more efficient language, such as “I should take the same action as the observation”. We also
noticed smaller models often included superfluous language, such as “I should always take
the action that leads to the highest reward”.

https://llama.meta.com/llama2/

The Training Agents with Foundation Models Workshop at RLC 2024

Setting L1 L2 L5

Standard I should follow the strategy
of choosing action 4 when-
ever the observation is 2, 3,
4, or 5.

I should follow the strategy
of choosing actions based on
the observation provided by
AGENT 1. If the observa-
tion is 1, I should choose ac-
tion 1. If the observation
is 2, I should choose action
3. If the observation is 3,
I should choose action 3. If
the observation is 4, I should
choose action 4. If the obser-
vation is 5, I should choose
action 5.

I should follow the strategy
of choosing the same action
as AGENT 1 for observa-
tions 1, 2, 3, 4, and 5.

Fixed Speaker I should choose action 1
when observation is 1 or 2
or 4 or 5. I should choose
action 2 when observation is
3.

I should choose action 1
when observation is 1, 2, 3
or 5. I should choose action
2 when observation is 4.

I should choose action 1
when observation is 1. I
should choose action 4 when
observation is 2. I should
choose action 5 when obser-
vation is 3. I should choose
action 2 when observation is
4. I should choose action 3
when observation is 5.

Table 1: Example L rules generated for the SelectSay environment, for the Standard setting (both
Listener and Speaker agents are RL agents trained from random initialization) and a Fixed Speaker
agent.

Size L1 L2 L5 L8

7x7 I should start by mov-
ing north, then con-
tinue moving north un-
til I reach a wall, then
turn east and move
until I reach a wall,
then turn south and
move until I reach a
wall, then turn west
and move until I reach
the end of the maze.

I should prioritize
moving North, East,
and South over moving
West, as the HIGH
REWARD EXAM-
PLES show a higher
frequency of these
actions. 2. I should
avoid moving West
unnecessarily, as it
is rarely seen in the
HIGH REWARD EX-
AMPLES and often
leads to LOW RE-
WARD EXAMPLES

I should take the
EAST action when
I see WHITE, and
then repeat the EAST
action until I see RED,
then take the SOUTH
action, and then repeat
the EAST action until
I see BLUE, then take
the NORTH action,
then take the EAST
action until I see RED
again, then take the
SOUTH action, and
finally take the WEST
action.

I should take the EAST
action when I observe
WHITE, and keep tak-
ing EAST actions un-
til I observe RED, then
take the SOUTH ac-
tion. After taking
the SOUTH action, I
should take the EAST
action again until I
observe BLUE, then
take the NORTH ac-
tion. After taking
the NORTH action, I
should take the EAST
action until I observe
RED again, then take
the SOUTH action.

Table 2: Example L rules generated for the Maze environment for two different maze sizes.

2. Maze: As discussed in Section 6, the majority of generated rules captured the underlying
color semantics of the maze, enabling generalization. However, we did observe that smaller
model sizes (e.g. llama-2-7b-chat) resulted in more superfluous language (e.g. “I should
always prioritize taking actions that lead to the most recent reward, and avoid taking actions
that lead to low reward.”) and the generated rules focused more on the first actions the agent
should take, which may not always generalize.

The Training Agents with Foundation Models Workshop at RLC 2024

Setting L1 L2 L3

Re-Initialization 1. Be specific with location
details: Agent 1 should pro-
vide detailed location infor-
mation for each element in
the image, such as x and y
coordinates. 2. Use descrip-
tive language for elements,
such as "red dot" or "green
triangle".

1. Use specific coordinates
when instructing Agent 2 to
draw shapes. 2. Use de-
scriptive language to spec-
ify the color and shape of
each element. For example,
"a green triangle" instead of
"a green thing".

1. Be specific with location
coordinates: provide specific
coordinates for the location
of each shape, using the
format x=0.XX, y=0.YY.
2. Use descriptive shape
names: Instead of using
generic terms like "dot" or
"square," use more descrip-
tive names that indicate the
shape’s color and size, such
as "green triangle" or "red
square."

Continual Training 1. Be specific and detailed
in your instructions. High
reward examples have spe-
cific coordinates and shapes,
while low reward examples
have more general descrip-
tions. 2. Use a consistent
format for your instructions.
High reward examples have
a consistent format for list-
ing coordinates and shapes,
while low reward examples
have a more free-form for-
mat.

1. Provide explicit coordi-
nates for each element in the
image, using the format (x,
y). 2. Use specific colors
when referring to elements
in the image, such as "red",
"green", or "blue". Avoid
using vague terms like "col-
ored" or "shaded".

1. Use a consistent for-
mat for describing shapes,
such as always listing the
x-coordinate first, followed
by the y-coordinate. For
example, instead of "one
green square at the point
x=0.53, y=0.24", use "one
green square at (0.53, 0.24)".
2. Avoid using vague
terms like "various shades of
green". Instead, use spe-
cific colors, such as "green"
or "blue". Additionally,
use specific shapes, such as
"square" or "triangle", rather
than vague terms like "rect-
angle".

Table 3: Example L rules generated for the Builder environment.

Reward L1 L2 L3

color Describe the bird’s color,
species, and any distinctive
markings or patterns.

Describe the bird’s col-
oration accurately.

Describe the bird’s col-
oration accurately.

background Include details about the
bird’s surroundings, such as
the type of branch or post it
is on, and any additional el-
ements in the background.

Include the bird’s action
(perched, flying, standing)
and its location (on a
branch, railing, pole, etc.)

Describe the bird’s action
(flying, perching, standing)
and the environment it is in
(sky, tree, water).

species Describe the bird’s color,
markings, and any distinc-
tive features.

Describe the subject’s
unique features, such as
coloration, beak shape, or
other distinguishing charac-
teristics.

Include specific details
about the bird’s appear-
ance, such as the color of its
feathers, beak, or eyes, and
any distinctive markings or
patterns.

Table 4: Example L rules generated for the Birds environment demonstrate reward-specificity over
time.

3. Builder: While we do not observe any model-specific features, there do exist variation
across samples in the type of formatting and syntax generated rules encourage (e.g. pro-
vide coordinates “ using the format (x, y)” vs. “ using the format "x=0.XX, y=0.YY"”),

The Training Agents with Foundation Models Workshop at RLC 2024

leading to agents converging to different descriptions. Furthermore, some rules encourage
list formats in image descriptions (e.g. 1.Draw a green dot at (0.72, 0.21). 2. Draw a green
dot at (0.73, 0.72).) while other rules encouraged clustering of identical shapes (e.g. Draw
two green dots at (0.72, 0.21) and (0.73, 0.72).)

4. Birds: We observed that rules demonstrated more reward-specificity (i.e. specific to back-
ground, color, or species rewards) when generated with larger VLMs (e.g. llava-13b) than
smaller models (e.g. llava-v1.6-vicuna-7b), with the latter primarily proposing rules that
encouraged more details descriptions (e.g. “Avoid using vague or general terms”).

